1
|
Yue Q, Liu Y, Li F, Hong T, Guo S, Cai M, Zhao L, Su L, Zhang S, Zhao C, Li K. Antioxidant and anticancer properties of fucoidan isolated from Saccharina Japonica brown algae. Sci Rep 2025; 15:8962. [PMID: 40089594 PMCID: PMC11910537 DOI: 10.1038/s41598-025-94312-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/12/2025] [Indexed: 03/17/2025] Open
Abstract
Fucoidan is a fucose-rich sulfated polysaccharide that has gained attention owing to its various biological activities. In this study, fucoidan was isolated from Saccharina japonica using an enzyme-assisted method, and its antioxidant and anti-hepatocarcinoma effects were evaluated. The fucoidan was a 112.8 kDa polysaccharide comprising seven monosaccharides: fucose, xylose, glucuronic acid, rhamnose, glucose, mannose, and galactose. The main chain residues were (1 → 3)-α-L-Fucp and (1 → 4)-α-L-Fucp units with sulfate groups at the C-2/C-4 positions of the (1 → 3)-α-L-Fucp residues. S. japonica fucoidans showed excellent antioxidant potency with values of 1.02 mg TE/g and 5.39 mg TE/g for the ABTS and FRAP assays, respectively. Additionally, they exerted antitumor efficacy and low systemic toxicity in H22 tumor-bearing mice, with a tumor inhibition rate of 42.93%. Furthermore, it significantly inhibited tumor angiogenesis and reduced pro-inflammatory cytokines levels (IL-1β, IL-6, and TNF-α). Our results suggest that fucoidan isolated from S. japonica possesses potent antioxidant and anticancer properties and may be used as a potential agent for hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
- Shandong Xiaoying Biotechnology Co., Ltd., Jinan, 250003, China.
| | - Yongxuan Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Fujia Li
- Shandong Xiaoying Biotechnology Co., Ltd., Jinan, 250003, China
| | - Tao Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Shousen Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Mengrui Cai
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Le Su
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Song Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Chen Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Kunlun Li
- Jinan Hangchen Biotechnology Co., Ltd., Jinan, 250000, China.
| |
Collapse
|
2
|
Zahariev N, Katsarov P, Lukova P, Pilicheva B. Novel Fucoidan Pharmaceutical Formulations and Their Potential Application in Oncology-A Review. Polymers (Basel) 2023; 15:3242. [PMID: 37571136 PMCID: PMC10421178 DOI: 10.3390/polym15153242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Fucoidan belongs to the family of marine sulfated, L-fucose-rich polysaccharides found in the cell wall matrix of various brown algae species. In the last few years, sulfated polysaccharides have attracted the attention of researchers due to their broad biological activities such as anticoagulant, antithrombotic, antidiabetic, immunomodulatory, anticancer and antiproliferative effects. Recently the application of fucoidan in the field of pharmaceutical technology has been widely investigated. Due to its low toxicity, biocompatibility and biodegradability, fucoidan plays an important role as a drug carrier for the formulation of various drug delivery systems, especially as a biopolymer with anticancer activity, used for targeted delivery of chemotherapeutics in oncology. Furthermore, the presence of sulfate residues with negative charge in its structure enables fucoidan to form ionic complexes with oppositely charged molecules, providing relatively easy structure-forming properties in combination with other polymers. The aim of the present study was to overview essential fucoidan characteristics, related to its application in the development of pharmaceutical formulations as a single drug carrier or in combinations with other polymers. Special focus was placed on micro- and nanosized drug delivery systems with polysaccharides and their application in the field of oncology.
Collapse
Affiliation(s)
- Nikolay Zahariev
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria; (N.Z.); (B.P.)
- Research Institute, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria
| | - Plamen Katsarov
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria; (N.Z.); (B.P.)
- Research Institute, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria
| | - Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria;
| | - Bissera Pilicheva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria; (N.Z.); (B.P.)
- Research Institute, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria
| |
Collapse
|
3
|
Malairaj S, Veeraperumal S, Yao W, Subramanian M, Tan K, Zhong S, Cheong KL. Porphyran from Porphyra haitanensis Enhances Intestinal Barrier Function and Regulates Gut Microbiota Composition. Mar Drugs 2023; 21:md21050265. [PMID: 37233459 DOI: 10.3390/md21050265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
In this study, the effects of a homogenous porphyran from Porphyra haitanensis (PHP) on the intestinal barrier and gut microbiota were investigated. The results showed that oral administration of PHP resulted in a higher luminal moisture content and a lower pH environment for the growth of beneficial bacteria in the colon of mice. PHP significantly increased the production of total short-chain fatty acids during the fermentation process. PHP made the intestinal epithelial cells of mice arrange more tidily and tightly with a significant increase in mucosal thickness. PHP also increased the amount of mucin-producing goblet cells and the expression of mucin in the colon, which maintained the structure and function of the intestinal mucosal barrier. Moreover, PHP up-regulated the expression of tight junctions including ZO-1 and occludin, improving the intestinal physical barrier function. The results of 16S rRNA sequencing showed that PHP regulated the composition of gut microbiota in mice, increasing the richness and diversity of gut microbiota and the ratio of Firmicutes to Bacteroidetes. This study revealed that the intake of PHP is beneficial for the gastrointestinal tract and PHP could be a potential source of prebiotics in the functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Sathuvan Malairaj
- Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Suresh Veeraperumal
- Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Wanzi Yao
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mugesh Subramanian
- Research and Development Center, Genexia Bioserv, Chennai 600045, Tamilnadu, India
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, China
| | - Saiyi Zhong
- Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Kit-Leong Cheong
- Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| |
Collapse
|
4
|
Abdollah MRA, Ali AA, Elgohary HH, Elmazar MM. Antiangiogenic drugs in combination with seaweed fucoidan: A mechanistic in vitro and in vivo study exploring the VEGF receptor and its downstream signaling molecules in hepatic cancer. Front Pharmacol 2023; 14:1108992. [PMID: 36874031 PMCID: PMC9982147 DOI: 10.3389/fphar.2023.1108992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers reported worldwide with poor morbidity and high mortality rates. HCC is a very vascular solid tumour as angiogenesis is not only a key driver for tumour progression but also an exciting therapeutic target. Our research investigated the use of fucoidan, a sulfated polysaccharide readily abundant in edible seaweeds commonly consumed in Asian diet due to their extensive health benefits. Fucoidan was reported to possess a strong anti-cancer activity, but its anti-angiogenic potential is still to be fully unraveled. Our research investigated fucoidan in combination with sorafenib (an anti-VEGFR tyrosine kinase inhibitor) and Avastin® (bevacizumab, an anti-VEGF monoclonal antibody) in HCC both in vitro and in vivo. In vitro on HUH-7 cells, fucoidan had a potent synergistic effect when combined with the anti-angiogenic drugs and significantly reduced HUH-7 cell viability in a dose dependent manner. Using the scratch wound assay to test cancer cell motility, sorafenib, A + F (Avastin and fucoidan) or S + F (sorafenib and fucoidan) treated cells consistently showed an unhealed wound and a significantly smaller %wound closure (50%-70%) versus untreated control (91%-100%) (p < 0.05, one-way ANOVA). Using RT-qPCR; fucoidan, sorafenib, A + F and S + F significantly reduced the expression of the pro-angiogenic PI3K/AKT/mTOR and KRAS/BRAF/MAPK pathways by up to 3 folds (p < 0.05, one-way ANOVA versus untreated control). While ELISA results revealed that in fucoidan, sorafenib, A + F and S + F treated cells, the protein levels of caspases 3, 8, and 9 was significantly increased especially in the S + F group showing 40- and 16-times higher caspase 3 and 8 protein levels, respectively (p < 0.05, one-way-ANOVA versus untreated control). Finally, in a DEN-HCC rat model, H&E staining revealed larger sections of apoptosis and necrosis in the tumour nodules of rats treated with the combination therapies and immunohistochemical analysis of the apoptotic marker caspase 3, the proliferation marker Ki67 and the marker for angiogenesis CD34 showed significant improvements when the combination therapies were used. Despite the promising findings reported herein that highlighted a promising chemomodulatory effect of fucoidan when combined with sorafenib and Avastin, further investigations are required to elucidate potential beneficial or adversary interactions between the tested agents.
Collapse
Affiliation(s)
- Maha R A Abdollah
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Egypt.,Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Egypt
| | - Aya A Ali
- Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Egypt
| | - Hassnaa H Elgohary
- Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Egypt
| | - Mohamed M Elmazar
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Egypt.,Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Egypt
| |
Collapse
|
5
|
Seaweeds in the Oncology Arena: Anti-Cancer Potential of Fucoidan as a Drug—A Review. Molecules 2022; 27:molecules27186032. [PMID: 36144768 PMCID: PMC9506145 DOI: 10.3390/molecules27186032] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Marine natural products are a discerning arena to search for the future generation of medications to treat a spectrum of ailments. Meanwhile, cancer is becoming more ubiquitous over the world, and the likelihood of dying from it is rising. Surgery, radiation, and chemotherapy are the mainstays of cancer treatment worldwide, but their extensive side effects limit their curative effect. The quest for low-toxicity marine drugs to prevent and treat cancer is one of the current research priorities of researchers. Fucoidan, an algal sulfated polysaccharide, is a potent therapeutic lead candidate against cancer, signifying that far more research is needed. Fucoidan is a versatile, nontoxic marine-origin heteropolysaccharide that has received much attention due to its beneficial biological properties and safety. Fucoidan has been demonstrated to exhibit a variety of conventional bioactivities, such as antiviral, antioxidant, and immune-modulatory characteristics, and anticancer activity against a wide range of malignancies has also recently been discovered. Fucoidan inhibits tumorigenesis by prompting cell cycle arrest and apoptosis, blocking metastasis and angiogenesis, and modulating physiological signaling molecules. This review compiles the molecular and cellular aspects, immunomodulatory and anticancer actions of fucoidan as a natural marine anticancer agent. Specific fucoidan and membranaceous polysaccharides from Ecklonia cava, Laminaria japonica, Fucus vesiculosus, Astragalus, Ascophyllum nodosum, Codium fragile serving as potential anticancer marine drugs are discussed in this review.
Collapse
|
6
|
McLaughlin KL, Nelson MAM, Coalson HS, Hagen JT, Montgomery MM, Wooten AR, Zeczycki TN, Vohra NA, Fisher-Wellman KH. Bioenergetic Phenotyping of DEN-Induced Hepatocellular Carcinoma Reveals a Link Between Adenylate Kinase Isoform Expression and Reduced Complex I-Supported Respiration. Front Oncol 2022; 12:919880. [PMID: 35756609 PMCID: PMC9213884 DOI: 10.3389/fonc.2022.919880] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer worldwide. Increasing evidence suggests that mitochondria play a central role in malignant metabolic reprogramming in HCC, which may promote disease progression. To comprehensively evaluate the mitochondrial phenotype present in HCC, we applied a recently developed diagnostic workflow that combines high-resolution respirometry, fluorometry, and mitochondrial-targeted nLC-MS/MS proteomics to cell culture (AML12 and Hepa 1-6 cells) and diethylnitrosamine (DEN)-induced mouse models of HCC. Across both model systems, CI-linked respiration was significantly decreased in HCC compared to nontumor, though this did not alter ATP production rates. Interestingly, CI-linked respiration was found to be restored in DEN-induced tumor mitochondria through acute in vitro treatment with P1, P5-di(adenosine-5′) pentaphosphate (Ap5A), a broad inhibitor of adenylate kinases. Mass spectrometry-based proteomics revealed that DEN-induced tumor mitochondria had increased expression of adenylate kinase isoform 4 (AK4), which may account for this response to Ap5A. Tumor mitochondria also displayed a reduced ability to retain calcium and generate membrane potential across a physiological span of ATP demand states compared to DEN-treated nontumor or saline-treated liver mitochondria. We validated these findings in flash-frozen human primary HCC samples, which similarly displayed a decrease in mitochondrial respiratory capacity that disproportionately affected CI. Our findings support the utility of mitochondrial phenotyping in identifying novel regulatory mechanisms governing cancer bioenergetics.
Collapse
Affiliation(s)
- Kelsey L McLaughlin
- Brody School of Medicine, Department of Physiology, East Carolina University, Greenville, NC, United States.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - Margaret A M Nelson
- Brody School of Medicine, Department of Physiology, East Carolina University, Greenville, NC, United States.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - Hannah S Coalson
- Brody School of Medicine, Department of Physiology, East Carolina University, Greenville, NC, United States.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - James T Hagen
- Brody School of Medicine, Department of Physiology, East Carolina University, Greenville, NC, United States.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - McLane M Montgomery
- Brody School of Medicine, Department of Physiology, East Carolina University, Greenville, NC, United States.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - Ashley R Wooten
- Brody School of Medicine, Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, NC, United States
| | - Tonya N Zeczycki
- Brody School of Medicine, Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, NC, United States
| | - Nasreen A Vohra
- Brody School of Medicine, Department of Surgery, East Carolina University, Greenville, NC, United States
| | - Kelsey H Fisher-Wellman
- Brody School of Medicine, Department of Physiology, East Carolina University, Greenville, NC, United States.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States.,UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
7
|
Li J, Guo C, Wu J. Fucoidan: Biological Activity in Liver Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1617-1632. [PMID: 33148007 DOI: 10.1142/s0192415x20500809] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fucoidan is a type of polysaccharide rich in sulfuric acid groups and is mainly found in brown algae. Due to its extensive biological activities, such as anticoagulant, antitumor, antithrombotic, antiviral, anti-oxidant and enhancing immune function, fucoidan has gradually become a research hotspot. Under the scientific guidance of modern medical theory, fucoidan and its mechanism in oxidative stress, carbohydrate and lipid metabolism, inflammatory response, tumor proliferation, and metastasis have become a new research direction and an important basis as an effective liver protection drug. In this paper, we discuss the important role of fucoidan in viral hepatitis, liver fibrosis, liver cancer, nonalcoholic fatty liver and liver injury induced by drugs and ischemia and briefly discuss its underlying mechanism. We supplement the theoretical basis for its clinical application and provide effective targets for the development of follow-up dominant drugs.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, P. R. China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Shanghai 200072, P. R. China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, P. R. China
| |
Collapse
|
8
|
B V, K S, R A, K Usha S, M A. Bioactive and thermostable sulphated polysaccharide from Sargassum swartzii with drug delivery applications. Int J Biol Macromol 2020; 153:190-200. [PMID: 32135254 DOI: 10.1016/j.ijbiomac.2020.02.332] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 02/08/2023]
Abstract
Sulphated Polysaccharides (SP) were extracted from a brown seaweed Sargassum swartzii by two extraction methods using hydrochloric acid and hot water. The sulphated polysaccharide yield using the hot water extraction method was found to be higher and hence used for further study. The extracted polysaccharide was characterized using UV, FT-IR, biochemical and thin layer chromatography analyses. Further, the purity of the extracted polysaccharide was ascertained by HPLC analysis. The sugars present in the sulphated polysaccharide were revealed by acid hydrolysis. The structure of the extracted SP was revealed as fucoidan using the NMR spectrum. Thermal stability of the sulphated polysaccharide was assessed using Thermogravimetric analysis and polymer was found to be stable up to 700 °C. Anti-oxidant and anti-inflammatory activities were evaluated using phosphomolybdenum and BSA assay, respectively. Cell proliferation analysis using MTT assay against normal cell lines revealed that the polysaccharide is biocompatible while with cancer cell lines, the compound exhibited potential anti-proliferative activity. Application of this sulphated polysaccharide as a carrier for drug delivery with rutin as a model drug was explored. The drug release kinetics was modeled and the stability of the rutin encapsulated SP nano formulation was studied.
Collapse
Affiliation(s)
- Vanavil B
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India; Microbial Processes and Technology Division, CSIR-National Institute of Interdisciplinary Science and Technology, Thiruvanathapuram 695019, Kerala, India
| | - Selvaraj K
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| | - Aanandhalakshmi R
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| | - Sri K Usha
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| | - Arumugam M
- Microbial Processes and Technology Division, CSIR-National Institute of Interdisciplinary Science and Technology, Thiruvanathapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
9
|
Slim C, Zaouali MA, Nassrallah H, Ammar HH, Majdoub H, Bouraoui A, Abdennebi HB. Protective potential effects of fucoidan in hepatic cold ischemia-rerfusion injury in rats. Int J Biol Macromol 2020; 155:498-507. [PMID: 32243932 DOI: 10.1016/j.ijbiomac.2020.03.245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 01/14/2023]
Abstract
The necessity to increase the efficiency of organ preservation has pushed physicians to consider the use of pharmacological additives in preservation solutions to minimize ischemia reperfusion injury. Here, we evaluated the effect of fucoidan, sulfated polysaccharide from brown seaweed, as an additive to IGL-1 (Institut Georges Lopez) preservation solution. Livers from Wistar rats were preserved for 24 h at 4 °C in IGL-1 solution, enriched or not with fucoidan (100 mg/L). Thereafter, they were subjected to reperfusion (2 h, at 37 °C) using an isolated perfused rat liver model. The addition of fucoidan to IGL-1 solution reduced hepatic injury (AST, ALT) and improved liver function compared to IGL-1 solution without fucoidan. In addition, we noted a significant increase in the phosphorylation of AMPK, AKT protein kinase and GSK3-β, leading to a reduction in VDAC phosphorylation, as well as a reduction in apoptosis (caspase 3), mitochondrial damage, oxidative stress and endoplasmic reticulum (ER) stress markers. Furthermore, ERK1/2 and P38 MAPKs phosphorylation significantly decreased after supplementation of IGL-1 solution with fucoidan. In conclusion, the supplementation of IGL-1 solution with fucoidan maintained liver graft integrity and function through the prevention of the ER stress, oxidative stress and mitochondrial dysfunction. Fucoidan could be considered as potential natural therapeutic agent to alleviate graft injury.
Collapse
Affiliation(s)
- Chérifa Slim
- Laboratoire du Génome Humain et Maladies multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Mohamed Amine Zaouali
- Laboratoire du Génome Humain et Maladies multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia; Département des Sciences du Vivant et Biotechnologie, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Tunisia
| | - Hana Nassrallah
- Laboratoire du Génome Humain et Maladies multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Hiba Hadj Ammar
- Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir, Tunisia
| | - Hatem Majdoub
- Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir, Tunisia
| | - Abderrahman Bouraoui
- Laboratoire du Développement Chimique, Galénique et Pharmacologique des Médicaments (LR12ES09), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Hassen Ben Abdennebi
- Laboratoire du Génome Humain et Maladies multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia.
| |
Collapse
|
10
|
Sargassum muticum Hydrothermal Extract: Effects on Serum Parameters and Antioxidant Activity in Rats. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9122570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sargassum muticum was processed by hydrothermal extraction under previously optimized non-isothermal conditions (up to 187 °C). The alginate free crude hydrolysate was further concentrated by ultrafiltration, operating in diafiltration mode to produce an extract (SmE) enriched in the fucoidan and the phlorotannin fractions and with low mineral content and antiradical capacity equivalent to that of Trolox. In order to explore the potential of this concentrated product for food or feed additive, the in vivo antioxidant potential was assessed. Male Sprague–Dawley rats were fed SmE dissolved in distilled water at doses of 0.5, 1.0 or 2.0 g kg−1, administered via an intragastric tube daily for three weeks. The weight and organ gain was not significantly affected in the different groups in relation to the control group fed a standard diet. Serum glucose was significantly lowered in the groups receiving the higher SmE doses, liver GPx levels were reduced and liver TBARS levels decreased in rats administered the extract, but no effect on SOD activity in either liver or erythrocytes was observed.
Collapse
|
11
|
Deepika MS, Thangam R, Sheena TS, Sasirekha R, Sivasubramanian S, Babu MD, Jeganathan K, Thirumurugan R. A novel rutin-fucoidan complex based phytotherapy for cervical cancer through achieving enhanced bioavailability and cancer cell apoptosis. Biomed Pharmacother 2018; 109:1181-1195. [PMID: 30551368 DOI: 10.1016/j.biopha.2018.10.178] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022] Open
Abstract
Recent studies on flavonoids forming complexes with macromolecules attract researchers due to their enhanced bioavailability as well as chemo-preventive efficacy. In this study, a flavonoid rutin (Ru) is non-covalently complexed with fucoidan (Fu) using the functional groups to obtain a therapeutic polymeric complex overcoming the limitations of bioavailability of rutin. The prepared novel rutin-fucoidan (Ru-Fu) complex is characterized for spectroscopic features, particle size and distribution analysis by DLS. It is shown that the complex displayed the nanostructural features that are different from that of the usual rutin-fucoidan mixture. The studies on drug release profiles at different pH (5.5, 6.8 and 7.4) show that the sustained release of compounds from complex occurs preferentially at the desired endosomal pH (5.5). Further, the chemopreventive potential of Ru-Fu complex is investigated against HeLa cells by cellular apoptotic assays and flow cytometric analysis. It showed that the complex is able to disrupt cell cycle regulation and has the ability to induce cellular apoptosis via nuclear fragmentation, ROS generation and mitochondrial potential loss. In vitro cell viability assay with Ru-Fu complex shows that the complex is biocompatible on normal cells. The hemolysis assay also reveals that the complex does not release hemoglobin from human red blood cells (RBCs). Thus, the study is envisaged to open up interests for developing such formulations against cervical cancer and other cancers.
Collapse
Affiliation(s)
- Murugesan Sathiya Deepika
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Ramar Thangam
- CSIR-Central Leather Research Institute, Chennai 600 020, Tamil Nadu, India
| | - Thankaraj Salammal Sheena
- Centre for Nanoscience and Nanotechnology, Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Rajendran Sasirekha
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | | | - Manikandan Dinesh Babu
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Kulandaivel Jeganathan
- Centre for Nanoscience and Nanotechnology, Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Ramasamy Thirumurugan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
12
|
Senthilkumar N, Thangam R, Murugan P, Suresh V, Kurinjimalar C, Kavitha G, Sivasubramanian S, Rengasamy R. Hepato‐protective effects of R‐phycoerythrin‐rich protein extract ofPortieria hornemannii(Lyngbye) Silva against DEN‐induced hepatocellular carcinoma. J Food Biochem 2018. [DOI: 10.1111/jfbc.12695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Ramar Thangam
- King Institute of Preventive Medicine & Research Chennai India
- Central Leather Research Institute Council for Scientific and Industrial Research Chennai India
| | - Pitchai Murugan
- Department of Medicinal Botany Sri Sairam Siddha Medical College and Research Centre Chennai India
- Centre for Advanced Studies in Botany University of Madras Chennai India
| | | | - Chidambaram Kurinjimalar
- Centre for Advanced Studies in Botany University of Madras Chennai India
- Central Leather Research Institute Council for Scientific and Industrial Research Chennai India
| | - Ganapathy Kavitha
- Centre for Advanced Studies in Botany University of Madras Chennai India
- Centre for Ocean Research Sathyabama University Chennai India
| | | | - Ramasamy Rengasamy
- Centre for Advanced Studies in Botany University of Madras Chennai India
| |
Collapse
|
13
|
Catarino MD, Silva AMS, Cardoso SM. Phycochemical Constituents and Biological Activities of Fucus spp. Mar Drugs 2018; 16:E249. [PMID: 30060505 PMCID: PMC6117670 DOI: 10.3390/md16080249] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/27/2022] Open
Abstract
Seaweeds are known to be a good supply of key nutrients including carbohydrates, protein, minerals, polyunsaturated lipids, as well as several other health-promoting compounds capable of acting on a wide spectrum of disorders and/or diseases. While these marine macroalgae are deeply rooted in the East Asian culture and dietary habits, their major application in Western countries has been in the phycocolloid industry. This scenario has however been gradually changing, since seaweed consumption is becoming more common worldwide. Among the numerous edible seaweeds, members of the genus Fucus have a high nutritional value and are considered good sources of dietary fibers and minerals, especially iodine. Additionally, their wealth of bioactive compounds such as fucoidan, phlorotannins, fucoxanthin and others make them strong candidates for multiple therapeutic applications (e.g., antioxidant, anti-inflammatory, anti-tumor, anti-obesity, anti-coagulant, anti-diabetes and others). This review presents an overview of the nutritional and phytochemical composition of Fucus spp., and their claimed biological activities, as well as the beneficial effects associated to their consumption. Furthermore, the use of Fucus seaweeds and/or their components as functional ingredients for formulation of novel and enhanced foods is also discussed.
Collapse
Affiliation(s)
- Marcelo D Catarino
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs Research Unit (QOPNA), University of Aveiro, Aveiro 3810-193, Portugal.
| | - Artur M S Silva
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs Research Unit (QOPNA), University of Aveiro, Aveiro 3810-193, Portugal.
| | - Susana M Cardoso
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs Research Unit (QOPNA), University of Aveiro, Aveiro 3810-193, Portugal.
| |
Collapse
|
14
|
Gutiérrez-Rodríguez AG, Juárez-Portilla C, Olivares-Bañuelos T, Zepeda RC. Anticancer activity of seaweeds. Drug Discov Today 2017; 23:434-447. [PMID: 29107095 DOI: 10.1016/j.drudis.2017.10.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/09/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
Abstract
Cancer is a major health problem worldwide and still lacks fully effective treatments. Therefore, alternative therapies, using natural products, have been proposed. Marine algae are an important component of the marine environment, with high biodiversity, and contain a huge number of functional compounds, including terpenes, polyphenols, phlorotannins, and polysaccharides, among others. These compounds have complex structures that have shown several biological activities, including anticancer activity, using in vitro and in vivo models. Moreover, seaweed-derived compounds target important molecules that regulate cancer processes. Here, we review our current understanding of the anticancer activity of seaweeds.
Collapse
Affiliation(s)
- Anllely G Gutiérrez-Rodríguez
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Avenue Dr Luis Castelazo Ayala s/n, Col. Industrial Ánimas, 91190 Xalapa, Veracruz, Mexico; Programa de Doctorado en Ciencias Biomédicas, Universidad Veracruzana, Avenue Dr Luis Castelazo Ayala s/n, Col. Industrial Ánimas, 91190 Xalapa, Veracruz, Mexico
| | - Claudia Juárez-Portilla
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Avenue Dr Luis Castelazo Ayala s/n, Col. Industrial Ánimas, 91190 Xalapa, Veracruz, Mexico
| | - Tatiana Olivares-Bañuelos
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Km 103 Autopista Tijuana-Ensenada, A.P. 453, Ensenada, Baja California, Mexico
| | - Rossana C Zepeda
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Avenue Dr Luis Castelazo Ayala s/n, Col. Industrial Ánimas, 91190 Xalapa, Veracruz, Mexico.
| |
Collapse
|
15
|
Chávez E, Lozano-Rosas MG, Domínguez-López M, Velasco-Loyden G, Rodríguez-Aguilera JR, José-Nuñez C, Tuena de Gómez-Puyou M, Chagoya de Sánchez V. Functional, Metabolic, and Dynamic Mitochondrial Changes in the Rat Cirrhosis-Hepatocellular Carcinoma Model and the Protective Effect of IFC-305. J Pharmacol Exp Ther 2017; 361:292-302. [PMID: 28209723 DOI: 10.1124/jpet.116.239301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/13/2017] [Indexed: 12/25/2022] Open
Abstract
Background: Mitochondrion is an important metabolic and energetic organelle that regulates several cellular processes. Mitochondrial dysfunction has been related to liver diseases including hepatocellular carcinoma. As a result, the energetic demand is not properly supplied and mitochondrial morphologic changes have been observed, resulting in an altered metabolism. We previously demonstrated the chemopreventive effect of the hepatoprotector IFC-305. Aim: In this work we aimed to evaluate the functional, metabolic, and dynamic mitochondrial alterations in the sequential model of cirrhosis-hepatocellular carcinoma induced by diethylnitrosamine in rats and the possible beneficial effect of IFC-305. Methods: Experimental groups of rats were formed to induce cirrhosis-hepatocellular carcinoma and to assess the IFC-305 effect during cancer development and progression through the evaluation of functional, metabolic, and dynamic mitochondrial parameters. Results: In this experimental model, dysfunctional mitochondria were observed and suspension of the diethylnitrosamine treatment was not enough to restore them. Administration of IFC-305 maintained and restored the mitochondrial function and regulated parameters implicated in metabolism as well as the mitochondrial dynamics modified by diethylnitrosamine intoxication. Conclusion: This study supports IFC-305 as a potential hepatocellular carcinoma treatment or as an adjuvant in chemotherapy.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/pharmacology
- Adenosine/therapeutic use
- Adenosine Triphosphate/biosynthesis
- Animals
- Anticarcinogenic Agents/pharmacology
- Anticarcinogenic Agents/therapeutic use
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/prevention & control
- Electron Transport Complex I/metabolism
- Liver Cirrhosis, Experimental/metabolism
- Liver Cirrhosis, Experimental/pathology
- Liver Cirrhosis, Experimental/prevention & control
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/prevention & control
- Male
- Membrane Potential, Mitochondrial
- Mitochondria, Liver/drug effects
- Mitochondria, Liver/metabolism
- Rats, Wistar
Collapse
Affiliation(s)
- Enrique Chávez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico (E.C., M.G.L.-R., M.D.-L., G.V.-L., J.R.R.-A., V.C.S.); and Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico (C.J.-N., M.T.G.-P.)
| | - María Guadalupe Lozano-Rosas
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico (E.C., M.G.L.-R., M.D.-L., G.V.-L., J.R.R.-A., V.C.S.); and Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico (C.J.-N., M.T.G.-P.)
| | - Mariana Domínguez-López
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico (E.C., M.G.L.-R., M.D.-L., G.V.-L., J.R.R.-A., V.C.S.); and Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico (C.J.-N., M.T.G.-P.)
| | - Gabriela Velasco-Loyden
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico (E.C., M.G.L.-R., M.D.-L., G.V.-L., J.R.R.-A., V.C.S.); and Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico (C.J.-N., M.T.G.-P.)
| | - Jesús Rafael Rodríguez-Aguilera
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico (E.C., M.G.L.-R., M.D.-L., G.V.-L., J.R.R.-A., V.C.S.); and Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico (C.J.-N., M.T.G.-P.)
| | - Concepción José-Nuñez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico (E.C., M.G.L.-R., M.D.-L., G.V.-L., J.R.R.-A., V.C.S.); and Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico (C.J.-N., M.T.G.-P.)
| | - Marietta Tuena de Gómez-Puyou
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico (E.C., M.G.L.-R., M.D.-L., G.V.-L., J.R.R.-A., V.C.S.); and Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico (C.J.-N., M.T.G.-P.)
| | - Victoria Chagoya de Sánchez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico (E.C., M.G.L.-R., M.D.-L., G.V.-L., J.R.R.-A., V.C.S.); and Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico (C.J.-N., M.T.G.-P.)
| |
Collapse
|
16
|
Green engineered biomolecule-capped silver and copper nanohybrids using Prosopis cineraria leaf extract: Enhanced antibacterial activity against microbial pathogens of public health relevance and cytotoxicity on human breast cancer cells (MCF-7). Microb Pathog 2017; 105:86-95. [PMID: 28214590 DOI: 10.1016/j.micpath.2017.02.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/08/2017] [Accepted: 02/13/2017] [Indexed: 11/21/2022]
Abstract
This research focused on green engineering and characterization of silver (PcAgNPs) and copper nanoparticles (PcCuNPs) using Prosopis cineraria (Pc) leaf extract prepared by using microwave irradiation. We studied their enhanced antimicrobial activity on human pathogens as well as cytotoxicity on breast cancer cells (MCF-7). Biofabricated silver and copper nanoparticles exhibited UV-Visible absorbance peaks at 420 nm and 575 nm, confirming the bioreduction and stabilization of nanoparticles. Nanoparticles were characterized by FTIR, XRD, FESEM, and EDX analysis. FTIR results indicated the presence of alcohols, alkanes, aromatics, phenols, ethers, benzene, amines and amides that were possibly involved in the reduction and capping of silver and copper ions. XRD analysis was performed to confirm the crystalline nature of the silver and copper nanoparticles. FESEM analysis suggested that the nanoparticles were hexagonal or spherical in shape with size ranging from 20 to 44.49 nm and 18.9-32.09 nm for AgNPs and CuNPs, respectively. EDX analysis confirmed the presence of silver and copper elemental signals in the nanoparticles. The bioengineered silver and copper nanohybrids showed enhanced antimicrobial activity against Gram-positive and Gram-negative MDR human pathogens. MTT assay results indicated that CuNPs show potential cytotoxic effect followed by AgNPs against MCF-7 cancer cell line. IC50 were 65.27 μg/ml, 37.02 μg/ml and 197.3 μg/ml for PcAgNPs, PcCuNPs and P. cineraria leaf extracts, respectively, treated MCF-7 cells. The present investigation highlighted an effective protocol for microwave-assisted synthesis of biomolecule-loaded silver and copper nanoparticles with enhanced antibacterial and anticancer activity. Results strongly suggested that bioengineered AgNPs and CuNPs could be used as potential tools against microbial pathogens and cancer cells.
Collapse
|
17
|
Prasannaraj G, Venkatachalam P. Hepatoprotective effect of engineered silver nanoparticles coated bioactive compounds against diethylnitrosamine induced hepatocarcinogenesis in experimental mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 167:309-320. [DOI: 10.1016/j.jphotobiol.2017.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/24/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022]
|
18
|
Alwarsamy M, Gooneratne R, Ravichandran R. Effect of fucoidan from Turbinaria conoides on human lung adenocarcinoma epithelial (A549) cells. Carbohydr Polym 2016; 152:207-213. [PMID: 27516266 DOI: 10.1016/j.carbpol.2016.06.112] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/02/2016] [Accepted: 06/29/2016] [Indexed: 02/01/2023]
Abstract
Fucoidan was purified from seaweed, Turbinaria conoides. Isolated fragments were characterized with NMR ((13)C, (1)H), Gas Chromatography-Mass Spectronomy (GC-MS) and HPLC analysis. The autohydrolysate of fucoidans consisted of sulfated fuco-oligosaccharides having the backbone of α-(1, 3)-linked fuco-pyranose derivatives and minor components of galactose, glucose, mannose and xylose sugars. Fucoidan induced a dose-dependent reduction in cell survival of lung cancer A549 cells by MTT assay (GI50, 75μg/mL). However, it was not cytotoxic to a non-tumorigenic human keratinocyte cell line of skin tissue (HaCaT) (GI50>1.0mg/mL). The apoptotic cells in fucoidan-treated A549 cells were visualized by laser confocal microscopy and cell cycle analysis showed induction of G0/G1 phase arrest of the cell progression cycle. Further, CFSE labeling and flow cytometry highlighted that fucoidan significantly (P<0.05) inhibited the proliferation rate of A549 cells by up to 2-fold compared with the control cells. It is concluded that fucoidan has the potential to act as an anti-proliferative agent on lung carcinoma (A549) cells.
Collapse
Affiliation(s)
- Madhavarani Alwarsamy
- Unit of Aquatic Biodiversity, Department of Zoology, University of Madras, Guindy Campus, Chennai-25, India.
| | - Ravi Gooneratne
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 85084, Lincoln 7647, New Zealand.
| | - Ramanibai Ravichandran
- Unit of Aquatic Biodiversity, Department of Zoology, University of Madras, Guindy Campus, Chennai-25, India.
| |
Collapse
|
19
|
Wu L, Sun J, Su X, Yu Q, Yu Q, Zhang P. A review about the development of fucoidan in antitumor activity: Progress and challenges. Carbohydr Polym 2016; 154:96-111. [PMID: 27577901 DOI: 10.1016/j.carbpol.2016.08.005] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/30/2016] [Accepted: 08/02/2016] [Indexed: 12/28/2022]
Abstract
Fucoidan is composed of l-fucose, sulfate groups and one or more small proportions of d-xylose, d-mannose, d-galactose, l-rhamnose, arabinose, glucose, d-glucuronic acid and acetyl groups in different kinds of brown seaweeds. Many reports have demonstrated that fucoidan has antitumor activities on various cancers. However, until now, few reviews have discussed the antitumor activity of fucoidan and few reports have summarized detailed molecular mechanisms of its actions and antitumor challenges of fucoidan specially. In this review, the antitumor signaling pathway mechanisms related to fucoidan are elucidated as much detail as possible. Besides, the factors affecting the anticancer effects of fucoidan, the structural characteristics of fucoidan with anticancer activities and the challenges for the further development of fucoidan are also summarized and evaluated. The existing similar and different conclusions are summarized in an attempt to provide guidelines to help further research, and finally contribute to go into market as chemotherapeumtics.
Collapse
Affiliation(s)
- Lei Wu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Jing Sun
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Xitong Su
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Qiuli Yu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Qiuyang Yu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
20
|
Liu C, Sun Y, Mao Q, Guo X, Li P, Liu Y, Xu N. Characteristics and Antitumor Activity of Morchella esculenta Polysaccharide Extracted by Pulsed Electric Field. Int J Mol Sci 2016; 17:ijms17060986. [PMID: 27338370 PMCID: PMC4926515 DOI: 10.3390/ijms17060986] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 11/16/2022] Open
Abstract
Polysaccharides from Morchella esculenta have been proven to be functional and helpful for humans. The purpose of this study was to investigate the chemical structure and anti-proliferating and antitumor activities of a Morchella esculenta polysaccharide (MEP) extracted by pulsed electric field (PEF) in submerged fermentation. The endo-polysaccharide was separated and purified by column chromatography and Gel permeation chromatography, and analyzed by gas chromatography. The MEP with an average molecular weight of 81,835 Da consisted of xylose, glucose, mannose, rhamnose and galactose at the ratio of 5.4:5.0:6.5:7.8:72.3. Structure of MEP was further analyzed by Fourier-transform infrared spectroscopy and 1H and 13C liquid-state nuclear magnetic resonance spectroscopy. Apoptosis tests proved that MEP could inhibit the proliferation and growth of human colon cancer HT-29 cells in a time- and dose-dependent manner within 48 h. This study provides more information on chemical structure of anti-proliferating polysaccharides isolated from Morchella esculenta.
Collapse
Affiliation(s)
- Chao Liu
- College of Food Science and Engineering, Jilin University, Changchun 130000, China.
- School of Food Engineering, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Yonghai Sun
- College of Food Science and Engineering, Jilin University, Changchun 130000, China.
| | - Qian Mao
- College of Food Science and Engineering, Jilin University, Changchun 130000, China.
| | - Xiaolei Guo
- College of Food Science and Engineering, Jilin University, Changchun 130000, China.
| | - Peng Li
- School of Food Engineering, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Yang Liu
- College of Food Science and Engineering, Jilin University, Changchun 130000, China.
| | - Na Xu
- College of Food Science and Engineering, Jilin University, Changchun 130000, China.
| |
Collapse
|
21
|
Huang YC, Li RY, Chen JY, Chen JK. Biphasic release of gentamicin from chitosan/fucoidan nanoparticles for pulmonary delivery. Carbohydr Polym 2016; 138:114-22. [DOI: 10.1016/j.carbpol.2015.11.072] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 11/08/2015] [Accepted: 11/27/2015] [Indexed: 12/22/2022]
|
22
|
Dinesh S, Menon T, Hanna LE, Suresh V, Sathuvan M, Manikannan M. In vitro anti-HIV-1 activity of fucoidan from Sargassum swartzii. Int J Biol Macromol 2016; 82:83-8. [PMID: 26472515 DOI: 10.1016/j.ijbiomac.2015.09.078] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/26/2015] [Accepted: 09/30/2015] [Indexed: 12/15/2022]
Abstract
Sargassum swartzii, a marine brown algae with wide range of biological properties belongs to the family Sargassaceae. Bioactive fucoidan fractions (CFF, FF1 and FF2) were isolated from S. swartzii and characterized by linear gradient anion-exchange chromatography and FT-IR. The characterized fucoidan fractions contained mainly sugars, sulfate and uronic acid. In the present study, anti-HIV-1 property of the fucoidan fractions was investigated. Fraction FF2 was found to exhibit significant anti-HIV-1 activity at concentrations of 1.56 and 6.25 μg/ml as observed by >50% reduction in HIV-1 p24 antigen levels and reverse transcriptase activity. Fucoidan fractions have no cytotoxic effects on PBMCs at the concentration range of 1.56-1000 μg/ml. These results suggest that fucoidan fractions could have inhibitory activity against HIV and has potential as an anti-HIV-1 agent.
Collapse
Affiliation(s)
- Subramaniam Dinesh
- Department of Microbiology, Dr ALM PG IBMS, University of Madras, Chennai, TN, India
| | - Thangam Menon
- Department of Microbiology, Dr ALM PG IBMS, University of Madras, Chennai, TN, India.
| | - Luke E Hanna
- Division of HIV/AIDS, Department of Clinical Research, National Institute for Research in Tuberculosis (NIRT), Chennai, TN, India
| | - V Suresh
- Department of Botany, Annamalai University, Annamalai Nagar, TN, India
| | - M Sathuvan
- Centre for Advanced Studies in Botany, University of Madras, Chennai, TN, India
| | - M Manikannan
- Centre for Drug Discovery and Development, Sathyabama University, Chennai 600119, India
| |
Collapse
|
23
|
Extraction optimization and bioactivities of an extracellular polysaccharide produced by Aspergillus fumigatus. Int J Biol Macromol 2014; 68:13-7. [PMID: 24769212 DOI: 10.1016/j.ijbiomac.2014.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 04/09/2014] [Accepted: 04/12/2014] [Indexed: 01/17/2023]
Abstract
Aspergillus fumigatus produces an extracellular polysaccharide, AFEPS, when grew in NaOH solution pretreated rice-straw medium. A three-level, three-factor Box-Behnken design (BBD) response surface methodology (RSM) was applied to optimize the extraction parameters of AFEPS. RSM analysis indicated good correspondence between experimental and predicted values. The optimal conditions for polysaccharide were: precipitation time 10.9h, pH 5.2 and ethanol concentration 90%. AFEPS was composed of arabinose, xylose and glucose in a molar ratio of 1.05:5.36:10.83, its average molecular weight was estimated to be about 36.2kDa. Evaluation of the antioxidant activity in vitro suggested that AFEPS had high scavenging activity for superoxide anion and hydroxyl radicals. AFEPS exhibited excellent antitumor activities both in vitro and in vivo while showing no damage to normal cells.
Collapse
|
24
|
Thangam R, Senthilkumar D, Suresh V, Sathuvan M, Sivasubramanian S, Pazhanichamy K, Gorlagunta PK, Kannan S, Gunasekaran P, Rengasamy R, Sivaraman J. Induction of ROS-dependent mitochondria-mediated intrinsic apoptosis in MDA-MB-231 cells by glycoprotein from Codium decorticatum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3410-3421. [PMID: 24694116 DOI: 10.1021/jf405329e] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Marine macroalgae consist of a range of bioactive molecules exhibiting different biological activities, and many of these properties are attributed to sulfated polysaccharides, fucoxanthin, phycobiliproteins, and halogenated compounds. In this study, a glycoprotein (GLP) with a molecular mass of ∼48 kDa was extracted and purified from Codium decorticatum and investigated for its cytotoxic properties against human MDA-MB-231 breast cancer cells. The IC₅₀ values of GLP against MDA-MB-231 and normal breast HBL-100 cells (control) were 75 ± 0.23 μg/mL (IC₂₅), 55 ± 0.32 μg/mL (IC₅₀), and 30 ± 0.43 μg/mL (IC₇₅) and 90 ± 0.57 μg/mL (IC₂₅), 80 ± 0.48 μg/mL (IC₅₀), and 60 ± 0.26 μg/mL (IC₇₅), respectively. Chromatin condensation and poly(ADP-ribose) polymerase (PARP) cleavage studies showed that the GLP inhibited cell viability by inducing apoptosis in MDA-MB-231 cells. Induction of mitochondria-mediated intrinsic apoptotic pathway by GLP was evidenced by the events of loss of mitochondrial membrane potential (ΔΨ(m)), bax/bcl-2 dysregulation, cytochrome c release, and activation of caspases 3 and 9. Apoptosis-associated factors such as reactive oxygen species (ROS) formation and loss of ΔΨ(m) were evaluated by DCFH-DA staining and flow cytometry, respectively. Cell cycle arrest of G₂/M phase and expression of apoptosis associated proteins were determined using flow cytometry and Western blotting, respectively.
Collapse
Affiliation(s)
- Ramar Thangam
- Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Bharathiar University , Coimbatore, Tamil Nadu, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Preparing, characterizing, and evaluating chitosan/fucoidan nanoparticles as oral delivery carriers. JOURNAL OF POLYMER RESEARCH 2014. [DOI: 10.1007/s10965-014-0415-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Taya S, Punvittayagul C, Inboot W, Fukushima S, Wongpoomchai R. Cleistocalyx nervosum Extract Ameliorates Chemical-Induced Oxidative Stress in Early Stages of Rat Hepatocarcinogenesis. Asian Pac J Cancer Prev 2014; 15:2825-30. [DOI: 10.7314/apjcp.2014.15.6.2825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
27
|
Kwak JY. Fucoidan as a marine anticancer agent in preclinical development. Mar Drugs 2014; 12:851-70. [PMID: 24477286 PMCID: PMC3944519 DOI: 10.3390/md12020851] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/31/2013] [Accepted: 01/10/2014] [Indexed: 12/25/2022] Open
Abstract
Fucoidan is a fucose-containing sulfated polysaccharide derived from brown seaweeds, crude extracts of which are commercially available as nutritional supplements. Recent studies have demonstrated antiproliferative, antiangiogenic, and anticancer properties of fucoidan in vitro. Accordingly, the anticancer effects of fucoidan have been shown to vary depending on its structure, while it can target multiple receptors or signaling molecules in various cell types, including tumor cells and immune cells. Low toxicity and the in vitro effects of fucoidan mentioned above make it a suitable agent for cancer prevention or treatment. However, preclinical development of natural marine products requires in vivo examination of purified compounds in animal tumor models. This review discusses the effects of systemic and local administration of fucoidan on tumor growth, angiogenesis, and immune reaction and whether in vivo and in vitro results are likely applicable to the development of fucoidan as a marine anticancer drug.
Collapse
Affiliation(s)
- Jong-Young Kwak
- Department of Biochemistry, School of Medicine and Immune-Network Pioneer Research Center, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan 602-714, Korea.
| |
Collapse
|
28
|
Suresh V, Senthilkumar N, Thangam R, Rajkumar M, Anbazhagan C, Rengasamy R, Gunasekaran P, Kannan S, Palani P. Separation, purification and preliminary characterization of sulfated polysaccharides from Sargassum plagiophyllum and its in vitro anticancer and antioxidant activity. Process Biochem 2013. [DOI: 10.1016/j.procbio.2012.12.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|