1
|
Liu Y, Niu Y, Zhou Z, Ma Y, Chen M, Xu N, Zhao F, Sun Y, Chen P. Insight into endophytic microbiota-driven geographical and bioactive signatures toward a novel quality assessment model for Codonopsis Radix. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109888. [PMID: 40203555 DOI: 10.1016/j.plaphy.2025.109888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Codonopsis Radix, a medicinal and dietary herb in traditional Chinese medicine, largely owes its pharmacological efficacy to both intrinsic phytochemistry and symbiotic interactions with plant-associated microbes. Here, we deciphered the geo-environmental regulation of Codonopsis Radix's endophytic microbiota across four major production regions using 16S rRNA/ITS sequencing and bioactive compound profiling. Results demonstrated that the planting environment significantly shaped the endophytic community of Codonopsis Radix, where Bifidobacteriaceae and Muribaculaceae exhibited the strongest correlations with its bioactive components. Monolobus and Bradyrhizobium not only exhibit distinct associations with Lobetyolin and Atractylenolide III respectively, but also demonstrate significant correlations with the key biosynthetic pathways of these compounds. Leveraging machine learning, we developed the first microbiota-driven quality assessment model, achieving 100.0% and 85.7% prediction accuracies for Lobetyolin and Atractylenolide III respectively, using Random Forest algorithms. This dual-metric framework-integrating microbial signatures with chemical profiles-establishes a novel paradigm for Codonopsis Radix quality control, bridging ecological insights with precision agriculture. Our findings illuminate the microbiota's role as a biosynthetic orchestrator in geoherbalism, offering actionable strategies for sustainable cultivation and standardized production of Codonopsis Radix.
Collapse
Affiliation(s)
- Yingjie Liu
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu, 730000, PR China
| | - Yuqing Niu
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu, 730000, PR China
| | - Zhongkun Zhou
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu, 730000, PR China
| | - Yunhao Ma
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu, 730000, PR China
| | - Min Chen
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu, 730000, PR China
| | - Ning Xu
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu, 730000, PR China
| | - Fanting Zhao
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu, 730000, PR China
| | - Ying Sun
- Gansu Institute for Drug Control, State Drug Administration-Key Laboratory of Quality Control of Chinese Medicinal Materials and Decoction Pieces, No. 7 Yin'an Road, Lanzhou, Gansu, 730030, PR China.
| | - Peng Chen
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
2
|
Abubakar AS, Ahmad B, Ahmad N, Liu L, Liu B, Qu Y, Chen J, Chen P, Zhao H, Chen J, Chen K, Gao G, Zhu A. Physicochemical evaluation, structural characterization, in vitro and in vivo bioactivities of water-soluble polysaccharides from Luobuma (Apocynum L.) tea. Food Chem 2024; 460:140453. [PMID: 39067428 DOI: 10.1016/j.foodchem.2024.140453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Luobuma tea is made from the leaves of Apocynum hendersonii (Bt) and A. venetum (Ht) and has been used for a very long time in China and Japan as herbal tea. This study isolated water-soluble polysaccharides from the two species` teas. Physicochemical properties, structural properties, in vitro and in vivo antioxidant and immunomodulatory activities were determined for the first time. The results showed that the Bt and Ht polysaccharides with molecular weights of 31.21 and 49.11 kDa, respectively, composed of arabinose, galactose, rhamnose, glucose, xylose, fucose, and mannose. A dose-dependent nitric oxide production and interleukin-6 inhibitory effects were obtained. Also, they suppressed the expression of cyclooxygenase-2, tumor necrosis factor-α and interleukin-6 mRNA in LPS-induced RAW 264.7 macrophages. Likewise, Bt and Ht have significantly reduced edema in the paws of mice after carrageenan injection. These results suggested that the Luobuma teas polysaccharides can be explored as potential antioxidants and anti-inflammatory agents.
Collapse
Affiliation(s)
- Aminu Shehu Abubakar
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Department of Agronomy, Bayero University Kano, PMB, 3011, Kano, Nigeria
| | - Bilal Ahmad
- College of Biology, Hunan University, Changsha 410082, China
| | - Nabi Ahmad
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha 410082, China
| | - Yatong Qu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China
| | - Jikang Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China
| | - Ping Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China
| | - Haohan Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China
| | - Jia Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China
| | - Kunmei Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China
| | - Gang Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China.
| | - Aiguo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China.
| |
Collapse
|
3
|
Huang S, Deng H, Zhao X, Zhang R, Zhang Z, Li N, Zhang J. Effect of particle size on dissolution of different chemical components in Codonopsis pilosula. Biomed Chromatogr 2024; 38:e6026. [PMID: 39440830 DOI: 10.1002/bmc.6026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
Codonopsis pilosula (Franch.) Nannf. is a traditional herb for treating immunosuppression. C. pilosula boiling powder (CP-BP) contains particles of a small size made from C. pilosula decoction pieces (CP-DP). It is still unclear how changes in particle size during the decoction process affect the dissolution of various chemical components in C. pilosula. Herein, an ultra-high-performance liquid chromatography-quadrupole-Exactive Orbitrap mass spectrometry technique was established to characterize the components of CP-BP and CP-DP decoctions. The contents of the components were evaluated based on the relative peak area, extract yield, and alcohol solubility rate. A total of 71 compounds were finally identified, and their content in the CP-BP decoction was generally higher than that in the CP-DP decoction. Alkaloids had the highest average content, whereas terpenoids were the most affected by changes in particle size. In addition, immunosuppression was used as model to investigate whether these changes have practical significance. The results of network pharmacology suggested that the phosphoinositide 3-kinase (PI3K)-Akt pathway may be a potential pathway of C. pilosula for treating immunosuppression. The results of molecular docking indicated that compounds with large content variations have good docking affinity with key targets (epidermal growth factor receptor [EGFR], prostaglandin-endoperoxide synthase 2 [PTGS2], and peroxisome proliferator-activated receptor gamma [PPARG]). These results provide an important reference for further development and use of C. pilosula.
Collapse
Affiliation(s)
| | | | - Xue Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | | | - Zhonglei Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ning Li
- KMHD GeneTech Co. Ltd., Shenzhen, China
| | | |
Collapse
|
4
|
Chu R, Zhou Y, Ye C, Pan R, Tan X. Advancements in the investigation of chemical components and pharmacological properties of Codonopsis: A review. Medicine (Baltimore) 2024; 103:e38632. [PMID: 38941387 PMCID: PMC11466214 DOI: 10.1097/md.0000000000038632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/29/2024] [Indexed: 06/30/2024] Open
Abstract
Species of the genus Codonopsis (Campanulaceae) have a long history of application, acclaimed for its edible and therapeutic attributes. Scholarly inquiries into Codonopsis span botany, phytochemistry, quality assurance, pharmacodynamics, and toxicity, revealing a rich and comprehensive body of knowledge. This study synthesizes information from esteemed scientific databases like SciFinder, PubMed, China National Knowledge Infrastructure, and Chinese herbal classics to create a thorough scientific conceptual and theoretical framework for Codonopsis research. In this article, the phytochemical composition includes saccharides, polyacetylenes, polyenes, flavonoids, alkaloids, lignans, terpenoids, and organic acids was summarized. To date, over 350 monomeric compounds have been isolated and identified from Codonopsis, with recent studies primarily focusing on polysaccharides, aromatic derivatives, lignans, and polyacetylenes. Codonopsis exhibits broad pharmacological activities across various systems, including immune, blood, cardiovascular, central nervous, and digestive systems, with no significant toxicity or adverse effects reported. The existing research, focusing on various extracts and active parts without identifying specific active molecules, complicates the understanding of the mechanisms of action. There is an urgent need to advance research on the chemical composition and pharmacological effects to fully elucidate its pharmacodynamic properties and the basis of its material composition. Such efforts are crucial for the rational development, utilization, and clinical application of this herb.
Collapse
Affiliation(s)
- Rui Chu
- Chongqing College of Traditional Chinese Medicine, Chongqing, China
| | - Yiquan Zhou
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Chenjuan Ye
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Rui Pan
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Xiaomei Tan
- Chongqing College of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
5
|
Cao C, Liao Y, Yu Q, Zhang D, Huang J, Su Y, Yan C. Structural characterization of a galactoglucomannan with anti-neuroinflammatory activity from Ganoderma lucidum. Carbohydr Polym 2024; 334:122030. [PMID: 38553228 DOI: 10.1016/j.carbpol.2024.122030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
According to traditional Chinese medicine theory, Ganoderma lucidum (G. lucidum) presents certain effects for nourishing nerves and calming the mind. G. lucidum polysaccharides (GLPs) have various biological activities; however, the structural characterization and the structure-activity relationship in anti-neuroinflammation of GLPs needs to be further investigated. In this work, the crude polysaccharide GL70 exhibited a remarkable impact on enhancing the spatial learning and memory function, as well as reducing the anxiety symptoms of the lipopolysaccharide (LPS)-induced rat model of Alzheimer's disease (AD). A galactoglucomannan (GLP70-1-2) was isolated from GL70, and characterized by monosaccharide composition, partial acid hydrolysis, methylation, and NMR analysis. The backbone of GLP70-1-2 was →6)-α-D-glcp-(1 → 6)-β-D-galp-(1 → [6)-β-D-manp-(1]3 → 4)-α-D-Glcp-(1 → 6)-α-D-glcp-(1 → 2)-β-D-galp-(1 → [4)-α-D-glcp-(1 → 6)-β-D-manp-(1 → 2)-β-D-galp-(1]2 → 6)-β-D-glcp-(1 → 6)-β-D-glcp-(1→ with two side chains attached to O-4 of →6)-β-D-galp-(1→ and O-3 of →6)-β-D-glcp-(1→, respectively. In addition, GLP70-1-2 exhibited remarkable efficacy in decreasing the level of pro-inflammatory factors in LPS-activated BV2 cells through the TLR4/MyD88/NF-κB pathway. Collectively, GLP70-1-2 exhibited significant anti-neuroinflammatory activity and may have the potential for developing as a drug for AD.
Collapse
Affiliation(s)
- Chao Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuechan Liao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dawei Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiqi Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yifan Su
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chunyan Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Liang W, Sun J, Bai G, Qiu D, Li Q, Dong P, Chen Y, Guo F. Codonopsis radix: a review of resource utilisation, postharvest processing, quality assessment, and its polysaccharide composition. Front Pharmacol 2024; 15:1366556. [PMID: 38746010 PMCID: PMC11091420 DOI: 10.3389/fphar.2024.1366556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/28/2024] [Indexed: 05/16/2024] Open
Abstract
Codonopsis radix is the dried root of C. pilosula (Franch.) Nannf., C. pilosula Nannf. var. modesta (Nannf.) L. T. Shen, or C. tangshen Oliv., constitutes a botanical medicine with a profound historical lineage. It encompasses an array of bioactive constituents, including polyacetylenes, phenylpropanoids, alkaloids, triterpenoids, and polysaccharides, conferring upon it substantial medicinal and edible values. Consequently, it has garnered widespread attention from numerous scholars. In recent years, driven by advancements in modern traditional Chinese medicine, considerable strides have been taken in exploring resources utilization, traditional processing, quality evaluation and polysaccharide research of Codonopsis radix. However, there is a lack of systematic and comprehensive reporting on these research results. This paper provides a summary of recent advances in Codonopsis research, identifies existing issues in Codonopsis studies, and offers insights into future research directions. The aim is to provide insights and literature support for forthcoming investigations into Codonopsis.
Collapse
Affiliation(s)
- Wei Liang
- State Key Laboratory of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiachen Sun
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Gang Bai
- State Key Laboratory of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Daiyu Qiu
- State Key Laboratory of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qian Li
- State Key Laboratory of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Pengbin Dong
- State Key Laboratory of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuan Chen
- State Key Laboratory of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fengxia Guo
- State Key Laboratory of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
7
|
Duan F, Zhu Y, Liu Y, Wang A. Fabrication of porous adsorbents from eco-friendly aqueous foam for high-efficient removal of cationic dyes and sustainable utilization assessment. J Environ Sci (China) 2024; 137:395-406. [PMID: 37980025 DOI: 10.1016/j.jes.2022.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 11/20/2023]
Abstract
Porous materials applied in environmental remediation have received researchers' extensive attention recently, but the related green and convenient preparation method is rarely reported. Here, we recommended a green and convenient strategy for the fabrication of porous material via aqueous foam templates, which was synergistically stabilized by Codonopsis pilosula (CP) and clay minerals of attapulgite (APT). The characterization results revealed that the APT was modified by organic molecules leached from CP and anchored at the air-water interface, which improved the foam stability significantly. The novel porous material of polyacrylamide/Codonopsis pilosula/attapulgite (PAM/CP/APT) templated from the aqueous foam via a polymerization reaction had excellent adsorption capacity for the cationic dyes methyl violet (MV) and methylene blue (MB), and the adsorption capacity can reach 755.85 mg/g and 557.64 mg/g, respectively. More importantly, the adsorption capacity of spent adsorbent material was still over 200 mg/g after being recycled five times through a simple carbonization process, and then it was added to the plant pot, the total biomass was increased by about 86.42%. This study provided a green and sustainable pathway for the preparation, application and subsequent processing of porous materials.
Collapse
Affiliation(s)
- Fangzhi Duan
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongfeng Zhu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yan Liu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
8
|
Xue H, Zhang P, Zhang C, Gao Y, Tan J. Research progress in the preparation, structural characterization, and biological activities of polysaccharides from traditional Chinese medicine. Int J Biol Macromol 2024; 262:129923. [PMID: 38325677 DOI: 10.1016/j.ijbiomac.2024.129923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Traditional Chinese medicines are tremendous sources of polysaccharides, which are of great interest in the human welfare system as natural medicines, food, and cosmetics. This review aims to highlight the recent trends in extraction (conventional and non-conventional), purification and analytic techniques of traditional Chinese medicine polysaccharides (TCMPs), and the chemical structure, biological activities (anti-tumor, hypoglycemic, antioxidant, intestinal flora regulation, immunomodulatory, anti-inflammatory, anti-aging, hypolipidemic, hepatoprotective, and other activities), and the underlying mechanisms of polysaccharides extracted from 76 diverse traditional Chinese medicines were compared and discussed. With this wide coverage, a total of 164 scientific articles were searched from the database including Google Scholar, PubMed, Web of Science, and China Knowledge Network. This comprehensive survey from previous reports indicates that TCMPs are non-toxic, highly biocompatible, and good biodegradability. Besides, this review highlights that TCMPs may be excellent functional factors and effective therapeutic drugs. Finally, the current problems and future research advances of TCMPs are also introduced. New valuable insights for the future researches regarding TCMPs are also proposed in the fields of therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Pengqi Zhang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Can Zhang
- School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, No.74 Xuefu Road, Nangang District, Harbin 150080, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jiaqi Tan
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
9
|
Zhu Y, Li Y, Li X, Chen T, Zhao H, Zhou H. Activities of polysaccharide fractions from corn silk: Hemostatic, immune, and anti-lung cancer potentials. Int J Biol Macromol 2024; 262:130156. [PMID: 38367774 DOI: 10.1016/j.ijbiomac.2024.130156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/27/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Corn silk is the stigma and style of corn and is rich in polysaccharides. Despite the extensive research on its polysaccharides, the hemostatic characteristics of effective parts and the related activities remain insufficiently explored. Corn silk polysaccharide (CSP) was extracted with hot water and purified using a diethylaminoethyl cellulose membrane. Then, it was separated with sephadex G-150 to obtain five fractions. These fractions were investigated for their potential in hemostasis, antioxidant, immune response, and anti-lung cancer activities. CSP-2, CSP-3, and CSP-4 significantly affected the coagulation indicators activated partial thromboplastin time (APTT) and thrombin time (TT) at 125-500 μg/mL. Corn silk flavonoids and saponins at 32.25 μg/mL significantly prolonged APTT, TT, and prothrombin time (PT). CSP-2, with potent antioxidant ability, approaches Vitamin C. At 25 μg/mL, CSPs nearly reached the phagocytosis of neutral red of lipopolysaccharides. The five fractions promoted the proliferation of RAW264.7 cells at 25-800 μg/mL and stimulated NO secretion at 25-100 μg/mL. CSP-2 also showed an 86 % inhibition rate effect on A549 at 200 μg/mL. These results indicate that CSP not only has hemostatic effects but also has immune and anti-lung cancer activities. Thus, it is a potential candidate compound with immune activity for managing bleeding in cancer.
Collapse
Affiliation(s)
- Yunwen Zhu
- School of Chemistry and Pharmaceutical, Engineering Jilin Institute of Chemical Technology Jilin, PR China
| | - Yaping Li
- School of Chemistry and Pharmaceutical, Engineering Jilin Institute of Chemical Technology Jilin, PR China
| | - Xue Li
- School of Chemistry and Pharmaceutical, Engineering Jilin Institute of Chemical Technology Jilin, PR China
| | - Tongfei Chen
- School of Chemistry and Pharmaceutical, Engineering Jilin Institute of Chemical Technology Jilin, PR China
| | - Hepeng Zhao
- School of Chemistry and Pharmaceutical, Engineering Jilin Institute of Chemical Technology Jilin, PR China.
| | - Hongli Zhou
- School of Chemistry and Pharmaceutical, Engineering Jilin Institute of Chemical Technology Jilin, PR China.
| |
Collapse
|
10
|
Wang T, Ying X, Zhang Q, Xu Y, Jiang C, Shang J, Zang Z, Wan F, Huang X. Drying kinetics prediction and quality effect of ultrasonic synergy vacuum far-infrared drying of Codonopsis pilosula. J Food Sci 2024; 89:966-981. [PMID: 38161279 DOI: 10.1111/1750-3841.16890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
By using ultrasonic synergy vacuum far-infrared drying (US-VFID), the effects of different conditions on the drying kinetics, functional properties, and microstructure of Codonopsis pilosula slices were studied. The sparrow search algorithm (SSA) was used to optimize the back-propagation (BP) neural network to predict the moisture ratio during drying. With the increase of ultrasonic frequency, power and radiation temperature, the drying time of C. pilosula was shortened. The drying time of US-VFID was 25% shorter than VFID, when radiation temperature was 50°C, ultrasonic power was 48 W, and frequency was 28 kHz. The SSA-BP neural network, the average absolute error prediction was 0.0067. Compared with hot air drying (HAD), the total phenolic content and antioxidant activity of C. pilosula by US-VFID were increased by 29.47% and 8.67%, respectively, and a reduction in color contrast of 16.19%. The dilation and generation of microcapillary of C. pilosula were more obvious. The study revealed US-VFID could be used for the selection and process control of agro-processing methods for C. pilosula products.
Collapse
Affiliation(s)
- Tongxun Wang
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou, China
| | - Xinyu Ying
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qian Zhang
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yanrui Xu
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou, China
| | - Chunhui Jiang
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou, China
| | - Jianwei Shang
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou, China
| | - Zepeng Zang
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou, China
| | - Fangxin Wan
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou, China
| | - Xiaopeng Huang
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
11
|
Bo S, Zhang M, Dan M. The traditional use, structure, and immunostimulatory activity of bioactive polysaccharides from traditional Chinese root medicines: A review. Heliyon 2024; 10:e23593. [PMID: 38187324 PMCID: PMC10770551 DOI: 10.1016/j.heliyon.2023.e23593] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
As research on traditional Chinese medicine (TCM) has expanded, our understanding of the role it can have in controlling the immune system has increased. Polysaccharides from medicinal plants exhibit numerous beneficial therapeutic properties, presumably owing to their modulation of innate immunity and macrophage function. Numerous studies have demonstrated the multiple ways whereby certain polysaccharides can affect the immune system. In addition to stimulating immune cells, such as T cells, B lymphocytes, macrophages, and natural killer cells, polysaccharides stimulate complements and increase cytokine secretion. The biological functions of polysaccharides are directly correlated with their structures. This paper summarizes the sources, TCM uses, extraction and purification methods, structural characterization, in vitro and in vivo immune activities, and underlying molecular mechanisms of TCM root polysaccharides. Moreover, the structure-activity relationships of TCM root polysaccharides are emphasized and discussed. This review can provide a scientific basis for the research and industrial utilization of TCM root polysaccharides.
Collapse
Affiliation(s)
- Surina Bo
- College of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, Inner Mongolia, 010110, PR China
| | - Man Zhang
- College of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, Inner Mongolia, 010110, PR China
| | - Mu Dan
- College of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, Inner Mongolia, 010110, PR China
| |
Collapse
|
12
|
Xu J, Li X, Lv L, Dong Q, Du X, Li G, Hou L. The role of Shenqi Fuzheng injection as adjuvant therapy for breast cancer: an overview of systematic reviews and meta-analyses. BMC Complement Med Ther 2024; 24:33. [PMID: 38212731 PMCID: PMC10782532 DOI: 10.1186/s12906-023-04274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is the most frequent malignancy in the world. Chemotherapy (CT) is a common treatment for BC but is accompanied by toxicity and side effects. Shenqi Fuzheng Injection (SFI) is an adjuvant therapy with promising results in improving efficacy and reducing toxicity in clinical studies. This overview of systematic reviews and meta-analysis (SRs/MAs) aimed to summarize the benefits and evaluate the quality of evidence supporting SFI adjuvant as CT for BC. METHODS A systematic search for SRs/MAs of randomized controlled trials (RCTs) on SFI treatment for BC was performed by searching PubMed, Web of Science, EMbase, Cochrane Library, CNKI, Wanfang, VIP, and SinoMed databases from inception to October 1, 2022. The quality of SRs/MAs was evaluated using AMSTAR-2, PRISMA 2020, ROBIS, and GRADE by two reviewers. The corrected covered area (CCA) was used to quantify the degree of duplication of the original SRs/MAs. Finally, quantitative analysis of RCTs was conducted using RevMan 5.4 software. This study was registered with PROSPERO, CRD42022377290. RESULTS Six SRs/MAs including 61 RCTs with 5593 patients were included in this study. Studies were published between 2015 and 2019, the original RCTs ranged from 7-49, with sample sizes ranging from 336-1989. The quantitative meta-analysis found that adjuvant CT of SFI improved the clinical response rate (RR=1.37, 95% CI=1.28, 1.46; P<0.00001) and the KPS score (RR=1.66, 95% CI 1.54, 1.79, P<0.00001) of patients with BC. In terms of immune function, CD3+ (SMD=1.51, 95% CI 0.91, 2.10; P<0.00001), CD4+ (SMD=1.87, 95% CI 1.18, 2.56; P<0.00001), CD4+/CD8+ (SMD=0.86, 95% CI 0.48, 1.23; P<0.00001), and NK cell levels (SMD=0.94, 95% CI 0.63, 1.24; P<0.00001) in the adjuvant CT group SFI were better than those with CT alone. Adverse reactions following SFI adjuvant CT showed reduced incidence of leukopenia (RR=0.53, 95% CI 0.46, 0.62; P<0.00001) and gastrointestinal reactions (RR=0.48, 95% CI 0.39, 0.58; P<0.00001). However, the GRADE results showed 'very low' to 'moderate' evidence for the 42 outcomes, without high-quality evidence supporting them, limited mainly by deficiencies in the design of RCTs (42/42, 100.00%), inconsistency (19/42, 45.24%), publication bias (41/42, 97.62%), and inaccuracy (3/42, 7.14%). The unsatisfactory results of AMSTAR-2, PRISMA 2020, and ROBIS were limited to lack of registration of study protocols, explanation of inclusion basis of RCTs, description of funding sources for the included studies, incomplete search strategy and screening process, addressing heterogeneity and sensitivity, and reporting potential conflicts of interest. CONCLUSION Adjuvant CT with SFI for BC had better benefits and a lower risk of adverse events. The methodology and quality of the evidence are generally low, highlighting a need of greater attention during study implementation. More objective and high-quality studies are needed to verify the efficacy of adjuvant CT with SFI in clinical decision-making for BC.
Collapse
Affiliation(s)
- Jing Xu
- Department of Hematology and oncology, Dongzhimen Hospital Affiliated with, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Li
- Department of Hematology and oncology, Dongzhimen Hospital Affiliated with, Beijing University of Chinese Medicine, Beijing, China
| | - Liyuan Lv
- Department of Hematology and oncology, Dongzhimen Hospital Affiliated with, Beijing University of Chinese Medicine, Beijing, China
| | - Qing Dong
- Department of Hematology and oncology, Dongzhimen Hospital Affiliated with, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaofeng Du
- Department of Hematology and oncology, Dongzhimen Hospital Affiliated with, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Guangda Li
- Department of Hematology and oncology, Dongzhimen Hospital Affiliated with, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Li Hou
- Department of Hematology and oncology, Dongzhimen Hospital Affiliated with, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
13
|
Liu J, An J, Jiang N, Yang K, Guan C, Zhao N, Cheng J, Fu S, Ma C, Ma X, Tang X. Codonopsis pilosula polysaccharides promote osteogenic differentiation and inhibit lipogenic differentiation of rat bone marrow stem cells by activating β-catenin. Chem Biol Interact 2023; 385:110721. [PMID: 37739048 DOI: 10.1016/j.cbi.2023.110721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Aberrant bone marrow mesenchymal stem cell (BMSC) lineage differentiation leads to osteoporosis. Codonopsis pilosula polysaccharides (CPPs) have been widely used in traditional Chinese medicines, due to their multiple pharmacological actions. However, little is known regarding their effects on BMSC differentiation. This study aimed to identify the effects and mechanisms of CPPs on osteogenic and adipogenic differentiation in rat BMSCs. An osteoporosis model was established in Sprague-Dawley (SD) rats through bilateral ovariectomy (OVX), and be applied to observe the effect of CPPs on osteoporosis in vivo. The ability of CPPs to affect rBMSC proliferation was determined using the CCK-8 assay, and the osteogenic differentiation of rBMSCs measured by ALP and Alizarin Red S staining. The adipogenic differentiation of rBMSCs was measured by Oil Red O staining. The mRNA and protein levels related to osteogenesis and adipogenic differentiation of rBMSCs were measured using qRT-PCR and western blotting, respectively. Cellular immunofluorescence was used to detect cytokine expression and localisation in rBMSCs. We observed that CPPs ameliorated bone loss in OVX rats. CPPs considerably enhanced osteogenic differentiation by increasing ALP activity and the prevalence of mineralised nodules and promoting the mRNA and protein expression of osteogenic differentiation markers (RUNX2, COL I, ALP, and OPN). Furthermore, it inhibited the accumulation of lipid vesicles in the cytoplasm and the mRNA and protein expression levels of adipogenic differentiation markers (PPARγ and C/EBPα) in a concentration-dependent manner. Meanwhile, CPPs notably increased the mRNA and protein expression of β-catenin, the core protein of the Wnt/β-catenin signaling pathway, in a concentration-dependent manner. Adding DKK1, a mature inhibitor of the Wnt/β-catenin signaling pathway, partially suppressed CPP-stimulated β-catenin activation, and reversed the acceleration of osteogenic differentiation and the inhibition of lipogenic differentiation. Our observations demonstrated CPPs ameliorate bone loss in OVX rats in vivo, and favour osteogenic differentiation while inhibit adipogenic differentiation of rBMSCs in vitro. The findings suggested that CPPs could serve as functional foods for bone health, and have great potential for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Jinjin Liu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu,730000, China; The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jinyang An
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Na Jiang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Kuan Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Conghui Guan
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu,730000, China; The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Nan Zhao
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu,730000, China; The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jianguo Cheng
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu,730000, China; The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Songbo Fu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu,730000, China; The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Chengxu Ma
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu,730000, China; The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaoni Ma
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu,730000, China; The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xulei Tang
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu,730000, China; The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
14
|
Yue J, Xiao Y, Chen W. Insights into Genus Codonopsis: From past Achievements to Future Perspectives. Crit Rev Anal Chem 2023; 54:3345-3376. [PMID: 37585270 DOI: 10.1080/10408347.2023.2242953] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Codonopsis plants, as a kind of medicinal and edible herb, have a long history of application and have been widely concerned by pharmacists and biologists. In this article, the species diversity, taxonomy and distribution, ethnic medicinal records, chemical composition, pharmacological activity, and quality evaluation methods of Codonopsis species were systematically reviewed. In addition, the research progress of Codonopsis plants using biotechnology in recent years was summarized. The phytochemistry and biological activities of Codonopsis are widely evaluated. To date, more than 350 compounds have been isolated from Codonopsis. Codonopsis pilosula polysaccharides are important functional components and biomarkers. Lobetyolin, atractylenolide III, tangshenoside I, and oligosaccharide can be considered as characteristic index components to evaluate the quality of Codonopsis plants. Although recent experimental evidence has confirmed the pharmacological value of this genus, its quality control, resource development and utilization, and active ingredient synthesis mechanisms are not well studied. In particular, molecular biology research is still in its infancy, but its application prospects are broad, and it is a hot spot for future research on Codonopsis. Therefore, it is urgent to conduct a detailed study on the single level of phytochemistry, pharmacology, and molecular biology of Codonopsis to establish a scientific evaluation system and modern medication guidelines. The multi-angle, multi-level, and multi-aspect integrated association analysis is also an inevitable trend for the future in-depth study of Codonopsis plants. This research status was summarized in order to provide a broader scientific research idea and theoretical reference for the in-depth study of Codonopsis.
Collapse
Affiliation(s)
- Jiaqi Yue
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xiao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wansheng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
15
|
Wang T, Ying X, Zhang Q, Xu Y, Jiang C, Shang J, Zang Z, Wan F, Huang X. Evaluation of the Effect of Ultrasonic Pretreatment on the Drying Kinetics and Quality Characteristics of Codonopsis pilosula Slices Based on the Grey Correlation Method. Molecules 2023; 28:5596. [PMID: 37513468 PMCID: PMC10385178 DOI: 10.3390/molecules28145596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Ultrasonic (US) maltreatment was performed before the vacuum far-infrared drying (VFID) of Codonopsis pilosula (CP) slices to investigate the effects of different US parameters on the drying characteristics and nutrients of CP slices. The grey correlation method with relative correlation degree (ri) as the evaluation measure was used to construct a model for the evaluation of the pretreatment quality of CP and to determine the optimal pretreatment conditions. The results showed that with the increase in US frequency and power, the drying rate increased. Under the conditions of US power of 180 W, frequency of 60 kHz and a pre-treatment time of 30 min, the drying time reduced by 28.6%. The contents of polysaccharide and syringin in dried CP slices pretreated by US increased by 14.7% and 62.0%, respectively, compared to the non-pre-treated samples, while the total flavonoid content decreased by 10.0%. In terms of colour, pretreatment had a certain protective effect on the red colour of dried products. The highest relative correlation (0.574) and the best overall quality of performance were observed at 180 W, 60 kHz and 30 min. Overall, US technology is suitable for the pretreatment processing of CP, which is of great significance to the drying of CP.
Collapse
Affiliation(s)
- Tongxun Wang
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xinyu Ying
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qian Zhang
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanrui Xu
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Chunhui Jiang
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianwei Shang
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Zepeng Zang
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Fangxin Wan
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaopeng Huang
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
16
|
Wang Y, Wang Z, Zhang J, Yu H, Chen Y, Gao Y, Li X, Li W, Hu F. Evaluation of the Quality of Codonopsis Radix in Different Growth Years by the AHP-CRITIC Method. Chem Biodivers 2023; 20:e202201108. [PMID: 37127546 DOI: 10.1002/cbdv.202201108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023]
Abstract
The quality of traditional Chinese medicines (TCM) has a significant correlation with the source and growth years. However, there is no research on the relationship between the growth period and the quality of Codonopsis Radix (CR). This work aims to evaluate the quality of CR in different growth years (2-5 years). First, the content of 6 efficacy-related and 28 nutrient-related components in different growth years of CR was analyzed. The results showed that with the increase in growth years of CR, the content of some components increased, while some decreased. Then, the AHP-CRITIC method was performed to score the CR in different growth years, the results showed that the comprehensive score of CR increased with the increase of growth years, and the 5-year-CR had the highest score. Finally, in vitro activity assays were designed to verify the evaluation results. The results demonstrated that with the increase of growth years, the spleen lymphocyte proliferation activity and DPPH free radical scavenging activity of CR were enhanced, which proved that the AHP-CRITIC method is reasonable to evaluate the quality of CR in different growth years. The aforementioned findings demonstrated that CR quality improved with longer planting years.
Collapse
Affiliation(s)
- Yanping Wang
- School of Pharmacy, State Key Laboratory of Functional Organic Molecular Chemistry, Institute of Codonopsis Radix, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, P. R. China
| | - Zixia Wang
- School of Pharmacy, State Key Laboratory of Functional Organic Molecular Chemistry, Institute of Codonopsis Radix, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, P. R. China
| | - Jingjing Zhang
- School of Pharmacy, State Key Laboratory of Functional Organic Molecular Chemistry, Institute of Codonopsis Radix, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, P. R. China
| | - Huaqiao Yu
- School of Pharmacy, State Key Laboratory of Functional Organic Molecular Chemistry, Institute of Codonopsis Radix, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, P. R. China
| | - Yan Chen
- School of Pharmacy, State Key Laboratory of Functional Organic Molecular Chemistry, Institute of Codonopsis Radix, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, P. R. China
| | - Yingrui Gao
- School of Pharmacy, State Key Laboratory of Functional Organic Molecular Chemistry, Institute of Codonopsis Radix, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, P. R. China
| | - Xiaodong Li
- Codonopsis Radix Research Institute, Gansu Province, Lanzhou, Gansu, 730000, P. R. China
| | - Wen Li
- School of Pharmacy, State Key Laboratory of Functional Organic Molecular Chemistry, Institute of Codonopsis Radix, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, P. R. China
- Codonopsis Radix Research Institute, Gansu Province, Lanzhou, Gansu, 730000, P. R. China
- Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, Gansu, 730000, P. R. China
| | - Fangdi Hu
- School of Pharmacy, State Key Laboratory of Functional Organic Molecular Chemistry, Institute of Codonopsis Radix, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, P. R. China
- Codonopsis Radix Research Institute, Gansu Province, Lanzhou, Gansu, 730000, P. R. China
- Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, Gansu, 730000, P. R. China
| |
Collapse
|
17
|
Rang Y, Liu H, Cheng X, Li W, Shi J, Ou G, Huang H, Chen C, Xiao X, Liu C. Structural characterization of pectic polysaccharides from Amaranth caudatus leaves and the promotion effect on hippocampal glucagon-like peptide-1 level. Int J Biol Macromol 2023:124967. [PMID: 37217047 DOI: 10.1016/j.ijbiomac.2023.124967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
In this study, decolorized pectic polysaccharides (D-ACLP) with molecular weight (Mw) distribution of 3483- 2,023,656 Da were prepared from Amaranth caudatus leaves. Purified polysaccharides (P-ACLP) with the Mw of 152,955 Da were further isolated from D-ACLP through gel filtration. The structure of P-ACLP was analyzed by 1D and 2D NMR spectra. P-ACLP were identified as rhamnogalacturonan-I (RG-I) containing dimeric arabinose side chains. The main chain of P-ACLP was composed of →4)-α-GalpA-(1→, →2)-β-Rhap-(1→, →3)-β-Galp-(1 → and →6)-β-Galp-(1→. There was a branched chain of α-Araf-(1 → 2)-α-Araf-(1 → connected to the O-6 position of →3)-β-Galp-(1→. The GalpA residues were partially methyl esterified at O-6 and acetylated at O-3. The 28-day consecutive gavage of D-ALCP (400 mg/kg) significantly elevated the hippocampal glucagon-like peptide-1 (GLP-1) levels in rats. The concentrations of butyric acid and total short chain fatty acids in the cecum contents also increased significantly. Moreover, D-ACLP could significantly increase the gut microbiota diversity and dramatically up-regulated the abundance of Actinobacteriota (phylum) and unclassified Oscillospiraceae (genus) in intestinal bacteria. Taking together, D-ACLP might promote the hippocampal GLP-1 level through the beneficial regulation of butyric acid-producing bacteria in gut microbiota. This study contributed to making full use of Amaranth caudatus leaves for cognitive dysfunction intervention in food industry.
Collapse
Affiliation(s)
- Yifeng Rang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Huan Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China; College of Life Sciences, Hubei Normal University, Huangshi 435000, China
| | - Xianbo Cheng
- Nanning Higher Education Base, Guangxi Vocational College of Technology and Business, Nanning 530003, China
| | - Weiye Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Jian Shi
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Genghua Ou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Huiying Huang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Congying Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Xueman Xiao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
18
|
Fan L, Wang J, Leng F, Li S, Ma X, Wang X, Wang Y. Effects of time-space conversion on microflora structure, secondary metabolites composition and antioxidant capacity of Codonopsis pilosula root. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107659. [PMID: 37031545 DOI: 10.1016/j.plaphy.2023.107659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 05/07/2023]
Abstract
In order to study the relationship between medicinal plant Codonopsis pilosula phenotype, secondary metabolites, antioxidant capacity and its rhizosphere soil nutrients, root-related microorganisms under seasonal and geographical changes, high-throughput sequencing technology was used to explore the bacterial community structure and variation in rhizosphere soil and root endosphere from six regions of Dingxi City, Gansu Province during four seasons. Secondary metabolites composition and antioxidant capacities of C. pilosula root collected successively from four seasons were determined. The chemical properties, nutrient content and enzyme activities of rhizosphere of C. pilosula were significantly different under different temporal and spatial conditions. All soil samples were alkaline (pH 7.64-8.42), with water content ranging from 9.53% to 19.95%, and electrical conductivity varied widely, showing obvious time-scale effects. Different time scales were the main reasons for the diversity and structure of rhizosphere bacterial community of C. pilosula. The diversity and richness of rhizosphere bacterial community in autumn and winter were higher than those in spring and summer, and bacterial community structure in spring and summer was more similar to that in autumn and winter. The root length and diameter of C. pilosula showed significant time gradient difference under different spatiotemporal conditions. Nutrition and niche competition lead to significant synergistic or antagonistic interactions between rhizosphere bacteria and endophytic bacteria, which invisibly affect soil properties, abundance of functional bacteria and even yield and quality of C. pilosula. Soil properties, rhizosphere bacteria and endophytic bacteria directly promoted root phenotype, stress resistance and polysaccharide accumulation of C. pilosula.
Collapse
Affiliation(s)
- Lili Fan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jiangqin Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Shaowei Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiang Ma
- Qinghai University (Qinghai Academy of Animal Science and Veterinary Medicine), Xining, 810016, China
| | - Xiaoli Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
| |
Collapse
|
19
|
Wang S, Yang Y, Wang Q, Wu Z, Liu X, Chen S, Zhou A. Structural characterization and immunomodulatory activity of a polysaccharide from finger citron extracted by continuous phase-transition extraction. Int J Biol Macromol 2023; 240:124491. [PMID: 37076066 DOI: 10.1016/j.ijbiomac.2023.124491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
FCP-2-1, a water-soluble polysaccharide rich in galacturonic acid was isolated by continuous phase-transition extraction and purified with DEAE-52 cellulose and Sephadex G-100 column chromatography from finger citron with essential oil and flavonoids removed. The structural characterization and immunomodulatory activity of FCP-2-1 were further investigated in this work. FCP-2-1 with a Mw and Mn of 1.503 × 104 g/mol and 1.125 × 104 g/mol, respectively, was predominantly composed of galacturonic acid, galactose, and arabinose in a molar ratio of 0.685: 0.032: 0.283. The main linkage types of FCP-2-1 were proved to be →5)-α-L-Araf-(1→ and →4)-α-D-GalpA-(1→ based on methylation and NMR analysis. Moreover, FCP-2-1 was demonstrated to have significant immunomodulatory effects on macrophages in vitro by improving the cell viability, and enhancing phagocytic activity and secretion of NO and cytokines (IL-1β, IL-6, IL-10 and TNF-α), indicating that FCP-2-1 could be used as a natural agent in immunoregulation functional foods.
Collapse
Affiliation(s)
- Shuhui Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yujie Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qun Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhiqin Wu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Shuxi Chen
- Guangdong Zhancui Food Co., Ltd., Chaozhou 515634, China
| | - Aimei Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
20
|
Lu S, Gu W, Ma Q, Tian R, Qiu R, Ma L, Wu Y, Liu M, Tang J. Extraction, structural characterization, and biological activities of a new glucan from Codonopsis pilosula. Sci Rep 2023; 13:4504. [PMID: 36934161 PMCID: PMC10024767 DOI: 10.1038/s41598-023-31660-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/15/2023] [Indexed: 03/20/2023] Open
Abstract
In this study, a powerful and rapid aqueous two-phase system (ATPS) method was used to extract polysaccharides from Codonopsis pilosula. The ATPS process was investigated with response surface methodology (RSM). At an ammonium sulfate concentration of 17%, ethanol concentration of 30%, and extraction temperature of 40 °C at pH 6, the total extraction yield of polysaccharides reached (31.57 ± 1.28)%. After separation and purification, a homogenized polysaccharide CPP 2-4 with molecular weight of 3.9 × 104 kDa was obtained from the bottom phase. The physicochemical properties and structural features confirmed that CPP 2-4 was an α-1,6-glucan. Activity studies showed that the IC50 of CPP 2-4 for DPPH radical scavenging was 0.105 mg/mL. The FRAP and ABTS assays showed that CPP 2-4 had strong antioxidant activity in a dose-dependent manner. Furthermore, CPP 2-4 inhibited NO release in RAW264.7 cells induced by lipopolysaccharide, which indicated a certain anti-inflammatory effect. This study improved the extraction rate of polysaccharides from C. pilosula and identified a glucan for the first time, that can contribute to a better understanding of the composition and structure of polysaccharides from C. pilosula and provide data support for the medicine and food homology of C. pilosula.
Collapse
Affiliation(s)
- Shanshan Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, China
| | - Wei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qihan Ma
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215008, China.
| | - Rong Tian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rongli Qiu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lijie Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yinzhi Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengxue Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Junjie Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
21
|
Injectable hydroethanolic physical gels based on Codonopsis pilosula polysaccharide for sustained anticancer drug delivery. Int J Biol Macromol 2023; 230:123178. [PMID: 36623621 DOI: 10.1016/j.ijbiomac.2023.123178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
The development of biocompatible carriers based on hydroethanolic physical gels for effectively encapsulating and delivering hydrophobic drug molecules is of particular interest. In this paper, we reported a novel hydroethanolic physical gel based on Codonopsis pilosula polysaccharide (CPP) prepared from the roots of C. pilosula. The gelation behaviors of the graded CPP fractions in a water-ethanol solvent system were evaluated, and the physicochemical and mechanical properties of the CPP-based gel (CPP-G) were characterized. The results indicated that CPP-G had consisted of a random physically crosslinked network formed by hydrophobic association of CPP chains and exhibited good mechanical strength, higher shear-thinning sensitivity and rapid, highly efficient self-recovering characteristics, ensuring superior performance in constructing injectable and self-recovering drug-loaded gels. Hydrophobic paclitaxel (PTX) and hydrophilic doxorubicin (DOX) were used as representative drugs to investigate the encapsulation and in vitro release behaviors of CPP-G, which exhibited long-term sustained release properties. Additionally, the evaluation of drug activity in drug-loaded gels further revealed the synergistic effect of CPP-G with the selected drugs on tumor inhibition against 4T1 and MCF-7 breast cancer cell lines. This work evaluated the feasibility of using the natural polysaccharide CPP to construct hydroethanolic physical gels and the applicability of the injectable drug-loaded gels for hydrophobic drug delivery.
Collapse
|
22
|
Gang R, Komakech R, Chung Y, Okello D, Kim WJ, Moon BC, Yim NH, Kang Y. In vitro propagation of Codonopsis pilosula (Franch.) Nannf. using apical shoot segments and phytochemical assessments of the maternal and regenerated plants. BMC PLANT BIOLOGY 2023; 23:33. [PMID: 36642714 PMCID: PMC9841653 DOI: 10.1186/s12870-022-03950-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Codonopsis pilosula (Franch.) Nannf. is a medicinal plant traditionally used in China, Korea, and Japan to treat many diseases including poor gastrointestinal function, low immunity, gastric ulcers, and chronic gastritis. The increasing therapeutic and preventive use of C. pilosula has subsequently led to depletion of the natural populations of this species thus necessitating propagation of this important medicinal plant. Here, we developed an efficient and effective in vitro propagation protocol for C. pilosula using apical shoot segments. We tested various plant tissue culture media for the growth of C. pilosula and evaluated the effects of plant growth regulators on the shoot proliferation and rooting of regenerated C. pilosula plants. Furthermore, the tissues (roots and shoots) of maternal and in vitro-regenerated C. pilosula plants were subjected to Fourier-transform near-infrared (FT-NIR) spectrometry, Gas chromatography-mass spectrometry (GC-MS), and their total flavonoids, phenolics, and antioxidant capacity were determined and compared. RESULTS Full-strength Murashige and Skoog (MS) medium augmented with vitamins and benzylaminopurine (1.5 mg·L-1) regenerated the highest shoot number (12 ± 0.46) per explant. MS medium augmented with indole-3-acetic acid (1.0 mg·L-1) produced the highest root number (9 ± 0.89) and maximum root length (20.88 ± 1.48 mm) from regenerated C. pilosula shoots. The survival rate of in vitro-regenerated C. pilosula plants was 94.00% after acclimatization. The maternal and in vitro-regenerated C. pilosula plant tissues showed similar FT-NIR spectra, total phenolics, total flavonoids, phytochemical composition, and antioxidant activity. Randomly amplified polymorphic DNA (RAPD) test confirmed the genetic fidelity of regenerated C. pilosula plants. CONCLUSIONS The proposed in vitro propagation protocol may be useful for the rapid mass multiplication and production of high quality C. pilosula as well as for germplasm preservation to ensure sustainable supply amidst the ever-increasing demand.
Collapse
Affiliation(s)
- Roggers Gang
- Korean Convergence Medical Science Major, University of Science and Technology (UST), Daejeon, 34113, South Korea
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea
- National Agricultural Research Organization (NARO), National Semi-Arid Resources Research Institute (NaSARRI), Soroti, Uganda
| | - Richard Komakech
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea
- Natural Chemotherapeutics Research Institute (NCRI), Ministry of Health, Kampala, Uganda
| | - Yuseong Chung
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea
| | - Denis Okello
- Korean Convergence Medical Science Major, University of Science and Technology (UST), Daejeon, 34113, South Korea
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea
- Department of Biological Sciences, Kabale University, P.O Box 317, Kabale, Uganda
| | - Wook Jin Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea
| | - Byeong Cheol Moon
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea
| | - Nam-Hui Yim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-Ro, Dong-Gu, Daegu, 41062, South Korea
| | - Youngmin Kang
- Korean Convergence Medical Science Major, University of Science and Technology (UST), Daejeon, 34113, South Korea.
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea.
| |
Collapse
|
23
|
Li LX, Chen MS, Zhang ZY, Paulsen BS, Rise F, Huang C, Feng B, Chen XF, Jia RY, Ding CB, Feng SL, Li YP, Chen YL, Huang Z, Zhao XH, Yin ZQ, Zou YF. Structural features and antioxidant activities of polysaccharides from different parts of Codonopsis pilosula var. modesta (Nannf.) L. T. Shen. Front Pharmacol 2022; 13:937581. [PMID: 36091763 PMCID: PMC9449496 DOI: 10.3389/fphar.2022.937581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, three acidic polysaccharides from different plant parts of Codonopsis pilosula var. Modesta (Nannf.) L. T. Shen were obtained by ion exchange chromatography and gel filtration chromatography, and the yields of these three polysaccharides were different. According to the preliminary experimental results, the antioxidant activities of the polysaccharides from rhizomes and fibrous roots (CLFP-1) were poor, and was thus not studied further. Due to this the structural features of polysaccharides from roots (CLRP-1) and aerial parts (CLSP-1) were the object for this study and were structurally characterized, and their antioxidant activities were evaluated. As revealed by the results, the molecular weight of CLRP-1and CLSP-1 were 15.9 kDa and 26.4 kDa, respectively. The monosaccharide composition of CLRP-1 was Ara, Rha, Fuc, Xyl, Man, Gal, GlcA, GalA in a ratio of 3.8: 8.4: 1.0: 0.8: 2.4: 7.4: 7.5: 2.0: 66.7, and Ara, Rha, Gal, GalA in a ratio of 5.8: 8.9: 8.0: 77.0 in for CLSP-1. The results of structural elucidation indicated that both CLRP-1 and CLSP-1 were pectic polysaccharides, mainly composed of 1, 4-linked galacturonic acid with long homogalacturonan regions. Arabinogalactan type I and arabinogalactan type II were presented as side chains. The antioxidant assay in IPEC-J2 cells showed that both CLRP-1 and CLSP-1 promoted cell viability and antioxidant activity, which significantly increase the level of total antioxidant capacity and the activity of superoxide dismutase, catalase, and decrease the content of malondialdehyde. Moreover, CLRP-1 and CLSP-1 also showed powerful antioxidant abilities in Caenorhabditis elegans and might regulate the nuclear localization of DAF-16 transcription factor, induced antioxidant enzymes activities, and further reduced reactive oxygen species and malondialdehyde contents to increase the antioxidant ability of Caenorhabditis elegans. Thus, these finding suggest that CLRP-1 and CLSP-1 could be used as potential antioxidants.
Collapse
Affiliation(s)
- Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Meng-Si Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zi-Yu Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | | | - Frode Rise
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xing-Fu Chen
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Ren-Yong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chun-Bang Ding
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Shi-Ling Feng
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Yang-Ping Li
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Yu-Long Chen
- Sichuan Academy of Forestry, Ecology Restoration and Conservation on Forestry and Wetland Key Laboratory of Sichuan Province, Chengdu, China
- *Correspondence: Yu-Long Chen, ; Yuan-Feng Zou,
| | - Zhen Huang
- Sichuan Academy of Forestry, Ecology Restoration and Conservation on Forestry and Wetland Key Laboratory of Sichuan Province, Chengdu, China
| | - Xing-Hong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yu-Long Chen, ; Yuan-Feng Zou,
| |
Collapse
|
24
|
He R, Ma R, Jin Z, Zhu Y, Yang F, Hu F, Dai J. Proteomics and Metabolomics Unveil Codonopsis pilosula (Franch.) Nannf. Ameliorates Gastric Precancerous Lesions via Regulating Energy Metabolism. Front Pharmacol 2022; 13:933096. [PMID: 35928258 PMCID: PMC9343858 DOI: 10.3389/fphar.2022.933096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: This study aimed to systematically evaluate the efficacy of Codonopsis pilosula (Franch.) Nannf. (Codonopsis Radix, CR) and reveal the mechanism of its effects on suppressing Gastric Precancerous Lesions. Methods: First, we established the GPL rat model which was induced by N-methyl-N'-nitro-N-nitrosoguanidine, a disordered diet, and 40% ethanol. The CR's anti-Gastric Precancerous Lesions effect was comprehensively evaluated by body weight, pathological section, and serum biochemical indexes. Then, quantitative proteomics and metabolomics were conducted to unveil the disturbed protein-network and pharmacodynamic mechanism. Furthermore, serum pharmacology was employed to confirm that CR's anti-gastritis and anti-cancer phenotype in cell models. Results: In animal models, CR had been shown to control inflammation and ameliorate Gastric Precancerous Lesions. Considering the combination of proteomics and metabolomics, we found that CR could significantly reverse the biological pathways related to energy metabolism which were disturbed by the Gastric Precancerous Lesions model. Furthermore, the results of serum pharmacology indicated that the Codonopsis Radix containing serum could ameliorate gastritis injury and selectively inhibit the proliferation of gastric cancer cells rather than normal cells, which was closely related to ATP production in the above mentioned cells. Conclusion: In summary, CR exerted anti-Gastric Precancerous Lesions effects by ameliorating gastritis injury and selectively inhibiting the proliferation of gastric cancer cells rather than normal cells. Proteomics and metabolomics unveiled that its efficacy was closely related to its regulation of the energy-metabolism pathway. This research not only provided new ideas for exploring the mechanism of complex systems such as Chinese herbals but also benefited the treatment strategy of Gastric Precancerous Lesions via regulating energy metabolism.
Collapse
Affiliation(s)
- Rupu He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ruyun Ma
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zheng Jin
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yanning Zhu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Fude Yang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Fangdi Hu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jianye Dai
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
25
|
Bo S, Dan M, Han W, Ochir S, Bao L, Liu L, Muschin T, Baigude H. Physicochemical properties, immunostimulatory and antioxidant activities of a novel polysaccharide isolated from Mirabilis himalaica (Edgew) Heim. RSC Adv 2022; 12:17264-17275. [PMID: 35765428 PMCID: PMC9185703 DOI: 10.1039/d2ra00060a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
Herbal medicines often contain bioactive polysaccharides. However, many medicinal herbs have not been explored for any active saccharides that may play key roles in their bioactivities. Herein, we extracted a novel polysaccharide from Mirabilis himalaica (Edgew) heim (denoted MHHP), a popular medicinal ingredient in traditional medicines. The structural and morphological characteristics of MHHP were measured and elucidated by high-performance gel permeation chromatography, gas chromatography connected with mass spectrometry, Fourier transform infrared and nuclear magnetic resonance spectroscopy as well as scanning electron microscopy. MHHP was homogeneous with a molecular weight of 16.1 kDa, M w/M n = 1.33, containing mainly α-d-glucan residues with (1→4)-linkage. The biological activities of MHHP upon proliferation of splenic lymphocyte, activation of related cytokine and production of nitric oxide (NO) in RAW264.7 cells were investigated in vitro. MHHP induced proliferation of mouse spleen lymphocytes and significantly promoted the secretion in TNF-α, IL-6 and NO production in RAW264.7 cells. Meanwhile, MHHP exhibited relatively low antioxidant abilities. Our data suggested that MHHP may have potential immunoregulatory and anti-inflammatory activity, with a moderate antioxidant activity.
Collapse
Affiliation(s)
- Surina Bo
- College of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone Hohhot Inner Mongolia 010110 P. R. China
| | - Mu Dan
- College of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone Hohhot Inner Mongolia 010110 P. R. China
| | - Wenjie Han
- College of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone Hohhot Inner Mongolia 010110 P. R. China
| | - Sarangua Ochir
- Academy of Mongolian Medicine, Inner Mongolia Medical University, Jinshan Development Zone Hohhot Inner Mongolia 010110 P. R. China +86-0471-6653165
| | - Liang Bao
- Academy of Mongolian Medicine, Inner Mongolia Medical University, Jinshan Development Zone Hohhot Inner Mongolia 010110 P. R. China +86-0471-6653165
| | - Lingwei Liu
- Academy of Mongolian Medicine, Inner Mongolia Medical University, Jinshan Development Zone Hohhot Inner Mongolia 010110 P. R. China +86-0471-6653165
| | - Tegshi Muschin
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University Inner Mongolia 010022 P. R. China +86-0471-6990751
| | - Huricha Baigude
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University Hohhot Inner Mongolia 010020 P. R. China +86 471 4992511 +86 471 4992511
| |
Collapse
|
26
|
Wang B, Yan L, Guo S, Wen L, Yu M, Feng L, Jia X. Structural Elucidation, Modification, and Structure-Activity Relationship of Polysaccharides in Chinese Herbs: A Review. Front Nutr 2022; 9:908175. [PMID: 35669078 PMCID: PMC9163837 DOI: 10.3389/fnut.2022.908175] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 01/10/2023] Open
Abstract
Chinese herbal polysaccharides (CHPs) are natural polymers composed of monosaccharides, which are widely found in Chinese herbs and work as one of the important active ingredients. Its biological activity is attributed to its complex chemical structure with diverse spatial conformations. However, the structural elucidation is the foundation but a bottleneck problem because the majority of CHPs are heteropolysaccharides with more complex structures. Similarly, the studies on the relationship between structure and function of CHPs are even more scarce. Therefore, this review summarizes the structure-activity relationship of CHPs. Meanwhile, we reviewed the structural elucidation strategies and some new progress especially in the advanced structural analysis methods. The characteristics and applicable scopes of various methods are compared to provide reference for selecting the most efficient method and developing new hyphenated techniques. Additionally, the principle structural modification methods of CHPs and their effects on activity are summarized. The shortcomings, potential breakthroughs, and developing directions of the study of CHPs are discussed. We hope to provide a reference for further research and promote the application of CHPs.
Collapse
|
27
|
Dar AA, Raina A, Kumar A. Development, method validation and simultaneous quantification of eleven bioactive natural products from high altitude medicinal plant by high performance liquid chromatography. Biomed Chromatogr 2022; 36:e5408. [PMID: 35562105 DOI: 10.1002/bmc.5408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 11/07/2022]
Abstract
Herein, a novel, rapid, reliable, simple method validation and simultaneous quantification of eleven bioactive compounds mostly xanthones have been described. ICH guidelines were used for the analytical method validation. Good linearity, repeatability, intra-day and inter-day precision, accuracy and reliability is well illuminated in the method validation procedure. The calibration curves showed a good linear relationship (r>0.999) within test range. Precision was evaluated by intra- and inter-day tests with RSDs <2.79%, accuracy validation recovery 74.16-91.84%. On quantification study, validated method described the high content of bioactive xanthone derivative including 1-hydroxy-3, 5-dimethoxyxanthone (7), 2-(allyloxy)-8-hydroxy-1, 6-dimethoxyxanthone (6) 1, 7, 8-trihydroxy-3-methoxyxanthone (9) and Coxanthone E (5) in the C. ovata which is advantageous due to numerous pharmacological and biological effects associated with these compounds mostly anti-cancers, antioxidant, anti-inflammatory, anti-mutagenic and anti-obesity activity. The bulk abundance of these compounds can also be used for the further modification to produce better lead molecules for drug discovery with low toxicity and high potency. The proposed method makes it possible to determine simultaneously all bioactive compounds in one run and can be extended for marker based standardization of herbal formulations in medicinal and pharmaceutical industries.
Collapse
Affiliation(s)
- Alamgir A Dar
- Bio-organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, J&K, India.,Research Centre for Residue and Quality Analysis, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Shalimar, Srinagar, J&K, India
| | - Arun Raina
- Bio-organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, J&K, India
| | - Anil Kumar
- Synthetic Organic Chemistry Laboratory, Sri Mata Vaishno Devi University, Katra Jammu, J&K, India
| |
Collapse
|
28
|
Uniform and disperse selenium nanoparticles stabilized by inulin fructans from Codonopsis pilosula and their anti-hepatoma activities. Int J Biol Macromol 2022; 203:105-115. [PMID: 35092739 DOI: 10.1016/j.ijbiomac.2022.01.140] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 12/20/2022]
Abstract
The present work reported the extraction, purification and characterization of an inulin fructan from Codonopsis pilosula (CPW1) and its application in stabilization of selenium nanoparticles (SeNPs). The morphology, stability, and stabilization mechanism of CPW1 stabilized SeNPs (CPW1-Se) were explored, and the results showed that the SeNPs were amorphous state, with size of 54-79 nm, and kept stable within 15 days due to the interaction between SeNPs and the hydroxyl groups on the surface of CPW1. Moreover, the effects on proliferation and apoptosis of CPW1-Se to both normal cells (293T) and liver cancer cells (Huh-7 and HepG2) were evaluated systematically by using the CCK8 assay, plate clone formation assay, flow cytometry and western blot. The results indicated that CPW1-Se possessed selective anti-hepatoma activities without side effects on normal cells, which exhibited strong potential application in liver cancer treatments.
Collapse
|
29
|
Yang M, Jin Y, Yang J, Wang C, Wang X, Wang Y. Preparation of Codonopsis pilosula polysaccharide microcapsules and its effect and mechanism on skin wound healing in rats. J Biomater Appl 2022; 36:1723-1736. [PMID: 35235468 DOI: 10.1177/08853282211054333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, after optimizing the extraction process of CPP (Codonopsis pilosula polysaccharides), CPPM (CPP microcapsules) were prepared. Subsequently, the structural characteristics and physicochemical properties were studied. The results showed that CPPM is a hollow sac-like structure with rough folds and protuberances and comes in spherical or ellipsoidal shapes with uniform particle size. CPPM has certain swelling degree, low hardness, good adhesion, and stability. Then, the effect of CPPM on wounds repair was investigated by a rat model. The results showed that CPPM could improve the wound healing rate. Histological evaluation showed CPPM could promote neovascularization and fibroblast proliferation. By investigating the healing mechanism, it was found that CPPM increased the hydroxyproline content in granulation tissue and had an excellent antioxidant ability, and then inhibited lipid peroxidation, in addition, it significantly increased the transcript levels of VEGF and miRNA-21 genes, indicating that CPPM play an influential role in vascular remodeling during wound healing by up-regulating the expression of VEGF and miRNA-21 genes.
Collapse
Affiliation(s)
- Mingjun Yang
- School of Life Science and Engineering, 56677Lanzhou University of Technology, Lanzhou, China
| | - Yongming Jin
- School of Life Science and Engineering, 56677Lanzhou University of Technology, Lanzhou, China
| | - Jumei Yang
- 74713Lanzhou University Second Hospital, Lanzhou, China
| | - Chenliang Wang
- School of Life Science and Engineering, 56677Lanzhou University of Technology, Lanzhou, China
| | - Xinjian Wang
- School of Life Science and Engineering, 56677Lanzhou University of Technology, Lanzhou, China
| | - Yonggang Wang
- School of Life Science and Engineering, 56677Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
30
|
Qiao X, Wang B, Yuan Z, Yu F, Zhang Y, Wang Y, Yang Y, Tang J, Jiang Z, Lin L, Zhang L, Du Z, Zhang Y. The polysaccharides from Yiqi Yangyin complex attenuated mammary gland hyperplasia: Integrating underlying biological mechanisms and network pharmacology. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
31
|
Zou YF, Zhang YY, Paulsen BS, Rise F, Chen ZL, Jia RY, Li LX, Song X, Feng B, Tang HQ, Huang C, Ye G, Yin ZQ. New pectic polysaccharides from Codonopsis pilosula and Codonopsis tangshen: structural characterization and cellular antioxidant activities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6043-6052. [PMID: 33857333 DOI: 10.1002/jsfa.11261] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/17/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Codonopsis pilosula and Codonopsis tangshen are plants widely used in traditional Chinese medicine. Two pectic polysaccharides from the roots of C. pilosula and C. tangshen named as CPP-1 and CTP-1 were obtained by boiling water extraction and column chromatography. RESULTS The core structures of both CPP-1 and CTP-1 comprise the long homogalacturonan region (HG) as the backbone and the rhamnogalacturonan I (RG-I) region as the side chains. CPP-1 has methyl esterified galacturonic acid units and a slightly lower molecular weight than CTP-1. Biological testing suggested that CPP-1 and CTP-1 can protect IPEC-J2 cells against the H2 O2 -induced oxidative stress by up-regulating nuclear factor-erythroid 2-related factor 2 and related genes in IPEC-J2 cells. The different antioxidative activities of polysaccharides from different source of C. pilosula may be result of differences in their structures. CONCLUSION All of the results indicated that pectic polysaccharides CPP-1 and CTP-1 from different species of C. pilosula roots could be used as a potential natural antioxidant source. These findings will be valuable for further studies and new applications of pectin-containing health products. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan-Yun Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Berit S Paulsen
- Department of Pharmacy, Section Pharmaceutical Chemistry, Area Pharmacognosy, University of Oslo, Oslo, Norway
| | - Frode Rise
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Zheng-Li Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ren-Yong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Hua-Qiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Department of Pharmacy, Section Pharmaceutical Chemistry, Area Pharmacognosy, University of Oslo, Oslo, Norway
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
32
|
Liu H, Amakye WK, Ren J. Codonopsis pilosula polysaccharide in synergy with dacarbazine inhibits mouse melanoma by repolarizing M2-like tumor-associated macrophages into M1-like tumor-associated macrophages. Biomed Pharmacother 2021; 142:112016. [PMID: 34385100 DOI: 10.1016/j.biopha.2021.112016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The incidence and associated mortality of melanoma have increased significantly in recent years but treatment options are plagued with many undesirable side effects. Traditional Chinese herbal medicine polysaccharides are gaining increasing attention due to their potential role in the treatment of chronic diseases including tumors and the regulation of the immune system. METHODS In this study, the potential effects of Ganoderma lucidum crude polysaccharides (GLCP) and Codonopsis pilosula crude polysaccharides (CPCP) on melanoma in C57 mice were explored. In addition, the inhibition and repolarization effect of digested Codonopsis pilosula polysaccharide (dCPP) on the proliferation of tumor-associated macrophages (TAMs) with M2-like phenotype induced by IL-4 were investigated. RESULTS The results showed that the various polysaccharides could significantly reduce tumor volume in melanoma mice. GLCP and GLCP + CPCP could further significantly reduce the number of CD68+ macrophages in tumors and also prolong survival in melanoma mice to a certain extent. Significantly, dCPP could inhibit the proliferation of IL-4-induced M2-like TAMs, and significantly increase the mRNA expression levels of IL-1, IL-6, iNOS and TNF-a, thereby promoting the repolarization of M2-like TAMs to M1-like TAMs. CONCLUSION Overall, it could be deduced that GLCP, CPCP and dCPP hold great potential as safe therapeutic options for melanoma and an immune-modulator which may require further exploration.
Collapse
Affiliation(s)
- Hongxu Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, PR China
| | - William Kwame Amakye
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, PR China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, PR China.
| |
Collapse
|
33
|
Li W, Wu DT, Li F, Gan RY, Hu YC, Zou L. Structural and Biological Properties of Water Soluble Polysaccharides from Lotus Leaves: Effects of Drying Techniques. Molecules 2021; 26:4395. [PMID: 34361549 PMCID: PMC8347772 DOI: 10.3390/molecules26154395] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 01/09/2023] Open
Abstract
In the present study, the influence of five drying techniques on the structural and biological properties of polysaccharides from lotus leaves (LLPs) was investigated. Results revealed that the yields, contents of basic chemical components, molecular weights, and molar ratios of compositional monosaccharides of LLPs varied by different drying technologies. Low molecular weight distributions were observed in polysaccharides obtained from lotus leaves by hot air drying (LLP-H), microwave drying (LLP-M), and radio frequency drying (LLP-RF), respectively. The high contents of bound polyphenolics were measured in LLP-H and LLP-M, as well as polysaccharides obtained from lotus leaves by vacuum drying (LLP-V). Furthermore, both Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra of LLPs were similar, indicating that drying technologies did not change their basic chemical structures. Besides, all LLPs exhibited obvious biological properties, including in vitro antioxidant capacities, antiglycation activities, and inhibitory effects on α-glucosidase. Indeed, LLP-H exhibited higher 2,2-azidobisphenol (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging ability (IC50 values, LLP-H, 0.176 ± 0.004 mg/mL; vitamin C, 0.043 ± 0.002 mg/mL) and 2,2-diphenyl-1-(2,4,6-trinitrate phenyl) hydrazine radical scavenging ability (IC50 values, LLP-H, 0.241 ± 0.007 mg/mL; butylated hydroxytoluene, 0.366 ± 0.010 mg/mL) than others, and LLP-M exerted stronger antiglycation (IC50 values, LLP-M, 1.023 ± 0.053 mg/mL; aminoguanidine, 1.744 ± 0.080 mg/mL) and inhibitory effects on α-glucosidase (IC50 values, LLP-M, 1.90 ± 0.02 μg/mL; acarbose, 724.98 ± 16.93 μg/mL) than others. These findings indicate that both hot air drying and microwave drying can be potential drying techniques for the pre-processing of lotus leaves for industrial applications.
Collapse
Affiliation(s)
- Wei Li
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.L.); (R.-Y.G.); (Y.-C.H.)
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Ding-Tao Wu
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.L.); (R.-Y.G.); (Y.-C.H.)
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya’an 625014, China;
| | - Fen Li
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya’an 625014, China;
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Ren-You Gan
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.L.); (R.-Y.G.); (Y.-C.H.)
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Yi-Chen Hu
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.L.); (R.-Y.G.); (Y.-C.H.)
| | - Liang Zou
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.L.); (R.-Y.G.); (Y.-C.H.)
| |
Collapse
|
34
|
Song X, Sun W, Cui W, Jia L, Zhang J. A polysaccharide of PFP-1 from Pleurotus geesteranus attenuates alcoholic liver diseases via Nrf2 and NF-κB signaling pathways. Food Funct 2021; 12:4591-4605. [PMID: 33908547 DOI: 10.1039/d1fo00310k] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A polysaccharide named PFP-1 was isolated from the Pleurotus geesteranus fruiting body, and potential investigations on ameliorating oxidative stress and liver injury against alcoholic liver disease (ALD) were performed in mice. The animal studies demonstrated that PFP-1 had hepatoprotective effects by improving hepatocellular histopathology, modulating alcohol metabolisms and restoring the serum lipid levels. Besides, PFP-1 could attenuate oxidative stress and inflammatory responses by activating the Nrf2-mediated signal pathways and regulating the TLR4-mediated NF-κB signal pathways. The characterization indicated that PFP-1 was a typical pyranose-polysaccharide in a triple-helical conformation, which was linked by t-β-Glcp, 1,6-α-Glcp and 1,2,6-α-Galp. And the characteristic properties of higher water solubility and appropriate molecular weights contributed to the superior bioactivities. The results demonstrated that PFP-1 could be used as a supplement for alleviating alcohol-induced liver damage.
Collapse
Affiliation(s)
- Xinling Song
- College of Life Science, Shandong Agricultural University, Taian, 271018, PR China.
| | | | | | | | | |
Collapse
|
35
|
Wang RY, Su PJ, Li B, Zhan XQ, Qi FM, Lv CW, Hu FD, Gao K, Zhang ZX, Fei DQ. Two new aromatic derivatives from Codonopsis pilosula and their α-glucosidase inhibitory activities. Nat Prod Res 2021; 36:4929-4935. [PMID: 33858273 DOI: 10.1080/14786419.2021.1912749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The ethanol extract of the roots of Codonopsis pilosula was subjected to chromatographic fractionation, which result in the isolation and characterization of two new aromatic derivatives 2,3-dihydroxypropyl 2,4-dihydroxy-3,6-dimethylbenzoate (1) and 2-oxopropyl 3-hydroxy-4-methoxybenzoate (2), along with three known compounds pilosulinene A (3), pollenfuran B (4) and (+)-pinoresinol (5). Their structures were demonstrated by HRESIMS and spectroscopic methods including NMR and IR. It is worth noting that compound 4 was isolated for the first time from the genus Codonopsis. The potential hypoglycemic properties of compounds 2-5 were evaluated by measuring their α-glucosidase inhibitory effects. As a result, compounds 2 and 3 showed weak α-glucosidase inhibitory activities with IC50 values of 154.8 ± 11.0 μM and 24.0 ± 2.2 μM, respectively.
Collapse
Affiliation(s)
- Ru-Yue Wang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Pan-Jie Su
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Bing Li
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Xiao-Qing Zhan
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Feng-Ming Qi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, People's Republic of China
| | - Chun-Wei Lv
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Fang-Di Hu
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, People's Republic of China
| | - Zhan-Xin Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Dong-Qing Fei
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
36
|
Dong J, Cheng M, Xue R, Deng C, Liu H, Zhang T, Lu T, Mao C, Xiao S, Li L, Pi W. Comparative pharmacokinetic and bioavailability study of lobetyolin in rats after administration of lobetyolin and Codonopsis pilosula extract by ultra-performance LC-tandem mass spectrometry. Biomed Chromatogr 2021; 35:e5125. [PMID: 33783828 DOI: 10.1002/bmc.5125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/23/2021] [Accepted: 03/22/2021] [Indexed: 11/10/2022]
Abstract
Codonopsis pilosula (CP) is a traditional Chinese medicine used to invigorate spleen, replenish lung, nourish blood and engender fluid. A rapid, selective and sensitive ultra-performance LC-tandem mass spectrometry method was developed and validated to determine lobetyolin in rat plasma. The calibration curve showed good linearity over a concentration range of 0.46-1000 ng/mL for lobetyolin. The extraction recovery ranged from 72.5% to 89.1% with matrix effects of 81.6%-107.8%. The intra- and inter-batch precision and accuracy were 0.02-14.4% and -13.9% to -1.36%, respectively. The method was successfully applied for the bioavailability study of lobetyolin in rats after oral administration of pure lobetyolin and CP extract. Results showed that the elimination half-time (t1/2 ) and the area under the concentration-time curve from zero to infinity of lobetyolin in CP extract were statistically different from those of the pure monomer (P < 0.05). However, the time to reach the maximum plasma concentration (Tmax ) and the maximum concentration (Cmax ) showed no significant differences between the two treatments. Furthermore, the bioavailability of lobetyolin in the experimental group was only 3.90%, significantly lower than that of the CP extract group (6.97%). The low bioavailability indicated that this component may be absorbed poorly or metabolized extensively in rats. Our results will provide useful information for further preclinical studies and formulation preparation of lobetyolin.
Collapse
Affiliation(s)
- Jiajia Dong
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming Cheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rong Xue
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chang Deng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huanhuan Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ting Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tulin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunqin Mao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuxian Xiao
- Shanxi Zhendong Pharmaceutical Co., Ltd, Changzhi, China
| | - Lin Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenxia Pi
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
37
|
Yao HYY, Wang JQ, Yin JY, Nie SP, Xie MY. A review of NMR analysis in polysaccharide structure and conformation: Progress, challenge and perspective. Food Res Int 2021; 143:110290. [PMID: 33992390 DOI: 10.1016/j.foodres.2021.110290] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 12/31/2022]
Abstract
Nuclear magnetic resonance (NMR) has been widely used as an analytical chemistry technique to investigate the molecular structure and conformation of polysaccharides. Combined with 1D spectra, chemical shifts and coupling constants in both homo- and heteronuclear 2D NMR spectra are able to infer the linkage and sequence of sugar residues. Besides, NMR has also been applied in conformation, quantitative analysis, cell wall in situ, degradation, polysaccharide mixture interaction analysis, as well as carbohydrates impurities profiling. This review summarizes the principle and development of NMR in polysaccharides analysis, and provides NMR spectra data collections of some common polysaccharides. It will help to promote the application of NMR in complex polysaccharides of biochemical interest, and provide valuable information on commercial polysaccharide products.
Collapse
Affiliation(s)
- Hao-Ying-Ye Yao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jun-Qiao Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
38
|
Luan F, Ji Y, Peng L, Liu Q, Cao H, Yang Y, He X, Zeng N. Extraction, purification, structural characteristics and biological properties of the polysaccharides from Codonopsis pilosula: A review. Carbohydr Polym 2021; 261:117863. [PMID: 33766352 DOI: 10.1016/j.carbpol.2021.117863] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
Codonopsis pilosula (Franch.) Nannf., as a well-known homology plant of medicine and food, has the function of replenishing the Qi, strengthening the spleen and tonifying the lung, nourishing the blood and engendering the liquid in traditional Chinese medicine. Accumulating evidence has demonstrated that the C. pilosula polysaccharides (CPPs) are one of the major and representative pharmacologically active macromolecules and present multiple biological activities both in vitro and in vivo methods, such as immunomodulatory, antitumor, antioxidant, neuroprotective, antiviral, anti-inflammatory, anti-fatigue, hypoglycemic, anti-hypoxia, renoprotective, gastroprotective, hepatoprotective, and prebiotic. The purpose of the present review is to provide comprehensively and systematically reorganized information in the extraction and purification, structure characterization, biological activities and the underlying mechanisms of action as well as toxicities of CPPs to support their therapeutic potentials and sanitarian functions. New valuable insights for the future researches regarding CPPs were also proposed in the fields of therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Fei Luan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Yafei Ji
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Lixia Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Qi Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Haijuan Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Yan Yang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, 519041, PR China
| | - Xirui He
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, 519041, PR China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| |
Collapse
|
39
|
Li F, Feng KL, Yang JC, He YS, Guo H, Wang SP, Gan RY, Wu DT. Polysaccharides from dandelion (Taraxacum mongolicum) leaves: Insights into innovative drying techniques on their structural characteristics and biological activities. Int J Biol Macromol 2021; 167:995-1005. [PMID: 33188812 DOI: 10.1016/j.ijbiomac.2020.11.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
Abstract
The aim of this study was to well understand the impacts of innovative drying techniques (radio frequency drying and microwave drying) and traditional drying techniques (vacuum drying, freezing drying, and hot air drying) on the structural characteristics and bioactivities of polysaccharides from dandelion leaves (DLPs). Five different DLPs were obtained from dandelion leaves dried by abovementioned drying techniques. Results showed that the structural characteristics and bioactivities of DLPs varied with different drying techniques. The molecular weights, apparent viscosities, molar ratios of constituent monosaccharide, contents of uronic acids, and contents of bonded polyphenolics in DLPs obtained by different drying techniques had noticeable variations, while the types of constituent monosaccharides and the major glycosidic linkages in DLPs were similar. In addition, results showed that DLPs, especially DLP-RF obtained by the radio frequency drying, exhibited remarkable antioxidant activities (ABTS, DPPH, and NO radical scavenging activities), excellent in vitro antiglycation activity, and obvious in vitro inhibitory activity on α-glucosidase. Results from this study suggest that the radio frequency drying can be used as a potential drying technique before extracting DLPs for applications in the functional food and medicine industries.
Collapse
Affiliation(s)
- Fen Li
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Kang-Lin Feng
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Jian-Chun Yang
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Yuan-Shu He
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Huan Guo
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, Sichuan, China
| | - Sheng-Peng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Ren-You Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, Sichuan, China.
| | - Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| |
Collapse
|
40
|
Li B, Wang RY, Zhao Y, Yu YF, Zhang ZX, Hu FD, Gao K, Fei DQ. Triterpenoids with α-glucosidase inhibitory activities from the roots of Codonopsis pilosula var. modesta. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820979967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A new taraxerane-type triterpenoid, codopimodol A (1), together with two known triterpenoids (2 and 3), were isolated from the EtOH extract of the roots of Codonopsis pilosula var. modesta (Campanulaceae). The structure of the new compound was identified by high-resolution electrospray ionization mass spectrometry and extensive spectroscopic analyses, particularly one-dimensional and two-dimensional NMR and IR. All the compounds were first isolated from C. pilosula var. modesta. Compounds 1 and 3 exhibited potential α-glucosidase inhibitory activities.
Collapse
Affiliation(s)
- Bing Li
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Ru-Yue Wang
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Ye Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Yi-Fan Yu
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Zhan-Xin Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Fang-Di Hu
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P.R. China
| | - Dong-Qing Fei
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| |
Collapse
|
41
|
Meng Y, Xu Y, Chang C, Qiu Z, Hu J, Wu Y, Zhang B, Zheng G. Extraction, characterization and anti-inflammatory activities of an inulin-type fructan from Codonopsis pilosula. Int J Biol Macromol 2020; 163:1677-1686. [DOI: 10.1016/j.ijbiomac.2020.09.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
|
42
|
Isolation, characterization and immunomodulatory activity of oligosaccharides from Codonopsis pilosula. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
43
|
Zou YF, Zhang YY, Paulsen BS, Fu YP, Huang C, Feng B, Li LX, Chen XF, Jia RY, Song X, He CL, Yin LZ, Ye G, Liang XX, Lv C, Yin ZQ. Prospects of Codonopsis pilosula polysaccharides: Structural features and bioactivities diversity. Trends Food Sci Technol 2020; 103:1-11. [DOI: 10.1016/j.tifs.2020.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Evaluation of antitumor potential of cashew gum extracted from Anacardium occidentale Linn. Int J Biol Macromol 2020; 154:319-328. [DOI: 10.1016/j.ijbiomac.2020.03.096] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/28/2020] [Accepted: 03/12/2020] [Indexed: 12/20/2022]
|
45
|
Ji X, Hou C, Shi M, Yan Y, Liu Y. An Insight into the Research Concerning Panax ginseng C. A. Meyer Polysaccharides: A Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1771363] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Xiaolong Ji
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, P.R. China
- Collaborative Innovation Center of Food Production and Safety, Henan Province, P.R. China
| | - Chunyan Hou
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, P.R. China
- Collaborative Innovation Center of Food Production and Safety, Henan Province, P.R. China
| | - Miaomiao Shi
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, P.R. China
- Collaborative Innovation Center of Food Production and Safety, Henan Province, P.R. China
| | - Yizhe Yan
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, P.R. China
- Collaborative Innovation Center of Food Production and Safety, Henan Province, P.R. China
| | - Yanqi Liu
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, P.R. China
- Collaborative Innovation Center of Food Production and Safety, Henan Province, P.R. China
| |
Collapse
|
46
|
Zou YF, Zhang YY, Paulsen BS, Rise F, Chen ZL, Jia RY, Li LX, Song X, Feng B, Tang HQ, Huang C, Yin ZQ. Structural features of pectic polysaccharides from stems of two species of Radix Codonopsis and their antioxidant activities. Int J Biol Macromol 2020; 159:704-713. [PMID: 32422266 DOI: 10.1016/j.ijbiomac.2020.05.083] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/26/2020] [Accepted: 05/13/2020] [Indexed: 01/09/2023]
Abstract
In this study, two pectic polysaccharides from stems of Codonopsis pilosula (CPSP-1) and C. tangshen (CTSP-1) were obtained by ion exchange chromatography and gel filtration. The molecular weight of CPSP-1 and CTSP-1 were 13.1 and 23.0 kDa, respectively. The results of structure elucidation indicated that both CPSP-1 and CTSP-1 are pectic polysaccharides with long homogalacturonan regions (HG) (some of galacturonic acid units were methyl esterified) and rhamnogalacturonan I (RG-I) regions. Side chains for CTSP-1 are both arabinogalactan type I (AG-I) and type II (AG-II), while CPSP-1 only has AG-II. The biological test demonstrated that CPSP-1 and CTSP-1 displayed an antioxidant property through mediating the intestinal cellular antioxidant defense system, which could protect cultured intestinal cells from oxidative stress induced oxidative damages and cell viability suppression. CPSP-1 and CTSP-I showed different bioactivities and mechanisms, which may be due to the difference in their structures.
Collapse
Affiliation(s)
- Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Yan-Yun Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Berit Smestad Paulsen
- Department of Pharmacy, Section Pharmaceutical Chemistry, Area Pharmacognosy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway
| | - Frode Rise
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Zheng-Li Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ren-Yong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hua-Qiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Department of Pharmacy, Section Pharmaceutical Chemistry, Area Pharmacognosy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
47
|
Ji X, Yan Y, Hou C, Shi M, Liu Y. Structural characterization of a galacturonic acid-rich polysaccharide from Ziziphus Jujuba cv. Muzao. Int J Biol Macromol 2020; 147:844-852. [DOI: 10.1016/j.ijbiomac.2019.09.244] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/17/2019] [Accepted: 09/22/2019] [Indexed: 11/26/2022]
|
48
|
Su JS, Qin FY, Liu Y, Zhang Y. Four new polyynes from Codonopsis pilosula collected in Yunnan province, China. Nat Prod Res 2020; 35:3548-3555. [PMID: 31960727 DOI: 10.1080/14786419.2020.1712390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Choushenpilosulynes D-G (1-4): four new polyynes were isolated from the roots of Codonopsis pilosula (Campanulaceae) cultivated in Yunnan province, China. Their structures were identified by spectroscopic methods. Bioactive evaluation showed that choushenpilosulynes E (2) and F (3) demonstrated potent inhibitory effect on lipid formation induced by 100 μM oleic acid stimulation. In addition, choushenpilosulyne F (3) uncovered inhibitory activity against the expression of human 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) and squalene monooxygenase (SQLE) gene transcript in HepG2 cells.
Collapse
Affiliation(s)
- Jin-Song Su
- School of Ethnic medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu-Ying Qin
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China
| | - Ying Liu
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China
| | - Yi Zhang
- School of Ethnic medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
49
|
Zhang H, Chen T, Shan L. ShenQi FuZheng injection as an adjunctive treatment to chemotherapy in breast cancer patients: a meta-analysis. PHARMACEUTICAL BIOLOGY 2019; 57:612-624. [PMID: 31522596 PMCID: PMC6758688 DOI: 10.1080/13880209.2019.1660383] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/09/2019] [Accepted: 08/21/2019] [Indexed: 05/26/2023]
Abstract
Context: Shenqi FuZheng injection (SFI) has been suggested as a complementary treatment of chemotherapy in China. However, little is known about it in western countries. Objective: This study assesses the clinical effect of SFI combined with chemotherapy for breast cancer patients. Materials and methods: Both English and Chinese databases were searched covering the time period of 1999- 2018 for relevant studies comparing the effect of SFI plus chemotherapy treatment with chemotherapy alone in patients with breast cancer. Target outcomes concerning treatment effect, performance status, immune system and toxic effects were extracted and combined using Stata version 15.0 software. Quality assessment was performed using the Jadad scale. Results: Forty-nine trials were included based on certain selection criteria. Only seven studies were rated as high-quality publications. Results of meta-analysis showed that SFI intervention can significantly improve objective tumour response, performance status, NK, CD3+, CD4+ and CD4+/CD8+ ratio and reduce occurrence of leucopenia, thrombocytopenia, haemoglobin reduction, liver dysfunction, gastrointestinal reaction, nausea and vomiting, bone marrow suppression and ECG changes. However, no significant difference was found between SFI and the control group regarding CD8+ levels, and renal disorders. Discussion and conclusions: SFI intervention appeared to be effective in improving clinical efficacy, immune function and reducing toxicity when combined with chemotherapy for breast cancer. However, our findings still need verification by high-quality trials.
Collapse
Affiliation(s)
- Hongbo Zhang
- Department of Medical Oncology, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Nankai Hospital, Tianjin, China
| | - Tingting Chen
- Department of Medical Oncology, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Nankai Hospital, Tianjin, China
| | - Lizhu Shan
- Department of Medical Oncology, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Nankai Hospital, Tianjin, China
| |
Collapse
|
50
|
Chakraborty I, Sen IK, Mondal S, Rout D, Bhanja SK, Maity GN, Maity P. Bioactive polysaccharides from natural sources: A review on the antitumor and immunomodulating activities. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101425] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|