1
|
Zulbeari N, Wang F, Mustafova SS, Parhizkar M, Holm R. Machine learning strengthened formulation design of pharmaceutical suspensions. Int J Pharm 2025; 668:124967. [PMID: 39566699 DOI: 10.1016/j.ijpharm.2024.124967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Many different formulation strategies have been investigated to oppose suboptimal treatment of long-term or chronic conditions, one of which are the nano- and microsuspensions prepared as long-acting injectables to prolong the release of an active pharmaceutical compound for a defined period of time by regulating the size of particles by milling. Typically, surfactant and/or polymers are added in the dispersion medium of the suspension during processing for stabilization purposes. However, current formulation investigations with milling are heavily based on prior expertise and trial-and-error approaches. Various interacting parameters such as the milling bead size, stabilizer type and concentration have confounded the investigation of milling process. The present study systematically exploited statistical and machine learning (ML) strategies to understand the relationship between suspension characteristics and formulation parameters under full-factorial milling experiments. Stabilizer concentration was identified as a significant factor (p < 0.001) for median suspension diameter (D50). A formulation stability classification ML model with high prediction accuracy (0.91) and F1-score (0.91) under 10-fold cross-validation was constructed based on 72 formulation datapoints. Model interpretation through Shapley additive explanations (SHAP) revealed the prominent impact of stabilizer concentration and milling bead size on formulation stability. The present work demonstrated the potential to achieve a deeper understanding of the design and optimization of nano- and microsuspensions through explainable ML modelling on formulation screening data.
Collapse
Affiliation(s)
- Nadina Zulbeari
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Fanjin Wang
- Deparment of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, WC1N 1AX London, United Kingdom
| | - Sibel Selyatinova Mustafova
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Maryam Parhizkar
- Deparment of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, WC1N 1AX London, United Kingdom
| | - René Holm
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
2
|
Yasir Siddique M, Ashraf AR, Khan SU, Saleem MA, Ashfaq M, Alam K, Ibrahim AA, Nazar MF. Formulation of Microemulsion-Based Gels for Enhanced Topical Administration of Nonsteroidal Anti-Inflammatory Drugs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24174-24184. [PMID: 39475592 DOI: 10.1021/acs.langmuir.4c03749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Nonsteroidal anti-inflammatory drugs are commonly administered orally to manage pain and inflammation, but they can have negative gastrointestinal side effects. Topical delivery is an alternative, and microemulsions (μEs) have been shown to be effective in facilitating, but they suffer from a liquid nature and low long-term retention on the skin. Hence, microemulsified gels (μEGs) have been developed, and in this study, we explored certain μEGs with diclofenac sodium (DF-Na) and naproxen sodium (NP-Na) with the hypothesis to ensure a slower and more sustained delivery of NSAIDs through the skin. The μEGs comprised castor oil (∼8%), water (∼12%), Tween-20 (∼72%), Span-20 (∼8%), poloxamer 407, and DF-Na or NP-Na. Optical microscopy was used to study the microstructures in the μEs and μEGs, and phase transitions from water-in-oil (w/o) to oil-in-water (o/w) with continuous networks were observed. Based on studies with dynamic light scattering and analyses of electron micrographs, it was observed that the μEs and μEGs loaded with DF-Na and NP-Na comprised monomodal nanodroplets. The average sizes of the droplets were (∼35 nm) and (∼60 nm) for the μEGs, without and with drugs. Fluorescence spectroscopy was used to ensure that the drugs were more likely to be present in the hydrophobic microenvironment of the formulations. Moreover, ex vivo permeation studies were conducted at pH values of 5.5 and 7.4 across rabbit skin. The release rates of DF-Na (>99 ± 1.5%, P < 0.07) and NP-Na (>89 ± 1.1%, P < 0.01) were slower for the μEGs within 8-10 h than for the μEs at the low pH, which is of relevance to the optimal pH of the skin. It was observed that μEGs with high viscosities are effective and may have potential for use in topical drug delivery applications.
Collapse
Affiliation(s)
| | - Ahmad Raza Ashraf
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Salah Uddin Khan
- College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | | | - Muhammad Ashfaq
- Department of Chemistry, Government College Women University Sialkot, Sialkot 51310, Pakistan
| | - Kamran Alam
- Separation and Conversion Technology Unit, Flemish institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Ahmed Ahmed Ibrahim
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Muhammad Faizan Nazar
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| |
Collapse
|
3
|
Choi G, Rejinold NS, Piao H, Ryu YB, Kwon HJ, Lee IC, Seo JI, Yoo HH, Jin GW, Choy JH. The Next Generation COVID-19 Antiviral; Niclosamide-Based Inorganic Nanohybrid System Kills SARS-CoV-2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305148. [PMID: 37635100 DOI: 10.1002/smll.202305148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/31/2023] [Indexed: 08/29/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is a serious global threat with surging new variants of concern. Although global vaccinations have slowed the pandemic, their longevity is still unknown. Therefore, new orally administrable antiviral agents are highly demanded. Among various repurposed drugs, niclosamide (NIC) is the most potential one for various viral diseases such as COVID-19, SARS (severe acute respiratory syndrome), MERS (middle east respiratory syndrome), influenza, RSV (respiratory syncytial virus), etc. Since NIC cannot be effectively absorbed, a required plasma concentration for antiviral potency is hard to maintain, thereby restricting its entry into the infected cells. Such a 60-year-old bioavailability challenging issue has been overcome by engineering with MgO and hydroxypropyl methylcellulose (HPMC), forming hydrophilic NIC-MgO-HPMC, with improved intestinal permeability without altering NIC metabolism as confirmed by parallel artificial membrane permeability assay. The inhibitory effect on SARS-CoV-2 replication is confirmed in the Syrian hamster model to reduce lung injury. Clinical studies reveal that the bioavailability of NIC hybrid drug can go 4 times higher than the intact NIC. The phase II clinical trial shows a dose-dependent bioavailability of NIC from hybrid drug suggesting its potential applicability as a game changer in achieving the much-anticipated endemic phase.
Collapse
Affiliation(s)
- Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - N Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Huiyan Piao
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Young Bae Ryu
- Functional Biomaterials Research Center, Korea Research Institute of Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 34141, Republic of Korea
| | - Hyung-Jun Kwon
- Functional Biomaterials Research Center, Korea Research Institute of Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 34141, Republic of Korea
| | - In Chul Lee
- Functional Biomaterials Research Center, Korea Research Institute of Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 34141, Republic of Korea
| | - Jeong In Seo
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hye Hyun Yoo
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan, 15588, Republic of Korea
| | - Geun-Woo Jin
- R&D Center, CnPharm Co. LTD., Seoul, 03759, Republic of Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Pre-Medical Course, College of Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- International Research Frontier Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| |
Collapse
|
4
|
Salama A, Hamed Salama A, Hasanein Asfour M. Tannic acid coated nanosuspension for oral delivery of chrysin intended for anti-schizophrenic effect in mice. Int J Pharm 2024; 656:124085. [PMID: 38580073 DOI: 10.1016/j.ijpharm.2024.124085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/17/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Chrysin is a flavonoid drug with numerous therapeutic activities. It suffers from low intestinal absorption owing to its hydrophobicity. Therefore, the aim of this study is to exploit the efficient technique of nanosuspension (NSP) to formulate chrysin-NSP coated with tannic acid (TA) to improve the solubility and anti-schizophrenic activity of chrysin. A 23 full factorial design was constructed where the independent factors were type of polymer, surfactant concentration (0.5 or 1 %) and the aqueous phase volume (5 or 15 mL), while the dependent responses were the particle size (PS) of the obtained formulation as well as the % chrysin dissolved after 2 h (Q2h). The optimum formulation (NSP-4) composed of 1 % PEG 400 and 1 % Cremophor RH40 in 15 mL aqueous phase. It achieved a PS and Q2h values of 108.00 nm and 38.77 %, respectively. NSP-4 was then coated with TA (TA-coated NSP-4) for further enhancement of chrysin solubility. TA-coated NSP-4 revealed PS and zeta potential values of 150 ± 14 nm and -32.54 ± 2.45 mV, respectively. After 6 h, chrysin dissolved % were 53.97 and 80.22 for uncoated NSP-4 and TA-coated NSP-4, respectively, compared with only 9.47 for free chrysin. The developed formulations and free chrysin were assessed regarding their effect on schizophrenia induced in mice by cuprizone (CPZ). Treatment with the developed formulations and free chrysin ameliorated demyelination and behavioral deficit induced by CPZ via elevating MBP and PI3K/PKC activities as well as reducing GFAP expression levels. The developed formulations and free chrysin inhibited Galactin-3 and TGF-β expressions and stimulated GST antioxidant enzyme. Furthermore, they maintained the balances in glutamatergic and dopaminergic neurotransmission via modulation on neuregulin-1 and alleviated nuclear pyknosis and degeneration in the neurons. The order of activity was: TA-coated NSP-4 > NSP-4 > free chrysin.
Collapse
Affiliation(s)
- Abeer Salama
- Pharmacology Department, National Research Centre, El- Buhouth St., Dokki, Cairo 12622, Egypt
| | - Alaa Hamed Salama
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt
| | - Marwa Hasanein Asfour
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt.
| |
Collapse
|
5
|
Aguilar-Hernández G, López-Romero BA, Nicolás-García M, Nolasco-González Y, García-Galindo HS, Montalvo-González E. Nanosuspensions as carriers of active ingredients: Chemical composition, development methods, and their biological activities. Food Res Int 2023; 174:113583. [PMID: 37986449 DOI: 10.1016/j.foodres.2023.113583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Nanosuspensions (NSps) are colloidal dispersions of particles that have the potential to solve the delivery problems of active ingredients associated with their low solubility in water or instability due to environmental factors. It is essential to consider their chemical composition and preparation methods because they directly influence drug loading, size, morphology, solubility, and stability; these characteristics of nanosuspensions influence the delivery and bioavailability of active ingredients. NSps provides high loading of drugs, protection against degrading agents, rapid dissolution, high particle stability, and high bioavailability of active ingredients across biological membranes. In addition, they provide lower toxicity compared to other nanocarriers, such as liposomes or polymeric nanoparticles, and can modify the pharmacokinetic profiles, thus improving their safety and efficacy. The present review aims to address all aspects related to the composition of NSps, the different methods for their production, and the main factors affecting their stability. Moreover, recent studies are described as carriers of active ingredients and their biological activities.
Collapse
Affiliation(s)
- Gabriela Aguilar-Hernández
- División de Ciencias Agropecuarias e Ingenierías, Centro Universitario de los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, Jalisco, Mexico
| | - Brandon A López-Romero
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic 63175, Nayarit, Mexico
| | - Mayra Nicolás-García
- Ingeniería en Industrias Alimentarias, Tecnológico Nacional de México/Instituto Tecnológico Superior de Teziutlán, Fracción I y II, Aire Libre S/N, 73960, Teziutlán, Puebla, México
| | - Yolanda Nolasco-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic 63175, Nayarit, Mexico; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Santiago Ixcuintla, Km 6 Carr. México-Nogales, Santiago Ixcuintla, 63300, Nayarit, Mexico
| | - Hugo S García-Galindo
- Tecnológico Nacional de México/Institito Tecnológico de Veracruz. nstituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo de Alimentos, Av. Miguel Ángel de Quevedo 2779, Veracruz 91897, Veracruz, Mexico
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic 63175, Nayarit, Mexico.
| |
Collapse
|
6
|
Jahan N, Kousar F, Rahman KU, Touqeer SI, Abbas N. Development of Nanosuspension of Artemisia absinthium Extract as Novel Drug Delivery System to Enhance Its Bioavailability and Hepatoprotective Potential. J Funct Biomater 2023; 14:433. [PMID: 37623677 PMCID: PMC10456093 DOI: 10.3390/jfb14080433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
A nanosuspension of Artemisia absinthium extract was formulated and characterized for the enhancement of bioavailability and better hepatoprotective efficacy. The nanosuspension of A. absinthium extract was formulated using an antisolvent precipitation technique, and various formulation parameters were optimized using response surface methodology (RSM). The optimized nanosuspension was characterized using AFM and FT-IR spectroscopy. The drug-release profile and oral bioavailability of the optimized nanosuspension were assessed with reference to coarse suspension. The DPPH radical scavenging method was used to measure the nanosuspension's antioxidant activity, and its in vivo hepatoprotective potential was assessed against CCl4-induced hepatic injury in rats. The developed optimized nanosuspension had suitable zeta potential of -11.9 mV, PDI of 0.285, and mean particle size of 253.8 nm. AFM study demonstrated a homogeneous population of nanoparticles with average size of 25 nm. The formulated nanosuspension of A. absinthium showed faster dissolution rate and 1.13-fold enhanced bioavailability as compared to the coarse suspension (plant extract). Furthermore, the nanoformulation had stronger antioxidant and hepatoprotective potential as compared to the unprocessed coarse extract. These results demonstrated that nanosuspension is a promising strategy for improving the oral bioavailability and bioactivities of A. absinthium extract.
Collapse
Affiliation(s)
- Nazish Jahan
- Natural Products Lab, Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan; (N.J.); (F.K.); (S.I.T.)
| | - Fareeha Kousar
- Natural Products Lab, Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan; (N.J.); (F.K.); (S.I.T.)
| | - Khalil Ur Rahman
- Department of Biochemistry, Riphah International University, Faisalabad 38000, Pakistan;
| | - Syeeda Iram Touqeer
- Natural Products Lab, Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan; (N.J.); (F.K.); (S.I.T.)
| | - Naseem Abbas
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
7
|
Boscolo O, Flor S, Salvo L, Dobrecky C, Höcht C, Tripodi V, Moretton M, Lucangioli S. Formulation and Characterization of Ursodeoxycholic Acid Nanosuspension Based on Bottom-Up Technology and Box-Behnken Design Optimization. Pharmaceutics 2023; 15:2037. [PMID: 37631251 PMCID: PMC10458560 DOI: 10.3390/pharmaceutics15082037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Ursodeoxycholic acid (UDCA) is a therapeutic agent used for the treatment of cholestatic hepatobiliary diseases in pediatric patients. It is a bile acid that presents high lipophilicity, and it belongs to Class II of the Biopharmaceutical Classification System (BCS), which exhibits low water solubility and high intestinal permeability, which leads to poor oral absorption. The objective of this work was to design and optimize UDCA nanosuspensions by means of the precipitation-ultrasonication method to improve the solubility, dissolution, and oral bioavailability of UDCA. METHODS A three-level, three-factor Box-Behnken design was used to optimize formulation variables and obtain uniform, small-particle-size UDCA nanosuspensions. The independent variables were: stabilizer percentage (X1), amplitude (X2), and sonication time (X3), and the dependent variable was the particle size (Y1). In the precipitation-ultrasonication method, UDCA was dissolved in acetone:PEG 400 (1:1 v/v) and quickly incorporated into the antisolvent (pre-cooled aqueous dispersion of HPMC E-15 0.3%), by means of intense sonication at 50 W for 5 min, controlling temperature through an ice water bath. The lyophilization efficacy was evaluated by means of a cryoprotective efficacy test, working with 10% maltose at -80 °C. The nanosuspensions were characterized by dynamic light scattering (DLS), X-ray diffraction, and scanning electron microscopy (SEM). The physicochemical stability was determined at 25 °C and 4 °C at 7, 14, 30, and 60 days, and the UDCA content was analyzed via HPLC-UV. An in vitro dissolution assay and an oral bioavailability study were performed in male Wistar rats. RESULTS A significant impact was achieved in the optimized nanosuspension with 0.3% (stabilizer), 50 W (amplitude), and 5 min (sonication time), with a particle size of 352.4 nm, PDI of 0.11, and zeta potential of -4.30 mV. It presented adequate physicochemical stability throughout the study and the UDCA content was between 90% and 110%. In total, 86% of UDCA was dissolved in the in vitro dissolution test. The relative oral bioavailability was similar without significant statistical differences when comparing the lyophilized nanosuspension and the commercial tablet, the latter presenting a more erratic behavior. The pharmacokinetic parameters of the nanosuspension and the commercial tablet were Tmax (1.0 ± 0.9 h vs. 2.0 ± 0.8 h, respectively), Cmax (0.558 ± 0.118 vs. 0.366 ± 0.113 µM, respectively), ΔCmax (0.309 ± 0.099 vs. 0.232 ± 0.056, respectively), AUC (4.326 ± 0.471 vs. 2.188 ± 0.353 µg/mL.h, respectively, p < 0.02), and IAUC0-24h (2.261 ± 0.187 µg/mL.h vs. 1.924 ± 0.440 µg/mL.h, respectively). CONCLUSIONS The developed nanosuspension presents an appropriate dosage and administration for pediatric patients. On the other hand, it exhibits an adequate absorption and UDCA oral bioavailability.
Collapse
Affiliation(s)
- Oriana Boscolo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires C1113AAD, Argentina; (O.B.); (S.F.); (L.S.); (C.D.); (M.M.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina; (C.H.); (V.T.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
| | - Sabrina Flor
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires C1113AAD, Argentina; (O.B.); (S.F.); (L.S.); (C.D.); (M.M.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina; (C.H.); (V.T.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
| | - Leandro Salvo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires C1113AAD, Argentina; (O.B.); (S.F.); (L.S.); (C.D.); (M.M.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina; (C.H.); (V.T.)
| | - Cecilia Dobrecky
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires C1113AAD, Argentina; (O.B.); (S.F.); (L.S.); (C.D.); (M.M.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina; (C.H.); (V.T.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires C1113AAD, Argentina
| | - Christian Höcht
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina; (C.H.); (V.T.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires C1113AAD, Argentina
| | - Valeria Tripodi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina; (C.H.); (V.T.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires C1113AAD, Argentina
| | - Marcela Moretton
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires C1113AAD, Argentina; (O.B.); (S.F.); (L.S.); (C.D.); (M.M.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina; (C.H.); (V.T.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
| | - Silvia Lucangioli
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires C1113AAD, Argentina; (O.B.); (S.F.); (L.S.); (C.D.); (M.M.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina; (C.H.); (V.T.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
| |
Collapse
|
8
|
Hussain A, Attique F, Naqvi SAR, Ali A, Ibrahim M, Hussain H, Zafar F, Iqbal RS, Ayub MA, Assiri MA, Imran M, Ullah S. Nanoformulation of Curcuma longa Root Extract and Evaluation of Its Dissolution Potential. ACS OMEGA 2023; 8:1088-1096. [PMID: 36643543 PMCID: PMC9835792 DOI: 10.1021/acsomega.2c06258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Medicinal plants have been widely used for therapeutic purposes for a long time, but they have been found to have some major issues such as low water solubility and bioavailability. In the present study, the nanoformulation of Curcuma longa L. plant extract was prepared to enhance its dissolution potential and biological activities. For the formulation of the nanosuspension, an ethanolic extract of C. longa was prepared through Soxhlet extraction using the nanoformulation technique. The nanosuspensions were formulated using four different stabilizers, namely sodium lauryl sulfate (SLS), hydroxy propyl methyl cellulose (HPMC), poly(vinyl alcohol) (PVA), and polysorbate-80 (P-80). The scanning electron microscopy (SEM), polydispersity index, and ζ potential were used for characterization of the nanoformulation. Among all of these, the surfactant stabilizer SLS was found to be the best. The average particle size of the selected optimized nanosuspension was found to be 308.2 nm with a polydispersity index (PDI) value of 0.330. The ζ potential value of the optimized nanosuspension was recorded at -33.3 mV. The SEM image indicated that the particles were slightly agglomerated, which may have occurred during lyophilization of the nanosuspension. The highest dissolution rate recorded at pH = 7 was 192.32 μg/mL, which indicates pH = 7 as the most appropriate condition for the dissolution of the C. longa nanosuspension. The antioxidant, antimicrobial, and antifungal activities of the optimized nanosuspension were also determined with regard to the coarse plant extract. The study findings suggested that the nanoprecipitation approach helps in enhancing the dissolution potential and biological activities of C. longa root extract.
Collapse
Affiliation(s)
- Amjad Hussain
- Department
of Chemistry, University of Okara, Okara 56300, Punjab, Pakistan
| | - Faisal Attique
- Department
of Chemistry, University of Okara, Okara 56300, Punjab, Pakistan
| | - Syed Ali Raza Naqvi
- Department
of Chemistry, Government College University, Faisalabad 38000, Punjab, Pakistan
| | - Akbar Ali
- Department
of Chemistry, Government College University, Faisalabad 38000, Punjab, Pakistan
| | - Muhammad Ibrahim
- Department
of Applied Chemistry, Government College
University, Faisalabad 38000, Punjab, Pakistan
| | - Hidayat Hussain
- Department
of Bioorganic Chemistry, Leibniz Institute
of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Fatiqa Zafar
- Department
of Chemistry, University of Sahiwal, Sahiwal 54000, Punjab, Pakistan
| | - Rana Saqib Iqbal
- Department
of Chemistry, University of Okara, Okara 56300, Punjab, Pakistan
| | - Muhammad Adnan Ayub
- Department
of Chemistry, University of Sahiwal, Sahiwal 54000, Punjab, Pakistan
| | - Mohammed A. Assiri
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61514, Saudi Arabia
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Muhammad Imran
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61514, Saudi Arabia
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Shaheed Ullah
- Department
of Chemistry, University of Okara, Okara 56300, Punjab, Pakistan
| |
Collapse
|
9
|
Formulation and Process Optimization of Rauvolfia serpentina Nanosuspension by HPMC and In Vitro Evaluation of ACE Inhibitory Potential. J Funct Biomater 2022; 13:jfb13040268. [PMID: 36547528 PMCID: PMC9787977 DOI: 10.3390/jfb13040268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Angiotensin converting enzyme (ACE) overactivation is one of the primary causes of hypertension, which leads to cardiovascular disorders all over the world. In the scientific world, nanosuspension is a novel area of study that could offer an alternative treatment for active pharmaceuticals that are not well soluble in water. Since active compounds' bioavailability is reduced by their poor solubility, there are eventually fewer applications. Drug solubility, dissolving rate, and bioavailability are improved by nanosuspension, which shrinks medication particle size into the nanoscale range and boosts the surface area to volume ratio of the drug. There is a need to prepare Rauvolfia serpentina's nanosuspension in order to get around some of the major challenges that it faces because of its poor solubility and wide range of biological activities. Using the antisolvent precipitation approach, a nanosuspension of Rauvolfia serpentina was created with hydroxy propyl methyl cellulose (HPMC). Rouvolfia serpentina nanosuspensions were prepared using a design of expert (DOE) approach, which allowed for the evaluation of key process parameters. To get an optimal sample, the effects of stabilizer concentration and anti-solvent volume on particle size, zeta potential, and PdI using CCD-RSM were investigated. Using the substrate Hippuryl-histidyl-leucine, the in vitro ACE inhibitory potential was assessed. On human erythrocytes, the safety of nanosuspension was evaluated in vitro. The ideal value of independent variables was discovered to be 0.25% w/v in order to achieve the desired response. Using scanning electron microscopy, the morphology of optimized nanosuspension was discovered to be rod-shaped (SEM). Compared to nanoformulation, crude extract had higher ACE inhibitory potential (83.11%). Human erythrocytes were found to be unaffected by nano-sized particles.
Collapse
|
10
|
Hazafa A, Jahan N, Zia MA, Rahman KU, Sagheer M, Naeem M. Evaluation and optimization of nanosuspensions of Chrysanthemum coronarium and Azadirachta indica using Response Surface Methodology for pest management. CHEMOSPHERE 2022; 292:133411. [PMID: 34958785 DOI: 10.1016/j.chemosphere.2021.133411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
The rapidly emerging field of nanotechnology is considered an important achievement in the agriculture sector to increase the pest mortality rate and improve the crop production. The present study evaluates the novel pesticidal and anti-microbial activities of Chrysanthemum coronarium and Azadirachta indica in the nano-suspensions form. The anti-solvent precipitation method was used to formulate nano-suspensions proposed by Response Surface Methodology (RSM). Physicochemical nature of plant extracts and nano-suspensions was characterized through analysis of Zeta-sizer, FT-IR, and HPLC. Characterization results revealed a minimum particle size of 121.1 and 170.1 nm for Chrysanthemum coronarium and Azadirachta indica, respectively. The pesticidal activity of nano-suspension was performed against red flour beetle (RFB) and lesser grain borer (LGB) pests, which showed the maximum mortality rate of 100% with 100% concentration of plant extracts and nano-suspensions of Chrysanthemum coronarium and Azadirachta indica against both insects. In comparison, the combination of these both plant extracts revealed the maximum 100% mortality with a 50% concentration of nano-suspensions (mixing ratio 1:1) after 72 h. The antibacterial activity showed the maximum zone inhibition of 9.96 ± 0.17 and 14.17 ± 0.50 mm against S.aureus and E. coli with nano-suspension of Chrysanthemum coronarium, and 12.09 ± 0.11 and 14.10 ± 0.49 mm with nano-suspension of Azadirachta indica, respectively. It is concluded that individual nano-suspensions showed better pesticidal as well as antimicrobial activities than combinations. However, the constructed nanosuspension can be applied to control the plant pests and diseases simultaneously.
Collapse
Affiliation(s)
- Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Nazish Jahan
- Department of Chemistry, Faculty of Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Anjum Zia
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Khalil-Ur Rahman
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Sagheer
- Department of Entomology, Faculty of Agriculture, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
11
|
Shaikh F, Patel M, Patel V, Patel A, Shinde G, Shelke S, Pathan I. Formulation and optimization of cilnidipine loaded nanosuspension for the enhancement of solubility, dissolution and bioavailability. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Jakubowska E, Milanowski B, Lulek J. A Systematic Approach to the Development of Cilostazol Nanosuspension by Liquid Antisolvent Precipitation (LASP) and Its Combination with Ultrasound. Int J Mol Sci 2021; 22:ijms222212406. [PMID: 34830298 PMCID: PMC8619020 DOI: 10.3390/ijms222212406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022] Open
Abstract
Nanosizing is an approach to improve the dissolution rate of poorly soluble drugs. The first aim of this work was to develop nanosuspension of cilostazol with liquid antisolvent precipitation (LASP) and its combination with ultrasound. Second, to systematically study the effect of bottom-up processing factors on precipitated particles’ size and identify the optimal settings for the best reduction. After solvent and stabilizer screening, in-depth process characterization and optimization was performed using Design of Experiments. The work discusses the influence of critical factors found with statistical analysis: feed concentration, stabilizer amount, stirring speed and ultrasound energy governed by time and amplitude. LASP alone only generated particle size of a few microns, but combination with ultrasound was successful in nanosizing (d10 = 0.06, d50 = 0.33, d90 = 1.45 µm). Micro- and nanosuspension’s stability, particle morphology and solid state were studied. Nanosuspension displayed higher apparent solubility than equilibrium and superior dissolution rate over coarse cilostazol and microsuspension. A bottom-up method of precipitation-sonication was demonstrated to be a successful approach to improve the dissolution characteristics of poorly soluble, BCS class II drug cilostazol by reducing its particle size below micron scale, while retaining nanosuspension stability and unchanged crystalline form.
Collapse
|
13
|
Taymouri S, Ahmadi Z, Mirian M, Tavakoli N. Simvastatin nanosuspensions prepared using a combination of pH-sensitive and timed-release approaches for potential treatment of colorectal cancer. Pharm Dev Technol 2021; 26:335-348. [PMID: 33430677 DOI: 10.1080/10837450.2021.1872086] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A dual pH- and time-dependent polymeric coated capsule was developed to achieve the site specificity of simvastatin (SIM) release in the colon. To improve the SIM solubility, soluplus-based nanosuspension of the drug were prepared by applying the anti-solvent crystallization technique; this was then followed by lyophilization. Particle size, polydispersity index, and saturation solubility were evaluated. The optimized nanosuspension was combined with SLS and freeze-dried before filling into hard gelatin capsules. Drug release characteristics of the coated capsules were studied in HCl 0.1 N, the phosphate buffers 6.8 and 7.4, and the simulated colonic fluid (pH 6.8). The in-vitro cytotoxic effects of SIM nanoparticles against HT29 cells were then evaluated using the MTT assay. The prepared nanoparticles were spherical with a mean size of 261.66 nm, the zeta potential of -18.20 and the dissolution efficiency of 59.71%. X-ray diffraction and differential scanning calorimetry studies showed that the nanosizing technique transformed the crystalline drug into the more soluble amorphous form. The coated capsules had no release in the gastric media, providing the specific delivery of SIM in the colon. The cytotoxic effect of the SIM nanoparticles was significantly increased, as compared to the free SIM. The findings, therefore, showed that the coated capsules using the two polymers of ethyl cellulose and Eudragit S100 could be suitable for the colon target delivery of SIM.
Collapse
Affiliation(s)
- Somayeh Taymouri
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zoha Ahmadi
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Naser Tavakoli
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Koshani R, Tavakolian M, van de Ven TGM. Cellulose-based dispersants and flocculants. J Mater Chem B 2020; 8:10502-10526. [PMID: 33136107 DOI: 10.1039/d0tb02021d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Natural dispersants and flocculants, often referred to as dispersion stabilizers and liquid-solid separators, respectively, have secured a promising role in the bioprocessing community. They have various applications, including in biomedicine and in environmental remediation. A large fraction of existing dispersants and flocculants are synthesized from non-safe chemical compounds such as polyacrylamide and surfactants. Despite numerous advantages of synthetic dispersants and flocculants, issues such as renewability, sustainability, biocompatibility, and cost efficiency have shifted attention towards natural homologues, in particular, cellulose-based ones. Within the past decade, cellulose derivatives, obtained via chemical and mechanical treatments of cellulose fibrils, have successfully been used for these purposes. In this review article, by dividing the functional cellulosic compounds into "polymeric" and "nanoscale" categories, we provide insight into the engineering pathways, the structural frameworks, and surface chemistry of these "green" types of dispersants and flocculants. A summary of their efficiency and the controlling parameters is also accompanied by recent advances in their applications in each section. We are confident that the emergence of cellulose-based dispersing and flocculating agents will extend the boundaries of sustainable green technology.
Collapse
Affiliation(s)
- Roya Koshani
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC H3A 0B8, Canada. and Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Center, McGill University, 3420 University Street, Montréal, QC H3A 2A7, Canada.
| | - Mandana Tavakolian
- Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Center, McGill University, 3420 University Street, Montréal, QC H3A 2A7, Canada. and Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada
| | - Theo G M van de Ven
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC H3A 0B8, Canada. and Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Center, McGill University, 3420 University Street, Montréal, QC H3A 2A7, Canada.
| |
Collapse
|
15
|
|
16
|
Development and Evaluation of Docetaxel-Phospholipid Complex Loaded Self-Microemulsifying Drug Delivery System: Optimization and In Vitro/Ex Vivo Studies. Pharmaceutics 2020; 12:pharmaceutics12060544. [PMID: 32545452 PMCID: PMC7357111 DOI: 10.3390/pharmaceutics12060544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/18/2023] Open
Abstract
Docetaxel (DTX) has clinical efficacy in the treatment of breast cancer, but it is difficult to develop a product for oral administration, due to low solubility and permeability. This study focused on preparing a self-microemulsifying drug delivery system (SME) loaded with DTX-phospholipid complex (DTX@PLC), to improve the dissolution and gastrointestinal (GI) permeability of DTX. A dual technique combining the phospholipid complexation and SME formulation described as improving upon the disadvantages of DTX has been proposed. We hypothesized that the complexation of DTX with phospholipids can improve the lipophilicity of DTX, thereby increasing the affinity of the drug to the cell lipid membrane, and simultaneously improving permeability through the GI barrier. Meanwhile, DTX@PLC-loaded SME (DTX@PLC-SME) increases the dissolution and surface area of DTX by forming a microemulsion in the intestinal fluid, providing sufficient opportunity for the drug to contact the GI membrane. First, we prepared DTX@PLC-SME by combining dual technologies, which are advantages for oral absorption. Next, we optimized DTX@PLC-SME with nanosized droplets (117.1 nm), low precipitation (8.9%), and high solubility (33.0 mg/g), which formed a homogeneous microemulsion in the aqueous phase. Dissolution and cellular uptake studies demonstrated that DTX@PLC-SME showed 5.6-fold higher dissolution and 2.3-fold higher DTX uptake in Caco-2 cells than raw material. In addition, an ex vivo gut sac study confirmed that DTX@PLC-SME improved GI permeability of DTX by 2.6-fold compared to raw material. These results suggested that DTX@PLC-SME can significantly overcome the disadvantages of anticancer agents, such as low solubility and permeability.
Collapse
|
17
|
Karakucuk A, Celebi N. Investigation of Formulation and Process Parameters of Wet Media Milling to Develop Etodolac Nanosuspensions. Pharm Res 2020; 37:111. [PMID: 32476048 DOI: 10.1007/s11095-020-02815-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/02/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Etodolac (ETD) is one of the non-steroidal anti-inflammatory drugs which has low aqueous solubility issues. The objective of this study was to develop ETD nanosuspensions to improve its poor aqueous solubility properties while investigating formulation and process parameters of wet media milling method via design of experiment (DoE) approach. METHODS The critical formulation parameters (CFP) were selected as ETD amount, stabilizer type and ratio as well as critical process parameters (CPP) which were bead size, milling time and milling speed. The two-factorial-23 and The Box-Benkhen Designs were generated to evaluate CFP and CPP, respectively. Particle size (PS), polydispersity index (PDI) and zeta potential (ZP) were analyzed as dependent variables. Characterization, physical stability and solubility studies were performed. RESULTS Optimum nanosuspensions stabilized by PVP K30 and Poloxamer 188 showed 188.5 ± 1.6 and 279.3 ± 6.1 nm of PS, 0.161 ± 0.049 and 0.345 ± 0.007 PDI, 14.8 ± 0.3 and 16.5 ± 0.4 mV of ZP values, respectively. The thermal properties of ETD did not change after milling and lyophilization process regarding to DSC analysis. Also, the crystalline state of ETD was preserved. The morphology of particle was smooth and spherical on SEM. The dry-nanosuspensions stayed physically stable for six months at room temperature. The solubility of nanosuspensions increased up to 13.0-fold in comparison with micronized ETD. CONCLUSIONS In conclusion, it is found that the poor solubility issue of ETD can be solved by nanosuspension. DoE approach provided benefits such as reducing number of experiments, saving time and improving final product quality by using wet media milling.
Collapse
Affiliation(s)
- Alptug Karakucuk
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Gazi University, Etiler-Yenimahalle, Ankara, Turkey.
| | - Nevin Celebi
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Gazi University, Etiler-Yenimahalle, Ankara, Turkey
| |
Collapse
|
18
|
Na YG, Pham TMA, Byeon JJ, Kim MK, Han MG, Baek JS, Lee HK, Cho CW. Development and evaluation of TPGS/PVA-based nanosuspension for enhancing dissolution and oral bioavailability of ticagrelor. Int J Pharm 2020; 581:119287. [PMID: 32243963 DOI: 10.1016/j.ijpharm.2020.119287] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/21/2020] [Accepted: 03/28/2020] [Indexed: 12/28/2022]
Abstract
In this study, we developed ticagrelor-dispersed nanosuspension (TCG-NSP) to enhance the dissolution and oral bioavailability of ticagrelor (TCG) through a statistical design approach. TCG, a reversible P2Y12 receptor antagonist, is classified as a biopharmaceutics classification system (BCS) class IV drug with low solubility and permeability, resulting in low oral bioavailability. Nanosuspension (NSP) is an efficient pharmaceutical technique for overcoming the disadvantages. First, we optimized TCG-NSP consisting of D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) and polyvinyl alcohol (PVA), which exhibited homogeneously dispersed TCG particle (233 nm) and low precipitation (3%). Characterization studies demonstrated that TCG-NSP provided amorphous TCG particles and supersaturation effect, resulting in higher dissolution than a commercial product. In addition, everted gut sac and pharmacokinetic studies confirmed that TCG-NSP improved the gastrointestinal permeation of TCG by 2.8-fold compared to commercial product, thereby enhancing the oral bioavailability (2.2-fold). These results suggested that TCG-NSP could be successfully used as an efficient pharmaceutical formulation to achieve the enhanced dissolution and oral bioavailability of TCG.
Collapse
Affiliation(s)
- Young-Guk Na
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Thi Mai Anh Pham
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jin-Ju Byeon
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Min-Ki Kim
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Min-Gu Han
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jong-Suep Baek
- Department of Herbal Medicine Resource, Kangwon National University, 346 Hwangjo-gil, Dogye-eup, Samcheok-si, Gangwon-do 25949, Republic of Korea
| | - Hong-Ki Lee
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| | - Cheong-Weon Cho
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
19
|
Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomater Res 2020; 24:3. [PMID: 31969986 PMCID: PMC6964012 DOI: 10.1186/s40824-020-0184-8] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/08/2020] [Indexed: 01/30/2023] Open
Abstract
Rapid advancement in drug discovery process is leading to a number of potential new drug candidates having excellent drug efficacy but limited aqueous solubility. By virtue of the submicron particle size and distinct physicochemical properties, nanosuspension has the potential ability to tackle many formulation and drug delivery issues typically associated with poorly water and lipid soluble drugs. Conventional size reduction equipment such as media mill and high-pressure homogenizers and formulation approaches such as precipitation, emulsion-solvent evaporation, solvent diffusion and microemulsion techniques can be successfully implemented to prepare and scale-up nanosuspensions. Maintaining the stability in solution as well as in solid state, resuspendability without aggregation are the key factors to be considered for the successful production and scale-up of nanosuspensions. Due to the considerable enhancement of bioavailability, adaptability for surface modification and mucoadhesion for drug targeting have significantly expanded the scope of this novel formulation strategy. The application of nanosuspensions in different drug delivery systems such as oral, ocular, brain, topical, buccal, nasal and transdermal routes are currently undergoing extensive research. Oral drug delivery of nanosuspension with receptor mediated endocytosis has the promising ability to resolve most permeability limited absorption and hepatic first-pass metabolism related issues adversely affecting bioavailability. Advancement of enabling technologies such as nanosuspension can solve many formulation challenges currently faced among protein and peptide-based pharmaceuticals.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, UAE
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat India
| |
Collapse
|
20
|
Yan B, Wang Y, Ma Y, Zhao J, Liu Y, Wang L. In vitro and in vivo evaluation of poly (acrylic acid) modified mesoporous silica nanoparticles as pH response carrier for β-elemene self-micro emulsifying. Int J Pharm 2019; 572:118768. [PMID: 31669556 DOI: 10.1016/j.ijpharm.2019.118768] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/02/2019] [Accepted: 10/05/2019] [Indexed: 12/21/2022]
Abstract
The strategy of formulating poorly soluble actives as liquid self-micro emulsifying drug delivery system (SMEDDS) has been explored in more than a thousand research papers. However, there have been a limited number of reports on pH sensitive solid SMEDDS. This study explored the feasibility of using poly (acrylic acid) modified mesoporous silica nanoparticles (MSNs-PAA) as a pH-mediated solid SMEDDS carrier for β-elemene. This SMEDDS was optimized using a central composite design-response surface methodology, pseudo ternary phase diagrams, and studies of the preliminary stability. MSNs-PAA was synthesized and used for loading β-elemene SMEDDS. Ele/MSNs-PAA was capable of pH-sensitive release of β-elemene. In addition to structural analyses, the morphological and stability of this SMEDDS was also investigated. In comparison of the β-elemene solution and the SMEDDS, the Ele/MSNs-PAA demonstrated improved Cmax, AUC and MRT after oral administration. These results suggested that the MSNs-PAA could be further developed as a promising approach for the pH sensitive release of β-elemene SMEDDS with enhanced oral bioavailability.
Collapse
Affiliation(s)
- Beibei Yan
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yancai Wang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yingying Ma
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Juan Zhao
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yangyang Liu
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Lulu Wang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
21
|
Kumar M, Shanthi N, Mahato AK, Soni S, Rajnikanth PS. Preparation of luliconazole nanocrystals loaded hydrogel for improvement of dissolution and antifungal activity. Heliyon 2019; 5:e01688. [PMID: 31193099 PMCID: PMC6517330 DOI: 10.1016/j.heliyon.2019.e01688] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/01/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
Superficial fungal infection in immunocompromised patients can lead to many disorders and complications. Currently, new topical treatment options are critically needed to treat these fungal infections. Luliconazole (LZL) is a topical antifungal medicine used for fungal infection treatment. The purpose of this paper was to develop a new topical luliconazole nanocrystal (LNC) incorporated hydrogel. This study suggested the potential benefits of LNC embedded in a gel as a drug delivery system for topical antifungal treatments. Preliminary experiments were therefore carried out to characterize the LNC in comparison with raw drug. Prepared gel was homogeneous for human use with about 88 percent trapping, non-irritant and safe. Nano-systems showed an overall 5 fold enhancement in solubility, 4 fold increase in dissolution velocity, higher skin retention and better antifungal activity. Drugs retained from LNC hydrogel (N-GEL) in different skin layers within 8 h were the highest, i.e. 62.17% compared to coarse suspension (41.87%), nanosuspension (49.77%), D-GEL (55.76%). In addition, LNC and N-GEL had higher ZOI (41.20 ± 0.61mm and 44.25 ± 0.57mm respectively) than LZL and D-GEL (35.98 ± 0.81mm and 36.83 ± 0.83mm respectively). Therefore, it was observed that LNC loaded hydrogel was more effective in killing the fungus. Consequently, hydrogel incorporated with LNC could be a new approach with improved activity and increased dermal delivery for drugs with poor aqueous solubility rather than coarse drug containing gel.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmaceutical Sciences, Sardar Bhagwan Singh Post Graduate Institute of Biomedical Science and Research, Balawala, Dehradun, Uttarakhand, India.,Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Nithya Shanthi
- Department of Pharmaceutical Sciences, Sardar Bhagwan Singh Post Graduate Institute of Biomedical Science and Research, Balawala, Dehradun, Uttarakhand, India
| | - Arun Kumar Mahato
- Department of Pharmaceutical Sciences, Sardar Bhagwan Singh Post Graduate Institute of Biomedical Science and Research, Balawala, Dehradun, Uttarakhand, India
| | - Shashank Soni
- Department of Pharmaceutical Sciences, Sardar Bhagwan Singh Post Graduate Institute of Biomedical Science and Research, Balawala, Dehradun, Uttarakhand, India
| | - P S Rajnikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| |
Collapse
|
22
|
Liu Y, Wang Y, Zhao J. Design, optimization and in vitro-in vivo evaluation of smart nanocaged carrier delivery of multifunctional PEG-chitosan stabilized silybin nanocrystals. Int J Biol Macromol 2019; 124:667-680. [DOI: 10.1016/j.ijbiomac.2018.11.258] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022]
|
23
|
Peltonen L. Design Space and QbD Approach for Production of Drug Nanocrystals by Wet Media Milling Techniques. Pharmaceutics 2018; 10:E104. [PMID: 30044395 PMCID: PMC6161287 DOI: 10.3390/pharmaceutics10030104] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/04/2018] [Accepted: 07/19/2018] [Indexed: 12/24/2022] Open
Abstract
Drug nanocrystals are nanosized solid drug particles, the most important application of which is the improvement of solubility properties of poorly soluble drug materials. Drug nanocrystals can be produced by many different techniques, but the mostly used are different kinds of media milling techniques; in milling, particle size of bulk sized drug material is decreased, with the aid of milling beads, to nanometer scale. Utilization of Quality by Design, QbD, approach in nanomilling improves the process-understanding of the system, and recently, the number of studies using the QbD approach in nanomilling has increased. In the QbD approach, the quality is built into the products and processes throughout the whole production chain. Definition of Critical Quality Attributes, CQAs, determines the targeted final product properties. CQAs are confirmed by setting Critical Process Parameters, CPPs, which include both process parameters but also input variables, like stabilizer amount or the solid state form of the drug. Finally, Design Space determines the limits in which CPPs should be in order to reach CQAs. This review discusses the milling process and process variables, CPPs, their impact on product properties, CQAs and challenges of the QbD approach in nanomilling studies.
Collapse
Affiliation(s)
- Leena Peltonen
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland.
| |
Collapse
|
24
|
Bioavailability Enhancement of Poorly Water-Soluble Drugs via Nanocomposites: Formulation⁻Processing Aspects and Challenges. Pharmaceutics 2018; 10:pharmaceutics10030086. [PMID: 29986543 PMCID: PMC6160929 DOI: 10.3390/pharmaceutics10030086] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/01/2018] [Accepted: 07/01/2018] [Indexed: 11/16/2022] Open
Abstract
Drug nanoparticles embedded in a dispersant matrix as a secondary phase, i.e., drug-laden nanocomposites, offer a versatile delivery platform for enhancing the dissolution rate and bioavailability of poorly water-soluble drugs. Drug nanoparticles are prepared by top-down, bottom-up, or combinative approaches in the form of nanosuspensions, which are subsequently dried to prepare drug-laden nanocomposites. In this comprehensive review paper, the term “nanocomposites” is used in a broad context to cover drug nanoparticle-laden intermediate products in the form of powders, cakes, and extrudates, which can be incorporated into final oral solid dosages via standard pharmaceutical unit operations, as well as drug nanoparticle-laden strip films. The objective of this paper is to review studies from 2012⁻2017 in the field of drug-laden nanocomposites. After a brief overview of the various approaches used for preparing drug nanoparticles, the review covers drying processes and dispersant formulations used for the production of drug-laden nanocomposites, as well as various characterization methods including quiescent and agitated redispersion tests. Traditional dispersants such as soluble polymers, surfactants, other water-soluble dispersants, and water-insoluble dispersants, as well as novel dispersants such as wet-milled superdisintegrants, are covered. They exhibit various functionalities such as drug nanoparticle stabilization, mitigation of aggregation, formation of nanocomposite matrix⁻film, wettability enhancement, and matrix erosion/disintegration. Major challenges such as nanoparticle aggregation and poor redispersibility that cause inferior dissolution performance of the drug-laden nanocomposites are highlighted. Literature data are analyzed in terms of usage frequency of various drying processes and dispersant classes. We provide some engineering considerations in comparing drying processes, which could account for some of the diverging trends in academia vs. industrial practice. Overall, this review provides rationale and guidance for drying process selection and robust nanocomposite formulation development, with insights into the roles of various classes of dispersants.
Collapse
|
25
|
Design and characterization of loratadine nanosuspension prepared by ultrasonic-assisted precipitation. Eur J Pharm Sci 2018; 122:94-104. [PMID: 29908301 DOI: 10.1016/j.ejps.2018.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/18/2018] [Accepted: 06/12/2018] [Indexed: 01/06/2023]
Abstract
Nanoparticle engineering is a well-defined technique employed as a novel and effective method in drug design and delivery. It is widely used to control particle size, as well as the morphological and physicochemical properties of active pharmaceutical ingredients. Furthermore, it serves as a method of pre-dispersion preparation for various dosage form developments. Nanotechnology produces nanomaterials with enhanced properties in terms of solubility, dissolution and permeability. In this work, ultrasonic-assisted precipitation was employed to produce nanosuspensions of poorly water-soluble loratadine, using different stabilizers. The objective of our study was attempting to prepare solid nanoparticles of loratadine to be used as a possible intermediate for designing various dosage forms. The effects of the type(s) and concentration(s) of stabilizer(s) on mean particle size were assessed. Optimal process parameters required to produce homogeneous nanoparticles with particle size below 500 nm and polydispersity less than 0.3 were determined both for precipitation and ultrasonication. Pre-dispersions were evaluated for their particle size, polydispersity index and zeta potential. Freeze-drying was employed to produce dry nanoparticles. Particle size, particle size distribution and zeta potential of the dried nanoparticles were measured after reconstitution in water. Besides thermal analysis using DSC and structural analyses (XRPD and FT-IR), the morphological characteristics and dissolution behaviors were also investigated. The selected freeze-dried nanoparticles had a mean particle size range of 353-441 nm, a polydispersity index ranging between 0.167 and 0.229 and a zeta potential between -25.7 and -20.7 mV. These results suggest that material and process parameters were successfully optimized. DSC and XRPD spectra confirmed interactions between the formulation's components during freeze-drying. The solid nanoparticles showed 30-42% of cumulative release after 10 min compared to less than 1% of dissolution characterizing loratadine without pre-processing. This study demonstrates that preparing dried loratadine nanoparticles suitable for designing effective drug preparations is a feasible approach.
Collapse
|
26
|
Shen C, Shen B, Liu X, Yuan H. Nanosuspensions based gel as delivery system of nitrofurazone for enhanced dermal bioavailability. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.09.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Mishra B, Sahoo SK, Sahoo S. Liranaftate loaded Xanthan gum based hydrogel for topical delivery: Physical properties and ex-vivo permeability. Int J Biol Macromol 2018; 107:1717-1723. [DOI: 10.1016/j.ijbiomac.2017.10.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 10/07/2017] [Indexed: 12/25/2022]
|
28
|
Guan J, Zhang Y, Liu Q, Zhang X, Chokshi R, Mao S. Exploration of alginates as potential stabilizers of nanosuspension. AAPS PharmSciTech 2017; 18:3172-3181. [PMID: 28536795 DOI: 10.1208/s12249-017-0801-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/04/2017] [Indexed: 11/30/2022] Open
Abstract
The objective of this study was to explore the feasibility of using alginate as a potential stabilizer of nanosuspension and elaborate the corresponding stabilization mechanism. Using lovastatin as a Biopharmaceutics Classification System (BCS) II drug model, alginate-stabilized nanosuspension was fabricated by the high-pressure homogenization method. The particle size, zeta potential, short-term stability, and dissolution behavior of the nanosuspension were characterized. Thereafter, the surface morphology, crystallinity, redispersability, and stability of the spray-dried nanosuspension were investigated. The spray-dried powder was further compressed into tablets via direct compression, and stressing test was carried out to investigate the stability of nanocrystal loaded tablets. It was demonstrated that alginate could stabilize nanocrystals by providing both electrostatic and steric stabilization, and the effective concentration was much lower than that of the commonly used stabilizers. Good redispersability was achieved after spray drying of the nanosuspension, and the existing state of lovastatin was not changed as indicated by X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) studies. The stress test indicated that nanocrystal-loaded tablets possessed a favorable stability. In conclusion, alginate could be used as a potential stabilizer of nanosuspension with preferable stabilizing ability at a very low concentration either in liquid or in solid state.
Collapse
|
29
|
Development, Physicochemical Characterization and In Vitro Anti-Inflammatory Activity of Solid Dispersions of α,β Amyrin Isolated from Protium Oilresin. Molecules 2017; 22:molecules22091512. [PMID: 28891943 PMCID: PMC6151820 DOI: 10.3390/molecules22091512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 08/28/2017] [Accepted: 09/06/2017] [Indexed: 11/25/2022] Open
Abstract
α,β Amyrin (ABAM) is a natural mixture of pentacyclic triterpenes that has shown a variety of pharmacological properties, including anti-inflammatory effect. ABAM is isolated from Burseraceae oilresins, especially from the Protium species, which is commonly found in the Brazilian Amazon. This work aimed to develop solid dispersions (SD) of ABAM with the following hydrophilic polymers: polyvinylpyrrolidone (PVP-K30), polyethylene glycol (PEG-6000) and hydroxypropylmethylcellulose (HPMC). The SDs were prepared by physical mixture (PM), kneading (KND) and rotary evaporation (RE) methods. In order to verify any interaction between ABAM and the hydrophilic polymers, physicochemical characterization was performed by Fourier transform infrared (FTIR), scanning electron microscopy (SEM), powder X-ray diffraction (XRD), thermogravimetry (TG) and differential scanning calorimetry (DSC) analysis. Furthermore, an in vitro anti-inflammatory assay was performed with ABAM alone and as SDs with the hydrophilic polymers. The results from the characterization analysis show that the SDs were able to induce changes in the physicochemical properties of ABAM, which suggests interaction with the polymer matrix. In vitro anti-inflammatory assay showed that the SDs improved the anti-inflammatory activity of ABAM and showed no cytotoxicity. In conclusion, this study showed the potential use of SDs as an efficient tool for improving the stability and anti-inflammatory activity of ABAM without cytotoxicity.
Collapse
|
30
|
Geng T, Banerjee P, Lu Z, Zoghbi A, Li T, Wang B. Comparative study on stabilizing ability of food protein, non-ionic surfactant and anionic surfactant on BCS type II drug carvedilol loaded nanosuspension: Physicochemical and pharmacokinetic investigation. Eur J Pharm Sci 2017; 109:200-208. [PMID: 28811130 DOI: 10.1016/j.ejps.2017.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 11/16/2022]
Abstract
Carvedilol (CAR) in its pure state has low aqueous solubility and extremely poor bioavailability which largely limit its clinical application. The aim of the study is to improve the dissolution rate and the bioavailability of CAR via preparing nanosuspensions with different stabilizers. Antisolvent precipitation-ultrasonication technique was used here. Attempts have been made to use food protein- Whey protein isolate (WPI) as a stabilizer in CAR loaded nanosuspension and also to compare its stabilizing potential with conventional nanosuspension stabilizers such as non-ionic linear copolymer-poloxamer 188 (PLX188) and anionic surfactant-sodium dodecyl sulfate (SDS). Optimized nanosuspensions showed narrow size distribution with particle size ranging from 275 to 640nm. Amorphous state of CAR nanocrystals which also improved the solubility by 16-, 25-, 55-fold accordingly was confirmed by powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC). From scanning electron microscopy (SEM), flaky shape of PLX188 and SDS nanosuspensions could be revealed but WPI nanosuspension was sphere-shaped. Up to 70% dissolution of loaded drug was observed within 15min in phosphate buffer (pH6.8). A pharmacokinetic study in rats indicated that both Cmax and AUC0-36 values of nanosuspensions were estimated to be 2-fold higher than those of reference, suggesting a significant increase in CAR bioavailability.
Collapse
Affiliation(s)
- Tianjiao Geng
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Parikshit Banerjee
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Zhangdi Lu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Abdelmoumin Zoghbi
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Tiantian Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Bo Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China.
| |
Collapse
|
31
|
García-Herrero V, Torrado C, García-Rodríguez JJ, López-Sánchez A, Torrado S, Torrado-Santiago S. Improvement of the surface hydrophilic properties of naproxen particles with addition of hydroxypropylmethyl cellulose and sodium dodecyl sulphate: In vitro and in vivo studies. Int J Pharm 2017; 529:381-390. [DOI: 10.1016/j.ijpharm.2017.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/03/2017] [Accepted: 07/08/2017] [Indexed: 10/19/2022]
|
32
|
Yu P, Lu S, Zhang S, Zhang W, Li Y, Liu J. Enhanced oral bioavailability and diminished food effect of lurasidone hydrochloride nanosuspensions prepared by facile nanoprecipitation based on dilution. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2017.02.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Zhang L, Xiao Q, Wang Y, Zhang C, He W, Yin L. Denatured protein-coated docetaxel nanoparticles: Alterable drug state and cytosolic delivery. Int J Pharm 2017; 523:1-14. [PMID: 28323094 DOI: 10.1016/j.ijpharm.2017.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 11/25/2022]
Abstract
Many lead compounds have a low solubility in water, which substantially hinders their clinical application. Nanosuspensions have been considered a promising strategy for the delivery of water-insoluble drugs. Here, denatured soy protein isolate (SPI)-coated docetaxel nanosuspensions (DTX-NS) were developed using an anti-solvent precipitation-ultrasonication method to improve the water-solubility of DTX, thus improving its intracellular delivery. DTX-NS, with a diameter of 150-250nm and drug-loading up to 18.18%, were successfully prepared by coating drug particles with SPI. Interestingly, the drug state of DTX-NS was alterable. Amorphous drug nanoparticles were obtained at low drug-loading, whereas at a high drug-loading, the DTX-NS drug was mainly present in the crystalline state. Moreover, DTX-NS could be internalized at high levels by cancer cells and enter the cytosol by lysosomal escape, enhancing cell cytotoxicity and apoptosis compared with free DTX. Taken together, denatured SPI has a strong stabilization effect on nanosuspensions, and the drug state in SPI-coated nanosuspensions is alterable by changing the drug-loading. Moreover, DTX-NS could achieve cytosolic delivery, generating enhanced cell cytotoxicity against cancer cells.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Qingqing Xiao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yiran Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chenshuang Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Lifang Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
34
|
Formulation of dried lignans nanosuspension with high redispersibility to enhance stability, dissolution, and oral bioavailability. Chin J Nat Med 2016; 14:757-768. [PMID: 28236405 DOI: 10.1016/s1875-5364(16)30090-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Indexed: 10/20/2022]
Abstract
Herpetospermum caudigerum lignans (HTL), one of the potential drugs with anti-hepatitis B virus and hepatoprotective effects, has limited clinical applications because of poor aqueous solubility and low bioavailability. Both herpetrione (HPE) and herpetin (HPN) are the most abundant ingredients in HTL and exhibit weak acidity. The purpose of the present study was to produce dried preparations of HTL (composed of HPE and HPN) nanosuspensions (HTL-NS) with high redispersibility using lyophilization technology. The HTL-NS was prepared by utilizing precipitation-combined homogenization technology based on acid-base neutralization reactions, and critical formulation and process parameters affecting the characteristics of HTL-NS were optimized. The resultant products were characterized by particle size analysis, SEM, XRD, stability, solubility, dissolution and in vivo bioavailability. HTL-NS showed near-spherical-shaped morphology and the size was 243 nm with a narrow PDI value of 0.187. The dried preparations with a relatively large particle size of 286 nm and a PDI of 0.215 were achieved by using 4% (W/V) mannitol as cryoprotectants, and had a better stability at 4 or 25 °C for 2 months, compared to HTL-NS. In the in vitro test, the dried preparations showed markedly increased solubility and dissolution velocity. Besides, in the in vivo evaluation, it exhibited significant increases in AUC0-t, Cmax,MRT and a decrease in Tmax, compared to the raw drug. In conclusion, our results provide a basis for the development of a drug delivery system for poorly water-soluble ingredients with pH-dependent solubility.
Collapse
|
35
|
Patel SG, Bummer PM. Development of a Robust Method for Simultaneous Quantification of Polymer (HPMC) and Surfactant (Dodecyl β-D-Maltoside) in Nanosuspensions. AAPS PharmSciTech 2016; 17:1182-91. [PMID: 26634749 DOI: 10.1208/s12249-015-0451-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/09/2015] [Indexed: 11/30/2022] Open
Abstract
This report describes the development of a chromatographic method for the simultaneous quantification of a polymer, hydroxypropyl methylcellulose (HPMC), and a surfactant, dodecyl β-D-maltoside (DM), that are commonly used in the physical stabilization of pharmaceutical formulations such as nanosuspensions and solid dispersions. These excipients are often challenging to quantify due to the lack of chromophores. A reverse phase size exclusion chromatography (SEC) with evaporative light scattering detector (ELSD) technique was utilized to develop an accurate and robust assay for the simultaneous quantification of HPMC and DM in a nanosuspension formulation. The statistical design of experiments was used to determine the influence of critical ELSD variables including temperature, pressure, and gain on accuracy, precision, and sensitivity of the assay. A robust design space was identified where it was determined that an increase in the temperature of the drift tube and gain of the instrument increased the accuracy and precision of the assay and a decrease in the nebulizer pressure value increased the sensitivity of the assay. In the optimized design space, response data showed that the assay could quantify HPMC and DM simultaneously with good accuracy, precision, and reproducibility. Overall, SEC-ELSD proved to be a powerful technique for the simultaneous quantification of HPMC and DM. This technique can be used to quantify the amount of HPMC and DM in nanosuspensions, which is critical to understanding their effects on the physical stability of nanosuspensions.
Collapse
|
36
|
Du J, Zhou Y, Wang L, Wang Y. Effect of PEGylated chitosan as multifunctional stabilizer for deacetyl mycoepoxydience nanosuspension design and stability evaluation. Carbohydr Polym 2016; 153:471-481. [PMID: 27561519 DOI: 10.1016/j.carbpol.2016.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 07/26/2016] [Accepted: 08/01/2016] [Indexed: 12/11/2022]
Abstract
Here a series of multifunctional stabilizers was designed and used in a nanosuspension stability enhancement study. Methoxypolyethylene glycol (M PEG)-grafted chitosan, accompanied by space steric hindrance, an electrostatic repulsion function, and a solvation effect, is a multifunctional stabilizer. Deacetyl mycoepoxydience (DM) nanosuspension was prepared using the anti-solvent precipitation approach. The effects of the DM and the multifunctional stabilizer concentration, solvent to anti-solvent ratio, crystallization and storage temperature, and ultrasonic time on drug particle formation during the anti-solvent processing were investigated and the nanosuspension stability was studied. The nanosuspension showed dendritic-like nanostructures and a crystalline state in a morphology and crystalline state study. The optimized drug and multifunctional stabilizer concentration range were selected through the response surface optimization method. The most appropriate and stable nanosuspension could be obtained through the optimal parameters. This study demonstrated that M PEG-grafted chitosan (M PEGC) could be used as a multifunctional stabilizer to control particle size and improve nanosuspension stability.
Collapse
Affiliation(s)
- Juan Du
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, China
| | - Yuqi Zhou
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, China
| | - Lulu Wang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, China
| | - Yancai Wang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, China.
| |
Collapse
|
37
|
Shen B, Wu N, Shen C, Zhang F, Wu Y, Xu P, Zhang L, Wu W, Lu Y, Han J, Wang Y, Yuan H. Hyperoside nanocrystals for HBV treatment: process optimization, in vitro and in vivo evaluation. Drug Dev Ind Pharm 2016; 42:1772-81. [PMID: 27032257 DOI: 10.3109/03639045.2016.1173051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Baode Shen
- Department of Pharmacy, Air Force General Hospital, PLA, Beijing, PR China
| | - Na Wu
- Department of Pharmacy, Air Force General Hospital, PLA, Beijing, PR China
- Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Chengying Shen
- Department of Pharmacy, Air Force General Hospital, PLA, Beijing, PR China
| | - Fucheng Zhang
- Department of Pharmacy, Air Force General Hospital, PLA, Beijing, PR China
| | - Yan Wu
- Department of Pharmacy, Air Force General Hospital, PLA, Beijing, PR China
| | - Pinghua Xu
- Department of Pharmacy, Air Force General Hospital, PLA, Beijing, PR China
| | - Lihong Zhang
- Department of Pharmacy, Air Force General Hospital, PLA, Beijing, PR China
- Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai, PR China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai, PR China
| | - Jin Han
- 302 Military Hospital, Beijing, PR China
| | | | - Hailong Yuan
- Department of Pharmacy, Air Force General Hospital, PLA, Beijing, PR China
| |
Collapse
|
38
|
Microcrystalline cellulose-carboxymethyl cellulose sodium as an effective dispersant for drug nanocrystals: A case study. Carbohydr Polym 2016; 136:499-506. [DOI: 10.1016/j.carbpol.2015.09.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/04/2015] [Accepted: 09/14/2015] [Indexed: 11/22/2022]
|