1
|
Aghaei A, Sadiqi H, Khwaja Mohammad AA, Gulmohammad AW, Likozar B, Nosrati H, Danafar H, Shaterian M. Magnetic ferrite nanoparticles coated with bovine serum albumin and glycine polymers for controlled release of curcumin as a model. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2537-2550. [PMID: 37768315 DOI: 10.1080/09205063.2023.2265181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
To conquer the low water solubility and bioavailability of curcumin (CUR), to corroborate its functional qualities and to broaden its applicability in the pharmaceutical sector, numerous nanoscale methods have been widely exploited for its administration. Because of its polycystic, biodegradable, biocompatibility, non-toxicity, and non-allergenic properties, bovine serum albumin (BSA) and glycine (Gly) have been actively investigated as natural biopolymers for decades. Various BSA and Gly-based nanocarriers with unique features for CUR delivery, such as magnetic ferrite nanoparticles, are being developed (MNPs). In this work, magnesium ferrite (MgFe2O4)/BSA and nickel ferrite (NiFe2O4)/Gly nanocomposites loaded with CUR (drug model) were manufactured for the first time using a chemical co-precipitation approach to create biocompatible drug nanocarriers. It was found that the synthesized MgFe2O4/BSA and NiFe2O4/Gly nanoparticles have a uniform particle distribution and their size is much less than 100 nm. Saturation magnetization in MgFe2O4 and NiFe2O4 reaches 13.07 and 33.4 emu/g the remarkable peak of magnetization decreases to 10.99 and 32.36 emu/g after the addition of polymers. These analyses also showed the presence of chemical bonds in the structure of the nanocomposite. The curcumin diffusion process in NPs were determined using a mathematical modeling. The yielding of the product for MgFe2O4/BSA and NiFe2O4/Gly in 200 h is about 72 and 63%, respectively. Also, regressed relative diffusivities (D/R2), including effective steric hindrance, were determined as 5.75 × 10-4 and 2.72 × 10-4 h-1 for MgFe2O4/BSA and NiFe2O4/Gly, respectively. It shows that there is a significant steric barrier that significantly deviates from the molecular diffusion of the liquid. As a result, the low effective release of curcumin in the particles is more noticeable. Our study demonstrated the effective relationship between the polymer architecture and the biophysical properties of the resulting nanoparticles and shed light on new approaches for the design of efficient NP-based drug carriers.
Collapse
Affiliation(s)
- Afsoon Aghaei
- Department of Chemistry, University of Zanjan, Zanjan, Islamic Republic of Iran
| | - Hazratuddin Sadiqi
- Department of Chemistry, University of Zanjan, Zanjan, Islamic Republic of Iran
| | | | | | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Ljubljana, Slovenia
| | - Hamed Nosrati
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Danafar
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Shaterian
- Department of Chemistry, University of Zanjan, Zanjan, Islamic Republic of Iran
| |
Collapse
|
2
|
Liu C, Dong S, Wang X, Xu H, Liu C, Yang X, Wu S, Jiang X, Kan M, Xu C. Research progress of polyphenols in nanoformulations for antibacterial application. Mater Today Bio 2023; 21:100729. [PMID: 37529216 PMCID: PMC10387615 DOI: 10.1016/j.mtbio.2023.100729] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 08/03/2023] Open
Abstract
Infectious disease is one of the top 10 causes of death worldwide, especially in low-income countries. The extensive use of antibiotics has led to an increase in antibiotic resistance, which poses a critical threat to human health globally. Natural products such as polyphenolic compounds and their derivatives have been shown the positive therapeutic effects in antibacterial therapy. However, the inherent physicochemical properties of polyphenolic compounds and their derivatives limit their pharmaceutical effects, such as short half-lives, chemical instability, low bioavailability, and poor water solubility. Nanoformulations have shown promising advantages in improving antibacterial activity by controlling the release of drugs and enhancing the bioavailability of polyphenols. In this review, we listed the classification and antibacterial mechanisms of the polyphenolic compounds. More importantly, the nanoformulations for the delivery of polyphenols as the antibacterial agent were summarized, including different types of nanoparticles (NPs) such as polymer-based NPs, metal-based NPs, lipid-based NPs, and nanoscaffolds such as nanogels, nanofibers, and nanoemulsions. At the same time, we also presented the potential biological applications of the nano-system to enhance the antibacterial ability of polyphenols, aiming to provide a new therapeutic perspective for the antibiotic-free treatment of infectious diseases.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Shuhan Dong
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xue Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Huiqing Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xi Yang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Shanli Wu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xin Jiang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Mujie Kan
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| |
Collapse
|
3
|
Chircov C, Bejenaru IT, Nicoară AI, Bîrcă AC, Oprea OC, Tihăuan B. Chitosan-Dextran-Glycerol Hydrogels Loaded with Iron Oxide Nanoparticles for Wound Dressing Applications. Pharmaceutics 2022; 14:pharmaceutics14122620. [PMID: 36559114 PMCID: PMC9784071 DOI: 10.3390/pharmaceutics14122620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Natural polymers have shown tremendous potential towards the development of hydrogels with tissue regeneration properties. Among them, chitosan and dextran are polysaccharides widely applied in the wound dressing area owing to their mucoadhesiveness, biodegradability, hemostatic potential, and intrinsic antibacterial activity, while glycerol is a well-known biocompatible solvent extensively used in the manufacture of cosmetic, pharmaceutical, medical, and personal care products. In order to enhance the properties of natural polymer-based hydrogels, the focus has currently shifted towards the addition of nanomaterials with antibacterial and regenerative potential, i.e., iron oxide nanoparticles. Thus, the aim of the present study was to develop a series of chitosan-dextran-glycerol hydrogels loaded with iron oxide nanoparticles, either readily added or formed in situ. The physicochemical properties of the so obtained hydrogels demonstrated an improved dispersibility of the in situ formed magnetite nanoparticles, which further decreases the porosity and swelling ratio of the hydrogels but increases the antimicrobial properties. Additionally, the presence of glycerol enhances the cell viability but reduces the antimicrobial potential. In this context, the results proved promising biological and antimicrobial properties, thus confirming their potential as biomaterials for wound healing and regeneration.
Collapse
Affiliation(s)
- Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | | | - Adrian Ionuț Nicoară
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Correspondence:
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Ovidiu Cristian Oprea
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Bianca Tihăuan
- Research Institute of the University of Bucharest—ICUB, 91-95 Splaiul Independentei, 50567 Bucharest, Romania
- Research & Development for Advanced Biotechnologies and Medical Devices, SC Sanimed International Impex SRL, 087040 Călugăreni, Romania
| |
Collapse
|
4
|
Lim CL, Raju CS, Mahboob T, Kayesth S, Gupta KK, Jain GK, Dhobi M, Nawaz M, Wilairatana P, de Lourdes Pereira M, Patra JK, Paul AK, Rahmatullah M, Nissapatorn V. Precision and Advanced Nano-Phytopharmaceuticals for Therapeutic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:238. [PMID: 35055257 PMCID: PMC8778544 DOI: 10.3390/nano12020238] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 02/04/2023]
Abstract
Phytopharmaceuticals have been widely used globally since ancient times and acknowledged by healthcare professionals and patients for their superior therapeutic value and fewer side-effects compared to modern medicines. However, phytopharmaceuticals need a scientific and methodical approach to deliver their components and thereby improve patient compliance and treatment adherence. Dose reduction, improved bioavailability, receptor selective binding, and targeted delivery of phytopharmaceuticals can be likely achieved by molding them into specific nano-formulations. In recent decades, nanotechnology-based phytopharmaceuticals have emerged as potential therapeutic candidates for the treatment of various communicable and non-communicable diseases. Nanotechnology combined with phytopharmaceuticals broadens the therapeutic perspective and overcomes problems associated with plant medicine. The current review highlights the therapeutic application of various nano-phytopharmaceuticals in neurological, cardiovascular, pulmonary, and gastro-intestinal disorders. We conclude that nano-phytopharmaceuticals emerge as promising therapeutics for many pathological conditions with good compliance and higher acceptance.
Collapse
Affiliation(s)
- Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chandramathi S. Raju
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Tooba Mahboob
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Sunil Kayesth
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi 110019, India;
| | - Kamal K. Gupta
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi 110019, India;
| | - Gaurav Kumar Jain
- Department of Pharmacognosy and Phytochemistry, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India; (G.K.J.); (M.D.)
| | - Mahaveer Dhobi
- Department of Pharmacognosy and Phytochemistry, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India; (G.K.J.); (M.D.)
| | - Muhammad Nawaz
- Department of Nano-Medicine, Institute for Research and Medical Consultations ((IRMC), Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang-si 10326, Korea;
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Private Bag 26, Hobart, TAS 7001, Australia;
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh;
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
5
|
Campos D, Goméz-García R, Oliveira D, Madureira AR. Intake of nanoparticles and impact on gut microbiota: in vitro and animal models available for testing. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2021; 3:e1. [PMID: 39295775 PMCID: PMC11406378 DOI: 10.1017/gmb.2021.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/11/2021] [Accepted: 11/09/2021] [Indexed: 09/21/2024]
Abstract
The oral delivery of compounds associated with diet or medication have an impact on the gut microbiota balance, which in turn, influences the physiologic process. Several reports have shown significant advances in clarifying the impact, interactions and outcomes of oral intake of nanoparticles and the human gut. These interactions may affect the bioavailability of the delivered compounds. In addition, there is a considerable breakthrough in the development of antimicrobial nanoparticles for intestinal pathogenic bacteria. Several in vitro fermentation and in vivo models have been developed throughout the years and were used to test these systems. The methodologies and studies carried out so far on the modulation of human and animal gut microbiome by oral delivery nanosized materials were reviewed. Overall, the available in vitro studies mimic the real physiological events enabling to select the best production conditions of nanoparticulate systems in a preliminary stage of research. On the other hand, animal studies can be used to access the dosage effect, safety and correlation between haematological, biochemical and symptoms, with gut microbiota groups and metabolites.
Collapse
Affiliation(s)
- Débora Campos
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ricardo Goméz-García
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Diana Oliveira
- Amyris Bio Products Portugal, Unipessoal Lda, Porto, Portugal
| | - Ana Raquel Madureira
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| |
Collapse
|
6
|
Yan D, Li Y, Liu Y, Li N, Zhang X, Yan C. Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections. Molecules 2021; 26:7136. [PMID: 34885715 PMCID: PMC8659174 DOI: 10.3390/molecules26237136] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
Antibiotics played an important role in controlling the development of enteric infection. However, the emergence of antibiotic resistance and gut dysbiosis led to a growing interest in the use of natural antimicrobial agents as alternatives for therapy and disinfection. Chitosan is a nontoxic natural antimicrobial polymer and is approved by GRAS (Generally Recognized as Safe by the United States Food and Drug Administration). Chitosan and chitosan derivatives can kill microbes by neutralizing negative charges on the microbial surface. Besides, chemical modifications give chitosan derivatives better water solubility and antimicrobial property. This review gives an overview of the preparation of chitosan, its derivatives, and the conjugates with other polymers and nanoparticles with better antimicrobial properties, explains the direct and indirect mechanisms of action of chitosan, and summarizes current treatment for enteric infections as well as the role of chitosan and chitosan derivatives in the antimicrobial agents in enteric infections. Finally, we suggested future directions for further research to improve the treatment of enteric infections and to develop more useful chitosan derivatives and conjugates.
Collapse
Affiliation(s)
| | | | | | | | | | - Chen Yan
- The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (D.Y.); (Y.L.); (Y.L.); (N.L.); (X.Z.)
| |
Collapse
|
7
|
Cassini C, Zatti PH, Angeli VW, Branco CS, Salvador M. Mutual effects of free and nanoencapsulated phenolic compounds on human microbiota. Curr Med Chem 2021; 29:3160-3178. [PMID: 34720074 DOI: 10.2174/0929867328666211101095131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/08/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
Phenolic compounds (PC) have many health benefits such as antioxidant, anticarcinogenic, neuroprotective, and anti-inflammatory activities. All of these activities depend on their chemical structures and their interaction with biological targets in the body. PC occur naturally in polymerized form, linked to glycosides and requires metabolic transformation from their ingestion to their absorption. The gut microbiota can transform PC into more easily absorbed metabolites. The PC, in turn, have prebiotic and antimicrobial actions on the microbiota. Despite this, their low oral bioavailability still compromises biological performance. Therefore, the use of nanocarriers has been demonstrated to be a useful strategy to improve PC absorption and, consequently, their health effects. Nanotechnology is an excellent alternative able to overcome the limits of oral bioavailability of PC, since it offers protection from degradation during their passage through the gastrointestinal tract. Moreover, nanotechnology is also capable of promoting controlled PC release and modulating the interaction between PC and the microbiota. However, little is known about the impact of the nanotechnology on PC effects on the gut microbiota. This review highlights the use of nanotechnology for PC delivery on gut microbiota, focusing on the ability of such formulations to enhance oral bioavailability by applying nanocarriers (polymeric nanoparticles, nanostructured lipid carriers, solid lipid nanoparticles). In addition, the effects of free and nanocarried PC or nanocarriers per se on gut microbiota are also described.
Collapse
Affiliation(s)
- Carina Cassini
- Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul. Brazil
| | | | | | - Catia Santos Branco
- Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul. Brazil
| | - Mirian Salvador
- Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul. Brazil
| |
Collapse
|
8
|
Gómez-Guillén MC, Montero MP. Enhancement of oral bioavailability of natural compounds and probiotics by mucoadhesive tailored biopolymer-based nanoparticles: A review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106772] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
|
10
|
Coscueta ER, Sousa AS, Reis CA, Pintado M. Chitosan-olive oil microparticles for phenylethyl isothiocyanate delivery: Optimal formulation. PLoS One 2021; 16:e0248257. [PMID: 33956792 PMCID: PMC8101728 DOI: 10.1371/journal.pone.0248257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/25/2021] [Indexed: 12/18/2022] Open
Abstract
Phenylethyl isothiocyanate (PEITC), a chemopreventive compound, is highly reactive due to its considerably electrophilic nature. Furthermore, it is hydrophobic and has low stability, bioavailability and bioaccessibility. This restricts its use in biomedical and nutraceutical or food applications. Thus, the encapsulation of this agent has the function of overcoming these limitations, promoting its solubility in water, and stabilizing it, preserving its bioactivity. So, polymeric microparticles were developed using chitosan-olive oil-PEITC systems. For this, an optimisation process (factors: olive oil: chitosan ratio and PEITC: chitosan ratio) was implemented through a 3-level factorial experimental design. The responses were: the particle size, zeta-potential, polydisperse index, and entrapment efficiency. The optimal formulation was further characterised by FTIR and biocompatibility in Caco-2 cells. Optimal conditions were olive oil: chitosan and PEITC: chitosan ratios of 1.46 and 0.25, respectively. These microparticles had a size of 629 nm, a zeta-potential of 32.3 mV, a polydispersity index of 0.329, and entrapment efficiency of 98.49%. We found that the inclusion process affected the optical behaviour of the PEITC, as well as the microparticles themselves and their interaction with the medium. Furthermore, the microparticles did not show cytotoxicity within the therapeutic values of PEITC. Thus, PEITC was microencapsulated with characteristics suitable for potential biomedical, nutraceutical and food applications.
Collapse
Affiliation(s)
- Ezequiel R. Coscueta
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ana Sofia Sousa
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Celso A. Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Porto, Portugal
- Medical Faculty, University of Porto, Al. Prof. Hernâni Monteiro, Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
11
|
Pan Y, Deng Z, Shahidi F. Natural bioactive substances for the control of food-borne viruses and contaminants in food. FOOD PRODUCTION, PROCESSING AND NUTRITION 2020. [PMCID: PMC7700915 DOI: 10.1186/s43014-020-00040-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Food-borne viruses and contaminants, as an important global food safety problem, are caused by chemical, microbiological, zoonotic, and other risk factors that represent a health hazard. Natural bioactive substances, originating from plants, animals, or microorganisms, might offer the possibility of preventing and controlling food-borne diseases. In this contribution, the common bioactive substances such as polyphenols, essential oils, proteins, and polysaccharides which are effective in the prevention and treatment of food-borne viruses and contaminants are discussed. Meanwhile, the preventive effects of natural bioactive substances and the possible mechanisms involved in food protection are discussed and detailed. The application and potential effects of natural bioactive substances in the adjuvant treatment for food-borne diseases is also described.
Graphical abstract
Collapse
|
12
|
Sun X, Zhang S, Ren J, Udenigwe CC. Sialic acid-based strategies for the prevention and treatment of Helicobacter pylori infection: Emerging trends in food industry. Crit Rev Food Sci Nutr 2020; 62:1713-1724. [DOI: 10.1080/10408398.2020.1846157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiaohong Sun
- College of Food and Biological Engineering, Qiqihar University, Qiqihar, Heilongjiang, China
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Songyuan Zhang
- College of Food and Biological Engineering, Qiqihar University, Qiqihar, Heilongjiang, China
| | - Jian Ren
- College of Food and Biological Engineering, Qiqihar University, Qiqihar, Heilongjiang, China
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Costa JR, Xavier M, Amado IR, Gonçalves C, Castro PM, Tonon RV, Cabral LMC, Pastrana L, Pintado ME. Polymeric nanoparticles as oral delivery systems for a grape pomace extract towards the improvement of biological activities. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111551. [PMID: 33321615 DOI: 10.1016/j.msec.2020.111551] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/25/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022]
Abstract
Grape pomace (GP) is a major by-product from the wine industry, known for its bioactive compounds and their impact upon gastrointestinal (GI) health. However, bioaccessibility is often poor due to their degradation during digestion. This work aimed to encapsulate bioactive GP extract (GPE) into chitosan (CS) and alginate (Alg) nanoparticles (NPs) to mitigate degradation in the GI tract. Alg and CS NPs were optimized using a rotatable central composite design and NPs were characterized for their size, polydispersity, zeta potential and total phenolics (TP) association efficiency. The best formulations showed sizes ranging 523-853 nm, polydispersity indexes of 0.11-0.36, zeta potential of -15.0-14.9 mV and TP association efficiencies of 68 and 65%. FTIR confirmed that there was no formation of new chemical groups after association of the polymers with GPE. Both formulations improved the bioaccessibility of different phenolics following in vitro GI digestion, leading to increased antioxidant and antimicrobial activities. Moreover, the permeability of bioactive compounds through a Caco-2/HT29-MTX co-culture was reduced, suggesting a higher residence time in the intestine. Cy5.5 was used for tracking the CS NPs, which did not affect the metabolic activity of Caco-2 and HT29-MTX cells. Confocal microscopy images confirmed the adsorption of NPs to the cellular layer and suggested a reduction of the tight junction protein occludin when cells were incubated with Cy5.5-CS in solution. This study suggests that encapsulation of GPE can offer protection against along the GI tract and improve its biological activity with significant impact for oral delivery applications, including functional foods.
Collapse
Affiliation(s)
- Joana R Costa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Miguel Xavier
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715 - 330 Braga, Portugal
| | - Isabel R Amado
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715 - 330 Braga, Portugal
| | - Catarina Gonçalves
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715 - 330 Braga, Portugal
| | - Pedro M Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Renata V Tonon
- Embrapa Agroindústria de Alimentos, Av. das Américas, 29501, 23020-470 Rio de Janeiro, RJ, Brazil
| | - Lourdes M C Cabral
- Embrapa Agroindústria de Alimentos, Av. das Américas, 29501, 23020-470 Rio de Janeiro, RJ, Brazil
| | - Lorenzo Pastrana
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715 - 330 Braga, Portugal
| | - Manuela E Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
14
|
Tang HY, Fang Z, Ng K. Dietary fiber-based colon-targeted delivery systems for polyphenols. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Safari J, Esteghlal S, Keramat M, Khalesi M. Fabrication of Chitosan/Pectin/PVA Nanofibers Using Electrospinning Technique. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2210681208666181002124634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background:
Electrospinning is a novel cost effective technique for generating nanofibers from a
broad range of materials likely to be used as a coating film.
Methods:
In this project, pectin and chitosan solutions containing PVA were prepared and electrospun with
separate syringes for the first time. The antimicrobial and physical properties of the novel chitosan/PVApectin/
PVA nanofibrous film were evaluated using some analysis techniques such as disc diffusion assay,
scanning electron microscopy (SEM), transmission electron microscopy (TEM), viscosity and conductivity
tests, and fourier-transform infrared spectroscopy (FTIR).
Results:
The results showed that simultaneously electrospinning the dispersion of chitosan/PVA (50:50)
with pectin/PVA (50:50) led to the formation of thin nanofibers with the minimum number of beads. The results
of FTIR analysis proved the dispersion of chitosan and PVA in nanofiber mats and the interaction of
chitosan with pectin as well as PVA with pectin. Disc diffusion assay showed that nano-film could possess
significant antibacterial activity against S. aureus at 37°C but had no effects against E. coli.
Conclusion:
Based on the results of this study, the novel chitosan/PVA-pectin/PVA nanofibrous film can be
considered as a novel coating film for promising application in food packaging industry.
Collapse
Affiliation(s)
- Javad Safari
- Department of Food Science and Technology, Shiraz University, Shiraz-71441-65186, Iran
| | - Sara Esteghlal
- Department of Food Science and Technology, Shiraz University, Shiraz-71441-65186, Iran
| | - Malihe Keramat
- Department of Food Science and Technology, Shiraz University, Shiraz-71441-65186, Iran
| | - Mohammadreza Khalesi
- Department of Food Science and Technology, Shiraz University, Shiraz-71441-65186, Iran
| |
Collapse
|
16
|
Ghaffari Marandi BH, Zolfaghari MR, Kazemi R, Motamedi MJ, Amani J. Immunization against Vibrio cholerae, ETEC, and EHEC with chitosan nanoparticle containing LSC chimeric protein. Microb Pathog 2019; 134:103600. [PMID: 31202906 DOI: 10.1016/j.micpath.2019.103600] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Severe intestinal infections caused by V. cholerae, ETEC and EHEC have contributed to the mortality rate in developing countries. Vibrio Cholera, ETEC and EHEC bacterium with the production of CT, LT and Stx2 toxins respectively lead to severe watery and bloody diarrhea. This study aimed to investigate a trimeric vaccine candidate containing recombinant chimeric protein, encapsulate the protein in chitosan nanoparticles and assess its immunogenicity. METHODS The LSC recombinant gene was used. It is composed of LTB (L), STXB (S) and CTXB (C) subunits respectively. The LSC recombinant protein was expressed and purified and confirmed by western blotting. The purified protein was encapsulated in chitosan nanoparticles, and its size was measured. BalB/c mice were immunized in four groups through oral and injection methods by LSC protein. The antibody titer was then evaluated by ELISA, and finally, the challenge test of the toxins from all three bacteria was done on the immunized mouse. RESULTS After expression and purification LSC protein size of nanoparticles containing protein was measured at 104.6 nm. Nanoparticles were able to induce systemic and mucosal immune responses by generating a useful titer of IgG and IgA. The challenge results with LT, CT and Stx toxins showed that the LSC protein might partially neutralize the effect of toxins. CONCLUSION LSC chimeric protein with the simultaneous three essential antigens have a protective effect against the toxins produced by ETEC, EHEC and Vibrio cholera bacteria and it can be used in vaccines to prevent Diarrhea caused by these three bacteria.
Collapse
Affiliation(s)
| | - Mohammad Reza Zolfaghari
- Department of Microbiology, Faculty of Basic Science, Qom Branch, Islamic Azad University, Qom, Iran
| | | | | | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Cohen E, Merzendorfer H. Chitin/Chitosan: Versatile Ecological, Industrial, and Biomedical Applications. EXTRACELLULAR SUGAR-BASED BIOPOLYMERS MATRICES 2019; 12. [PMCID: PMC7115017 DOI: 10.1007/978-3-030-12919-4_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chitin is a linear polysaccharide of N-acetylglucosamine, which is highly abundant in nature and mainly produced by marine crustaceans. Chitosan is obtained by hydrolytic deacetylation. Both polysaccharides are renewable resources, simply and cost-effectively extracted from waste material of fish industry, mainly crab and shrimp shells. Research over the past five decades has revealed that chitosan, in particular, possesses unique and useful characteristics such as chemical versatility, polyelectrolyte properties, gel- and film-forming ability, high adsorption capacity, antimicrobial and antioxidative properties, low toxicity, and biocompatibility and biodegradability features. A plethora of chemical chitosan derivatives have been synthesized yielding improved materials with suggested or effective applications in water treatment, biosensor engineering, agriculture, food processing and storage, textile additives, cosmetics fabrication, and in veterinary and human medicine. The number of studies in this research field has exploded particularly during the last two decades. Here, we review recent advances in utilizing chitosan and chitosan derivatives in different technical, agricultural, and biomedical fields.
Collapse
Affiliation(s)
- Ephraim Cohen
- Department of Entomology, The Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hans Merzendorfer
- School of Science and Technology, Institute of Biology – Molecular Biology, University of Siegen, Siegen, Germany
| |
Collapse
|
18
|
Shariatinia Z. Pharmaceutical applications of chitosan. Adv Colloid Interface Sci 2019; 263:131-194. [PMID: 30530176 DOI: 10.1016/j.cis.2018.11.008] [Citation(s) in RCA: 331] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/23/2018] [Accepted: 11/25/2018] [Indexed: 01/06/2023]
Abstract
Chitosan (CS) is a linear polysaccharide which is achieved by deacetylation of chitin, which is the second most plentiful compound in nature, after cellulose. It is a linear copolymer of β-(1 → 4)-linked 2-acetamido-2-deoxy-β-d-glucopyranose and 2-amino-2-deoxy-β-d-glucopyranose. It has appreciated properties such as biocompatibility, biodegradability, hydrophilicity, nontoxicity, high bioavailability, simplicity of modification, favorable permselectivity of water, outstanding chemical resistance, capability to form films, gels, nanoparticles, microparticles and beads as well as affinity to metals, proteins and dyes. Also, the biodegradable CS is broken down in the human body to safe compounds (amino sugars) which are easily absorbed. At present, CS and its derivatives are broadly investigated in numerous pharmaceutical and medical applications including drug/gene delivery, wound dressings, implants, contact lenses, tissue engineering and cell encapsulation. Besides, CS has several OH and NH2 functional groups which allow protein binding. CS with a deacetylation degree of ~50% is soluble in aqueous acidic environment. While CS is dissolved in acidic medium, its amino groups in the polymeric chains are protonated and it becomes cationic which allows its strong interaction with different kinds of molecules. It is believed that this positive charge is responsible for the antimicrobial activity of CS through the interaction with the negatively charged cell membranes of microorganisms. This review presents properties and numerous applications of chitosan-based compounds in drug delivery, gene delivery, cell encapsulation, protein binding, tissue engineering, preparation of implants and contact lenses, wound healing, bioimaging, antimicrobial food additives, antibacterial food packaging materials and antibacterial textiles. Moreover, some recent molecular dynamics simulations accomplished on the pharmaceutical applications of chitosan were presented.
Collapse
|
19
|
Nutritional and Additive Uses of Chitin and Chitosan in the Food Industry. SUSTAINABLE AGRICULTURE REVIEWS 36 2019. [DOI: 10.1007/978-3-030-16581-9_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Xu LQ, Neoh KG, Kang ET. Natural polyphenols as versatile platforms for material engineering and surface functionalization. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.08.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Zhao Y, Du W, Wu H, Wu M, Liu Z, Dong S. Chitosan/sodium tripolyphosphate nanoparticles as efficient vehicles for enhancing the cellular uptake of fish-derived peptide. J Food Biochem 2018; 43:e12730. [PMID: 31353647 DOI: 10.1111/jfbc.12730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/04/2018] [Accepted: 10/28/2018] [Indexed: 11/27/2022]
Abstract
Methodology to enhance the intestinal absorption of peptides is an important challenge due to their easily degradation and poor permeability across the intestinal epithelium. In this study, the fish-derived peptide (DGDDGEAGKIG)-loaded chitosan (CS) nanoparticles (CS/PEP-NPs) were prepared and investigated in Caco-2 monolayer model. The results indicated zeta potential of CS/PEP-NPs increased with the increase in molecular weight of CS (10-50 kDa). Transmission electron microscopy images revealed the CS/PEP-NPs were uniform spherical-shaped nanoparticles with a diameter of 50-200 nm (150 kDa). Compared to other CS/PEP-NPs, 150-kDa CS/PEP-NPs performed an outstanding apparent permeability coefficient (Papp, 2.29 × 10-5 cm s-1 ) and cumulative amount of peptide (120 min, 2,987 ng) in Caco-2 cells. CS/PEP-NPs could reduce the tight junction integrity of Caco-2 cells and enhance the intracellular fluorescence intensities of fluorescein isothiocyanate-labeled peptide. These findings suggest that chitosan nanoparticles are promising carriers to promote intestinal absorption of fish-derived peptide via paracellular pathway mediated by tight junctions. PRACTICAL APPLICATIONS: Chitosans are promising carriers to promote intestinal absorption of fish-derived peptide. The 150-kDa CS/PEP-NPs performed an outstanding apparent permeability coefficient (Papp, 2.29 × 10-5 cm s-1 ) and cumulative amount of peptide (120 min, 2,987 ng) in Caco-2 cells. CS/PEP-NPs could reduce the tight junction integrity of Caco-2 cells and enhance the peptide uptake by paracellular pathway. Chitosan nanoparticles can be developed as vehicles for enhancing the cellular uptake of peptide in food industry.
Collapse
Affiliation(s)
- Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Wenwen Du
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Haohao Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Miaomiao Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zunying Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Shiyuan Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
22
|
Othman N, Masarudin MJ, Kuen CY, Dasuan NA, Abdullah LC, Md Jamil SNA. Synthesis and Optimization of Chitosan Nanoparticles Loaded with L-Ascorbic Acid and Thymoquinone. NANOMATERIALS 2018; 8:nano8110920. [PMID: 30405074 PMCID: PMC6267081 DOI: 10.3390/nano8110920] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 01/24/2023]
Abstract
The combination of compounds with different classes (hydrophobic and hydrophilic characters) in single chitosan carrier is a challenge due to the hydrophilicity of chitosan. Utilization of l-ascorbic acid (LAA) and thymoquinone (TQ) compounds as effective antioxidants is marred by poor bioavailability and uptake. Nanoparticles (NPs) solved the problem by functioning as a carrier for them because they have high surface areas for more efficient delivery and uptake by cells. This research, therefore, synthesized chitosan NPs (CNPs) containing LAA and TQ, CNP-LAA-TQ via ionic gelation routes as the preparation is non-toxic. They were characterized using electron microscopy, zetasizer, UV⁻VIS spectrophotometry, and infrared spectroscopy. The optimum CNP-LAA-TQ size produced was 141.5 ± 7.8 nm, with a polydispersity index (PDI) of 0.207 ± 0.013. The encapsulation efficiency of CNP-LAA-TQ was 22.8 ± 3.2% for LAA and 35.6 ± 3.6% for TQ. Combined hydrophilic LAA and hydrophobic TQ proved that a myriad of highly efficacious compounds with poor systemic uptake could be encapsulated together in NP systems to increase their pharmaceutical efficiency, indirectly contributing to the advancement of medical and pharmaceutical sectors.
Collapse
Affiliation(s)
- Nurhanisah Othman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Cancer Research Laboratory, Institute of Biosciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Cha Yee Kuen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Cancer Research Laboratory, Institute of Biosciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Nurul Azira Dasuan
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Luqman Chuah Abdullah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Siti Nurul Ain Md Jamil
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
23
|
Chitosan-based nanosystems and their exploited antimicrobial activity. Eur J Pharm Sci 2018; 117:8-20. [PMID: 29408419 DOI: 10.1016/j.ejps.2018.01.046] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 02/07/2023]
Abstract
Chitosan is a biodegradable and biocompatible natural polysaccharide that has a wide range of applications in the field of pharmaceutics, biomedical, chemical, cosmetics, textile and food industry. One of the most interesting characteristics of chitosan is its antibacterial and antifungal activity, and together with its excellent safety profile in human, it has attracted considerable attention in various research disciplines. The antimicrobial activity of chitosan is dependent on a number of factors, including its molecular weight, degree of deacetylation, degree of substitution, physical form, as well as structural properties of the cell wall of the target microorganisms. While the sole use of chitosan may not be sufficient to produce an adequate antimicrobial effect to fulfil different purposes, the incorporation of this biopolymer with other active substances such as drugs, metals and natural compounds in nanosystems is a commonly employed strategy to enhance its antimicrobial potential. In this review, we aim to provide an overview on the different approaches that exploit the antimicrobial activity of chitosan-based nanosystems and their applications, and highlight the latest advances in this field.
Collapse
|
24
|
Portugal Zegarra MDCC, Santos AMP, Silva AMAD, Melo EDA. Chitosan films incorporated with antioxidant extract of acerola agroindustrial residue applied in chicken thigh. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Andrelina Maria Pinheiro Santos
- Departamento de Engenharia de Alimentos; Universidade Federal de Pernambuco, Av. Professor Moraes Rego, 1235, 50670901; Recife Pernambuco Brasil
| | - Argélia Maria Araújo Dias Silva
- Departamento de Zootecnia; Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros s/n, 52171900 Recife; Pernambuco Brasil
| | - Enayde de Almeida Melo
- Departamento de Ciências Domésticas; Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros s/n, 52171900 Recife; Pernambuco Brasil
| |
Collapse
|
25
|
Balti R, Mansour MB, Sayari N, Yacoubi L, Rabaoui L, Brodu N, Massé A. Development and characterization of bioactive edible films from spider crab (Maja crispata) chitosan incorporated with Spirulina extract. Int J Biol Macromol 2017; 105:1464-1472. [DOI: 10.1016/j.ijbiomac.2017.07.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/30/2022]
|
26
|
Sotelo-Boyás M, Correa-Pacheco Z, Bautista-Baños S, Gómez y Gómez Y. Release study and inhibitory activity of thyme essential oil-loaded chitosan nanoparticles and nanocapsules against foodborne bacteria. Int J Biol Macromol 2017; 103:409-414. [DOI: 10.1016/j.ijbiomac.2017.05.063] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/18/2017] [Accepted: 05/15/2017] [Indexed: 11/29/2022]
|
27
|
Zhao T, He Y, Chen H, Bai Y, Hu W, Zhang L. Novel apigenin-loaded sodium hyaluronate nano-assemblies for targeting tumor cells. Carbohydr Polym 2017; 177:415-423. [PMID: 28962787 DOI: 10.1016/j.carbpol.2017.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 11/18/2022]
Abstract
We aimed to construct a novel nano-assembly carrying apigenin (APG), a hydrophobic drug, and to evaluate its in vitro targeting ability for A549 cells overexpressing CD44 receptors. The apigenin-loaded sodium hyaluronate nano-assemblies (APG/SH-NAs) were assembled by multiple non-covalent interactions between sodium hyaluronate (SH) and APG. The prepared APG/SH-NAs exhibited a small average size and narrow particle size distribution. In addition, satisfactory encapsulation efficiency and drug loading were obtained. The drug release curves indicated that APG/SH-NAs achieved a sustainable drug-release effect due to the presence of hydrophilic materials. The in vitro cytotoxicity of APG/SH-NAs against A549 cells and HepG2 cells was evaluated, and the results indicated that the prepared APG/SH-NA showed higher cytotoxicity compared to apigenin suspensions. When CD44 receptors on the surface of A549 cells were blocked by the addition of excess SH, the cytotoxicity of APG/SH-NA was significantly reduced. However, similar phenomena were not observed in HepG2 cells with relatively low CD44 receptor expression. The resulting APG/SH-NAs could efficiently facilitate the internalization of APG into A549 cells, which might be due to their high affinity for CD44 receptors. Moreover, the apoptotic rate of APG/SH-NAs through receptor-mediated endocytosis mechanism was higher than that of the other groups in A549 cells. Thus, such nano-assemblies were considered to be an effective transport system with excellent affinity for CD44 receptors to allow the SH-mediated targeted delivery of APG.
Collapse
Affiliation(s)
- Ting Zhao
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Yue He
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Huali Chen
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Yan Bai
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Wenjing Hu
- Chongqingshi Shapingba District People's Hospital, Chongqing 400030, PR China
| | - Liangke Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
28
|
Physical properties imparted by genipin to chitosan for tissue regeneration with human stem cells: A review. Int J Biol Macromol 2016; 93:1366-1381. [DOI: 10.1016/j.ijbiomac.2016.03.075] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/28/2016] [Accepted: 03/06/2016] [Indexed: 12/11/2022]
|
29
|
Siripatrawan U, Vitchayakitti W. Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.06.001] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
Karavolos M, Holban A. Nanosized Drug Delivery Systems in Gastrointestinal Targeting: Interactions with Microbiota. Pharmaceuticals (Basel) 2016; 9:E62. [PMID: 27690060 PMCID: PMC5198037 DOI: 10.3390/ph9040062] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022] Open
Abstract
The new age of nanotechnology has signaled a stream of entrepreneurial possibilities in various areas, form industry to medicine. Drug delivery has benefited the most by introducing nanostructured systems in the transport and controlled release of therapeutic molecules at targeted sites associated with a particular disease. As many nanosized particles reach the gastrointestinal tract by various means, their interactions with the molecular components of this highly active niche are intensively investigated. The well-characterized antimicrobial activities of numerous nanoparticles are currently being considered as a reliable and efficient alternative to the eminent world crisis in antimicrobial drug discovery. The interactions of nanosystems present in the gastrointestinal route with host microbiota is unavoidable; hence, a major research initiative is needed to explore the mechanisms and effects of these nanomaterials on microbiota and the impact that microbiota may have in the outcome of therapies entailing drug delivery nanosystems through the gastrointestinal route. These coordinated studies will provide novel techniques to replace or act synergistically with current technologies and help develop new treatments for major diseases via the discovery of unique antimicrobial molecules.
Collapse
Affiliation(s)
| | - Alina Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest 77206, Romania.
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Bucharest 011061, Romania.
| |
Collapse
|
31
|
Santos MRE, Fonseca AC, Mendonça PV, Branco R, Serra AC, Morais PV, Coelho JFJ. Recent Developments in Antimicrobial Polymers: A Review. MATERIALS 2016; 9:ma9070599. [PMID: 28773721 PMCID: PMC5456892 DOI: 10.3390/ma9070599] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/01/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022]
Abstract
Antimicrobial polymers represent a very promising class of therapeutics with unique characteristics for fighting microbial infections. As the classic antibiotics exhibit an increasingly low capacity to effectively act on microorganisms, new solutions must be developed. The importance of this class of materials emerged from the uncontrolled use of antibiotics, which led to the advent of multidrug-resistant microbes, being nowadays one of the most serious public health problems. This review presents a critical discussion of the latest developments involving the use of different classes of antimicrobial polymers. The synthesis pathways used to afford macromolecules with antimicrobial properties, as well as the relationship between the structure and performance of these materials are discussed.
Collapse
Affiliation(s)
- Madson R E Santos
- CEMUC, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal.
| | - Ana C Fonseca
- CEMUC, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal.
| | - Patrícia V Mendonça
- CEMUC, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal.
| | - Rita Branco
- CEMUC, Department of Life Sciences, University of Coimbra, Coimbra 3001-401, Portugal.
| | - Arménio C Serra
- CEMUC, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal.
| | - Paula V Morais
- CEMUC, Department of Life Sciences, University of Coimbra, Coimbra 3001-401, Portugal.
| | - Jorge F J Coelho
- CEMUC, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal.
| |
Collapse
|
32
|
|
33
|
Chemical Characterization and in Vitro Antibacterial Activity of Myrcianthes hallii (O. Berg) McVaugh (Myrtaceae), a Traditional Plant Growing in Ecuador. MATERIALS 2016; 9:ma9060454. [PMID: 28773577 PMCID: PMC5456788 DOI: 10.3390/ma9060454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 01/26/2023]
Abstract
Myrcianthes hallii (O. Berg) McVaugh (Myrtaceae) is a plant native to Ecuador, traditionally used for its antiseptic properties. The composition of the hydro-methanolic extract of this plant was determined by submitting it to ultra-high performance liquid chromatography (UHPLC) hyphenated to heated-electrospray ionization mass spectrometry and UV detection. The presence of antimicrobial components prompted us to test the extract against methicillin-resistant and methicillin-susceptible Staphylococcus aureus, multidrug-resistant and susceptible Escherichia coli, Pseudomonas aeruginosa, Enterococcus spp. and Streptococcus pyogenes strains. The chromatographic analysis led to the identification of 38 compounds, including polyphenols and organic acids, and represents the first chemical characterization of this plant. The extract showed modest antibacterial activity against all tested bacteria, with the exception of E. coli which was found to be less sensitive. Whilst methicillin-resistant strains usually display resistance to several drugs, no relevant differences were observed between methicillin-susceptible and resistant strains. Considering its long-standing use in folk medicine, which suggests the relative safety of the plant, and the presence of many known antibacterial polyphenolic compounds responsible for its antibacterial activity, the results show that M. hallii extract could be used as a potential new antiseptic agent. Moreover, new anti-infective biomaterials and nanomaterials could be designed through the incorporation of M. hallii polyphenols. This prospective biomedical application is also discussed.
Collapse
|