1
|
Li X, Hu S, Yu Z, He F, Zhao X, Liu R. New Evidence for the Mechanisms of Nanoplastics Amplifying Cadmium Cytotoxicity: Trojan Horse Effect, Inflammatory Response, and Calcium Imbalance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40350783 DOI: 10.1021/acs.est.5c01254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Nanoplastics (NPs) are emerging pollutants worldwide. Particularly worrisome is that although studies have reported that NPs can amplify the biotoxicity of environmental pollutants, the specific mechanism remains unclear. Here, we found that NPs, even without significant toxicity (cell survival: 99.11%), amplified the hepatocyte toxicity of Cd2+. Mechanistically, higher Cd2+ uptake (Δ = 23.80%) combined with crucial intracellular desorption behavior of Cd2+ loaded in NPs (desorption rate: 82.70%) were identified as prerequisites for NPs amplifying Cd2+ cytotoxicity. As for toxigenic pathways, the inflammatory response and calcium (Ca) signaling pathway were identified as the primary molecular events leading to the amplification of Cd2+ cytotoxicity. Further phenotypic monitoring revealed that NPs synergized with Cd2+ to induce more severe pyroptosis and apoptosis by activating the inflammatory caspase-1-dependent and Ca2+-mitochondrial-caspase-3 pathways to a greater extent, respectively. This study reveals and proves for the first time the "Trojan horse" effects of NPs, thus elucidating the actual mechanisms by which NPs act as toxicity amplifiers of pollutants, providing significant insights into accurate risk assessment of NPs in composite pollution.
Collapse
Affiliation(s)
- Xiangxiang Li
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, China
| | - Shaoyang Hu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, China
| | - Zelian Yu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, China
| | - Falin He
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, China
| | - Xingchen Zhao
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, China
| | - Rutao Liu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, China
| |
Collapse
|
2
|
Wang J, Zhang H, Wang N, Mo H, Yang Z, Dong Y, Liu Q, Huang X, Han B. Synthesis of Polymer Sodium Alginate-Red Mud Adsorbent and Its Application in the Removal of Low-Concentration Fluoride. Polymers (Basel) 2025; 17:826. [PMID: 40292684 PMCID: PMC11945128 DOI: 10.3390/polym17060826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
The sustainable management of industrial byproducts represents a critical challenge for the aluminum industry. This study developed a cost-effective adsorbent (SA@RM) derived from sodium alginate and red mud for fluoride removal, addressing both solid waste utilization and water purification needs. Systematic adsorption experiments revealed optimal performance under conditions of 15 g/L dosage and pH 5, achieving adsorption equilibrium within 40 min for initial fluoride concentrations of 11.7 mg/L. Notably, the adsorbent demonstrated exceptional cyclic stability, maintaining 54.8% adsorption capacity through three regeneration cycles. The adsorption process followed the Langmuir isotherm model (R2 = 0.994) and pseudo-second-order kinetics (R2 = 0.975), indicating monolayer chemisorption as the dominant mechanism. Advanced characterization techniques (SEM-EDS, FT-IR, XPS) elucidated three main mechanisms: fluoride complexation with aluminum oxides, ligand exchange with surface hydroxyl groups, and ion exchange with chloride species. This material achieves 92% fluoride removal while valorizing industrial waste, reducing adsorbent production costs by 60-70% compared to conventional materials. The detailed mechanism analysis provides fundamental insights for designing waste-derived adsorbents, offering a practical solution for sustainable industrial development and water treatment applications.
Collapse
Affiliation(s)
| | - Huali Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (J.W.); (N.W.); (H.M.); (Z.Y.); (Y.D.); (Q.L.); (X.H.); (B.H.)
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Elessawy NA, Alhamzani AG, Almahmoud SAJ, Hsiao BS. Evaluation, optimization study, and life cycle assessment of novel eco-friendly PVA-based nanocomposite hydrogel adsorbents for methylene blue and paracetamol removal. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117123. [PMID: 39353376 DOI: 10.1016/j.ecoenv.2024.117123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
In this study, an eco-friendly and novel hydrogel based on a crosslinked polyvinyl alcohol (PVA), iota carrageenan (IC) and polyvinylpyrrolidone (PVP) scaffold, containing a large amount (10-50 wt%) of nanoscale palm fronds (NPF) as additives, for water purification was demonstrated. A life cycle assessment (LCA) findings on NPF as biomass waste incorporated into PVA_PVP_IC polymer matrix was presented, and the results highlight the necessity of focused actions to reduce environmental impact and support the palm waste utilization in a sustainable manner. The multicomponent nanocomposite hydrogels were examined as adsorbents in a system work in batches for methylene blue (MB) and paracetamol (PCT) removal. The results show that, the presence of NPF, which dispersed in the hydrogel PVA_PVP_IC scaffolds containing both covalent and non-covalent cross-linking bonds, greatly enhanced the MB and PCT adsorption efficiency. A response surface methodology (RSM) model was used to find the best operating parameters of contaminant adsorption, including time, adsorbent dose, and starting concentration of pollutants. By using this statistical model, it was found that the optimal conditions for the adsorption reaction to achieve the complete removal of MB are 66.7 h adsorption time duration, 98.5 mg L-1 starting concentration, and an adsorbent dose of 5.9 mg, while for the complete removal of PCT, it is 57.6 h adsorption time duration, 80 mg L-1 starting concentration, and an adsorbent dose of 6 mg. The reusability of the nanocomposite hydrogels were tested for 5 cycles, all showed high adsorption capacity, indicating the potential for practical application of this nanocomposite hydrogel system. This study indicates that the prepared nanocomposite hydrogel raises the standard used for treatment of wastewater and also gives a solution to protect the environment and mitigate global warming.
Collapse
Affiliation(s)
- Noha A Elessawy
- Computer Based Engineering Applications Department, Informatics Research Institute IRI, Alexandria 21934, Egypt.
| | - Abdulrahman G Alhamzani
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Sondos A J Almahmoud
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York, NY 11790, United States
| |
Collapse
|
4
|
Yin H, Wang B, Zhang M, Zhang F. Adsorption of Pb(II) in water by modified chitosan-based microspheres and the study of mechanism. Int J Biol Macromol 2024; 277:134062. [PMID: 39043287 DOI: 10.1016/j.ijbiomac.2024.134062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/14/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024]
Abstract
In this study, a fresh three-dimensional microsphere adsorbent (CATP@SA3) was successfully synthesized by Attapulgite (ATP) and combining Chitosan (CS), incorporating them into a Sodium alginate (SA) solution, and crosslinking them in a CaCl2 solution. Multiple analyses, including XRD, TGA, FTIR, XPS, SEM-EDS, and BET were utilized to comprehensively characterize the structural makeup of CATP@SA3. These analyses revealed the presence of beneficial functional groups like hydroxyl, amino, and carboxyl groups that enhance the adsorption efficiency in adsorption procedures. CATP@SA3 was evaluated by studying different factors, including material ratio, contact time, dosage, solution pH, Pb(II) concentration, temperature, ionic strength, and aqueous environment. Three adsorption models, including kinetic, isotherm, and thermodynamic, were fitted to the experimental data. The findings demonstrated that the maximum Pb(II) adsorption capacity of CATP@SA3 was 1081.36 mg/g, with a removal rate that exceeded 70 % even after 5 cycles of use. Furthermore, correlation adsorption models revealed that the adsorption process of Pb(II) with CATP@SA3 was driven by a chemical predominantly reaction.
Collapse
Affiliation(s)
- Hang Yin
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Bowen Wang
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Miao Zhang
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Fenge Zhang
- School of Urban Construction, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
5
|
Hamidon TS, Garba ZN, Zango ZU, Hussin MH. Biopolymer-based beads for the adsorptive removal of organic pollutants from wastewater: Current state and future perspectives. Int J Biol Macromol 2024; 269:131759. [PMID: 38679272 DOI: 10.1016/j.ijbiomac.2024.131759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/13/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
Among biopolymer-based adsorbents, composites in the form of beads have shown promising results in terms of high adsorption capacity and ease of separation from the effluents. This review addresses the potential of biopolymer-based beads to remediate wastewaters polluted with emerging organic contaminants, for instance dyes, active pharmaceutical ingredients, pesticides, phenols, oils, polyaromatic hydrocarbons, and polychlorinated biphenyls. High adsorption capacities up to 2541.76 mg g-1 for dyes, 392 mg g-1 for pesticides and phenols, 1890.3 mg g-1 for pharmaceuticals, and 537 g g-1 for oils and organic solvents have been reported. The review also attempted to convey to its readers the significance of wastewater treatment through adsorption by providing an overview on decontamination technologies of organic water contaminants. Various preparation methods of biopolymer-based gel beads and adsorption mechanisms involved in the process of decontamination have been summarized and analyzed. Therefore, we believe there is an urge to discuss the current state of the application of biopolymer-based gel beads for the adsorption of organic pollutants from wastewater and future perspectives in this regard since it is imperative to treat wastewater before releasing into freshwater bodies.
Collapse
Affiliation(s)
- Tuan Sherwyn Hamidon
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | | | - Zakariyya Uba Zango
- Department of Chemistry, Faculty of Science, Al-Qalam University Katsina, Katsina 820101, Nigeria
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
6
|
Lyu J, Chen H, Luo J, Lin S, Yang G, Zhou M, Tao J. Shape memory and hemostatic silk-laponite scaffold for alveolar bone regeneration after tooth extraction trauma. Int J Biol Macromol 2024; 260:129454. [PMID: 38237836 DOI: 10.1016/j.ijbiomac.2024.129454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
Persistent bleeding and the absence of alveolar bone stress following tooth loss can hinder socket healing, complicating future dental implant procedures, and potentially leading to neighboring tooth instability. Therefore, developing materials that promote alveolar bone regeneration and possess both hemostatic and osteogenic properties is crucial for preserving the extraction sites. This study introduces a silk-based laponite composite scaffold material with proficient hemostatic and osteogenic functions, and excellent shape-memory properties for efficient extraction- site filling. In vitro studies research demonstrated that the scaffold's inherent negative charge of the scaffold significantly enhanced blood coagulation and thrombin generation. Moreover, its porous structure and slightly rough inner surface promoted blood cell adhesion and, improved the hemostatic performance. Furthermore, the scaffold facilitated stem cell osteogenic differentiation by activating the TRPM7 channel through the released of magnesium ions. In vivo tests using rat models confirmed its effectiveness in promoting coagulation and mandibular regeneration. Thus, this study proposes a promising approach for post-extraction alveolar bone regenerative repair. The composite scaffold material, with its hemostatic and osteogenic capabilities and shape-memory features, can potentially enhance dental implant success and overall oral health.
Collapse
Affiliation(s)
- Jiaxuan Lyu
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Hongyan Chen
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Jiaxin Luo
- Department of Dental Implantology, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, No. 195 Dongfengwest Road, Guangzhou 510160, China
| | - Sihan Lin
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Guangzheng Yang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Mingliang Zhou
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, No. 639 Zhizaoju Road, Shanghai 200011, China.
| | - Jiang Tao
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, No. 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
7
|
Kumar N, Bose P, Kumar S, Daksh S, Verma YK, Roy BG, Som S, Singh JD, Datta A. Nanoapatite-Loaded κ-Carrageenan/Poly(vinyl alcohol)-Based Injectable Cryogel for Hemostasis and Wound Healing. Biomacromolecules 2024; 25:1228-1245. [PMID: 38235663 DOI: 10.1021/acs.biomac.3c01180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Immediate control of excessive bleeding and prevention of infections are of utmost importance in the management of wounds. Cryogels have emerged as promising materials for the rapid release of medication and achieving hemostasis. However, their quick release properties pose the challenge of exposing patients to high concentrations of drugs. In this study, hybrid nanocomposites were developed to address this issue by combining poly(vinyl alcohol) and κ-carrageenan with whitlockite nanoapatite (WNA) particles and ciprofloxacin, aiming to achieve rapid hemostasis and sustained antibacterial effects. A physically cross-linked cryogel was obtained by subjecting a blend of poly(vinyl alcohol) and κ-carrageenan to successive freezing-thawing cycles, followed by the addition of WNA. Furthermore, ciprofloxacin was introduced into the cryogel matrix for subsequent evaluation of its wound healing properties. The resulting gel system exhibited a 3D microporous structure and demonstrated excellent swelling, low cytotoxicity, and outstanding mechanical properties. These characteristics were evaluated through analytical and rheological experiments. The nanocomposite cryogel with 4% whitlockite showed extended drug release of 71.21 ± 3.5% over 21 days and antibacterial activity with a considerable growth inhibition zone (4.19 ± 3.55 cm). Experiments on a rat model demonstrated a rapid hemostasis property of cryogels within an average of 83 ± 4 s and accelerated the process of wound healing with 96.34% contraction compared to the standard, which exhibited only ∼78% after 14 days. The histopathological analysis revealed that the process of epidermal re-epithelialization took around 14 days following the skin incision. The cryogel loaded with WNAs and ciprofloxacin holds great potential for strategic utilization in wound management applications as an effective material for hemostasis and anti-infection purposes.
Collapse
Affiliation(s)
- Nikhil Kumar
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig SK Mazumdar Marg, Delhi 110054, India
- Department of Chemistry, Indian Institute of Technology, Delhi 110016, India
| | - Pritha Bose
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig SK Mazumdar Marg, Delhi 110054, India
| | - Subodh Kumar
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig SK Mazumdar Marg, Delhi 110054, India
| | - Shivani Daksh
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig SK Mazumdar Marg, Delhi 110054, India
- Department of Chemistry, Indian Institute of Technology, Delhi 110016, India
| | - Yogesh Kumar Verma
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig SK Mazumdar Marg, Delhi 110054, India
| | - Bal G Roy
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig SK Mazumdar Marg, Delhi 110054, India
| | - Swati Som
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig SK Mazumdar Marg, Delhi 110054, India
| | - Jai Deo Singh
- Department of Chemistry, Indian Institute of Technology, Delhi 110016, India
| | - Anupama Datta
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig SK Mazumdar Marg, Delhi 110054, India
| |
Collapse
|
8
|
Lissaneddine A, Aziz K, Ouazzani N, El Achaby M, Haydari I, Mandi L, Aziz F. Continuous treatment of highly concentrated tannery wastewater using novel porous composite beads: Central composite design optimization study. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:513-532. [PMID: 37869602 PMCID: PMC10584791 DOI: 10.1007/s40201-023-00878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 08/27/2023] [Indexed: 10/24/2023]
Abstract
This present study depicts the successful employment of fixed-bed column for total chromium removal from tannery wastewater in dynamic mode using sodium alginate-powdered marble beads (SA-Marble) as adsorbent. The SA-Marble composite beads prepared were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and Brunauer, Emmett and Teller (BET) method. The adsorption process performance of this bio-sorbent was examined in batches and columns for real effluent (tannery wastewater). After 90 min, the total chromium removal efficiency could be kept above 90% in the batch experiment. The adsorption kinetics fit better with the pseudo-second-order model, indicating the chemisorption process and the adsorption capacity of about 67.74 mg g-1 at 293 K (C0 = 7100 mg L-1) was obtained. Additionally, dynamic experiments indicate that the total chromium removal efficiency could be maintained above 90% after 120 min at 293 K and 60 min at 318 and 333 K; it's an endothermic but rapid process. The effects of two adsorption variables (Temperature and time) were investigated using central composite design (CCD), which is a subset of response surface methodology (total Cr, COD, sulfate, and total phosphorus percentage removal). This work paves a new avenue for synthesizing SA-Marble composite beads and provides an adsorption efficiency of total chromium removal from tannery wastewater. Graphical abstract
Collapse
Affiliation(s)
- Amina Lissaneddine
- National Center for Research and Studies On Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000 Marrakech, Morocco
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000 Marrakech, Morocco
| | - Khalid Aziz
- Department of Analytical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Puerto Real, Cadiz, 11510 Spain
| | - Naaila Ouazzani
- National Center for Research and Studies On Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000 Marrakech, Morocco
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000 Marrakech, Morocco
| | - Mounir El Achaby
- Materials Science and Nano-Engineering (MSN) Department, VI Mohammed Polytechnic University (UM6P), Lot 660 – Hay Moulay Rachid, Benguerir, 43150 Morocco
| | - Imane Haydari
- National Center for Research and Studies On Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000 Marrakech, Morocco
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000 Marrakech, Morocco
| | - Laila Mandi
- National Center for Research and Studies On Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000 Marrakech, Morocco
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000 Marrakech, Morocco
| | - Faissal Aziz
- National Center for Research and Studies On Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000 Marrakech, Morocco
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000 Marrakech, Morocco
| |
Collapse
|
9
|
Song J, Zhang S, Du L, Gao C, Xie L, Shi Y, Su L, Ma Y, Ren S. Synthesis, characterization and application of oligomeric proanthocyanidin-rich dual network hydrogels. Sci Rep 2023; 13:17754. [PMID: 37853007 PMCID: PMC10584812 DOI: 10.1038/s41598-023-42921-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/16/2023] [Indexed: 10/20/2023] Open
Abstract
A structurally dense hydrogel, with strong hydrogen bonding networks, was formed from poly(vinyl alcohol), sodium alginate, and oligomeric proanthocyanidins, using a combination of freeze-thaw cycles and calcium ion cross-linking. The structure of the hydrogel was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. Mechanical testing and thermogravimetric analysis showed that incorporation of proanthocyanidins enhanced both the mechanical properties and the thermal stability of the hydrogel. The hydrogel was also demonstrated to have excellent ultraviolet resistance and antioxidant properties. The hydrogel was further shown that this hydrogel is also capable of generating electrochemical reactions, which strongly suggests that this hydrogel has exciting potential in many fields.
Collapse
Affiliation(s)
- Jie Song
- Key Laboratory of Bio-Based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China
- College of Material Science and Engineering, Northeast Forestry University, Harbin, People's Republic of China, 150040
| | - Shuyu Zhang
- Key Laboratory of Bio-Based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China
- College of Material Science and Engineering, Northeast Forestry University, Harbin, People's Republic of China, 150040
| | - Liuping Du
- Key Laboratory of Bio-Based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China
- College of Material Science and Engineering, Northeast Forestry University, Harbin, People's Republic of China, 150040
| | - Chong Gao
- College of Material Science and Engineering, Northeast Forestry University, Harbin, People's Republic of China, 150040
| | - Longyue Xie
- College of Material Science and Engineering, Northeast Forestry University, Harbin, People's Republic of China, 150040
| | - Yu Shi
- College of Engineering and Technology, Northeast Forestry University, Harbin, People's Republic of China, 150040
| | - Ling Su
- Yantai Vocational College, Yantai City, People's Republic of China, 264670.
| | - Yanli Ma
- Key Laboratory of Bio-Based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China
- College of Material Science and Engineering, Northeast Forestry University, Harbin, People's Republic of China, 150040
| | - Shixue Ren
- Key Laboratory of Bio-Based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China.
- College of Material Science and Engineering, Northeast Forestry University, Harbin, People's Republic of China, 150040.
| |
Collapse
|
10
|
Ramirez CAB, Mathews PD, Madrid RRM, Garcia ITS, Rigoni VLS, Mertins O. Antibacterial polypeptide-bioparticle for oral administration: Powder formulation, palatability and in vivo toxicity approach. BIOMATERIALS ADVANCES 2023; 153:213525. [PMID: 37352744 DOI: 10.1016/j.bioadv.2023.213525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
The upsurge of bacterial resistance to conventional antibiotics turned a well-recognized public health threat. The need of developing new biomaterials of effective practical use in order to tackle bacterial resistance became urgent. In this study, a submicrometric bioparticle of known antibacterial activity was produced in powder form with suitable texture and appealing characteristics for effective oral administration. Through complex coacervating a natural-source antimicrobial polypeptide with chitosan-N-arginine and alginate, the bioactive polypeptide was physically incorporated to the bioparticle whose structure positively responds to the pH variations found in gastrointestinal tract. The powder formulation presented high palatability that was evaluated using fish as in vivo animal model. A thorough survey of the fish intestinal tissues, following a systematic oral administration, revealed high penetration potential of the biomaterial through epithelial cells and deeper intestine layers. Despite, no cytotoxic effect was observed in analyzing the tissues through different histology methods. The absence of intestinal damage was corroborated by immune histochemistry, being the integrity of epithelial motor myosin Vb and related traffic proteins preserved. Hematology further endorsed absence of toxicity in blood cells whose morphology was evaluated in detail. The study evidenced the applicability potential of a new biomaterial of appealing and safe oral administration of antibacterial polypeptide.
Collapse
Affiliation(s)
- Carlos A B Ramirez
- Laboratory of Nano Bio Materials, Department of Biophysics, Paulista Medical Scholl, Federal University of Sao Paulo, 04023-062 Sao Paulo, Brazil
| | - Patrick D Mathews
- Laboratory of Nano Bio Materials, Department of Biophysics, Paulista Medical Scholl, Federal University of Sao Paulo, 04023-062 Sao Paulo, Brazil; Muséum National d'Histoire Naturelle, Sorbonne Université, CP26, 75231 Paris, France.
| | - Rafael R M Madrid
- Laboratory of Nano Bio Materials, Department of Biophysics, Paulista Medical Scholl, Federal University of Sao Paulo, 04023-062 Sao Paulo, Brazil
| | - Irene T S Garcia
- Department of Physical-Chemistry, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
| | - Vera L S Rigoni
- Laboratory of Nano Bio Materials, Department of Biophysics, Paulista Medical Scholl, Federal University of Sao Paulo, 04023-062 Sao Paulo, Brazil
| | - Omar Mertins
- Laboratory of Nano Bio Materials, Department of Biophysics, Paulista Medical Scholl, Federal University of Sao Paulo, 04023-062 Sao Paulo, Brazil.
| |
Collapse
|
11
|
Fathi R, Mohammadi R. Preparation of pH-responsive magnetic nanocomposite hydrogels based on k-carrageenan/chitosan/silver nanoparticles: Antibacterial carrier for potential targeted anticancer drug delivery. Int J Biol Macromol 2023; 246:125546. [PMID: 37355059 DOI: 10.1016/j.ijbiomac.2023.125546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/21/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
This study reports the development of new pH-responsive drug delivery systems that are important for the treatment of cancer. The Mentha plant extract was obtained and then used for the biosynthesis of magnetic Ag bio nanoparticles (M-Ag bio-NPs). They were added in the formulation of hybrid hydrogel of k-carrageenan (k-Cr) and chitosan (CS) toward the synthesis of magnetic nanocomposite hydrogels. Their chemical structure and morphology were characterized by different analyses. Doxorubicin (DOX) was used as a model anticancer drug to study the targeted drug release behavior of the synthesized nanocomposite hydrogels (loading capacity: about 98 %). In vitro drug release studies showed that the release profile was noticeably controlled in a pH-dependent manner (higher drug release at pH 5). The antibacterial assessment confirmed the high antibacterial activity for the synthesized hydrogel against S. aureus (MIC values 39.06 μg/mL) and E. coli (MIC values > 19.53). In-vitro cytotoxicity results (MTT assay) demonstrated good biocompatibility (higher than 88 %) for the blank nanocomposite hydrogels, while DOX-loaded nanocomposite hydrogels showed high toxicity (about 22 % in the concentration of 20 μg/mL) against HeLa cells. The results showed that the present nanocomposite hydrogels can be suggested for potential application as an antibacterial and anticancer carrier.
Collapse
Affiliation(s)
- Roghayeh Fathi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
12
|
Ahmaruzzaman M, Roy P, Bonilla-Petriciolet A, Badawi M, Ganachari SV, Shetti NP, Aminabhavi TM. Polymeric hydrogels-based materials for wastewater treatment. CHEMOSPHERE 2023; 331:138743. [PMID: 37105310 DOI: 10.1016/j.chemosphere.2023.138743] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
Low-cost and reliable wastewater treatment is a relevant issue worldwide to reduce the concentration of environmental pollutants. Industrial effluents containing dyes, heavy metals, and other inorganic and organic compounds can pollute water resources; therefore, novel technologies are required to mitigate and control their release into the environment. Adsorption is one of the simplest methods for treating contaminated water in which a wide spectrum of adsorbents can be used to remove emerging compounds. Hydrogels are interesting materials with high adsorption capacities that can be synthesized via green routes. These adsorbents are promising for large-scale industrial wastewater treatment applications; however, gaps still exist in achieving sustainable commercial implementation. This review focuses on the discussion and analysis of preparation, characterization, and adsorption properties of hydrogels for water purification. The advantages of these polymeric materials for water treatment were analyzed, including their performance in the removal of different organic and inorganic contaminants. Recent advances in the functionalization of hydrogels and the synthesis of novel composites have also been described. The adsorption capacities of hydrogel-based adsorbents are higher than 500 mg/g for different organic and inorganic pollutants, and can reach values of up to >2000 mg/g for organic compounds, significantly outperforming other materials reported for water cleaning. The main interactions involved in the adsorption of water pollutants using hydrogel-based adsorbents were described and explained to allow the interpretation of their removal mechanisms. The current challenges in the implementation of hydrogels for water purification in real-life operations are also highlighted. This review provides an updated picture of hydrogels as interesting materials to address water depollution worldwide.
Collapse
Affiliation(s)
- Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India.
| | - Prerona Roy
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India
| | | | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine, Nancy, France
| | - Sharanabasava V Ganachari
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India.
| |
Collapse
|
13
|
Hingrajiya RD, Patel MP. Fe 3O 4 modified chitosan based co-polymeric magnetic composite hydrogel: Synthesis, characterization and evaluation for the removal of methylene blue from aqueous solutions. Int J Biol Macromol 2023:125251. [PMID: 37307972 DOI: 10.1016/j.ijbiomac.2023.125251] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
The present research comprises the fabrication of magnetic Fe3O4 incorporated chitosan grafted acrylamide and N-vinylimidazole composite hydrogels (CANFe-1 to CANFe-7) via water mediated free radical polymerization technique using ammonium persulfate/tetramethyl ethylenediamine as initiator. The prepared magnetic composite hydrogel was characterized by FT-IR, TGA, SEM, XRD, and VSM analysis. A swelling study was performed to understand the swelling behavior and found CANFe-4 to be more efficient with maximum swelling hence entire removal studies were performed with CANFe-4. pHPZC analysis was performed to determine pH sensitive adsorptive removal of cationic dye (methylene blue). pH dependent adsorption of methylene blue was dominant at pH = 8 with a maximum adsorption capacity of 860 mg/g. After the adsorptive removal of methylene blue from aqueous media, a composite hydrogel can conveniently be separated from the solution with the use of an external magnet. Adsorption of methylene blue is well explained with the Langmuir adsorption isotherm and Pseudo-Second-Order kinetic model that validates chemisorption. Moreover, it was found that CANFe-4 could be frequently applied for the adsorptive removal of methylene blue for 5 consecutive adsorption-desorption cycles with 92.4 % removal efficiency. Hence, CANFe-4 offers a promising recyclable, sustainable, robust, and efficient adsorbent for wastewater treatment.
Collapse
Affiliation(s)
- Roshni D Hingrajiya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar 388120, Gujarat, India
| | - Manish P Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar 388120, Gujarat, India.
| |
Collapse
|
14
|
Keshavarz M, Alizadeh P, Kadumudi FB, Orive G, Gaharwar AK, Castilho M, Golafshan N, Dolatshahi-Pirouz A. Multi-leveled Nanosilicate Implants Can Facilitate Near-Perfect Bone Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21476-21495. [PMID: 37073785 PMCID: PMC10165608 DOI: 10.1021/acsami.3c01717] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Several studies have shown that nanosilicate-reinforced scaffolds are suitable for bone regeneration. However, hydrogels are inherently too soft for load-bearing bone defects of critical sizes, and hard scaffolds typically do not provide a suitable three-dimensional (3D) microenvironment for cells to thrive, grow, and differentiate naturally. In this study, we bypass these long-standing challenges by fabricating a cell-free multi-level implant consisting of a porous and hard bone-like framework capable of providing load-bearing support and a softer native-like phase that has been reinforced with nanosilicates. The system was tested with rat bone marrow mesenchymal stem cells in vitro and as a cell-free system in a critical-sized rat bone defect. Overall, our combinatorial and multi-level implant design displayed remarkable osteoconductivity in vitro without differentiation factors, expressing significant levels of osteogenic markers compared to unmodified groups. Moreover, after 8 weeks of implantation, histological and immunohistochemical assays indicated that the cell-free scaffolds enhanced bone repair up to approximately 84% following a near-complete defect healing. Overall, our results suggest that the proposed nanosilicate bioceramic implant could herald a new age in the field of orthopedics.
Collapse
Affiliation(s)
- Mozhgan Keshavarz
- Department
of Materials Science and Engineering, Faculty of Engineering &
Technology, Tarbiat Modares University, P.O. Box 14115-143, Tehran 14115-143, Iran
- NanoBioCel
Research Group, School of Pharmacy, University
of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
| | - Parvin Alizadeh
- Department
of Materials Science and Engineering, Faculty of Engineering &
Technology, Tarbiat Modares University, P.O. Box 14115-143, Tehran 14115-143, Iran
| | - Firoz Babu Kadumudi
- DTU
Health Tech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Gorka Orive
- NanoBioCel
Research Group, School of Pharmacy, University
of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Biomedical
Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
- University
Institute for Regenerative Medicine and Oral Implantology—UIRMI
(UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz 01006, Spain
- Bioaraba,
NanoBioCel Research Group, Vitoria-Gasteiz 01006, Spain
| | - Akhilesh K. Gaharwar
- Department
of Biomedical Engineering, College of Engineering, Texas A&M University, College
Station, Texas TX 77843, United States
| | - Miguel Castilho
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612 AE, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5612 AE, The Netherlands
- Department
of Orthopedics, University Medical Center
Utrecht, Utrecht University, Utrecht 3508 GA, The Netherlands
| | - Nasim Golafshan
- Department
of Orthopedics, University Medical Center
Utrecht, Utrecht University, Utrecht 3508 GA, The Netherlands
| | - Alireza Dolatshahi-Pirouz
- DTU
Health Tech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
15
|
Suner SS, Sahiner M, Umut E, Ayyala RS, Sahiner N. Physically Crosslinked Chondroitin Sulfate (CS)-Metal Ion (M: Fe(III), Gd(III), Zn(II), and Cu(II)) Particles for Versatile Applications and Their Biosafety. Pharmaceuticals (Basel) 2023; 16:ph16040483. [PMID: 37111240 PMCID: PMC10144968 DOI: 10.3390/ph16040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Chondroitin sulfate (CS), a well-known glycosaminoglycan, was physically crosslinked with Fe(III), Gd(III), Zn(II), and Cu(II) ions to obtain CS-Fe(III), CS-Gd(III), CS-Zn(II), and CS-Cu(II) polymeric particles for multipurpose biological applications. The CS-metal ion-containing particles in the micrometer to a few hundred nanometer size range are injectable materials for intravenous administration. The CS-metal ion-containing particles are safe biomaterials for biological applications because of their perfect blood compatibility and no significant cytotoxicity on L929 fibroblast cells up to a 10 mg/mL concentration. Furthermore, CS-Zn(II) and CS-Cu(II) particles show excellent antibacterial susceptibility, with 2.5-5.0 mg/mL minimum inhibition concentration (MIC) values against Escherichia coli and Staphylococcus aureus. Moreover, the in vitro contrast enhancement abilities of aqueous CS-metal ion particle suspensions in magnetic resonance imaging (MRI) were determined by obtaining T1- and T2-weighted MR images using a 0.5 Tesla MRI scanner and by calculating the water proton relaxivities. Therefore, these CS-Fe(III), CS-Gd(III), CS-Zn(II), and CS-Cu(II) particles have significant potential as antibacterial additive materials and MRI contrast enhancement agents with less toxicity.
Collapse
Affiliation(s)
- Selin S Suner
- Department of Chemistry, Nanoscience and Technology Research and Application Center, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey
| | - Mehtap Sahiner
- Department of Bioengineering, Engineering Faculty, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey
| | - Evrim Umut
- Department of Medical Imaging Techniques, School of Healthcare, Dokuz Eylul University, 35330 Izmir, Turkey
- Bioİzmir-Izmir Health Technologies Development and Accelerator Research and Application Center, Dokuz Eylul University, 35330 Izmir, Turkey
| | - Ramesh S Ayyala
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs B. Downs Blv, MDC 21, Tampa, FL 33612, USA
| | - Nurettin Sahiner
- Department of Chemistry, Nanoscience and Technology Research and Application Center, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs B. Downs Blv, MDC 21, Tampa, FL 33612, USA
- Department of Chemical and Biomolecular Engineering, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
16
|
Li J, Zhang J, Wang Q, Fu X, Deng G. Preparation, characterization, and adsorption kinetics of methylene blue dye in sodium alginate hydrogel with improved stability. Colloid Polym Sci 2023. [DOI: 10.1007/s00396-023-05072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
17
|
Papagiannopoulos A, Nikolakis SP, Pamvouxoglou A, Koutsopoulou E. Physicochemical properties of electrostatically crosslinked carrageenan/chitosan hydrogels and carrageenan/chitosan/Laponite nanocomposite hydrogels. Int J Biol Macromol 2023; 225:565-573. [PMID: 36410537 DOI: 10.1016/j.ijbiomac.2022.11.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
In this work physical carrageenan/chitosan (Car/Chit) hydrogels are prepared by electrostatic complexation between the two oppositely charged polysaccharides. The hydrogels have storage moduli in the order of 5-10 kPa and swelling ratios in the order of 5000-6000 %. At conditions where both polysaccharides are highly charged (pH 5) the swelling ratios are lower than the ones at conditions of lower dissociation i.e., at pH 2 and 7 and the opposite trend is found for the storage modulus. Chit appears to act as a crosslinker for Car as increasing its concentration the swelling ratio decreases and the moduli increase. The hydrogels can incorporate the nanoclay Laponite (Lap) and form hybrid nanocomposites where the intercalation by the two biopolymers leads to exfoliation of the clay nanoplatelets in the presence of both Car and Chit. The composite hydrogels retain the mechanical properties of the Car/Chit hydrogels at the studied pH range (pH 2 to pH 7). This shows the prepared hydrogels can be potentially used as multifunctional biomaterials for drug delivery, tissue engineering and bone regeneration applications.
Collapse
Affiliation(s)
- Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Spiridon-Paraskevas Nikolakis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Andreas Pamvouxoglou
- Experimental Soft Matter Group, Condensed Matter Physics Laboratory (IPKM), Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Eleni Koutsopoulou
- Technical University of Crete, Department of Mineral Resources Engineering, GR-73100 Chania, Greece; Hellenic Survey of Geology and Mineral Exploration (HSGME), 13677 Acharnes, Greece
| |
Collapse
|
18
|
Meng Q, Cao Y, Ma S, Wang M, Niu H, Jiang W, Teng Q, Jia N. Waste organic acid treatment with polyethyleneimine grafted polystyrene resin. J Appl Polym Sci 2022. [DOI: 10.1002/app.53433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Qi Meng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering Changzhou University Changzhou China
| | - Yiwen Cao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering Changzhou University Changzhou China
| | - Shufeng Ma
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering Changzhou University Changzhou China
| | - Meiling Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering Changzhou University Changzhou China
| | - Hao Niu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering Changzhou University Changzhou China
| | - Weihua Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering Changzhou University Changzhou China
| | - Qiaoqiao Teng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering Changzhou University Changzhou China
| | - Ninghong Jia
- State Key Laboratory of Enhanced Oil Recovery Research Institute of Petroleum Exploration & Development Beijing China
| |
Collapse
|
19
|
Parvini E, Hajalilou A, Lopes PA, Tiago MSM, de Almeida AT, Tavakoli M. Triple crosslinking conductive hydrogels with digitally printable and outstanding mechanical stability for high-resolution conformable bioelectronics. SOFT MATTER 2022; 18:8486-8503. [PMID: 36321471 DOI: 10.1039/d2sm01103d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Soft, conductive, and stretchable hydrogels offer a broad variety of applications, including skin-interfacing electrodes, biomonitoring patches, and electrostimulation. Despite rapid developments over the last decades, a combination of good electrical and mechanical properties, low-cost fabrication, and biocompatibility is yet to be demonstrated. Also, the current methods for deposition and patterning of these hydrogels are manual, and there is a need toward autonomous and digital fabrication techniques. In this work, we demonstrate a novel Gallium (Ga) embedded sodium-alginate-polyacrylamide-LAPONITE® (Ga-SA-PAAM-La) hydrogel, that is ultra-stretchable (Maximum strain tolerance of∼985%), tough (toughness ∼30 kJ m-3), bio-adhesive (adhesion energy ∼216 J m-2), conductive, and digitally printable. Ga nanoparticles are used as radical initiators. By adjusting the sonication parameters, we control the solution viscosity and curing time, thus allowing us to prepare pre-polymers with the desired properties for casting, or digital printing. These hydrogels benefit from a triple-network structure due to the role of Ga droplets as crosslinkers besides BIS (N,N'-methylene-bis-acrylamide) and LAPONITE®, thus resulting in tough composite hydrogels. The inclusion of LAPONITE® into the hydrogel network improved its electrical conductivity, adhesion, digital printability, and its mechanical properties, (>6× compared to the same hydrogel without LAPONITE®). As electrodes in the electrocardiogram, the signal-to-noise ratio was surprisingly higher than the medical-grade Ag/AgCl electrodes, which are applied for monitoring muscles, heart, respiration, and body joint angle through EMG, ECG, and bioimpedance measurements. The results obtained prove that such digitally printed conductive and tough hydrogels can be used as potential electrodes and sensors in practical applications in the next generation of printed wearable computing devices.
Collapse
Affiliation(s)
- Elahe Parvini
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| | - Abdollah Hajalilou
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| | - Pedro Alhais Lopes
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| | - Miguel Soares Maranha Tiago
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| | - Anibal T de Almeida
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| | - Mahmoud Tavakoli
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| |
Collapse
|
20
|
Modification of the crosslinked hyperbranched polyamide-amines by thiourea and its selective adsorption for Cu (II). Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04433-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Enhanced adsorption of crystal violet from aqueous solution by polyethyleneimine-modified magnetic hydrogel nanocomposites. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
22
|
Bai J, Navara AM, Zhao L, Song Y, Yang X, Lian X, Mikos AG. Harnessing electrostatic interactions for enhanced printability of alginate-based bioinks. BIOPRINTING 2022; 27:e00215. [DOI: 10.1016/j.bprint.2022.e00215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Huang C, Luo Q, Miao Q, He Z, Fan P, Chen Y, Zhang Q, He X, Li L, Liu X. MXene-based double-network organohydrogel with excellent stretchability, high toughness, anti-drying and wide sensing linearity for strain sensor. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Shahabivand S, Mortazavi SS, Mahdavinia GR, Darvishi F. Phenol biodegradation by immobilized Rhodococcus qingshengii isolated from coking effluent on Na-alginate and magnetic chitosan-alginate nanocomposite. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114586. [PMID: 35085972 DOI: 10.1016/j.jenvman.2022.114586] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/02/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Phenol is a hazardous organic solvent to living organisms, even in its small amounts. In order to bioremediation of phenol from aqueous solution, a novel bacterial strain was isolated from coking wastewater, identified as Rhodococcus qingshengii based on 16S rRNA sequence analysis and named as strain Sahand110. The phenol-biodegrading capabilities of the free and immobilized cells of Sahand110 on the beads of Na-alginate (NA) and magnetic chitosan-alginate (MCA) nanocomposite were evaluated under different initial phenol concentrations (200, 400, 600, 800 and 1000 mg/L). Results illustrated that Sahand110 was able to grow and complete degrade phenol up to 600 mg/L, as the sole carbon and energy source. Immobilized cells of Sahand110 on NA and MCA were more competent than its free cells in degradation of high phenol concentrations, 100% of 1000 mg/L phenol within 96 h, indicating the improved tolerance and performance of the immobilized cells against phenol toxicity. Therefore, the immobilized Sahand110 on the studied beads, especially MCA bead regarding its suitable properties, has significant potential to enhanced bioremediation of phenol-rich wastewaters.
Collapse
Affiliation(s)
- Saleh Shahabivand
- Department of Biology, Faculty of Science, University of Maragheh, Maragheh, Iran.
| | | | | | - Farshad Darvishi
- Department of Biology, Faculty of Science, University of Maragheh, Maragheh, Iran; Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
25
|
Swelling, Protein Adsorption, and Biocompatibility In Vitro of Gel Beads Prepared from Pectin of Hogweed Heracleum sosnówskyi Manden in Comparison with Gel Beads from Apple Pectin. Int J Mol Sci 2022; 23:ijms23063388. [PMID: 35328806 PMCID: PMC8954847 DOI: 10.3390/ijms23063388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
The study aims to develop gel beads with improved functional properties and biocompatibility from hogweed (HS) pectin. HS4 and AP4 gel beads were prepared from the HS pectin and apple pectin (AP) using gelling with calcium ions. HS4 and AP4 gel beads swelled in PBS in dependence on pH. The swelling degree of HS4 and AP4 gel beads was 191 and 136%, respectively, in PBS at pH 7.4. The hardness of HS4 and AP4 gel beads reduced 8.2 and 60 times, respectively, compared with the initial value after 24 h incubation. Both pectin gel beads swelled less in Hanks’ solution than in PBS and swelled less in Hanks’ solution containing peritoneal macrophages than in cell-free Hanks’ solution. Serum protein adsorption by HS4 and AP4 gel beads was 118 ± 44 and 196 ± 68 μg/cm2 after 24 h of incubation. Both pectin gel beads demonstrated low rates of hemolysis and complement activation. However, HS4 gel beads inhibited the LPS-stimulated secretion of TNF-α and the expression of TLR4 and NF-κB by macrophages, whereas AP4 gel beads stimulated the inflammatory response of macrophages. HS4 gel beads adsorbed 1.3 times more LPS and adhered to 1.6 times more macrophages than AP4 gel beads. Thus, HS pectin gel has advantages over AP gel concerning swelling behavior, protein adsorption, and biocompatibility.
Collapse
|
26
|
Yu C, Li H, Ma H, Zhang L, Li Y, Lin Q. Characteristics and mechanism of Cu(II) adsorption on prepared calcium alginate/carboxymethyl cellulose@MnFe2O4. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03555-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
27
|
Kumar A, Sood A, Han SS. Poly (vinyl alcohol)-alginate as potential matrix for various applications: A focused review. Carbohydr Polym 2022; 277:118881. [PMID: 34893284 DOI: 10.1016/j.carbpol.2021.118881] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/23/2021] [Accepted: 11/08/2021] [Indexed: 02/08/2023]
Abstract
Advances in polymers have made significant contribution in diverse application oriented fields. Multidisciplinary applicability of polymers generates a range of strategies, which is pertinent in a wide range of fields. Blends of natural and synthetic polymers have spawned a different class of materials with synergistic effects. Specifically, poly (vinyl alcohol) (PVA) and alginate (AG) blends (PVAG) have demonstrated some promising results in almost every segment, ranging from biomedical to industrial sector. Combination of PVAG with other materials, immobilization with specific moieties and physical and chemical crosslinking could result in amendments in the structure and properties of the PVAG matrices. Here, we provide an overview of the recent developments in designing PVAG based matrix and complexes with their structural and functional properties. The article also provides a comprehensive outline on the applicability of PVAG matrix in wastewater treatment, biomedical, photocatalysis, food packaging, and fuel cells and sheds light on the challenges that need to be addressed. Finally, the review elaborates the future prospective of PVAG matrices in other unexplored fields like aircraft industry, nuclear science and space exploration.
Collapse
Affiliation(s)
- Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
28
|
Characterization and Biocompatibility Properties In Vitro of Gel Beads Based on the Pectin and κ-Carrageenan. Mar Drugs 2022; 20:md20020094. [PMID: 35200624 PMCID: PMC8878971 DOI: 10.3390/md20020094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/23/2022] Open
Abstract
This study aimed to investigate the influence of kappa (κ)-carrageenan on the initial stages of the foreign body response against pectin gel. Pectin-carrageenan (P-Car) gel beads were prepared from the apple pectin and κ-carrageenan using gelling with calcium ions. The inclusion of 0.5% κ-carrageenan (Car0.5) in the 1.5 (P1.5) and 2% pectin (P2) gel formulations decreased the gel strength by 2.5 times. Car0.5 was found to increase the swelling of P2 gel beads in the cell culture medium. P2 gel beads adsorbed 30–42 mg/g of bovine serum albumin (BSA) depending on pH. P2-Car0.2, P2-Car0.5, and P1.5-Car0.5 beads reduced BSA adsorption by 3.1, 5.2, and 4.0 times compared to P2 beads, respectively, at pH 7. The P1.5-Car0.5 beads activated complement and induced the haemolysis less than gel beads of pure pectin. Moreover, P1.5-Car0.5 gel beads allowed less adhesion of mouse peritoneal macrophages, TNF-α production, and NF-κB activation than the pure pectin gel beads. There were no differences in TLR4 and ICAM-1 levels in macrophages treated with P and P-Car gel beads. P2-Car0.5 hydrogel demonstrated lower adhesion to serous membrane than P2 hydrogel. Thus, the data obtained indicate that the inclusion of κ-carrageenan in the apple pectin gel improves its biocompatibility.
Collapse
|
29
|
Liao Q, Rong H, Zhao M, Luo H, Chu Z, Wang R. Strong adsorption properties and mechanism of action with regard to tetracycline adsorption of double-network polyvinyl alcohol-copper alginate gel beads. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126863. [PMID: 34416684 DOI: 10.1016/j.jhazmat.2021.126863] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/31/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
In the present study, glutaraldehyde was used as a hydrophobic modifier to crosslink polyvinyl alcohol (PVA), and copper ion was immobilized by sodium alginate (SA). Polyvinyl alcohol-copper alginate (PVA-CA) gel beads were prepared by a one-step process, and were used to adsorb and remove tetracycline (TC) from an aqueous solution. The beads were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) measurement, X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR). The adsorption experiment showed that the optimal pH value of the beads was 5, and that their adsorption met pseudo-second-order kinetic and Langmuir isothermal models. The adsorption thermodynamics experiment showed that the adsorption process was spontaneous and endothermic. Under optimal adsorption conditions, the maximum adsorption capacity for TC of the beads was 231.431 mg/g, which was much higher than that of a single copper alginate matrix. After 5 adsorption-desorption cycles, the adsorption capacity remained high. FTIR and X-ray photoelectron spectroscopy (XPS) revealed that the cation bonding bridge reaction was the main driving force behind the adsorption mechanism. Compared with other reported adsorption materials, the PVA-CA gel beads have high adsorption capacity, a simple preparation process, and excellent recovery performance.
Collapse
Affiliation(s)
- Quan Liao
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou 510006, China.
| | - Meihua Zhao
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Huayong Luo
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhaorui Chu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Randeng Wang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
30
|
Frias IAM, Vega Gonzales Gil LH, Cordeiro MT, Oliveira MDL, Andrade CAS. Self-Enriching Electrospun Biosensors for Impedimetric Sensing of Zika Virus. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41-48. [PMID: 34932313 DOI: 10.1021/acsami.1c14052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Zika virus (ZIKV) infection is associated with the Guillain-Barré syndrome, and when non-vector congenital transmission occurs, fetal brain abnormalities are expected. After ZIKV infection, the blood, breast milk, and other body fluids contain low viral loads. Their detection is challenging as it requires the processing of larger input volumes of the clinical samples. Pre-enrichment is a valuable strategy to increase the analyte concentration. Therefore, the authors propose the use of a hierarchal composite polyaniline-(electrospun nanofiber) hydrogel mat (ENM) for the simultaneous enrichment and impedimetric sensing of ZIKV viral particles. The electrospinning conditions of polyvinyl alcohol and alginate, including blend formulation, were optimized through a factorial design. Disintegration and gelatinization were controlled via cross-linking to improve the hydrogel properties. Hierarchization was achieved by in situ chemical deposition of conductive polyaniline. The carboxyl groups of the ENM were used for the covalent immobilization of anti-ZIKV polyclonal antibodies used in the specific recognition of ZIKV within the medium of Vero cell culture. The specific capture and desorption of virions were studied at different pHs. ENMs were characterized by scanning electron microscopy and FTIR. Atomic force microscopy along with UV-vis and electrochemical impedance spectroscopies was used to monitor the antibody immobilization, ZIKV capture, and elution processes. Our results show that 14.2 mg (0.25 cm3) of ENM can capture 38.7 ± 2.5 μg of ZIKV with a desorption rate of 99.97% (38.29 ± 2.7 μg ZIKV), which is reusable for at least three times. Therefore, the capture capacity (micrograms of ZIKV captured per milligram of ENM) of polyaniline-hierarchized mats was 2.72 μg ZIKV/mg. The impedance LOD value was determined to be 2.76 μg of ZIKV particles (approximately 6.6 × 103 PFU/mL). As a result, we present a fast small-scale purification system that can simultaneously monitor ZIKV electrochemically and optically.
Collapse
Affiliation(s)
- Isaac A M Frias
- Therapeutic Innovation Program, Federal University of Pernambuco, Recife 50670-901, Brazil
- Biochemistry Department, Federal University of Pernambuco, Recife 50670-901, Brazil
| | | | - Marli T Cordeiro
- Institute Aggeu Magalhães (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife 21040-900, Brazil
| | - Maria D L Oliveira
- Therapeutic Innovation Program, Federal University of Pernambuco, Recife 50670-901, Brazil
- Biochemistry Department, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Cesar A S Andrade
- Therapeutic Innovation Program, Federal University of Pernambuco, Recife 50670-901, Brazil
- Biochemistry Department, Federal University of Pernambuco, Recife 50670-901, Brazil
| |
Collapse
|
31
|
Samoylenko O, Korotych O, Manilo M, Samchenko Y, Shlyakhovenko V, Lebovka N. Biomedical Applications of Laponite®-Based Nanomaterials and Formulations. SPRINGER PROCEEDINGS IN PHYSICS 2022:385-452. [DOI: 10.1007/978-3-030-80924-9_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
32
|
Plant Extract-Strategy Using Teucrium Polium Stems to Green Synthesize Ag/AgCl Bionanocomposite Imprinted on Fe3O4/kaolinite and Potentials in Catalytic and Chemosensor Applications. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
33
|
Zhang MK, Zhang XH, Han GZ. Magnetic alginate/PVA hydrogel microspheres with selective adsorption performance for aromatic compounds. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119547] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Huang X, Lin Y, Li C, Liao M, Li Y, Jing Z. Magnetic Double-Crosslinked Nanocomposite Hydrogel Beads for Methylene Blue Removal. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21350066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Kupikowska-Stobba B, Grzeczkowicz M, Lewińska D. A one-step in vitro continuous flow assessment of protein release from core-shell polymer microcapsules designed for therapeutic protein delivery. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
El hotaby W, Bakr AM, Ibrahim HS, Ammar NS, Hani HA, Mostafa AA. Eco-friendly zeolite/alginate microspheres for Ni ions removal from aqueous solution: Kinetic and isotherm study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Cimen Z, Babadag S, Odabas S, Altuntas S, Demirel G, Demirel GB. Injectable and Self-Healable pH-Responsive Gelatin–PEG/Laponite Hybrid Hydrogels as Long-Acting Implants for Local Cancer Treatment. ACS APPLIED POLYMER MATERIALS 2021; 3:3504-3518. [DOI: 10.1021/acsapm.1c00419] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Zeynep Cimen
- Department of Chemistry, Polatlı Faculty of Arts and Sciences, Ankara Hacı Bayram Veli University, Ankara 06900, Turkey
- Department of Chemistry, Institute of Natural and Applied Sciences, Gazi University, Ankara 06560, Turkey
| | - Sena Babadag
- Biomaterials and Tissue Engineering Laboratory (bteLAB), Department of Chemistry, Faculty of Science, Ankara University, Ankara 06560, Turkey
- Interdisciplinary Research Unit for Advanced Materials (INTRAM), Ankara University, Ankara 06560, Turkey
| | - Sedat Odabas
- Biomaterials and Tissue Engineering Laboratory (bteLAB), Department of Chemistry, Faculty of Science, Ankara University, Ankara 06560, Turkey
- Interdisciplinary Research Unit for Advanced Materials (INTRAM), Ankara University, Ankara 06560, Turkey
| | - Sevde Altuntas
- Tissue Engineering Department, University of Health Sciences Turkey, Istanbul 34662, Turkey
- Experimental Medicine Research and Application Center, Validebag Research
Park, University of Health Sciences, Istanbul 34662, Turkey
| | - Gokhan Demirel
- Department of Chemistry, Faculty of Science, Gazi University, Ankara 06500, Turkey
| | - Gokcen Birlik Demirel
- Department of Chemistry, Polatlı Faculty of Arts and Sciences, Ankara Hacı Bayram Veli University, Ankara 06900, Turkey
| |
Collapse
|
38
|
Li Z, Li Y, Chen C, Cheng Y. Magnetic-responsive hydrogels: From strategic design to biomedical applications. J Control Release 2021; 335:541-556. [PMID: 34097923 DOI: 10.1016/j.jconrel.2021.06.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
Smart hydrogels which can respond to external stimuli have been widely focused with increasing interest. Thereinto, magnetic-responsive hydrogels that are prepared by embedding magnetic nanomaterials into hydrogel networks are more advantageous in biomedical applications due to their rapid magnetic response, precisely temporal and spatial control and non-invasively remote actuation. Upon the application of an external magnetic field, magnetic hydrogels can be actuated to perform multiple response modes such as locomotion, deformation and thermogenesis for therapeutic purposes without the limit of tissue penetration depth. This review summarizes the latest advances of magnetic-responsive hydrogels with focus on biomedical applications. The synthetic methods of magnetic hydrogels are firstly introduced. Then, the roles of different response modes of magnetic hydrogels played in different biomedical applications are emphatically discussed in detail. In the end, the current limitations and future perspectives for magnetic hydrogels are given.
Collapse
Affiliation(s)
- Zhenguang Li
- The Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Yingze Li
- The Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China; Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| | - Yu Cheng
- The Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
39
|
Gang F, Jiang L, Xiao Y, Zhang J, Sun X. Multi‐functional magnetic hydrogel: Design strategies and applications. NANO SELECT 2021. [DOI: 10.1002/nano.202100139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Fangli Gang
- Department of Biology Xinzhou Teachers University Xinzhou Shanxi 034000 China
| | - Le Jiang
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China
- Key Laboratory of Advanced Materials of Ministry of Education of China School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| | - Yi Xiao
- Department of Biology Xinzhou Teachers University Xinzhou Shanxi 034000 China
| | - Jiwen Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Chemistry & Pharmacy Northwest A&F University Yangling Shaanxi 712100 China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China
- Key Laboratory of Advanced Materials of Ministry of Education of China School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
40
|
Wei L, Wang Z, Feng C, Xianyu Y, Chen Y. Direct Transverse Relaxation Time Biosensing Strategy for Detecting Foodborne Pathogens through Enzyme-Mediated Sol-Gel Transition of Hydrogels. Anal Chem 2021; 93:6613-6619. [PMID: 33886309 DOI: 10.1021/acs.analchem.0c03968] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this work, we develop a direct transverse relaxation time (T2) biosensing strategy and employ it for assaying foodborne pathogens relying on the alkaline phosphatase (ALP)-mediated sol-gel transition of hydrogels. ALP can catalyze the reaction to generate an acidic environment to transform the sol-state alginate solution to hydrogel, and this hydrogelation process can directly regulate the diffusion rate of water protons that results in a T2 change of water molecules. By means of enzyme-modulated sol-gel transition and antigen-antibody interactions, this T2 biosensor displays high sensitivity for detecting 50 CFU/mL S. enteritidis within 2 h. This biosensing strategy directly modulates the water molecules rather than magnetic probes in traditional methods, offering a straightforward, novel, and sensitive platform for pathogen detection.
Collapse
Affiliation(s)
- Luyu Wei
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China.,Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Zhilong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China.,Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Caiwei Feng
- Beijing Kwinbon Biotechnology Co., Ltd., Gaoxin 4th Street, Changping District Beijing 100190, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou 310058, Zhejiang, China.,Ningbo Research Institute, Zhejiang University, No. 1 Qianhu South Road, Ningbo 315100, Zhejiang, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China.,Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| |
Collapse
|
41
|
Dai Z, Zhang Y, Chen C, Yu F, Tian J, Cai H, Jiang X, Zhang L, Zhang W. An Antifouling and Antimicrobial Zwitterionic Nanocomposite Hydrogel Dressing for Enhanced Wound Healing. ACS Biomater Sci Eng 2021; 7:1621-1630. [PMID: 33769031 DOI: 10.1021/acsbiomaterials.1c00039] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhaobo Dai
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanhao Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Fan Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Jia Tian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoze Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| | - Liangshun Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Weian Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
42
|
Hydroxyapatite (HA)-based hybrid bionanocomposite hydrogels: Ciprofloxacin delivery, release kinetics and antibacterial activity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
43
|
Novel alginate-cellulose nanofiber-poly(vinyl alcohol) hydrogels for carrying and delivering nitrogen, phosphorus and potassium chemicals. Int J Biol Macromol 2021; 172:330-340. [PMID: 33453256 DOI: 10.1016/j.ijbiomac.2021.01.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/21/2022]
Abstract
Novel nanocomposite hydrogels were successfully prepared by blending and crosslinking sodium alginate (SA), poly(vinyl alcohol) (PVA) and cellulose nanofibers (CNFs) in the presence of a fertilizer formulation containing nitrogen (N), phosphorus (P) and potassium (K). The hydrogels had a macroporous flexible core and a microporous semi- interpenetrating polymer network (IPN) shell. The crystalline nature of the NPK chemicals was retained in the hydrogel nanocomposite network. Furthermore, the SA/CNF/PVA-based hydrogels showed a higher water-retention capacity in both deionized water and mixed soil. The swelling behavior in various physiological pH, salt and alkali solutions exhibited good sensitivity. The NPK release from SA/CNF/NPK and SA/CNF/PVA/NPK hydrogels was controlled by Fickian diffusion in both water and soil based on the Korsmeyer-Peppas release kinetics model (n < 0.5). Therefore, the prepared hydrogels have the potential for applications in drought-prone and/or fertilizer-loss regions for future development of precision agriculture and horticulture.
Collapse
|
44
|
de Lima HHC, da Silva CTP, Kupfer VL, de C Rinaldi J, Kioshima ES, Mandelli D, Guilherme MR, Rinaldi AW. Synthesis of resilient hybrid hydrogels using UiO-66 MOFs and alginate (hydroMOFs) and their effect on mechanical and matter transport properties. Carbohydr Polym 2021; 251:116977. [PMID: 33142554 DOI: 10.1016/j.carbpol.2020.116977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 11/28/2022]
Abstract
Herein, we report the preparation of an organic-inorganic hybrid hydrogel architecture using vinyl alginate and UiO-66 MOFs (metal-organic frameworks) modified with acrylic acid (AA) UiO-66AA. UiO-66 MOFs with different crystal sizes (600, 1500, and 2500 nm) were synthesized and the effect on the mechanical and transport properties of the resulting materials, such as water absorption capacity and drug release, were evaluated. HydroMOF showed higher water absorption capacity than the pure hydrogel and enhanced mechanical properties, which depend on crystal size and the amount of UiO-66AA MOF used. The initial release rate of drug (burst release) from hydroMOFs was lower when small-sized crystals or a small amount of large-sized crystals were used; thus these are essential in changing half-life values of release rates. Finally, the cytotoxicity screening successfully showed that hydroMOFs are promising biocompatible compounds proven to have the advantages of minimized burst release and mechanical robustness.
Collapse
Affiliation(s)
- Hugo H C de Lima
- Rinaldi Research Group, Department of Chemistry, State University of Maringá - UEM, 5790 Colombo Avenue, 87020-900, Maringá, PR, Brazil
| | - Cleiser T P da Silva
- Rinaldi Research Group, Department of Chemistry, State University of Maringá - UEM, 5790 Colombo Avenue, 87020-900, Maringá, PR, Brazil; Center of Natural and Human Sciences, Federal University of ABC, 5001 Av. dos Estados, Bangu, Santo André, SP 09210-580, Brazil
| | - Vicente L Kupfer
- Rinaldi Research Group, Department of Chemistry, State University of Maringá - UEM, 5790 Colombo Avenue, 87020-900, Maringá, PR, Brazil
| | - Jaqueline de C Rinaldi
- Postgraduation in Bioscience and Physiopathology - PBF, State University of Maringá - UEM, 5790 Colombo Avenue, 87020-900, Maringá, PR, Brazil
| | - Erika S Kioshima
- Postgraduation in Bioscience and Physiopathology - PBF, State University of Maringá - UEM, 5790 Colombo Avenue, 87020-900, Maringá, PR, Brazil
| | - Dalmo Mandelli
- Center of Natural and Human Sciences, Federal University of ABC, 5001 Av. dos Estados, Bangu, Santo André, SP 09210-580, Brazil
| | - Marcos R Guilherme
- Rinaldi Research Group, Department of Chemistry, State University of Maringá - UEM, 5790 Colombo Avenue, 87020-900, Maringá, PR, Brazil; Faculty of Engineering and Innovation Professional Technical - FEITEP. Av. Paranavaí, 1164, CEP - 87070-130, Parque Industrial Bandeirantes, Maringá - PR, Brazil
| | - Andrelson W Rinaldi
- Rinaldi Research Group, Department of Chemistry, State University of Maringá - UEM, 5790 Colombo Avenue, 87020-900, Maringá, PR, Brazil.
| |
Collapse
|
45
|
Liu H, Pan B, Wang Q, Niu Y, Tai Y, Du X, Zhang K. Crucial roles of graphene oxide in preparing alginate/nanofibrillated cellulose double network composites hydrogels. CHEMOSPHERE 2021; 263:128240. [PMID: 33297187 DOI: 10.1016/j.chemosphere.2020.128240] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
In this study, a novel strategy to prepare sodium alginate (SA)/nano fibrillated cellulose (NFC) double network (DN) hydrogel beads with the aid of graphene oxide (GO) was developed. In comparison with the multi-step freezing-thawing method, this study employs a facile one-step freeze drying method with the presence of GO sheets. The crucial roles of GO were highlighted as an efficient nucleating agent of NFC and a reinforcer for the hydrogel. The adsorption property of the DN hydrogel towards crystal violet (CV) was also studied. Results indicated that the introduction of GO could greatly facilitate the formation of double networks. Furthermore, the as-prepared DN hydrogel beads exhibited an efficacious adsorption property towards CV. The maximum adsorption capacity of the hydrogels for CV was observed as 665 mg g-1. Therefore, our approach here represents a facile method for the preparation of crystalline polymer based DN hydrogels to replace the awkward freezing-thawing process, giving inspiration for DN hydrogels design and preparation. Moreover, due to its efficient adsorption capacity, the hydrogels hold great promise for the water pollution control materials.
Collapse
Affiliation(s)
- Hongyu Liu
- Chemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang, 471023, China
| | - Bingli Pan
- Chemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Qianjie Wang
- Chemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yumiao Niu
- Chemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yuping Tai
- Chemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xigang Du
- Chemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang, 471023, China
| | - Keke Zhang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
46
|
Niu Y, Han X, Song J, Huang L. Removal of methylene blue and lead(ii) via PVA/SA double-cross-linked network gel beads loaded with Fe3O4@KHA nanoparticles. NEW J CHEM 2021. [DOI: 10.1039/d1nj00006c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The adsorption of MB and Pb(ii) onto and regeneration of PVA/SA/Fe3O4@KHA magnetic gel beads.
Collapse
Affiliation(s)
- Yuhua Niu
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- People's Republic of China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| | - Xingxing Han
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- People's Republic of China
| | - Jie Song
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- People's Republic of China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| | - Liangxian Huang
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- People's Republic of China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| |
Collapse
|
47
|
Shi Y, Yu C, Liu M, Lin Q, Lei M, Wang D, Yang M, Yang Y, Ma J, Jia Z. One-pot synthesis of spherical nanoscale zero-valent iron/biochar composites for efficient removal of Pb( ii). RSC Adv 2021; 11:36826-36835. [PMID: 35494362 PMCID: PMC9043637 DOI: 10.1039/d1ra07373g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/21/2021] [Indexed: 01/10/2023] Open
Abstract
In this study, a spherical Fe/C composite (AIBC) was successfully prepared via carbonization of Fe3+-crosslinked sodium alginate. The removal capacity and mechanism of AIBC were evaluated for the adsorption of Pb(ii) from aqueous solution and compared with that of commercial nanoscale zero-valent iron (nZVI). The effects of the initial concentration, pH of Pb(ii) solution, the contact time, coexisting anions, and aging under air were investigated. The results showed that the pH had a strong impact on the adsorption of Pb(ii) by AIBC. The adsorption data for AIBC followed the Langmuir model, while the maximum adsorption capacity at pH 5 was 1881.73 mg g−1. The AIBC had a higher adsorption capability than nZVI, especially under the condition of relatively high Pb(ii) concentrations. The oxidation–reduction reaction between Fe and Pb(ii) was the main mechanism for the adsorption of Pb(ii) onto nZVI. AIBC converted the largest amount of Pb(ii) into PbO·XH2O/Pb(OH)2 mainly by generating Fe2+. In this study, a spherical Fe/C composite (AIBC) was successfully prepared via carbonization of Fe3+-crosslinked sodium alginate.![]()
Collapse
Affiliation(s)
- Yunlong Shi
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
- Key Laboratory of Natural Polymer Function Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
| | - Changjiang Yu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
- Key Laboratory of Natural Polymer Function Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
| | - Mengying Liu
- Key Laboratory of Natural Polymer Function Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
| | - Qiang Lin
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
- Key Laboratory of Natural Polymer Function Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
| | - Man Lei
- Key Laboratory of Natural Polymer Function Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
| | - Darun Wang
- Key Laboratory of Natural Polymer Function Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
| | - Mengwei Yang
- Key Laboratory of Natural Polymer Function Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
| | - Yuting Yang
- Key Laboratory of Natural Polymer Function Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
| | - Jian Ma
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
- Key Laboratory of Natural Polymer Function Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
| | - Zhengya Jia
- Hainan Huantai Inspection Technology Co. Ltd, Haikou, 571158, China
| |
Collapse
|
48
|
Selim A, Toth AJ, Fozer D, Süvegh K, Mizsey P. Facile Preparation of a Laponite/PVA Mixed Matrix Membrane for Efficient and Sustainable Pervaporative Dehydration of C1-C3 Alcohols. ACS OMEGA 2020; 5:32373-32385. [PMID: 33376874 PMCID: PMC7758899 DOI: 10.1021/acsomega.0c04380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
The exfoliation method was applied for the preparation of high-water selective mixed matrix membranes (MMMs), especially for the dehydration of C1-C3 alcohol-water solutions. Herein, a facile and easy method was employed to fabricate physically cross-linked Laponite nanosilicate clay-PVA MMMs without additional cross-linking by a one-step synthesis route for water dehydration from methanol, ethanol, and isopropanol aqueous solutions. The morphologies, chemical structures, thermal stabilities, and surface hydrophilicity of Laponite-PVA MMMs were investigated properly by different characterization techniques. The Laponite concentration has affected the fractional free volume of the membranes, as proven by positron annihilation lifetime spectroscopy analysis. The MMMs displayed both a significant improvement in the separation factor and remarkable enhancement in the permeation fluxes for the three alcohol systems. The influence of the operating temperature on the MMM performance was investigated for the methanol/water solution. The methanol permeability was 100-fold lower than that of the water, indicating that the membranes are more water selective. Particularly, the Laponite-PVA membrane with 5 mg/mL Laponite loading exhibits excellent separation efficiency for C1-C3 dehydration having water permeabilities higher than most other polymeric membranes from the other literature studies of 2.82, 2.08, and 1.56 mg m-1 h-1 kPa-1 for methanol, ethanol, and isopropanol/water systems, respectively. This membrane development allows a more efficient and sustainable separation of aqueous alcoholic mixtures.
Collapse
Affiliation(s)
- Asmaa Selim
- Environmental
and Process Engineering Research Group, Department of Chemical and
Environmental Process Engineering, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, H-1521 Budapest, P.O.B. 91, Hungary
- Chemical
Engineering Department, National Research
Centre, 33 El Buhouth
Street, 12622 Cairo, Egypt
| | - András Jozsef Toth
- Environmental
and Process Engineering Research Group, Department of Chemical and
Environmental Process Engineering, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, H-1521 Budapest, P.O.B. 91, Hungary
| | - Daniel Fozer
- Environmental
and Process Engineering Research Group, Department of Chemical and
Environmental Process Engineering, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, H-1521 Budapest, P.O.B. 91, Hungary
| | - Karoly Süvegh
- Laboratory
of Nuclear Chemistry, Eötvös
Loránd University/HAS Chemical Research Center, P.O. Box 32, H-1518, Budapest 112, Hungary
| | - Péter Mizsey
- Environmental
and Process Engineering Research Group, Department of Chemical and
Environmental Process Engineering, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, H-1521 Budapest, P.O.B. 91, Hungary
- Institute
of Chemistry, University of Miskolc, H-3515 Miskolc, Hungary
| |
Collapse
|
49
|
Cai FF, Heid S, Boccaccini AR. Potential of Laponite® incorporated oxidized alginate-gelatin (ADA-GEL) composite hydrogels for extrusion-based 3D printing. J Biomed Mater Res B Appl Biomater 2020; 109:1090-1104. [PMID: 33277973 DOI: 10.1002/jbm.b.34771] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 12/31/2022]
Abstract
The concept of adding inorganic fillers into hydrogels to form hydrogel nanocomposites often provides advantageous properties which can be exploited for successful 3D biofabrication. In this study, a new composite hydrogel combining oxidized alginate-gelatin (ADA-GEL) hydrogel and Laponite® nanoclay as inorganic nanofiller was successfully developed and characterized. The results showed that the addition of 0.5% (wt/vol) Laponite® nanoplatelets improved the printability of ADA-GEL hydrogels enabling the fabrication of detailed structures since a low effect of material spreading and reduced tendency to pore closure appeared. Furthermore, a comparison of different needle types (cylindrical and conical; same inner diameter of 250 μm) in filament fusion test showed that the pattern dispensed by cylindrical tip has enhanced printing accuracy and pattern fidelity when compared with the pattern from conical tip. A glass flip test determined a processing window of 1-2 h after composite ink preparation. Overall, Laponite® /ADA-GEL hydrogel composites are confirmed as promising inks for 3D bioprinting.
Collapse
Affiliation(s)
- Fei-Fan Cai
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Susanne Heid
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
50
|
Baigorria E, Cano LA, Sanchez LM, Alvarez VA, Ollier RP. Bentonite-composite polyvinyl alcohol/alginate hydrogel beads: Preparation, characterization and their use as arsenic removal devices. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.enmm.2020.100364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|