1
|
El-Saadony MT, Saad AM, Alkafaas SS, Dladla M, Ghosh S, Elkafas SS, Hafez W, Ezzat SM, Khedr SA, Hussien AM, Fahmy MA, Elesawi IE, Salem HM, Mohammed DM, Abd El-Mageed TA, Ahmed AE, Mosa WFA, El-Tarabily MK, AbuQamar SF, El-Tarabily KA. Chitosan, derivatives, and its nanoparticles: Preparation, physicochemical properties, biological activities, and biomedical applications - A comprehensive review. Int J Biol Macromol 2025:142832. [PMID: 40187443 DOI: 10.1016/j.ijbiomac.2025.142832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Chitosan, derived from the deacetylation of chitin, is the second most widely used natural polymer, valued for its nontoxic, biocompatible, and biodegradable properties. These attributes have driven extensive research into diverse applications of chitosan and various derivatives. The key characteristics of chitosan muco-adhesion, permeability enhancement, drug release modulation, and antimicrobial activity are primarily due to its amino and hydroxyl groups. However, the limited solubility of raw chitosan in water and most organic solvents has posed challenges for broader application. Numerous chemically modified derivatives have been developed to address these inadequacies with improved physical and chemical properties. Among these derivatives, chitosan nanoparticles have emerged as versatile drug carriers with precise release kinetics and the capacity for targeted delivery, greatly enhancing drug efficacy and safety profiles for therapeutic applications. Due to these unique physicochemical properties, chitosan and chitosan nanoparticles are promising for improved drug delivery, vaccine administration, transplantation, gene therapy, and diagnostics. This review examines the physicochemical properties and bioactivities of chitosan and chitosan nanoparticles, emphasizing their broad-ranging biomedical applications.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Ahmed M Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mthokozisi Dladla
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia 32511, Egypt; Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg 191002, Russia
| | - Wael Hafez
- Medical Research Division, Department of Internal Medicine, The National Research Centre, Cairo 11511, Egypt
| | - Salma Mohamed Ezzat
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Tanta University, Tanta 44511, Egypt
| | - Sohila A Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta 31733, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohamed A Fahmy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ibrahim Eid Elesawi
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Diseases of Birds, Rabbits, Fish & Their Care & Wildlife, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Taia A Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria 21531, Egypt
| | | | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
2
|
Li Q, Shi WR, Huang YL. Comparison of the protective effects of chitosan oligosaccharides and chitin oligosaccharide on apoptosis, inflammation and oxidative stress. Exp Ther Med 2024; 28:310. [PMID: 38873041 PMCID: PMC11170321 DOI: 10.3892/etm.2024.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/26/2024] [Indexed: 06/15/2024] Open
Abstract
Chitin degradation products, especially chitosan oligosaccharides (COSs), are highly valued in various industrial fields, such as food, medicine, cosmetics and agriculture, for their rich resources and high cost-effectiveness. However, little is known about the impact of acetylation on COS cellular bioactivity. The present study aimed to compare the differential effects of COS and highly N-acetylated COS (NACOS), known as chitin oligosaccharide, on H2O2-induced cell stress. MTT assay showed that pretreatment with NACOS and COS markedly inhibited H2O2-induced RAW264.7 cell death in a concentration-dependent manner. Flow cytometry indicated that NACOS and COS exerted an anti-apoptosis effect on H2O2-induced oxidative damage in RAW264.7 cells. NACOS and COS treatment ameliorated H2O2-induced RAW264.7 cell cycle arrest. Western blotting revealed that the anti-oxidation effects of NACOS and COS were mediated by suppressing expression of proteins involved in H2O2-induced apoptosis, including Bax, Bcl-2 and cleaved PARP. Furthermore, the antagonist effects of NACOS were greater than those of COS, suggesting that acetylation was essential for the protective effects of COS.
Collapse
Affiliation(s)
- Qiongyu Li
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, P.R. China
| | - Wan-Rong Shi
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, P.R. China
| | - Yun-Lin Huang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
3
|
Ge X, Zhu S, Yang H, Wang X, Li J, Liu S, Xing R, Li P, Li K. Impact of O-acetylation on chitin oligosaccharides modulating inflammatory responses in LPS-induced RAW264.7 cells and mice. Carbohydr Res 2024; 542:109177. [PMID: 38880715 DOI: 10.1016/j.carres.2024.109177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Chitin oligosaccharides have garnered significant attention due to their biological activities, particularly their immunomodulatory properties. However, O-acetylation in chemically preparing chitin oligosaccharides seems inevitable and leads to some uncertainty on the bioactivity of chitin oligosaccharides. In this study, an O-acetyl-free chitin oligosaccharides and three different O-acetylated chitin oligosaccharides with degree of polymerization ranging from 2 to 6 were prepared using ammonia hydrolysis, and their structures and detailed components were further characterized with FTIR, NMR and MS. Subsequently, the effects of O-acetylation on the immunomodulatory activity of chitin oligosaccharides were investigated in vitro and in vivo. The results suggested that the chitin oligosaccharides with O-acetylation exhibited better inflammatory inhibition than pure chitin oligosaccharides, significantly reducing the expression of inflammatory factors, such as IL-6 and iNOS, in the LPS-induced RAW264.7 macrophage. The chitin oligosaccharides with a degree of O-acetylation of 93 % was found to effectively alleviate LPS-induced endotoxemia in mice, including serum inflammation indices reduction and damage repairment of the intestinal liver, and kidney tissues.
Collapse
Affiliation(s)
- Xiangyun Ge
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China; Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Siqi Zhu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Haoyue Yang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xin Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China; Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jingwen Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Kecheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
4
|
Li B, Cui J, Xu T, Xu Y, Long M, Li J, Liu M, Yang T, Du Y, Xu Q. Advances in the preparation, characterization, and biological functions of chitosan oligosaccharide derivatives: A review. Carbohydr Polym 2024; 332:121914. [PMID: 38431416 DOI: 10.1016/j.carbpol.2024.121914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Chitosan oligosaccharide (COS), which represent the positively charged basic amino oligosaccharide in nature, is the deacetylated and degraded products of chitin. COS has become the focus of intensive scientific investigation, with a growing body of practical and clinical studies highlighting its remarkable health-enhancing benefits. These effects encompass a wide range of properties, including antibacterial, antioxidant, anti-inflammatory, and anti-tumor activities. With the rapid advancements in chemical modification technology for oligosaccharides, many COS derivatives have been synthesized and investigated. These newly developed derivatives possess more stable chemical structures, improved biological activities, and find applications across a broader spectrum of fields. Given the recent interest in the chemical modification of COS, this comprehensive review seeks to consolidate knowledge regarding the preparation methods for COS derivatives, alongside discussions on their structural characterization. Additionally, various biological activities of COS derivatives have been discussed in detail. Lastly, the potential applications of COS derivatives in biomedicine have been reviewed and presented.
Collapse
Affiliation(s)
- Bing Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jingchun Cui
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Tiantian Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yunshu Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Mingxin Long
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jiaqi Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Mingzhi Liu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Ting Yang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yuguang Du
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Qingsong Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
5
|
Zhang H, Xu G, Wu X, Xu Y, Xu L, Zou Y, Yang X, Pan L, Lei B, Mu J, Huang Q, Ma Y, Duan N, Zhang W, Zheng Y. Fei-Yan-Qing-Hua decoction decreases hyperinflammation by inhibiting HMGB1/RAGE signaling and promotes bacterial phagocytosis in the treatment of sepsis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117553. [PMID: 38065349 DOI: 10.1016/j.jep.2023.117553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fei-Yan-Qing-Hua decoction (FYQHD), derived from the renowned formula Ma Xing Shi Gan tang documented in Zhang Zhong Jing's "Treatise on Exogenous Febrile Disease" during the Han Dynasty, has demonstrated notable efficacy in the clinical treatment of pneumonia resulting from bacterial infection. However, its molecular mechanisms underlying the therapeutic effects remains elusive. AIM OF THE STUDY This study aimed to investigate the protective effects of FYQHD against lipopolysaccharide (LPS) and carbapenem-resistant Klebsiella pneumoniae (CRKP)-induced sepsis in mice and to elucidate its specific mechanism of action. MATERIALS AND METHODS Sepsis models were established in mice through intraperitoneal injection of LPS or CRKP. FYQHD was administered via gavage at low and high doses. Serum cytokines, bacterial load, and pathological damage were assessed using enzyme-linked immunosorbent assay (ELISA), minimal inhibitory concentration (MIC) detection, and hematoxylin and eosin staining (H&E), respectively. In vitro, the immunoregulatory effects of FYQHD on macrophages were investigated through ELISA, MIC, quantitative real-time PCR (Q-PCR), immunofluorescence, Western blot, and a network pharmacological approach. RESULTS The application of FYQHD in the treatment of LPS or CRKP-induced septic mouse models revealed significant outcomes. FYQHD increased the survival rate of mice exposed to a lethal dose of LPS to 33.3%, prevented hypothermia (with a rise of 3.58 °C), reduced pro-inflammatory variables (including TNF-α, IL-6, and MCP-1), and mitigated tissue damage in LPS or CRKP-induced septic mice. Additionally, FYQHD decreased bacterial load in CRKP-infected mice. In vitro, FYQHD suppressed the expression of inflammatory cytokines in macrophages activated by LPS or HK-CRKP. Mechanistically, FYQHD inhibited the PI3K/AKT/mTOR/4E-BP1 signaling pathway, thereby suppressing the translational level of inflammatory cytokines. Furthermore, it reduced the expression of HMGB1/RAGE, a positive feedback loop in the inflammatory response. Moreover, FYQHD was found to enhance the phagocytic activity of macrophages by upregulating the expression of phagocytic receptors such as CD169 and SR-A1. CONCLUSION FYQHD provides protection against bacterial sepsis by concurrently inhibiting the inflammatory response and augmenting the phagocytic ability of immune cells.
Collapse
Affiliation(s)
- Huan Zhang
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guihua Xu
- Department of Pulmonary Diseases, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao Wu
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yanwu Xu
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lirong Xu
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yingxiang Zou
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaodong Yang
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lingyun Pan
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Biao Lei
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jingwen Mu
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qilin Huang
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuhe Ma
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Naifan Duan
- Department of Pulmonary Diseases, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Zhang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Pulmonary Diseases, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yuejuan Zheng
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
6
|
Liu J, Hou W, Zong Z, Chen Y, Liu X, Zhang R, Deng H. Supplementation of nicotinamide mononucleotide diminishes COX-2 associated inflammatory responses in macrophages by activating kynurenine/AhR signaling. Free Radic Biol Med 2024; 214:69-79. [PMID: 38336100 DOI: 10.1016/j.freeradbiomed.2024.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Cyclooxygenase-2 (COX-2) is an inducible enzyme responsible for prostaglandin synthesis during inflammation and immune responses. Our previous results show that NAD+ level decreased in activated macrophages while nicotinamide mononucleotide (NMN) supplementation suppressed the inflammatory responses via restoring NAD+ level and downregulating COX-2. However, whether NMN downregulates COX-2 in mouse model of inflammation, and its underlying mechanism needs to be further explored. In the present study, we established LPS- and alum-induced inflammation model and demonstrated that NMN suppressed the inflammatory responses in vivo. Quantitative proteomics in mouse peritoneal macrophages identified that NMN activated AhR signaling pathway in activated macrophages. Furthermore, we revealed that NMN supplementation led to IDO1 activation and kynurenine accumulation, which caused AhR nuclear translocation and activation. On the other hand, AhR or IDO1 knockout abolished the effects of NMN on suppressing COX-2 expression and inflammatory responses in macrophages. In summary, our results demonstrated that NMN suppresses inflammatory responses by activating IDO-kynurenine-AhR pathway, and suggested that administration of NMN in early-stage immuno-activation may cause an adverse health effect.
Collapse
Affiliation(s)
- Jing Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenxuan Hou
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhaoyun Zong
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohui Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ran Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Wang Y, Yang X, Zhang Y, Hong L, Xie Z, Jiang W, Chen L, Xiong K, Yang S, Lin M, Guo X, Li Q, Deng X, Lin Y, Cao M, Yi G, Fu M. Single-cell RNA sequencing reveals roles of unique retinal microglia types in early diabetic retinopathy. Diabetol Metab Syndr 2024; 16:49. [PMID: 38409074 PMCID: PMC10895757 DOI: 10.1186/s13098-024-01282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/02/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND The pathophysiological mechanisms of diabetic retinopathy (DR), a blinding disease, are intricate. DR was thought to be a microvascular disease previously. However, growing studies have indicated that the retinal microglia-induced inflammation precedes microangiopathy. The binary concept of microglial M1/M2 polarization paradigms during inflammatory activation has been debated. In this study, we confirmed microglia had the most significant changes in early DR using single-cell RNA sequencing. METHODS A total of five retinal specimens were collected from donor SD rats. Changes in various cells of the retina at the early stage of DR were analyzed using single-cell sequencing technology. RESULTS We defined three new microglial subtypes at cellular level, including two M1 types (Egr2+ M1 and Egr2- M1) and one M2 type. We also revealed the anatomical location between these subtypes, the dynamic changes of polarization phenotypes, and the possible activation sequence and mutual activation regulatory mechanism of different cells. Furthermore, we constructed an inflammatory network involving microglia, blood-derived macrophages and other retinal nonneuronal cells. The targeted study of new disease-specific microglial subtypes can shorten the time for drug screening and clinical application, which provided insight for the early control and reversal of DR. CONCLUSIONS We found that microglia show the most obvious differential expression changes in early DR and reveal the changes in microglia in a high-glucose microenvironment at the single-cell level. Our comprehensive analysis will help achieve early reversal and control the occurrence and progression of DR.
Collapse
Affiliation(s)
- Yan Wang
- Department of Ophthalmology, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Xiongyi Yang
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yuxi Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Libing Hong
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zhuohang Xie
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Wenmin Jiang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, People's Republic of China
| | - Lin Chen
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518100, Guangdong, People's Republic of China
| | - Ke Xiong
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Siyu Yang
- Department of Ophthalmology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - Meiping Lin
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xi Guo
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qiumo Li
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoqing Deng
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yanhui Lin
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Mingzhe Cao
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Guoguo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital, Sun Yat-Sen University, No. 26, Erheng Road, Yuancun, Tianhe, Guangzhou, Guangdong, People's Republic of China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Yang X, Zeng D, Li C, Yu W, Xie G, Zhang Y, Lu W. Therapeutic potential and mechanism of functional oligosaccharides in inflammatory bowel disease: a review. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
9
|
Liu Y, Qin Z, Wang C, Jiang Z. N-acetyl-d-glucosamine-based oligosaccharides from chitin: Enzymatic production, characterization and biological activities. Carbohydr Polym 2023; 315:121019. [PMID: 37230627 DOI: 10.1016/j.carbpol.2023.121019] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Chitin, the second most abundant biopolymer, possesses diverse applications in the food, agricultural, and pharmaceutical industries due to its functional properties. However, the potential applications of chitin are limited owing to its high crystallinity and low solubility. N-acetyl chitooligosaccharides and lacto-N-triose II, the two types of GlcNAc-based oligosaccharides, can be obtained from chitin by enzymatic methods. With their lower molecular weights and improved solubility, these two types of GlcNAc-based oligosaccharides display more various beneficial health effects when compared to chitin. Among their abilities, they have exhibited antioxidant, anti-inflammatory, anti-tumor, antimicrobial, and plant elicitor activities as well as immunomodulatory and prebiotic effects, which suggests they have the potential to be utilized as food additives, functional daily supplements, drug precursors, elicitors for plants, and prebiotics. This review comprehensively covers the enzymatic methods used for the two types of GlcNAc-based oligosaccharides production from chitin by chitinolytic enzymes. Moreover, current advances in the structural characterization and biological activities of these two types of GlcNAc-based oligosaccharides are summarized in the review. We also highlight current problems in the production of these oligosaccharides and trends in their development, aiming to offer some directions for producing functional oligosaccharides from chitin.
Collapse
Affiliation(s)
- Yihao Liu
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin 300222, People's Republic of China
| | - Zhen Qin
- School of Life Sciences, Shanghai University, Baoshan District, No.99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Chunling Wang
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin 300222, People's Republic of China.
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, No.17 Qinghua East Road, Beijing 100083, People's Republic of China.
| |
Collapse
|
10
|
Hao C, Han M, Wang W, Yang C, Wang J, Guo Y, Xu T, Zhang L, Li C. The neuroprotective effects of peracetylated chitosan oligosaccharides against β-amyloid-induced cognitive deficits in rats. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:211-222. [PMID: 37275539 PMCID: PMC10232394 DOI: 10.1007/s42995-023-00172-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/17/2023] [Indexed: 06/07/2023]
Abstract
Chitosan oligosaccharides (COSs) have been reported to possess a broad range of activities such as antitumor, antioxidant and neuroprotective activities. In this study, the protective effects and mechanisms of peracetylated chitosan oligosaccharides (PACOs) against Aβ-induced cognitive deficits were investigated in Sprague-Dawley (SD) rats. PACOs treatment significantly improved the learning and memory function of Alzheimer's disease (AD) rats and attenuated the neuron cell damage caused by Aβ. PACOs also markedly reduced the levels of lactate dehydrogenase (LDH) and Malondialdehyde (MDA) and decreased the phosphorylation of Tau protein to inhibit oxidative injury and inflammatory responses in AD rats. Further studies indicated that PACOs may promote the repair of Aβ induced nerve damage and inhibit neuronal apoptosis mainly through regulating PI3K/Akt/GSK3β signaling pathway. Consistently, the transcriptome analysis verified that the differentially expressed genes (DEGs) were mainly involved in neuron development and the PI3K-Akt signaling pathway. Taken together, peracetylated chitosan oligosaccharides (PACOs) have the potential to be developed into novel anti-AD agents targeting the cellular PI3K/Akt/GSK3β signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00172-3.
Collapse
Affiliation(s)
- Cui Hao
- Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao, 266003 China
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, 266003 China
- Center of Integrated Traditional and Western Medicine, Qingdao University, Qingdao, 266003 China
| | - Minmin Han
- Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao, 266003 China
- Center of Integrated Traditional and Western Medicine, Qingdao University, Qingdao, 266003 China
- Qingdao Women’s and Children’s Hospital, Qingdao, 266003 China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Cheng Yang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Jigang Wang
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, 266003 China
| | - Yunliang Guo
- Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao, 266003 China
- Center of Integrated Traditional and Western Medicine, Qingdao University, Qingdao, 266003 China
| | - Tao Xu
- Center of Integrated Traditional and Western Medicine, Qingdao University, Qingdao, 266003 China
- Qingdao Women’s and Children’s Hospital, Qingdao, 266003 China
| | - Lijuan Zhang
- Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao, 266003 China
| | - Chunxia Li
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
11
|
Hao W, Li K, Liu S, Yu H, Li P, Xing R. Pleiotropic Modulation of Chitooligosaccharides on Inflammatory Signaling in LPS-Induced Macrophages. Polymers (Basel) 2023; 15:polym15071613. [PMID: 37050227 PMCID: PMC10096960 DOI: 10.3390/polym15071613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Chitooligosaccharide (COS) is a green and non-toxic cationic carbohydrate that has attracted wide attention in recent years due to its anti-inflammatory activity. However, the anti-inflammatory mechanism of COS remains unclear. In this study, RNA-seq was used to investigate the integrated response of COS to LPS-induced damage in macrophages. The results showed that the experimental group with COS had 2570 genes with significant differences compared to the model group, and that these genes were more enriched in inflammatory and immune pathways. The KEGG results showed that COS induces the pleiotropic modulation of classical inflammatory pathways, such as the Toll-like receptor signaling pathway, NF-κB, MAPK, etc. Based on the RNA-seq data and the RT-qPCR, as well as the WB validation, COS can significantly upregulate the expression of membrane receptors, such as Tlr4, Tlr5, and MR, and significantly inhibits the phosphorylation of several important proteins, such as IκB and JNK. Overall, this study offers deep insights into the anti-inflammatory mechanism and lays the foundation for the early application of COS as an anti-inflammatory drug.
Collapse
Affiliation(s)
- Wentong Hao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
12
|
Khalaf EM, Abood NA, Atta RZ, Ramírez-Coronel AA, Alazragi R, Parra RMR, Abed OH, Abosaooda M, Jalil AT, Mustafa YF, Narmani A, Farhood B. Recent progressions in biomedical and pharmaceutical applications of chitosan nanoparticles: A comprehensive review. Int J Biol Macromol 2023; 231:123354. [PMID: 36681228 DOI: 10.1016/j.ijbiomac.2023.123354] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Nowadays, the most common approaches in the prognosis, diagnosis, and treatment of diseases are along with undeniable limitations. Thus, the ever-increasing need for using biocompatible natural materials and novel practical modalities is required. Applying biomaterials, such as chitosan nanoparticles (CS NPs: FDA-approved long-chain polymer of N-acetyl-glucosamine and D-glucosamine for some pharmaceutical applications), can serve as an appropriate alternative to overcome these limitations. Recently, the biomedical applications of CS NPs have extensively been investigated. These NPs and their derivatives can not only prepare through different physical and chemical approaches but also modify with various molecules and bioactive materials. The potential properties of CS NPs, such as biocompatibility, biodegradability, serum stability, solubility, non-immunogenicity, anti-inflammatory properties, appropriate pharmacokinetics and pharmacodynamics, and so forth, have made them excellent candidates for biomedical applications. Therefore, CS NPs have efficiently applied for various biomedical applications, like regenerative medicine and tissue engineering, biosensors for the detection of microorganisms, and drug delivery systems (DDS) for the suppression of diseases. These NPs possess a high level of biosafety. In summary, CS NPs have the potential ability for biomedical and clinical applications, and it would be remarkably beneficial to develop new generations of CS-based material for the future of medicine.
Collapse
Affiliation(s)
- Eman M Khalaf
- Department of Pharmacy, Al Maarif University College, Ramadi, 31001 Anbar, Iraq
| | - Noor Adil Abood
- Medical Laboratory Techniques, Al-Ma'moon University, Baghdad, Iraq
| | - Raghad Z Atta
- Department of Medical Laboratory Techniques, College of Medical Technology, Al-Farahidi University, Baghdad, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Laboratory of Psychometrics, Comparative psychology and Ethology, Catholic University of Cuenca, Cuenca, Ecuador
| | - Reem Alazragi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Osama H Abed
- Dentistry Department, Al-Rasheed University College, Baghdad, Iraq
| | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
13
|
Zhu M, Wu X, Sun J, Zhou Z, Kang M, Hu Y, Teng L. N-desulfated and reacetylated modification of heparin modulates macrophage polarization. Int J Biol Macromol 2023; 229:354-362. [PMID: 36565832 DOI: 10.1016/j.ijbiomac.2022.12.213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Heparin as a widely used anticoagulant drug has potent anti-inflammatory effects, which have been rarely reported to be involved in macrophage polarization. Furthermore, the effects of structural modifications of heparin on the plasticity of macrophage functions have not been clearly understood. In this study, the N-desulfated reacetylated derivative of heparin (NDeSAcH) was prepared and its immunoregulatory effects of macrophage polarization were evaluated. The findings indicated that NDeSAcH could effectively promote the release of more nitric oxide (NO), interleukin (IL)-6 and tumor necrosis factor-α (TNF-α) in RAW264.7 cells than heparin. Moreover, the production of NO, IL-6 and TNF-α was significantly inhibited by NDeSAcH in LPS-induced RAW264.7 cells, while the secretion of transforming growth factor-β (TGF-β) was suppressed in M2 macrophages. The N-desulfated and reacetylated group of heparin was proved to have two-side adjusting effects on the polarization of macrophages. This study suggested that NDeSAcH might be a promising candidate for modulating macrophage polarization and treating inflammation-related diseases.
Collapse
Affiliation(s)
- Min Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Xiaotao Wu
- School of Life Sciences and Heath Engineering, Jiangnan University, Wuxi 214122, China
| | - Jun Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Zhou Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Mingzhu Kang
- School of Life Sciences and Heath Engineering, Jiangnan University, Wuxi 214122, China
| | - Yiwei Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Liping Teng
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
14
|
Ye L, Xin Y, Wu ZY, Sun HJ, Huang DJ, Sun ZQ. A Newly Synthesized Flavone from Luteolin Escapes from COMT-Catalyzed Methylation and Inhibits Lipopolysaccharide-Induced Inflammation in RAW264.7 Macrophages via JNK, p38 and NF-κB Signaling Pathways. J Microbiol Biotechnol 2022; 32:15-26. [PMID: 34099595 PMCID: PMC9628824 DOI: 10.4014/jmb.2104.04027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022]
Abstract
Luteolin is a common dietary flavone possessing potent anti-inflammatory activities. However, when administrated in vivo, luteolin becomes methylated by catechol-O-methyltransferases (COMT) owing to the catechol ring in the chemical structure, which largely diminishes its anti-inflammatory effect. In this study, we made a modification on luteolin, named LUA, which was generated by the chemical reaction between luteolin and 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). Without a catechol ring in the chemical structure, this new flavone could escape from the COMT-catalyzed methylation, thus affording the potential to exert its functions in the original form when administrated in the organism. Moreover, an LPS-stimulated RAW cell model was applied to detect the anti-inflammatory properties. LUA showed much more superior inhibitory effect on LPS-induced production of NO than diosmetin (a major methylated form of luteolin) and significantly suppressed upregulation of iNOS and COX-2 in macrophages. LUA treatment dramatically reduced LPS-stimulated reactive oxygen species (ROS) and mRNA levels of pro-inflammatory mediators such as IL-1β, IL-6, IL-8 and IFN-β. Furthermore, LUA significantly reduced the phosphorylation of JNK and p38 without affecting that of ERK. LUA also inhibited the activation of NF-κB through suppression of p65 phosphorylation and nuclear translocation.
Collapse
Affiliation(s)
- Lin Ye
- School of Pharmacy, Changzhou University, Changzhou 213164, P.R. China,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yang Xin
- Food Science and Technology Program, Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 117597, Singapore
| | - Zhi-yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Hai-jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - De-jian Huang
- Food Science and Technology Program, Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 117597, Singapore,National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, P.R. China
| | - Zhi-qin Sun
- School of Pharmacy, Changzhou University, Changzhou 213164, P.R. China,Changzhou Second People's Hospital, Changzhou 213000, P.R. China,Corresponding author Phone: +13861285688 E-mail:
| |
Collapse
|
15
|
The Microstructure, Antibacterial and Antitumor Activities of Chitosan Oligosaccharides and Derivatives. Mar Drugs 2022; 20:md20010069. [PMID: 35049924 PMCID: PMC8781119 DOI: 10.3390/md20010069] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan obtained from abundant marine resources has been proven to have a variety of biological activities. However, due to its poor water solubility, chitosan application is limited, and the degradation products of chitosan oligosaccharides are better than chitosan regarding performance. Chitosan oligosaccharides have two kinds of active groups, amino and hydroxyl groups, which can form a variety of derivatives, and the properties of these derivatives can be further improved. In this review, the key structures of chitosan oligosaccharides and recent studies on chitosan oligosaccharide derivatives, including their synthesis methods, are described. Finally, the antimicrobial and antitumor applications of chitosan oligosaccharides and their derivatives are discussed.
Collapse
|
16
|
Zhang X, Liang S, Gao X, Huang H, Lao F, Dai X. Protective Effect of Chitosan Oligosaccharide against Hydrogen Peroxide-Mediated Oxidative Damage and Cell Apoptosis via Activating Nrf2/ARE Signaling Pathway. Neurotox Res 2021; 39:1708-1720. [PMID: 34622385 DOI: 10.1007/s12640-021-00419-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022]
Abstract
Chitosan oligosaccharide (COS), hydrolyzed and deacetylated from chitosan, has been reported to possess varieties of biological activities. Alzheimer's disease (AD) is a multifactorial progressive neurodegenerative disorder characterized by cognitive decline and memory loss, where oxidative stress was reported to be an overwhelming cause of the occurrence of AD. We have previously reported that COS could significantly decrease cell death, ROS generation, and lipid peroxidation, though the potential mechanism was yet to be determined. This study was designed to investigate the neuroprotective effect of COS against hydrogen peroxide (H2O2)-induced oxidative stress and apoptosis in neuronal SH-SY5Y cells. Our results indicated that COS could dose-dependently scavenge H2O2 in the cell-free systems. Accordingly, COS markedly decreased H2O2-induced cell apoptosis and intracellular ROS generation, while increased antioxidant capacity in SH-SY5Y cells. Further, COS significantly reduced the expression of Bax and upregulated Bcl-2. The mRNA and protein expression levels of nuclear Nrf2, heme oxygenase 1 (HO-1), and NAD(P)H: quinone oxidoreductase 1 (NQO1) were significantly increased upon COS treatment. Moreover, Nrf2-siRNA evidently reversed the promotive effect of COS on expression levels of HO-1 and NQO1, and ARE-driven transcriptional activity as determined by double-luciferase reporter gene assay. Besides, COS reversed H2O2-mediated increased phosphorylation of ERK1/2 and p38 MAPK. In conclusion, our findings indicate that COS could protect SH-SY5Y cells from oxidative damage and apoptosis via regulating Nrf2/ARE signaling pathway, which may provide new applications for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, 100191, China
| | - Shuang Liang
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, 100191, China
| | - Xiaohan Gao
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, 100191, China
| | - Hanchang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, 100191, China
| | - Fengxue Lao
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, 100191, China
| | - Xueling Dai
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, 100191, China.
| |
Collapse
|
17
|
Cao R, Yu H, Long H, Zhang H, Hao C, Shi L, Du Y, Jiao S, Guo A, Ma L, Wang Z. Low Deacetylation Degree Chitosan Oligosaccharide Protects against IL-1β Induced Inflammation and Enhances Autophagy Activity in Human Chondrocytes. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:517-531. [PMID: 34704529 DOI: 10.1080/09205063.2021.1996962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease, which can lead to joint pain, stiffness, deformity and dysfunction, that seriously affects the quality of life in patients. At present, the treatments of OA mainly include early pharmacological treatment and late joint replacement. However, current pharmacological treatment has limited efficacy and undesired side effects.Chitosan oligosaccharide (COS) is a kind of nontoxic and biodegradable oligo-saccharide, which is composed of 2-20 glucosamine or N-acetylglucosamine linked by β-1,4 glycosidic bond. Studies have shown that COS has significant biological properties like antimicrobial, anti-inflammatory, antioxidant, and anti-tumor, as well as immunoregulation ability. However, the effects of COS on OA have not been clarified. In this study, we explored the protective effects of COS with different degrees of deacetylation on chondrocytes stimulated by interleukin 1β (IL-1β) in vitro.The results showed that IL-1β inhibited cell proliferation and promoted cell apoptosis. Besides that, IL-1β increased the expression of the major chondro-degrading genes MMP13 and ADAMTS-5, while decreased the expression of COL2A and ACAN. COS with different degrees of deacetylation (HDACOS, MDACOS, LDACOS) had different effects on IL-1β induced inflammation. LDACOS had the most obvious anti-inflammatory effects to inhibit the expression of MMP13 and ADAMTS-5 while promoted the expression of COL2A and ACAN. In addition, we found that the expression of autophagy-related gene Beclin-1 was up-regulated, and the ratio of LC3-II/LC3-I was increased in the LDACOS group. Furthermore, transmission electron microscopy (TEM) analysis showed that the number of intracellular autophagosomes increased significantly with the treatment of LDACOS. Based on our research, we suggested that LDACOS could inhibit chondrocytes inflammation and promote cell autophagy, and might be a protective drug for the treatment of OA.
Collapse
Affiliation(s)
- Ruiqi Cao
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Haomiao Yu
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huibin Long
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongrui Zhang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chao Hao
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lin Shi
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuguang Du
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Siming Jiao
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Ai Guo
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lifeng Ma
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhuo Wang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Once-monthly hemin suppresses inflammatory and autoreactive CD4 + T cell responses to robustly ameliorate experimental rheumatoid arthritis. iScience 2021; 24:103101. [PMID: 34622156 PMCID: PMC8479697 DOI: 10.1016/j.isci.2021.103101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease that would permanently damage the affected joints. Unfortunately, a large proportion of RA patients fail to respond adequately to current treatments. Here, repurposing hemin and its ultra-long-acting formulation were explored for the effective treatment of RA in animal models. We provided evidence that hemin prevented the onset and ameliorated the clinical course of RA. Notably, hemin treatment rescued the dysregulated gene expression in animal models of RA, resulting in attenuation of Th1/Th17 cell-mediated responses and proinflammatory cytokines. Moreover, we further formulated hemin into the in-situ forming implant, and a single injection of the ultra-long-acting hemin exerted potent disease-modifying effects for at least six weeks with a remarkable dose reduction. Taken together, given the potent anti-inflammatory and immunosuppressive effects, the once-monthly hemin injection holds promise for rapid clinical translation, and represents a potential strategy to treat RA and possibly other autoimmune diseases. Repurposing hemin prevents the onset and ameliorates the clinical course of RA Once-monthly hemin achieve sustained remission of RA for at least six weeks Hemin rescue dysregulated gene expression and attenuate autoreactive immune responses
Collapse
|
19
|
Dantas JMDM, Araújo NKD, Silva NSD, Torres-Rêgo M, Furtado AA, Assis CFD, Araújo RM, Teixeira JA, Ferreira LDS, Fernandes-Pedrosa MDF, Dos Santos ES. Purification of chitosanases produced by Bacillus toyonensis CCT 7899 and functional oligosaccharides production. Prep Biochem Biotechnol 2021; 52:443-451. [PMID: 34370621 DOI: 10.1080/10826068.2021.1961273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Chitooligosaccharides (COS) have a great potential to be used by pharmaceutical industry due to their many biological activities. The use of enzymes to produce them is very advantageous, however it still faces many challenges, such as discovering new strains capable to produce enzymes that are able to generate bioactive oligosaccharides. In the present study a purification protein protocol was performed to purify chitosanases produced by Bacillus toyonensis CCT 7899 for further chitosan hydrolysis. The produced chitooligosaccharides were characterized by mass spectroscopy (MS) and their antiedematogenic effect was investigated through carrageenan-induced paw edema model. The animals were treated previously to inflammation by intragastric route with COS at 30, 300 and 600 mg/kg. The purification protocol showed a good performance for the chitosanases purification using 0.20 M NaCl solution to elute it, with a 9.54-fold purification factor. The treatment with COS promoted a decrease of paw edema at all evaluated times and the AUC0-4h, proving that COS produced showed activity in acute inflammation like commercial anti-inflammatory Dexamethasone (corticosteroid). Therefore, the strategy used to purification was successfully applied and it was possible to generate bioactive oligosaccharides with potential pharmacological use.
Collapse
Affiliation(s)
| | | | | | - Manoela Torres-Rêgo
- Department of Phamarcy, Federal University of Rio Grande do Norte, Natal, Brazil.,Chemistry Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | | | | | | | - Everaldo Silvino Dos Santos
- Department of Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
20
|
Fang T, Yao Y, Tian G, Chen D, Wu A, He J, Zheng P, Mao X, Yu J, Luo Y, Luo J, Huang Z, Yan H, Yu B. Chitosan oligosaccharide attenuates endoplasmic reticulum stress-associated intestinal apoptosis via the Akt/mTOR pathway. Food Funct 2021; 12:8647-8658. [PMID: 34346452 DOI: 10.1039/d1fo01234g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endoplasmic reticulum stress (ERS) and apoptosis are widely considered as essential factors associated with intestinal disorders, whereas nutritional therapeutic approaches targeting ERS may control disease activity. Thus, we focus on the potential benefit of chitosan oligosaccharide (COS) on repressing ERS and ERS-induced apoptosis. In this study, we used the ERS model with tunicamycin (TM)-induced IPEC-J2 cells in vitro and nutrient deprivation-induced ERS in piglets to evaluate the protective mechanism of COS against ERS and ERS-induced apoptosis. The results showed that cells were characterized by activation of the unfolded protein response (UPR) and increased epithelial apoptosis upon exposure to TM. However, these changes were significantly attenuated by COS and the expressions of Akt and mTORC1 were inhibited. Furthermore, a specific inhibitor of mTOR confirmed the suppression of Akt and reduced the activation of the UPR and apoptosis. In vivo, COS protected against nutrient deprivation-induced ERS in the jejunum of piglets, in which the overexpression of the UPR and apoptosis was rescued. Consistently, COS attenuated nutrient deprivation-induced disruption of intestinal barrier integrity and functional capacity. Together, we provided the first evidence that COS could protect against intestinal apoptosis through alleviating severe ERS, which may be related to the inhibition of the Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Tingting Fang
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ying Yao
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Gang Tian
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Aimin Wu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Jun He
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Jie Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yuheng Luo
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Junqiu Luo
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Zhiqing Huang
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Hui Yan
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
21
|
N-acetyl-chitooligosaccharide attenuates inflammatory responses by suppression of NF-κB signaling, MAPK and NLRP3 inflammasome in macrophages. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
22
|
Satitsri S, Muanprasat C. Chitin and Chitosan Derivatives as Biomaterial Resources for Biological and Biomedical Applications. Molecules 2020; 25:molecules25245961. [PMID: 33339290 PMCID: PMC7766609 DOI: 10.3390/molecules25245961] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/30/2023] Open
Abstract
Chitin is a long-chain polymer of N-acetyl-glucosamine, which is regularly found in the exoskeleton of arthropods including insects, shellfish and the cell wall of fungi. It has been known that chitin can be used for biological and biomedical applications, especially as a biomaterial for tissue repairing, encapsulating drug for drug delivery. However, chitin has been postulated as an inducer of proinflammatory cytokines and certain diseases including asthma. Likewise, chitosan, a long-chain polymer of N-acetyl-glucosamine and d-glucosamine derived from chitin deacetylation, and chitosan oligosaccharide, a short chain polymer, have been known for their potential therapeutic effects, including anti-inflammatory, antioxidant, antidiarrheal, and anti-Alzheimer effects. This review summarizes potential utilization and limitation of chitin, chitosan and chitosan oligosaccharide in a variety of diseases. Furthermore, future direction of research and development of chitin, chitosan, and chitosan oligosaccharide for biomedical applications is discussed.
Collapse
|
23
|
Jia G, Liu X, Che N, Xia Y, Wang G, Xiong Z, Zhang H, Ai L. Human-origin Lactobacillus salivarius AR809 protects against immunosuppression in S. aureus-induced pharyngitis via Akt-mediated NF-κB and autophagy signaling pathways. Food Funct 2020; 11:270-284. [PMID: 31957758 DOI: 10.1039/c9fo02476j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lactobacillus salivarius AR809 is a newly discovered probiotic strain from a healthy human pharynx and has potential ability to adhere to the pharyngeal epithelium and inhibit Staphylococcus aureus (S. aureus)-induced inflammatory response. Pharyngeal spray administration of AR809 exhibited protective effects in a S. aureus-induced mouse model of pharyngitis. The inhibitory effect and underlying molecular mechanism of AR809 on S. aureus-stimulated pharyngitis were further investigated. AR809 significantly increased phagocytosis and bactericidal activity, reduced the production of inflammatory mediators (intracellular reactive oxygen species (ROS), prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), nitric oxide (NO), inducible NOS (iNOS)) and the expression of inflammatory cytokines (tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β)), and induced macrophages to adopt the M2 phenotype. AR809 also attenuated S. aureus-induced phosphorylations of protein kinase B (Akt) and rapamycin (mTOR), and elevated the autophagic protein (light chain 3 from II (LC3-II) and Beclin-1) level. Furthermore, AR809 inhibited nuclear transcription factor kappa-B (NF-κB) activation by suppressing the nuclear translocation of NF-κB p65. Likewise, 740Y-P (a PI3K activator) decreased the anti-inflammatory effect of AR809 against S. aureus-induced inflammatory response, while AR809 treatments with wortmannin (a PI3K inhibitor) markedly reversed this inflammatory response. AR809 prevents S. aureus-induced pharyngeal inflammatory response, possibly by regulating TLR/PI3K/Akt/mTOR signalling pathway-related autophagy and TLR/PI3K/Akt/IκB/NF-κB pathway activity, and therefore has potential for use in preventing pharyngitis and other inflammatory diseases.
Collapse
Affiliation(s)
- Guochao Jia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Bai X, He T, Liu M, Li L, Chen J, Cao M, Liu Y, Yang C, Jia W, Tao K, Han J, Hu D. Integrative Analysis of MicroRNAs and mRNAs in LPS-Induced Macrophage Inflammation Based on Adipose Tissue Stem Cell Therapy. Inflammation 2020; 44:407-420. [PMID: 32955644 DOI: 10.1007/s10753-020-01345-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/13/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Severe inflammation can lead to multiple organ dysfunction syndrome, which has high mortality. Adipose-derived stem cells have been shown to affect the inflammatory response of macrophages. However, the molecular mechanism of the anti-inflammatory capacity of adipose-derived stem cells (ADSCs) remains to be understood. In the present study, a macrophage inflammation model was established by LPS, and treated with different volumes of ADSC supernatant. Then, we investigated the key genes in the LPS group and treatment group by RT-PCR, RNA sequencing technology, and bioinformatics analysis. A total of 26 miRNAs and 11,882 mRNAs were differentially expressed between them. The expression of 15 of the miRNAs (9 upregulated and 6 downregulated) was confirmed by RT-PCR. GO and KEGG pathway analyses of the targets of the 9 significantly upregulated miRNAs showed that they were related to immune system process, inflammatory response, lipopolysaccharide, and TNF-α, NF-κB, Toll-like receptor, and MAPK signaling pathways. Moreover, a miRNA-mRNA network also revealed 8 important genes (Mapkapk2, Sepp1, Cers6, Snn, ZfP568, Ccdc93, Pofut1, Pik3cd). We finally confirmed the expression of these 8 targeted genes by performing the RT-PCR analysis. This study may provide a new understanding of the molecular mechanism of ADSCs in the inflammatory response related to multiple miRNAs and mRNAs.
Collapse
Affiliation(s)
- Xiaozhi Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Mingchuan Liu
- Brigade 4, College of Basic Medicine, Fourth Military Medical University, No. 169 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Lincheng Li
- Brigade 4, College of Basic Medicine, Fourth Military Medical University, No. 169 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Jie Chen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Mengyuan Cao
- Chinese People's Liberation Army Hospital 961, No. 71 Youzheng Road, Qiqihar, 161000, Heilongjiang, China
| | - Yang Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Chen Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Wenbin Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Ke Tao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi, China.
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
25
|
Jiang P, Yang X, Li Y, Chen J. miRNA-216 knockdown has effects to suppress osteosarcoma via stimulating PTEN. Food Sci Nutr 2020; 8:4708-4716. [PMID: 32994932 PMCID: PMC7500758 DOI: 10.1002/fsn3.1587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of this study is to explain the effects and mechanism of miRNA-216 in osteosarcoma. We firstly evaluated the PTEN expression in 30 pairs of tumor and adjacent tissues which were from the 30 osteosarcoma patients. In the following cell experiments, we measured the cell proliferation, cell cycle, cell invasion, and migration abilities of NC (normal control) group, BL (blank) group, siRNA (miRNA-216 inhibitor) group, and siRNA+PTEN inhibitor group. Furthermore, we measured the relative protein expression of difference groups by WB to explain the mechanism of miRNA-216 in osteosarcoma. The PTEN was confirmed the target gene of miRNA-216 by double luciferase target test. In conclusion, miRNA-216 was an oncogene in osteosarcoma. miRNA-216 knockdown had effects to suppress cancer cell proliferation, invasion and migration and improve cell apoptosis by keeping in G1 phase via PTEN.
Collapse
Affiliation(s)
- Ping Jiang
- Department of Orthopaedics Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Xin Yang
- Department of Orthopaedics Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Yuanli Li
- Department of Orthopaedics Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Juan Chen
- Department of Orthopaedics Affiliated Hospital of North Sichuan Medical College Nanchong China
| |
Collapse
|
26
|
Rondon EP, Benabdoun HA, Vallières F, Segalla Petrônio M, Tiera MJ, Benderdour M, Fernandes JC. Evidence Supporting the Safety of Pegylated Diethylaminoethyl-Chitosan Polymer as a Nanovector for Gene Therapy Applications. Int J Nanomedicine 2020; 15:6183-6200. [PMID: 32922001 PMCID: PMC7450204 DOI: 10.2147/ijn.s252397] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/04/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Diethylaminoethyl-chitosan (DEAE-CH) is a derivative with excellent potential as a delivery vector for gene therapy applications. The aim of this study is to evaluate its toxicological profile for potential future clinical applications. METHODS An endotoxin-free chitosan (CH) modified with DEAE, folic acid (FA) and polyethylene glycol (PEG) was used to complex small interfering RNA (siRNA) and form nanoparticles (DEAE12-CH-PEG-FA2/siRNA). Based on the guidelines from the International Organization for Standardization (ISO), the American Society for Testing and Materials (ASTM), and the Nanotechnology Characterization Laboratory (NCL), we evaluated the effects of the interaction between these nanoparticles and blood components. In vitro screening assays such as hemolysis, hemagglutination, complement activation, platelet aggregation, coagulation times, cytokine production, and reactive species, such as nitric oxide (NO) and reactive oxygen species (ROS), were performed on erythrocytes, plasma, platelets, peripheral blood mononuclear cells (PBMC) and Raw 264.7 macrophages. Moreover, MTS and LDH assays on Raw 264.7 macrophages, PBMC and MG-63 cells were performed. RESULTS Our results show that a targeted theoretical plasma concentration (TPC) of DEAE12-CH-PEG-FA2/siRNA nanoparticles falls within the guidelines' thresholds: <1% hemolysis, 2.9% platelet aggregation, no complement activation, and no effect on coagulation times. ROS and NO production levels were comparable to controls. Cytokine secretion (TNF-α, IL-6, IL-4, and IL-10) was not affected by nanoparticles except for IL-1β and IL-8. Nanoparticles showed a slight agglutination. Cell viability was >70% for TPC in all cell types, although LDH levels were statistically significant in Raw 264.7 macrophages and PBMC after 24 and 48 h of incubation. CONCLUSION These DEAE12-CH-PEG-FA2/siRNA nanoparticles fulfill the existing ISO, ASTM and NCL guidelines' threshold criteria, and their low toxicity and blood biocompatibility warrant further investigation for potential clinical applications.
Collapse
Affiliation(s)
- Elsa Patricia Rondon
- Orthopedic Research Laboratory, Hôpital Du Sacré-Cœur De Montréal, Université De Montréal, Montréal, Québec, Canada
| | - Houda Abir Benabdoun
- Orthopedic Research Laboratory, Hôpital Du Sacré-Cœur De Montréal, Université De Montréal, Montréal, Québec, Canada
| | - Francis Vallières
- Orthopedic Research Laboratory, Hôpital Du Sacré-Cœur De Montréal, Université De Montréal, Montréal, Québec, Canada
| | - Maicon Segalla Petrônio
- Institute of Biosciences, Humanities and Exact Sciences, Department of Chemistry and Environmental Sciences, UNESP-São Paulo State University, São José Do Rio Preto, São Paulo State, Brazil
| | - Marcio José Tiera
- Institute of Biosciences, Humanities and Exact Sciences, Department of Chemistry and Environmental Sciences, UNESP-São Paulo State University, São José Do Rio Preto, São Paulo State, Brazil
| | - Mohamed Benderdour
- Orthopedic Research Laboratory, Hôpital Du Sacré-Cœur De Montréal, Université De Montréal, Montréal, Québec, Canada
| | - Julio Cesar Fernandes
- Orthopedic Research Laboratory, Hôpital Du Sacré-Cœur De Montréal, Université De Montréal, Montréal, Québec, Canada
| |
Collapse
|
27
|
Deng JJ, Li ZQ, Mo ZQ, Xu S, Mao HH, Shi D, Li ZW, Dan XM, Luo XC. Immunomodulatory Effects of N-Acetyl Chitooligosaccharides on RAW264.7 Macrophages. Mar Drugs 2020; 18:md18080421. [PMID: 32806493 PMCID: PMC7460392 DOI: 10.3390/md18080421] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
The ongoing development of new production methods may lead to the commercialization of N-acetyl chitooligosaccharides (NACOS), such as chitosan oligosaccharides (COS). The bioactivity of NACOS, although not well detailed, differs from that of COS, as they have more acetyl groups than COS. We used two enzymatically produced NACOS with different molecular compositions and six NACOS (NACOS1–6) with a single degree of polymerization to verify their immunomodulatory effects on the RAW264.7 macrophage cell line. We aimed to identify any differences between COS and various NACOS with a single degree of polymerization. The results showed that NACOS had similar immune enhancement effects on RAW264.7 cells as COS, including the generation of reactive oxygen species (ROS), phagocytotic activity, and the production of pro-inflammation cytokines (IL-1β, IL-6, and TNF-α). However, unlike COS and lipopolysaccharide (LPS), NACOS1 and NACOS6 significantly inhibited nitric oxide (NO) production. Besides their immune enhancement effects, NACOS also significantly inhibited the LPS-induced RAW264.7 inflammatory response with some differences between various polymerization degrees. We confirmed that the NF-κB pathway is associated with the immunomodulatory effects of NACOS on RAW264.7 cells. This study could inform the application of NACOS with varying different degrees of polymerization in human health.
Collapse
Affiliation(s)
- Jun-Jin Deng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (J.-J.D.); (Z.-Q.L.); (S.X.); (H.-H.M.); (D.S.); (Z.-W.L.)
- Institute of Animal Sciences, Guangdong Academy of Agricultural Sciences, No. 1 Dafeng Street, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Zong-Qiu Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (J.-J.D.); (Z.-Q.L.); (S.X.); (H.-H.M.); (D.S.); (Z.-W.L.)
| | - Ze-Quan Mo
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.-Q.M.); (X.-M.D.)
| | - Shun Xu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (J.-J.D.); (Z.-Q.L.); (S.X.); (H.-H.M.); (D.S.); (Z.-W.L.)
| | - He-Hua Mao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (J.-J.D.); (Z.-Q.L.); (S.X.); (H.-H.M.); (D.S.); (Z.-W.L.)
| | - Dan Shi
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (J.-J.D.); (Z.-Q.L.); (S.X.); (H.-H.M.); (D.S.); (Z.-W.L.)
| | - Zhi-Wei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (J.-J.D.); (Z.-Q.L.); (S.X.); (H.-H.M.); (D.S.); (Z.-W.L.)
| | - Xue-Ming Dan
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.-Q.M.); (X.-M.D.)
| | - Xiao-Chun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (J.-J.D.); (Z.-Q.L.); (S.X.); (H.-H.M.); (D.S.); (Z.-W.L.)
- Correspondence: ; Tel./Fax: +86-(0)20-3938-0609
| |
Collapse
|
28
|
Chitosan Oligosaccharide Attenuates Nonalcoholic Fatty Liver Disease Induced by High Fat Diet through Reducing Lipid Accumulation, Inflammation and Oxidative Stress in C57BL/6 Mice. Mar Drugs 2019; 17:md17110645. [PMID: 31744059 PMCID: PMC6891487 DOI: 10.3390/md17110645] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease closely associated with metabolic syndrome, but there are no validated pharmacological therapies. The aim of this study was to investigate the effect of chitosan oligosaccharide (COS) on NAFLD. Mice were fed either a control diet or a high-fat diet (HFD) with or without COS (200 or 400 mg/kg body weight (BW)) by oral gavage for seven weeks. Administration with COS significantly lowered serum lipid levels in the HFD-fed mice. The hepatic lipid accumulation was significantly decreased by COS, which was attributed to decreased expressions of lipogenic genes and increased expressions of fatty β-oxidation-related genes. Moreover, pro-inflammatory cytokines, neutrophils infiltration, and macrophage polarization were decreased by COS in the liver. Furthermore, COS ameliorated hepatic oxidative stress by activating the nuclear factor E2-related factor 2 (Nrf2) pathway and upregulating gene expressions of antioxidant enzymes. These beneficial effects were mediated by the activation of the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Therefore, COS might be a potent dietary supplement to ameliorate NAFLD.
Collapse
|
29
|
Jiang Z, Liu G, Yang Y, Shao K, Wang Y, Liu W, Han B. N-Acetyl chitooligosaccharides attenuate amyloid β-induced damage in animal and cell models of Alzheimer’s disease. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Sun Y, Cui X, Duan M, Ai C, Song S, Chen X. In vitro fermentation of κ-carrageenan oligosaccharides by human gut microbiota and its inflammatory effect on HT29 cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
31
|
Purification and Characterization of A New Cold-Adapted and Thermo-Tolerant Chitosanase from Marine Bacterium Pseudoalteromonas sp. SY39. Molecules 2019; 24:molecules24010183. [PMID: 30621320 PMCID: PMC6337222 DOI: 10.3390/molecules24010183] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/18/2018] [Accepted: 12/29/2018] [Indexed: 12/20/2022] Open
Abstract
Chitosanases play an important role in chitosan degradation, forming enzymatic degradation products with several biological activities. Although many chitosanases have been discovered and studied, the enzymes with special characteristics are still rather rare. In this study, a new chitosanase, CsnM, with an apparent molecular weight of 28 kDa was purified from the marine bacterium Pseudoalteromonas sp. SY39. CsnM is a cold-adapted enzyme, which shows highest activity at 40 °C and exhibits 30.6% and 49.4% of its maximal activity at 10 and 15 °C, respectively. CsnM is also a thermo-tolerant enzyme that recovers 95.2%, 89.1% and 88.1% of its initial activity after boiling for 5, 10 and 20 min, respectively. Additionally, CsnM is an endo-type chitosanase that yields chitodisaccharide as the main product (69.9% of the total product). It’s cold-adaptation, thermo-tolerance and high chitodisaccharide yield make CsnM a superior candidate for biotechnological application to produce chitooligosaccharides.
Collapse
|
32
|
Artham S, Gao F, Verma A, Alwhaibi A, Sabbineni H, Hafez S, Ergul A, Somanath PR. Endothelial stromelysin1 regulation by the forkhead box-O transcription factors is crucial in the exudative phase of acute lung injury. Pharmacol Res 2019; 141:249-263. [PMID: 30611853 DOI: 10.1016/j.phrs.2019.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/11/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022]
Abstract
Enhanced vascular permeability is associated with inflammation and edema in alveoli during the exudative phase of acute respiratory distress syndrome (ARDS). Mechanisms leading to the endothelial contribution on the early exudative stage of ARDS are not precise. We hypothesized that modulation of endothelial stromelysin1 expression and activity by Akt1-forkhead box-O transcription factors 1/3a (FoxO1/3a) pathway could play a significant role in regulating pulmonary edema during the initial stages of acute lung injury (ALI). We utilized lipopolysaccharide (LPS)-induced mouse ALI model in vivo and endothelial barrier resistance measurements in vitro to determine the specific role of the endothelial Akt1-FoxO1/3a-stromelysin1 pathway in ALI. LPS treatment of human pulmonary endothelial cells resulted in increased stromelysin1 and reduced tight junction claudin5 involving FoxO1/3a, associated with decreased trans-endothelial barrier resistance as determined by electric cell-substrate impedance sensing technology. In vivo, LPS-induced lung edema was significantly higher in endothelial Akt1 knockdown (EC-Akt1-/-) compared to wild-type mice, which was reversed upon treatment with FoxO inhibitor (AS1842856), stromelysin1 inhibitor (UK356618) or with shRNA-mediated FoxO1/3a depletion in the mouse lungs. Overall, our study provides the hope that targeting FoxO and styromelysin1 could be beneficial in the treatment of ALI.
Collapse
Affiliation(s)
- Sandeep Artham
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Fei Gao
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Arti Verma
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Abdulrahman Alwhaibi
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Harika Sabbineni
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Sherif Hafez
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, United States
| | - Adviye Ergul
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Department of Physiology, Augusta University, Augusta, GA 30912, United States
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Department of Medicine, Vascular Biology Center and Cancer Center, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
33
|
Chlorogenic acid protects against aluminum toxicity via MAPK/Akt signaling pathway in murine RAW264.7 macrophages. J Inorg Biochem 2018; 190:113-120. [PMID: 30428426 DOI: 10.1016/j.jinorgbio.2018.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 01/01/2023]
Abstract
Aluminum (Al), which may bring about damage to the macrophages, has been implicated in the development of immunological diseases. It has been reported that chlorogenic acid (CGA, 5‑caffeoylquinic acid, chemical formula: C16H18O9) is a natural antioxidant and chelating agent with the capacity against Al (III)-induced biotoxicity. The present study was carried out to investigate whether CGA could reduce AlCl3-induced cellular damage in RAW264.7 cells. After treatment with AlCl3, the inhibition rate of viability and phagocytic activity of RAW264.7 cells was 54.5% and 27.6%, respectively. Administration of CGA significantly improved the integrity and phagocytic activity, and attenuated the accumulation of intracellular Al(III) level and oxidative stress in Al(III)-treated cells. Furthermore, CGA significantly inhibited Al(III)-induced increase of phospho-Jun N-terminal kinase (p-JNK), a pro-apoptotic Bcl-2 family protein (Bad), cytochrome c and decrease of extracellular regulated protein kinases (ERK1/2), protein kinase B (Akt) protein expressions. These results showed that CGA has a protective effect against Al(III)-induced cytotoxicity through mitogen-activated protein kinase (MAPK)/Akt-mediated caspase pathways in RAW264.7 cells.
Collapse
|
34
|
Influence of Preparation Methods of Chitooligosaccharides on Their Physicochemical Properties and Their Anti-Inflammatory Effects in Mice and in RAW264.7 Macrophages. Mar Drugs 2018; 16:md16110430. [PMID: 30400250 PMCID: PMC6265923 DOI: 10.3390/md16110430] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 11/17/2022] Open
Abstract
The methods to obtain chitooligosaccharides are tightly related to the physicochemical properties of the end products. Knowledge of these physicochemical characteristics is crucial to describing the biological functions of chitooligosaccharides. Chitooligosaccharides were prepared either in a single-step enzymatic hydrolysis using chitosanase, or in a two-step chemical-enzymatic hydrolysis. The hydrolyzed products obtained in the single-step preparation were composed mainly of 42% fully deacetylated oligomers plus 54% monoacetylated oligomers, and they attenuated the inflammation in lipopolysaccharide-induced mice and in RAW264.7 macrophages. However, chitooligosaccharides from the two-step preparation were composed of 50% fully deacetylated oligomers plus 27% monoacetylated oligomers and, conversely, they promoted the inflammatory response in both in vivo and in vitro models. Similar proportions of monoacetylated and deacetylated oligomers is necessary for the mixtures of chitooligosaccharides to achieve anti-inflammatory effects, and it directly depends on the preparation method to which chitosan was submitted.
Collapse
|
35
|
Hou C, Bai H, Wang Z, Qiu Y, Kong LL, Sun F, Wang D, Yin H, Zhang X, Mu H, Duan J. A hyaluronan-based nanosystem enables combined anti-inflammation of mTOR gene silencing and pharmacotherapy. Carbohydr Polym 2018; 195:339-348. [PMID: 29804985 DOI: 10.1016/j.carbpol.2018.04.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/21/2018] [Accepted: 04/27/2018] [Indexed: 12/19/2022]
Abstract
Accompanied by overproduction of oxidants and reduction of pH, inflammation is closely related to many diseases such as cancer, atherosclerosis, and asthma. Besides chemotherapeutic agents, the potential regulative role of autophagy in inflammation is being actively investigated. RNA interference (RNAi)-based gene therapy is widely explored for clinical therapy but seriously restricted by lack of suitable carriers. In this study, we synthesized a hyaluronan-based ROS-sensitive polymer which was expected to release loaded chemical drugs in inflammatory environment and further developed a stable and nontoxic co-delivery nanosystem of siRNA targeting autophagy suppressive gene and chemotherapeutic agents. The in vitro transfection study of this nanosystem revealed improved intracellular accumulation of siRNA and excellent gene silencing efficacy comparable to that of conventional cationic liposome. Moreover, the mRNA expression of inflammatory cytokines was remarkably decreased by our nanosystem. Considering its biocompatibility, transfection efficacy, and anti-inflammatory capability, this co-delivery nanosystem proclaimed to be a promising combined therapeutic strategy for enhanced anti-inflammatory therapy.
Collapse
Affiliation(s)
- Chunyan Hou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hu Bai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhaojie Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuanhao Qiu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Li-Li Kong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Feifei Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dongdong Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hong Yin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoli Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haibo Mu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jinyou Duan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
36
|
Yang YQ, Yan XT, Wang K, Tian RM, Lu ZY, Wu LL, Xu HT, Wu YS, Liu XS, Mao W, Xu P, Liu B. Triptriolide Alleviates Lipopolysaccharide-Induced Liver Injury by Nrf2 and NF-κB Signaling Pathways. Front Pharmacol 2018; 9:999. [PMID: 30210350 PMCID: PMC6124152 DOI: 10.3389/fphar.2018.00999] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
Nrf2 (Nuclear Factor Erythroid 2 Related Factor 2) transcription factor not only regulates oxidative stress response, but also represses inflammation by regulating cytokines production and cross-talking with NF-κB signaling pathways. Nrf2 plays an essential role in liver injury induced by oxidative stress and inflammation. Triptriolide (T11) is a minor component of Tripterygium wilfordii Hook F. (TwHF), which can be obtained by hydrolysis reaction of triptolide (T9). The major purpose of this study is to clarify the regulating effects of T11 on oxidative stress and inflammation in vivo and in vitro. LPS-stimulated RAW 264.7 cells were used to verify the regulating effects of T11 on oxidative stress (ROS and Nrf2 signaling pathway) and inflammatory cytokines production (TNF-α, IL-6 and IL-1β). The antioxidant responsive element (ARE) luciferase assay was employed to evaluate Nrf2 activation effect of T11 in HEK-293T cells. Lipopolysaccharides (LPS) induced acute liver injury (ALI) in BALB/c mice were used to study the protective effects (ALT, AST, MDA, SOD, histopathology and neutrophils/macrophages filtration) and the underlying protection mechanisms of ALI amelioration (Nrf2 and NF-κB signaling pathway) of T11. Firstly, the results showed that T11 can not only effectively decrease the productions of inflammatory cytokines (TNF-α, IL-6 and IL-1β), ROS and NO in LPS-stimulated RAW 264.7 cells, but also further significantly increase the activity of Nrf2 in HEK-293T cells. Secondly, the results suggested that T11 could dramatically decrease the oxidative stress responses (SOD and MDA) and inflammation (histopathology, neutrophils/macrophages filtration, TNF-α, IL-6 and IL-1β production) in LPS-induced ALI in BALB/c mice. Finally, the results implied that T11 could dramatically increase Nrf2 protein expression and decrease p-TAK1, p-IκBα and NF-κB protein expression both in vivo and in vitro. In conclusion, our findings indicated that T11 could alleviate LPS induced oxidative stress and inflammation by regulating Nrf2 and NF-κB signaling pathways in vitro and in vivo, which offers a novel insights for the application of TwHF in clinical.
Collapse
Affiliation(s)
- Yi-Qi Yang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Teng Yan
- Affiliated Huai'an Hospital, Xuzhou Medical University, Huai'an, China
| | - Kai Wang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui-Min Tian
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Zhao-Yu Lu
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Li-Lan Wu
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Hong-Tao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Yun-Shan Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xu-Sheng Liu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Wei Mao
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Peng Xu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Bo Liu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| |
Collapse
|
37
|
Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. PLoS One 2018; 13:e0197563. [PMID: 29771951 PMCID: PMC5957424 DOI: 10.1371/journal.pone.0197563] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/04/2018] [Indexed: 02/02/2023] Open
Abstract
Kaempferol (kae) and its glycosides are widely distributed in nature and show multiple bioactivities, yet few reports have compared them. In this paper, we report the antitumor, antioxidant and anti-inflammatory activity differences of kae, kae-7-O-glucoside (kae-7-O-glu), kae-3-O-rhamnoside (kae-3-O-rha) and kae-3-O-rutinoside (kae-3-O-rut). Kae showed the highest antiproliferation effect on the human hepatoma cell line HepG2, mouse colon cancer cell line CT26 and mouse melanoma cell line B16F1. Kae also significantly inhibited AKT phosphorylation and cleaved caspase-9, caspase-7, caspase-3 and PARP in HepG2 cells. A kae-induced increase in DPPH and ABTS radical scavenging activity, inhibition of concanavalin A (Con A)-induced activation of T cell proliferation and NO or ROS production in LPS-induced RAW 264.7 macrophage cells were also seen. Kae glycosides were used to produce kae via environment-friendly enzymatic hydrolysis. Kae-7-O-glu and kae-3-O-rut were hydrolyzed to kae by β-glucosidase and/or α-L-rhamnosidase. This paper demonstrates the application of enzymatic catalysis to obtain highly biologically active kae. This work provides a novel and efficient preparation of high-value flavone-related products.
Collapse
|
38
|
Chitooligosaccharides and their biological activities: A comprehensive review. Carbohydr Polym 2018; 184:243-259. [DOI: 10.1016/j.carbpol.2017.12.067] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/10/2017] [Accepted: 12/24/2017] [Indexed: 01/11/2023]
|
39
|
Qian L, Chen L. Immune protective effects of chitooligosaccharides on mice genital tract infected by Chlamydia trachomatis. Am J Reprod Immunol 2018; 79:e12815. [PMID: 29345808 DOI: 10.1111/aji.12815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/27/2017] [Indexed: 11/29/2022] Open
Abstract
PROBLEM The immune protective effects of chitooligosaccharides (COs) on mouse genital tract infected by Chlamydia trachomatis (Ct) were unknown. METHODS The minimum effective/infective dose was obtained by establishing the murine model of the genital tract infected by Ct. The model mice were treated with different doses (0.1, 0.2, and 0.3 g/kg,) of COs and 0.9% saline, and the serum immunoglobulin G (IgG) antibody and interleukin (IL)-11 levels were then assayed. The healthy mice were used as the control. After 1 week of immunity, a double-effective/infective dose of Ct was used to attack the genital tract. After 10 days of experiment, the mice were killed, their spleen and thymus indexes were determined, and the pathological changes in their genital tract were evaluated. RESULTS Treatment with COs increased the serum IgG antibody, IL-11 levels, and spleen and thymus indexes but decreased the positive infection rate and inclusion body formation with Ct. CONCLUSION COs could induce immune protection on the Ct-infected mouse genital tract and might be used as an alternative drug for the treatment of genital tract infected with Ct.
Collapse
Affiliation(s)
- Li Qian
- College of medical technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Linjun Chen
- College of medical technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|