1
|
Kunadu APH, Arcot Y, Cisneros-Zevallos L, Barouei J, Akbulut MES, Matthew Taylor T. Nanoencapsulation of Curcumin and Quercetin in Zein-chitosan Shells for Enhanced Broad-spectrum Antimicrobial Efficacy and Shelf-life Extension of Strawberries. J Food Prot 2025; 88:100517. [PMID: 40287141 DOI: 10.1016/j.jfp.2025.100517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/10/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Strawberries face significant postharvest microbial spoilage risks due to high water and sugar content as well as low organic acid contents in their flesh. The study aimed to develop and characterize a novel strategy to delay microbiological spoilage in strawberries using single and coencapsulation of curcumin (Cm) and quercetin (Q), creating stable nanoencapsulates specifically designed to target mold spores, vegetative fungi, and bacteria, with potential applications for both foodservice and consumer use. Using a layer-by-layer antisolvent method, nanoencapsulates of Cm and Q were synthesized, characterized, and assayed against both human and plant pathogenic bacteria and fungi in vitro and in situ. The nanoencapsulates formed stable, spherical emulsion droplets with monodisperse size distribution, high specific surface area, and moderately electro-positive ζ-potentials. Encapsulation efficiencies were 56% (Cm), 65% (Q), and 46.05 ± 4.78% (Cm) and 53.68 ± 4.83% (Q) for CmQ. The nanoencapsulated compounds exhibited strong antimicrobial activity against Pseudomonas aeruginosa, Listeria monocytogenes, Salmonella Montevideo, Saccharomyces cerevisiae, as well as Botrytis cinerea and Aspergillus niger spores in vitro. In strawberries, Cm and Q nanoencapsulates reduced decay incidence by 60% and 80% at 25 °C and 4 °C, respectively, significantly lowering aerobic bacteria by 3.55 ± 0.20 log CFU/g for Cm and 1.97 ± 0.35 log CFU/g for Q, respectively. Yeast and mold counts were likewise reduced by 2.46 ± 0.02 log CFU/g for Cm and 1.43 ± 0.16 log CFU/g for Q. Strawberry quality parameters (firmness, pH, and color) remained stable (P ≥ 0.05) after five days at 25 °C and 15 days at 4 °C. This study highlights a sustainable and effective nanoencapsulation approach for extending the microbiological shelf life of strawberries offering a promising opportunity in food preservation to mitigate spoilage and reduce postharvest losses on perishable fruits and vegetables.
Collapse
Affiliation(s)
- Angela Parry-Hanson Kunadu
- Institute for Advancing Health Through Agriculture, Texas A&M University, College Station, TX 77840, USA; Department of Animal Science, Texas A&M University, College Station, TX 77840, USA
| | - Yashwanth Arcot
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Javad Barouei
- College of Agriculture, Food and Natural Resources, Prairie View A&M University, Prairie View, TX 77446, USA
| | - M E S Akbulut
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - T Matthew Taylor
- Department of Animal Science, Texas A&M University, College Station, TX 77840, USA.
| |
Collapse
|
2
|
Ghahri S, Park BD. Bio-crosslinking of oxidized hardwood kraft lignin as fully bio-based adhesives for wood bonding. Int J Biol Macromol 2025; 309:142907. [PMID: 40220819 DOI: 10.1016/j.ijbiomac.2025.142907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/11/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
Lignin's low reactivity and crosslinking challenges limit its applications. To address this, many synthetic crosslinkers have been used, but they often involve hazardous chemicals, raising environmental concerns. In particular, it is also true for hardwood kraft lignin (HKL) being burned or wasted in kraft pulping mills. This study reports the successful chitosan bio-crosslinking of oxidized HKL with sodium periodate rather than toxic and environmentally harmful crosslinkers. Both low oxidation (LO) and high oxidation (HO) levels enhance the reactivity of HKL by introducing aldehyde groups, thereby facilitating the formation of imine and amide bonds with chitosan, leading to higher glass transition temperature (Tg), higher viscosity, and greater adhesion strength. The results indicate that the crosslinking of acetone soluble HKL (ASHKL) at LO level with chitosan exhibits excellent dry adhesion strength (1.15 ± 0.2 MPa) for plywood, which meet the required adhesion level of Korean Standard (0.6 MPa) and European Norm 314-2 (1 MPa). These results reveal that chitosan is an outstanding polysaccharide-based crosslinker for the bio-crosslinking of HKL owing to its sustainability, biocompatibility, functional properties, and capability to form covalent bonds.
Collapse
Affiliation(s)
- Saman Ghahri
- Department of Wood and Paper Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung-Dae Park
- Department of Wood and Paper Science, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
3
|
Ma J, Huang X, Jin L, Xu Q. Effect of dialdehyde nanocellulose-tannin fillers on antioxidant, antibacterial, mechanical and barrier properties of chitosan films for cherry tomato preservation. Food Chem 2025; 463:141274. [PMID: 39305641 DOI: 10.1016/j.foodchem.2024.141274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 11/14/2024]
Abstract
In this study, bio-based composite films from nanocellulose, tannin and chitosan were fabricated. First, tannin was covalently immobilized onto dialdehyde CNCs (DACNCs) through the nucleophilic reaction to obtain TA-CNCs. TA-CNCs were then added into chitosan matrix as the nanofillers to obtain chitosan-TA-CNC (CS-TA-CNC) films. Compared with pure chitosan film, the water solubility, swelling ratio, water vapor and oxygen barrier properties of CS-TA-CNC films decreased, indicating the improved water-resistant and barrier properties. The composite films exhibited high UV blocking, antioxidant capacity and antimicrobial properties against both E. coli and S. aureus. CS-TA-CNC film with a TA-CNC content of 10 % exhibited the highest tensile strength (77.57 MPa) and toughness (23.51 MJ/m3), 2.23 and 2.5 times higher than that of pure chitosan film, respectively. The composite films extended postharvest life of tomato cherries compared to the pure chitosan film. Films prepared from sustainable bioresources show promising potential for use in active packaging.
Collapse
Affiliation(s)
- Jinzhao Ma
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaodi Huang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Liqiang Jin
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Qinghua Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
4
|
Karim A, Raji Z, Habibi Y, Khalloufi S. A review on the hydration properties of dietary fibers derived from food waste and their interactions with other ingredients: opportunities and challenges for their application in the food industry. Crit Rev Food Sci Nutr 2024; 64:11722-11756. [PMID: 37565505 DOI: 10.1080/10408398.2023.2243510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Dietary fiber (DF) significantly affects the quality attributes of food matrices. Depending on its chemical composition, molecular structure, and degree of hydration, the behavior of DF may differ. Numerous reports confirm that incorporating DF derived from food waste into food products has significant effects on textural, sensory, rheological, and antimicrobial properties. Additionally, the characteristics of DF, modification techniques (chemical, enzymatic, mechanical, thermal), and processing conditions (temperature, pH, ionic strength), as well as the presence of other components, can profoundly affect the functionalities of DF. This review aims to describe the interactions between DF and water, focusing on the effects of free water, freezing-bound water, and unfreezing-bound water on the hydration capacity of both soluble and insoluble DF. The review also explores how the structural, functional, and environmental properties of DF contribute to its hydration capacity. It becomes evident that the interactions between DF and water, and their effects on the rheological properties of food matrices, are complex and multifaceted subjects, offering both opportunities and challenges for further exploration. Utilizing DF extracted from food waste exhibits promise as a sustainable and viable strategy for the food industry to create nutritious and high-value-added products, while concurrently reducing reliance on primary virgin resources.
Collapse
Affiliation(s)
- Ahasanul Karim
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada
| | - Zarifeh Raji
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada
| | - Youssef Habibi
- Sustainable Materials Research Center (SUSMAT-RC), University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| | - Seddik Khalloufi
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada
| |
Collapse
|
5
|
Qiao K, Peng B. Effect of frozen storage on the quality of frozen instant soup rice noodles: From the moisture and starch characteristics. Int J Biol Macromol 2024; 279:135320. [PMID: 39236954 DOI: 10.1016/j.ijbiomac.2024.135320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
This study aimed to simulate frozen instant soup rice noodles (FISRN) and investigate the effects of long-term frozen storage (-18 °C, 180 days) on the quality characteristics, moisture status, and starch retrogradation of FISRN. The findings indicated that the extent of starch retrogradation gradually increased over 90 days, which elevated the RS rate and inhibited starch digestibility. However, recrystallization resulted in a gradual increase in ice crystal size after 90 days, which disrupted the ordered structure formed by starch retrogradation, reduced the degree of starch order, and accelerated the rate of starch digestion. Furthermore, a longer relaxation time (T24) was detected by NMR with increasing storage time. The weakly bound water in FISRN was gradually converted to free water. Texture results suggested that the hardness of FISRN experienced a general decrease. The cooking loss increased progressively from 3.66 % to 8.10 %. Scanning electron microscope demonstrated that the internal porous network structure of FISRN became inhomogeneous, and a significant number of apertures were formed on the surface. Overall, starch retrogradation and ice recrystallization significantly impact the quality of FISRN during long-term frozen storage. The findings may potentially influence the consumption and market circulation of FISRN positively.
Collapse
Affiliation(s)
- Kong Qiao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bangzhu Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
6
|
Ma Y, Bi J, Feng S, Wu Z, Yi J. Higher molecular weight pectin inhibits ice crystal growth and its effect on the microstructural and physical properties of pectin cryogels. Carbohydr Polym 2024; 340:122312. [PMID: 38858011 DOI: 10.1016/j.carbpol.2024.122312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024]
Abstract
Understanding the formation of ice crystals is essential for tailoring the microstructure and physical properties of cryogels. This study investigated the effects and mechanisms of pectin molecular weight (Mw) on impacting ice crystal formation. Pectin fractions various Mw (10.13-212.20 kDa) were prepared by hydrothermal method. The solution of high Mw pectin fractions exhibited higher contact angle, lower water freedom, and stronger adsorption of water molecules. The splat experiment and molecular dynamic (MD) results confirmed that higher Mw pectin have stronger ice crystal growth inhibition activity than lower Mw pectin. Furthermore, the pore size distribution of the cryogel increased from 98-203 μm to 105-267 μm as the molecular weight decreased from 212.2 kDa to 121.0 kDa. Additionally, in the higher Mw pectin cryogel, stronger mechanical strength was observed. These findings suggested that changing the molecular weight of pectin has the potential to regulate the ice crystal growth, microstructure and physical properties of frozen products.
Collapse
Affiliation(s)
- Youchuan Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China; College of Mechanical Engineering, Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin University of Science and Technology, Tianjin, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China.
| | - Shuhan Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhonghua Wu
- College of Mechanical Engineering, Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin University of Science and Technology, Tianjin, China
| | - Jianyong Yi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China.
| |
Collapse
|
7
|
Chen J, Yin C, Zhao B, Cheng X. Strategies for preparation of chitosan based water-soluble fluorescent probes to detect Cr 3+ and Cu 2+ ions. Int J Biol Macromol 2024; 276:133915. [PMID: 39019374 DOI: 10.1016/j.ijbiomac.2024.133915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/26/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
The low solubility of chitosan (CS) imposes adverse effects on its application. In this work, one of the aims is to improve the water solubility of CS. By introducing water-soluble side chains to CS, this aim was achieved. Besides, fluorescent moieties were incorporated into the side chains, the fluorescent copolymers were endowed with Cr3+ and Cu2+ ions recognition ability. Firstly, a reversible addition-fragmentation chain transfer polymerization (RAFT) reagent with naphthalimide units and CC groups was prepared. Water-soluble monomer methyl acrylic acid (MAA) was employed in the RAFT polymerization. Thus, water-soluble polymer with fluorescent unit and -C ≡ C on both ends of the polymer was obtained. They were introduced into CS, and the CS-based fluorescent copolymers were obtained eventually. The amount of MAA introduced could be tuned to obtain three side chains of different lengths. It was found that the more MAA was introduced, the better the solubility of CS-TP was. The detection limits (LOD) of Cr3+ and Cu2+ were 44.6 nM and 54.5 nM, respectively. The detection of Cr3+ and Cu2+ ions is further combined with a mobile APP to realize real-time, portable, and visual detection. And the application in the logic gate, a new detection platform, is prepared.
Collapse
Affiliation(s)
- Junyu Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Chuanqi Yin
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Bo Zhao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
8
|
Gülpınar M, Tomul F, Arslan Y, Tran HN. Chitosan-based film incorporated with silver-loaded organo-bentonite or organo-bentonite: Synthesis and characterization for potential food packaging material. Int J Biol Macromol 2024; 274:133197. [PMID: 38885862 DOI: 10.1016/j.ijbiomac.2024.133197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Biopolymer-clay composite films were synthesized and characterized for food packaging material. The synthesis was conducted in two stages. Cetrimonium bromide-modified bentonite (CTAB-bentonite) was first exchanged with Ag ions to obtain Ag-CTAB-bentonite. Biopolymer-clay composite films were then performed by a solution-casting method between chitosan (biopolymer) and Ag-CTAB-bentonite or between chitosan and CTAB-bentonite. Different weights of CTAB-bentonite (3% and 5% wt.) and Ag-CTAB-bentonite (3% and 5% wt.) were used during the second stage. The resultant films were characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy, scanning electron microscope coupled with energy dispersive X-ray spectroscopy, atomic force microscopes, thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, optical measurement, and others (moisture content, swelling behavior, water solubility, antibacterial, shredded carrot preservation, and biodegradability). Results indicated that the properties (thermal stability, thermomechanical ability, UV-visible light barrier, shredded carrot preservation) of the chitosan-based film incorporated with the synthesized composites were enhanced compared to those of the CS film. The CS/(CTAB-bentonite)-3% and CS/(Ag-CTAB-bentonite)-3% films exhibited antibacterial properties against Escherichia coli, Salmonella enterica subp. enterica, Staphylococcus aureus, and Listeria monocytogenes. The chitosan-based film reinforced with the two prepared composites can be potential for food preservation and packaging.
Collapse
Affiliation(s)
- Muhittin Gülpınar
- Burdur Mehmet Akif Ersoy University, Faculty of Arts and Science, Chemistry Department, Burdur, Turkey
| | - Fatma Tomul
- Burdur Mehmet Akif Ersoy University, Faculty of Arts and Science, Chemistry Department, Burdur, Turkey
| | - Yasin Arslan
- Burdur Mehmet Akif Ersoy University, Faculty of Arts and Science, Nanoscience and Nanotechnology Department, Burdur, Turkey
| | - Hai Nguyen Tran
- Center for Energy and Environmental Materials, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh 70000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 50000, Viet Nam.
| |
Collapse
|
9
|
Murugapandian R, Mohan SG, T M S, Nambi Raj NA, Uthirapathy V. Comparative Analysis of Electrospun Silk Fibroin/Chitosan Sandwich-Structured Scaffolds for Osteo Regeneration: Evaluating Mechanical Properties, Biological Performance, and Drug Release. ACS OMEGA 2024; 9:28072-28092. [PMID: 38973883 PMCID: PMC11223251 DOI: 10.1021/acsomega.4c01069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 07/09/2024]
Abstract
An intensive idea of bone tissue engineering is to design regenerative nanofibrous scaffolds that could afford a natural extracellular matrix (ECM) microenvironment with the ability to induce cell proliferation, biodegradation, sustained drug release, and bioactivity. Even the mechanical properties and orientation of the nanofibers may enhance the performance of the scaffolds. To address this issue, we designed novel sandwich-like hybrid silk fibroin (SF)/silica/poly(vinyl alcohol) (PVA) nanofibers scaffolds. The developed scaffold was further characterized using scanning electron microscopy (SEM), elemental mapping, X-ray diffraction (XRD), Fourier-transform infrared (FTIR), and water/blood contact angle measurements. Owing to the interfacial interaction between the layers of organic (chitosan/silk fibroin) and inorganic (silica) in the nanofibrous scaffold, a biocompatibility study has been made on an osteoblast-like (MG63) cell line, which has significant statistical differences; hemocompatibility and the mechanical profile were evaluated in detail to understand the suitability as a biomaterial. To endow the scaffold biodegradation rate, antibacterial activity, porosity profile, and cephalexin monohydrate (CEM), a drug-loading/drug release study was also performed for all of the nanofibers. This strategy explored superior mechanical strength with higher biomineralization on SF/silica/PVA nanofibers. Eventually, the proposed article compared the observation of monolayered scaffolds with designed sandwich-structured scaffolds for the enhancement of bone regeneration.
Collapse
Affiliation(s)
- Rama Murugapandian
- Centre
for Nonlinear Systems, Chennai Institute
of Technology, Chennai 600069, India
| | | | - Sridhar T M
- Department
of Analytical Chemistry, University of Madras, Chennai 600025, India
| | - N. Arunai Nambi Raj
- Centre
for Biomaterials, Cellular and Molecular Theragnostic, Vellore Institute of Technology, Vellore 632 014, India
| | | |
Collapse
|
10
|
Peng X, Liu Z, Gao J, Zhang Y, Wang H, Li C, Lv X, Gao Y, Deng H, Zhao B, Gao T, Li H. Influence of Spider Silk Protein Structure on Mechanical and Biological Properties for Energetic Material Detection. Molecules 2024; 29:1025. [PMID: 38474537 PMCID: PMC10934110 DOI: 10.3390/molecules29051025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Spider silk protein, renowned for its excellent mechanical properties, biodegradability, chemical stability, and low immune and inflammatory response activation, consists of a core domain with a repeat sequence and non-repeating sequences at the N-terminal and C-terminal. In this review, we focus on the relationship between the silk structure and its mechanical properties, exploring the potential applications of spider silk materials in the detection of energetic materials.
Collapse
Affiliation(s)
- Xinying Peng
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Zhiyong Liu
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Junhong Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Yuhao Zhang
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Hong Wang
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Cunzhi Li
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Xiaoqiang Lv
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Yongchao Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Hui Deng
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Bin Zhao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Ting Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Huan Li
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| |
Collapse
|
11
|
Pan P, Wang J, Wang X, Kang Y, Yu X, Chen T, Hao Y, Liu W. Physically cross-linked chitosan gel with tunable mechanics and biodegradability for tissue engineering scaffold. Int J Biol Macromol 2024; 257:128682. [PMID: 38070807 DOI: 10.1016/j.ijbiomac.2023.128682] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Chitosan, a cationic polysaccharide, exhibits promising potential for tissue engineering applications. However, the poor mechanical properties and rapid biodegradation have been the major limitations for its applications. In this work, an effective strategy was proposed to optimize the mechanical performance and degradation rate of chitosan gel scaffolds by regulating the water content. Physical chitosan hydrogel (HG, with 93.57 % water) was prepared by temperature-controlled cross-linking, followed by dehydration to obtain xerogel (XG, with 2.84 % water) and rehydration to produce wet gel (WG, with 56.06 % water). During this process, changes of water content significantly influenced the water existence state, hydrogen bonding, and the chain entanglements of chitosan in the gel network. The mechanical compression results showed that the chitosan gel scaffolds exhibited tunable compressive strength (0.3128-139 MPa) and compressive modulus (0.2408-1094 MPa). XG could support weights exceeding 65,000 times its own mass while maintaining structural stability. Furthermore, in vitro and in vivo experiments demonstrated that XG and WG exhibited better biocompatibility and resistance to biodegradation compared with HG. Overall, this work contributes to the design and optimization of chitosan scaffolds without additional chemical crosslinkers, which has potential in tissue engineering and further clinical translation.
Collapse
Affiliation(s)
- Peng Pan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Jian Wang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, PR China
| | - Xi Wang
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, PR China
| | - Ye Kang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Xinding Yu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Tiantian Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yulin Hao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Wentao Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
12
|
Kenawy ER, El-Moaty MSA, Ghoneum M, Soliman HMA, El-Shanshory AA, Shendy S. Biobran-loaded core/shell nanofibrous scaffold: a promising wound dressing candidate. RSC Adv 2024; 14:4930-4945. [PMID: 38327812 PMCID: PMC10848241 DOI: 10.1039/d3ra08609g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
This research examined the effectiveness of Biobran as a bioactive substance that could potentially improve wound healing. It also looked at how Biobran affects the properties of a nanofibrous scaffold made through coaxial electrospinning. This is the first study exploring the use of Biobran in this context and its interaction with nanofibrous scaffolds. The scaffolds were composed of poly(ε-caprolactone) (PCL) in the shell and various concentrations of Biobran blended with polyvinyl alcohol (PVA) in the core. The properties of the scaffolds were characterized by SEM, TEM, FTIR, XRD, TGA, DSC, stress-strain test, WCA, release test, MTT cytotoxicity assay, wound scratching assay, and the dye exclusion method using trypan blue. The scaffolds loaded with Biobran exhibited a more compact and smooth morphology compared with the scaffold without Biobran. The physical interaction and crystallinity of the polymers in the scaffolds were also affected by Biobran in a concentration-dependent manner. This positively influenced their tensile strength, elongation at break, thermal stability, and hydrophilicity. The porosity, water uptake capacity, and WVTR of the nanofibrous scaffolds are within the optimal ranges for wound healing. The release rate of Biobran, which revealed a biphasic release pattern, decreased with increasing Biobran concentration, resulting in controlled and sustained delivery of Biobran from the nanofiber scaffolds. The cell viability assays showed a dose-dependent effect of Biobran on WISH cells, which might be attributed to the positive effect of Biobran on the physicochemical properties of the nanofibrous scaffolds. These findings suggest that Biobran-loaded core/shell nanofiber scaffolds have a potential application in wound healing as an ideal multifunctional wound dressing.
Collapse
Affiliation(s)
- El-Refaie Kenawy
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Mohammed S A El-Moaty
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Mamdooh Ghoneum
- Department of Surgery, Charles R. Drew University of Medicine and Science 1731 E. 120th Street Los Angeles CA 90059 USA
- Department of Surgery, University of California Los Angeles Los Angeles CA 90095 USA
| | - Hesham M A Soliman
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) New Borg Al-Arab Alexandria 21934 Egypt
| | - Ahmed A El-Shanshory
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) New Borg Al-Arab Alexandria 21934 Egypt
| | - S Shendy
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| |
Collapse
|
13
|
Tagliaro I, Musile G, Caricato P, Dorizzi RM, Tagliaro F, Antonini C. Chitosan Film Sensor for Ammonia Detection in Microdiffusion Analytical Devices. Polymers (Basel) 2023; 15:4238. [PMID: 37959918 PMCID: PMC10650627 DOI: 10.3390/polym15214238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Chitosan films have attracted increased attention in the field of sensors because of chitosan's unique chemico-physical properties, including high adsorption capacity, filmability and transparency. A chitosan film sensor was developed through the dispersion of an ammonia specific reagent (Nessler's reagent) into a chitosan film matrix. The chitosan film sensor was characterized to assess the film's properties by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). A gas diffusion device was prepared with the chitosan film sensor, enabling the collection and detection of ammonia vapor from biological samples. The chitosan film sensor color change was correlated with the ammonia concentration in samples of human serum and artificial urine. This method enabled facile ammonia detection and concentration measurement, making the sensor useful not only in clinical laboratories, but also for point-of-care devices and wherever there is limited access to modern laboratory facilities.
Collapse
Affiliation(s)
- Irene Tagliaro
- Department of Materials Science, University of Milano, via Cozzi 55, 20131 Milano, Italy;
| | - Giacomo Musile
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Piazzale L. A. Scuro, 10, 37134 Verona, Italy; (R.M.D.); (F.T.)
| | - Paolo Caricato
- Directorate-General for Health and Food Safety G5, Food Hygiene, Feed and Fraud 03/104, 1049 Brussels, Belgium;
| | - Romolo M. Dorizzi
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Piazzale L. A. Scuro, 10, 37134 Verona, Italy; (R.M.D.); (F.T.)
| | - Franco Tagliaro
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Piazzale L. A. Scuro, 10, 37134 Verona, Italy; (R.M.D.); (F.T.)
| | - Carlo Antonini
- Department of Materials Science, University of Milano, via Cozzi 55, 20131 Milano, Italy;
| |
Collapse
|
14
|
Hejazi S, Restaino OF, Sabbah M, Zannini D, Di Girolamo R, Marotta A, D’Ambrosio S, Krauss IR, Giosafatto CVL, Santagata G, Schiraldi C, Porta R. Physicochemical Characterization of Chitosan/Poly-γ-Glutamic Acid Glass-like Materials. Int J Mol Sci 2023; 24:12495. [PMID: 37569870 PMCID: PMC10419765 DOI: 10.3390/ijms241512495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
This paper sets up a new route for producing non-covalently crosslinked bio-composites by blending poly-γ-glutamic acid (γ-PGA) of microbial origin and chitosan (CH) through poly-electrolyte complexation under specific experimental conditions. CH and two different molecular weight γ-PGA fractions have been blended at different mass ratios (1/9, 2/8 and 3/7) under acidic pH. The developed materials seemed to behave like moldable hydrogels with a soft rubbery consistency. However, after dehydration, they became exceedingly hard, glass-like materials completely insoluble in water and organic solvents. The native biopolymers and their blends underwent comprehensive structural, physicochemical, and thermal analyses. The study confirmed strong physical interactions between polysaccharide and polyamide chains, facilitated by electrostatic attraction and hydrogen bonding. The materials exhibited both crystalline and amorphous structures and demonstrated good thermal stability and degradability. Described as thermoplastic and saloplastic, these bio-composites offer vast opportunities in the realm of polyelectrolyte complexes (PECs). This unique combination of properties allowed the bio-composites to function as glass-like materials, making them highly versatile for potential applications in various fields. They hold potential for use in regenerative medicine, biomedical devices, food packaging, and 3D printing. Their environmentally friendly properties make them attractive candidates for sustainable material development in various industries.
Collapse
Affiliation(s)
- Sondos Hejazi
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
| | - Odile Francesca Restaino
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
| | - Mohammed Sabbah
- Department of Nutrition and Food Technology, An-Najah National University, Nablus P400, Palestine;
| | - Domenico Zannini
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
- Institute for Polymers, Composites, and Biomaterials, National Council of Research, 80078 Pozzuoli, Italy;
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
| | - Angela Marotta
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples “Federico II”, 80126 Naples, Italy;
| | - Sergio D’Ambrosio
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy (C.S.)
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Florence, Italy
| | - C. Valeria L. Giosafatto
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
| | - Gabriella Santagata
- Institute for Polymers, Composites, and Biomaterials, National Council of Research, 80078 Pozzuoli, Italy;
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy (C.S.)
| | - Raffaele Porta
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
| |
Collapse
|
15
|
Zhao K, Jia Z, Hou L, Yang H, Xiao S, Ding W, Zhang Y, Wang X, Fu Y, Wu Y. Interpretation of the effects of hydroxypropyl starch and hydroxypropyl distarch phosphate on frozen raw noodles quality during frozen storage: Studies on water state and starch-gluten network properties. Int J Biol Macromol 2023; 242:124783. [PMID: 37169050 DOI: 10.1016/j.ijbiomac.2023.124783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
The impacts of both structural variations induced by low temperature and physiochemical changes induced by modified starch on the qualities of frozen raw noodles (FRNs) were investigated during long-term freezing storage. The addition of modified starch was a potentially effective method to delay the loss of FRNs qualities during storage. In this study, hydroxypropyl starch (HPS) and hydroxypropyl distarch phosphate (HPDSP) were added to improve the cooking and textural characteristics of FRNs. The cooking loss rate of FRNs with the addition of 12%HPS was consistent with that of the control (4.39 % and 4.37 %, respectively), while after 8 weeks of storage showed the significant decrease effect (5.01 % and 5.78 %, respectively). In addition, adding HPS or HPDSP could change the colour and lustre of FRNs to that preferred by consumers. When 6 % HPS or HPDSP were added, the FRNs showed the lowest of freezable water content during storage. The test results of FTIR showed the secondary structure of FRNs was maintained with the introduction of HPS or HPDSP during refrigeration, and the microstructure was improved during the frozen storage period. Consequently, the results provided a theoretical basis and new insight for the production and transportation of FRNs.
Collapse
Affiliation(s)
- Kaifeng Zhao
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China
| | - Ziyang Jia
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China
| | - Lili Hou
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China
| | - Heng Yang
- Angel Yeast Co., Ltd., 168 Chengdong Avenue, Yichang, Hubei, China
| | - Shensheng Xiao
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China
| | - Wenping Ding
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China
| | - Yuting Zhang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China
| | - Xuedong Wang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China.
| | - Yang Fu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China.
| | - Yan Wu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China.
| |
Collapse
|
16
|
Oliveira RWG, de Oliveira JM, da Paz FB, Muniz EC, de Moura EM, Costa JCS, do Nascimento MO, Carvalho ALM, Pinheiro IM, Mendes AN, Filgueiras LA, de Souza PR, de Moura CVR. Films composed of white angico gum and chitosan containing chlorhexidine as an antimicrobial agent. Int J Biol Macromol 2023; 235:123905. [PMID: 36870650 DOI: 10.1016/j.ijbiomac.2023.123905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Anadenanthera colubrina, popularly known as white angico, is a species extensively cultivated in Brazil, mainly in the cerrado region, including the state of Piauí. This study examines the development of films composed of white angico gum (WAG) and chitosan (CHI) and containing chlorhexidine (CHX), an antimicrobial agent. The solvent casting method was used to prepare films. Different combinations and concentrations of WAG and CHI were used to obtain films with good physicochemical characteristics. Properties such as the in vitro swelling ratio, the disintegration time, folding endurance, and the drug content were determined. The selected formulations were characterised by scanning electron microscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction, and the CHX release time and antimicrobial activity were evaluated. CHX showed a homogenous distribution in all CHI/WAG film formulations. The optimised films showed good physicochemical properties with 80% CHX release over 26 h, which is considered promising for local treatment of severe lesions in the mouth. Cytotoxicity tests of the films did not show toxicity. The antimicrobial and antifungal effects were very effective against the tested microorganisms.
Collapse
Affiliation(s)
| | | | | | - Edvani Curti Muniz
- Department of Chemistry, Federal University of Piauí, 64049-550, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dong Y, Li Y, Ma Z, Rao Z, Zheng X, Tang K, Liu J. Effect of polyol plasticizers on properties and microstructure of soluble soybean polysaccharide edible films. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.101023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
He J, Yun L, Cheng X. Organic-soluble chitosan-g-PHMA (PEMA/PBMA)-bodipy fluorescent probes and film by RAFT method for selective detection of Hg2+/Hg+ ions. Int J Biol Macromol 2023; 237:124255. [PMID: 36996960 DOI: 10.1016/j.ijbiomac.2023.124255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Chitosan as the plentiful and easily available natural polymer, its solubility in organic solvents is still a challenge. In this article, three different chitosan-based fluorescent co-polymers were prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization. They could not only dissolve in several organic solvents, but also could selectively recognize Hg2+/Hg+ ions. Firstly, allyl boron-dipyrrolemethene (bodipy) was prepared, and used as one of the monomers in the subsequent RAFT polymerization. Secondly, chitosan-based chain transfer agent (CS-RAFT) was synthesized through classical reactions for dithioester preparation. Finally, three methacrylic ester monomers and bodipy bearing monomers were polymerized and grafted as branched-chains onto chitosan respectively. By RAFT polymerization, three chitosan-based macromolecular fluorescent probes were prepared. These probes could be readily dissolved in DMF, THF, DCM, and acetone. All of them exhibited the 'turn-on' fluorescence with selective and sensitive detection for Hg2+/Hg+. Among them, chitosan-g-polyhexyl methacrylate-bodipy (CS-g-PHMA-BDP) had the best performance, its fluorescence intensity could be increased to 2.7 folds. In addition, CS-g-PHMA-BDP could be processed into films and coatings. When loading on the filter paper, fluorescent test paper was prepared and it could realize the portable detection of Hg2+/Hg+ ions. These organic-soluble chitosan-based fluorescent probes could enlarge the applications of chitosan.
Collapse
|
19
|
Liu Q, Li B, Li Y, Yang X, Wang S, Qiao C, Wang N. Cross-linked films based on N-hydrophobic-O-hydrophilic chitosan derivatives: Preparation, properties and application in bananas storage. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
20
|
Amarpuri G, Dhopatkar N, Blackledge TA, Dhinojwala A. Molecular Changes in Spider Viscid Glue As a Function of Relative Humidity Revealed Using Infrared Spectroscopy. ACS Biomater Sci Eng 2022; 8:3354-3360. [PMID: 35894694 DOI: 10.1021/acsbiomaterials.2c00529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spider aggregate glue can absorb moisture from the atmosphere to reduce its viscosity and become tacky. The viscosity at which glue adhesion is maximized is remarkably similar across spider species, even though that viscosity is achieved at very different relative humidity (RH) values matching their diverse habitats. However, the molecular changes in the protein structure and the bonding state of water (both referred to here as molecular structure) with respect to the changes in RH are not known. We use attenuated total reflectance-infrared (ATR-IR) spectroscopy to probe the changes in the molecular structure of glue as a function of RH for three spider species from different habitats. We find that the glue retains bound water at lower RH and absorbs liquid-like water at higher RH. The absorption of liquid-like water at high RH plasticizes the glue and explains the decrease in glue viscosity. The changes to protein conformations as a function RH are either subtle or not detectable by IR spectroscopy. Importantly, the molecular changes are reversible over multiple cycles of RH change. Further, separation of glue constituents results in a different humidity response as compared to pristine glue, supporting the standing hypothesis that the glue constituents have a synergistic association that makes spider glue a functional adhesive. The results presented in this study provide further insights into the mechanism of the humidity-responsive adhesion of spider glue.
Collapse
Affiliation(s)
- Gaurav Amarpuri
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Nishad Dhopatkar
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Todd A Blackledge
- Department of Biology, Integrated Bioscience Program, The University of Akron, Akron, Ohio 44325, United States
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
21
|
Moradi S, Najjar R, Hamishehkar H, Lotfi A. Triple-responsive drug nanocarrier: Magnetic core-shell nanoparticles of Fe3O4@poly(N-isopropylacrylamide)-grafted-chitosan, synthesis and in vitro cytotoxicity evaluation against human lung and breast cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Effect of low-pressure radio-frequency air plasma on chitosan films. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Jiang S, Qiao C, Wang X, Li Z, Yang G. Structure and properties of chitosan/sodium dodecyl sulfate composite films. RSC Adv 2022; 12:3969-3978. [PMID: 35425441 PMCID: PMC8981506 DOI: 10.1039/d1ra08218c] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
In this study, we investigated the effect of sodium dodecyl sulfate (SDS) content on the structure and properties of chitosan films. It is found that the binding of SDS to chitosan was realized through the interactions between -SO4 - and -NH3 +, forming an ionically cross-linked film. Structural analysis revealed that the crystallization was greatly hindered by introducing SDS. With an increase of SDS content, the glass transition temperatures (T g) of chitosan films increased due to the formation of crosslinks. Compared to pure chitosan film, the composite films had lower content of moisture and possessed better thermal stability. In addition, the mechanical properties of the as-obtained composite films were closely related to the content of SDS, and were significantly improved in the biopolymer films with moderate SDS content. These results indicate that the microstructure as well as properties of the chitosan films can be regulated by adding SDS.
Collapse
Affiliation(s)
- Song Jiang
- School of Materials Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Daxue Rd. 3501 Jinan 250353 PR China +86 531 89631227 +86 531 89631227
| | - Congde Qiao
- School of Materials Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Daxue Rd. 3501 Jinan 250353 PR China +86 531 89631227 +86 531 89631227
| | - Xujie Wang
- School of Materials Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Daxue Rd. 3501 Jinan 250353 PR China +86 531 89631227 +86 531 89631227
| | - Zhongwei Li
- School of Materials Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Daxue Rd. 3501 Jinan 250353 PR China +86 531 89631227 +86 531 89631227
| | - Guihua Yang
- School of Materials Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Daxue Rd. 3501 Jinan 250353 PR China +86 531 89631227 +86 531 89631227
| |
Collapse
|
24
|
Jiménez-Regalado EJ, Caicedo C, Fonseca-García A, Rivera-Vallejo CC, Aguirre-Loredo RY. Preparation and Physicochemical Properties of Modified Corn Starch-Chitosan Biodegradable Films. Polymers (Basel) 2021; 13:polym13244431. [PMID: 34960981 PMCID: PMC8708082 DOI: 10.3390/polym13244431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Starch is a biopolymer with enormous potential for generating new biodegradable packages due to its easy availability and low cost. However, due to its weak functional properties, limitation of its interaction with some hydroxyl groups and evaluation of blends with other polymers are necessary in order to improve its performance. Glycerol-plasticized acetylated corn starch films were developed using the casting method, and the impact of incorporating chitosan (TPS:CH) in various proportions (75:25, 50:50, and 25:75 v/v) was studied in the present research. The effect of chitosan ratios on the physical, mechanical, water-vapor barrier, and thermal properties of the film was studied. Chitosan-protonated amino groups promoted the formation of intermolecular bonds, improving tensile strength, thermal stability, hydrophobicity, water adsorption capacity, and the gas barrier of starch films. The results show that the film composed of TPS25-CH75 proved to be the best barrier to water vapor; thus, these composite films are excellent choices for developing biodegradable packaging for the food industry.
Collapse
Affiliation(s)
- Enrique Javier Jiménez-Regalado
- Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila 25294, Mexico; (E.J.J.-R.); (A.F.-G.); (C.C.R.-V.)
| | - Carolina Caicedo
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Pampalinda, Santiago de Cali 760035, Colombia;
| | - Abril Fonseca-García
- Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila 25294, Mexico; (E.J.J.-R.); (A.F.-G.); (C.C.R.-V.)
- Consejo Nacional de Ciencia y Tecnología (CONACYT)—CIQA, Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila 25294, Mexico
| | - Claudia Cecilia Rivera-Vallejo
- Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila 25294, Mexico; (E.J.J.-R.); (A.F.-G.); (C.C.R.-V.)
| | - Rocio Yaneli Aguirre-Loredo
- Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila 25294, Mexico; (E.J.J.-R.); (A.F.-G.); (C.C.R.-V.)
- Consejo Nacional de Ciencia y Tecnología (CONACYT)—CIQA, Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila 25294, Mexico
- Correspondence:
| |
Collapse
|
25
|
Determination of Antimicrobial and Antibiofilm Activity of Combined LVX and AMP Impregnated in p(HEMA) Hydrogel. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Catheter-associated urinary tract infections (CAUTIs) are nosocomial infections, causing more than one million cases per year. CAUTIs cause serious health issues; in addition, the cost of replacement of the device constrains the employment of urological devices. Therefore, there is an urgent need to develop novel biomaterials for use in catheters. In this study, poly hydroxyethyl-methacrylate p(HEMA) and drugs-loaded p(HEMA) with ampicillin trihydrate (AMP), levofloxacin (LVX), and drug combinations were prepared using free radical polymerization. The characterization of the dried films included the determination of glass transition temperature (Tg), ultimate tensile strength, elongation percentage, and Young’s modulus. Formulation toxicity, antimicrobial activity, and biofilm-formation ability were tested. Decreases in Tg value, U.T.S., and Young’s modulus, and an increase in elongation percentage were observed in AMP-loaded p(HEMA). Different ratios of drug combinations increased the Tg values. The films exhibited a cell viability higher than 80% on HEK 293 cells. Antimicrobial activity increased when p(HEMA) was loaded with LVX or a combination of LVX and AMP. Biofilm-forming ability reduced after the addition of antimicrobial agents to the films. p(HEMA) impregnated with AMP, LVX, and drug combinations showed significantly increased antimicrobial activity and decreased biofilm-forming ability compared with p(HEMA), in addition to the effects on (HEMA) mechanical properties.
Collapse
|
26
|
Yan J, Li M, Wang H, Lian X, Fan Y, Xie Z, Niu B, Li W. Preparation and property studies of chitosan-PVA biodegradable antibacterial multilayer films doped with Cu2O and nano-chitosan composites. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Hou H, Chen Q, Bi J, Bhandari B, Wu X, Jin X, Shi Y, Qiao Y, Gou M, Shi J. Glass transition and crystallization of solid model system of jujube slice as influenced by sugars and organic acids. Food Chem 2021; 359:129935. [PMID: 33934032 DOI: 10.1016/j.foodchem.2021.129935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 11/29/2022]
Abstract
To understand the specific contributions of amorphous sugars and organic acids to the quality of food matrix, the solid model system of jujube slice skeleton (JSS) was firstly established. Effects of fructose (F), glucose (G), malic acid (M) and citric acid (C) on the glass transition temperature (Tg) and crystallization of JSS were studied. JSS-F/G/M/C blends were prepared by osmosis in the solution at a range of 0 ~ 32 g/100 g. Sugars reduced the Tg in the system, structure of JSS-G/M blends was changed from "amorphous glassy" to "amorphous rubbery" by increasing the osmotic solute concentration. Tg was decreased from 50.8 to 14.0 °C when JSS was osmosed in a 4 g/100 g fructose solution. Organic acids induced their crystallization in JSS. The crystallinity of JSS-M immersed in 32 g/100 g osmotic solution concentration was increased from 2% to 75%. Fructose presented greater influence on the adverse quality of jujube slices.
Collapse
Affiliation(s)
- Haonan Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/ Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, 100193 Beijing, China
| | - Qinqin Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/ Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, 100193 Beijing, China.
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/ Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, 100193 Beijing, China.
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Xinye Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/ Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, 100193 Beijing, China
| | - Xinwen Jin
- Institute of Agro-products Processing Science and Technology, XinJiang Academy of Agricultural and Reclamation Science, 832000 Shihezi, China
| | - Yong Shi
- Haoxiangni Health Food Co. Ltd, 451162 Zhengzhou, China
| | - Yening Qiao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/ Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, 100193 Beijing, China
| | - Min Gou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/ Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, 100193 Beijing, China
| | - Juling Shi
- Haoxiangni Health Food Co. Ltd, 451162 Zhengzhou, China
| |
Collapse
|
28
|
Development and characterization of chitosan films carrying Artemisia campestris antioxidants for potential use as active food packaging materials. Int J Biol Macromol 2021; 183:254-266. [PMID: 33892038 DOI: 10.1016/j.ijbiomac.2021.04.113] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/10/2021] [Accepted: 04/17/2021] [Indexed: 12/31/2022]
Abstract
Active food packaging films based on chitosan and enriched with Artemisia campestris hydroalcoholic extract (ACHE), aqueous extract (ACAE) and essential oil (ACEO) were developed. The effects of incorporating A. campestris were investigated on the physical, mechanical, thermal and antioxidant characteristics of the films. The structural properties of the films were evaluated using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that adding ACHE and ACEO improved the water resistance of chitosan films. The FTIR spectroscopy analysis revealed covalent interaction and hydrogen bonding between chitosan and ACHE. The XRD and SEM analyses indicated that interactions occurred between the film matrix and A. campestris active compounds, which could be reflected by the physical and mechanical properties of composite films. Incorporating ACHE and ACAE in the chitosan matrix decreased the tensile strength. The film extensibility was reduced when ACHE and ACEO were added. All films exhibited great thermal stability as the degradation occurred above 300 °C. The addition of A. campestris active compounds, particularly extracts, to chitosan films notably increased the antioxidant and UV-Vis barrier properties. Chitosan films enriched with the A. campestris antioxidant compounds could be applied as food packaging alternatives.
Collapse
|
29
|
Tummino ML, Nisticò R, Riedo C, Fabbri D, Cerruti M, Magnacca G. Waste Cleaning Waste: Combining Alginate with Biowaste-Derived Substances in Hydrogels and Films for Water Cleanup. Chemistry 2021; 27:660-668. [PMID: 32970361 DOI: 10.1002/chem.202003250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/03/2020] [Indexed: 11/10/2022]
Abstract
Biowaste-derived substances isolated from green compost (BBS-GC) are environmentally friendly reactants similar to humic substances, which contain multiple functionalities, that are suitable for adsorbing different kinds of pollutants in wastewater. Herein, sodium alginate (derived from brown algae) cross-linked with both Ca2+ ions and BBS-GC in the form of hydrogels and dried films are proposed as green, easy-to-form, and handleable materials for tertiary water treatments. The results show that both hydrogels and films are mechanically stable and can effectively remove differently charged dyes through an adsorption mechanism that can be described by the Freundlich model. BBS-GC-containing gels always performed better than samples prepared without BBS-GC, revealing that such unconventional materials can integrate waste valorization and water decontamination, potentially providing social and environmental benefits.
Collapse
Affiliation(s)
- Maria Laura Tummino
- Department of Chemistry, Università degli Studi di Torino, Via P. Giuria 7, 10125, Turin, Italy
- Current address: Institute of Intelligent Industrial Technologies and Systems, for Advanced Manifacturing-Italian National Research Council, Corso Giuseppe Pella 16, 13800, Biella, Italy
| | - Roberto Nisticò
- Independent Researcher, via Borgomasino 39, 10149, Turin, Italy
| | - Chiara Riedo
- Department of Chemistry, Università degli Studi di Torino, Via P. Giuria 7, 10125, Turin, Italy
| | - Debora Fabbri
- Department of Chemistry, Università degli Studi di Torino, Via P. Giuria 7, 10125, Turin, Italy
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, Montreal, QC, H3A 2B2, Canada
| | - Giuliana Magnacca
- Department of Chemistry, Università degli Studi di Torino, Via P. Giuria 7, 10125, Turin, Italy
- NIS Centre, Via P. Giuria 7, 10125, Turin, Italy
| |
Collapse
|
30
|
Evaluation of Interactions Between Carboxymethylcellulose and Soy Protein Isolate and their Effects on the Preparation and Characterization of Composite Edible Films. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-020-09659-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Zia Q, Tabassum M, Meng J, Xin Z, Gong H, Li J. Polydopamine-assisted grafting of chitosan on porous poly (L-lactic acid) electrospun membranes for adsorption of heavy metal ions. Int J Biol Macromol 2020; 167:1479-1490. [PMID: 33221270 DOI: 10.1016/j.ijbiomac.2020.11.101] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
In this study, a versatile method for the manufacturing of chitosan-grafted porous poly (L-lactic acid) (P-PLLA) nanofibrous membrane by using polydopamine (PDA) as an intermediate layer has been developed. P-PLLA fibres were electrospun and collected as nano/micro fibrous membranes. Highly porous fibres could serve as a substrate for chitosan to adsorb heavy metal ions. Moreover, PDA was used to modify P-PLLA surface to increase the coating uniformity and stability of chitosan. Due to the very high surface area of P-PLLA membranes and abundant amine groups of both PDA and chitosan, the fabricated membranes were utilized as adsorbent for removal of copper (Cu2+) ions from the wastewater. The adsorption capability of Cu2+ ions was examined with respect to the PDA polymerization times, pH, initial metal ion concentration and time. Finally, the equilibrium adsorption data of chitosan-grafted membranes fitted well with the Langmuir isotherm with the maximum adsorption capacity of 270.27 mg/g.
Collapse
Affiliation(s)
- Qasim Zia
- Department of Materials, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Madeeha Tabassum
- School of Engineering & Materials Science, Queen Mary University of London, Mile End Road E1 4NS, United Kingdom
| | - Jinmin Meng
- Department of Materials, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Zhiying Xin
- Department of Materials, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Hugh Gong
- Department of Materials, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Jiashen Li
- Department of Materials, The University of Manchester, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
32
|
Kõrge K, Šeme H, Bajić M, Likozar B, Novak U. Reduction in Spoilage Microbiota and Cyclopiazonic Acid Mycotoxin with Chestnut Extract Enriched Chitosan Packaging: Stability of Inoculated Gouda Cheese. Foods 2020; 9:E1645. [PMID: 33187311 PMCID: PMC7697305 DOI: 10.3390/foods9111645] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
Active chitosan-based films, blended with fibrous chestnut (Castanea sativa Mill.) tannin-rich extract were used to pack Gouda cheese that has been contaminated with spoilage microflora Pseudomonas fluorescens, Escherichia coli, and fungi Penicillium commune. A comprehensive experimental plan including active chitosan-based films with (i) chestnut extract (CE), (ii) tannic acid (TA), and (iii) without additives was applied to evaluate the film's effect on induced microbiological spoilage reduction and chemical indices of commercial Gouda cheese during 37 days while stored at 4 °C and 25 °C, respectively. The cheese underwent microbiology analysis and chemical assessments of ultra-high-performance liquid chromatography (UHPLC) (cyclopiazonic acid), pH, and moisture content. The biopackaging used for packing cheese was characterized by mechanical properties before food packaging and analyzed with the same chemical analysis. The cheese microbiology showed that the bacterial counts were most efficiently decreased by the film without additives. However, active films with CE and TA were more effective as they did not break down around the cheese and showed protective properties against mycotoxin, moisture loss, and pH changes. Films themselves, when next to high-fat content food, changed their pH to less acidic, acted as absorbers, and degraded without plant-derived additives.
Collapse
Affiliation(s)
- Kristi Kõrge
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (K.K.); (M.B.); (B.L.)
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Helena Šeme
- Acies Bio d.o.o., Tehnološki park 21, 1000 Ljubljana, Slovenia;
| | - Marijan Bajić
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (K.K.); (M.B.); (B.L.)
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (K.K.); (M.B.); (B.L.)
| | - Uroš Novak
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (K.K.); (M.B.); (B.L.)
| |
Collapse
|
33
|
Grossutti M, Dutcher JR. Hydration Water Structure, Hydration Forces, and Mechanical Properties of Polysaccharide Films. Biomacromolecules 2020; 21:4871-4877. [DOI: 10.1021/acs.biomac.0c01098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Michael Grossutti
- Department of Physics, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - John R. Dutcher
- Department of Physics, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
34
|
Zhao JA, Ren FD. Theoretical investigation into the cooperativity effect of 1,4-dimethoxy-D-glucosamine complex with Na + and H 2O. J Mol Model 2020; 26:203. [PMID: 32648117 DOI: 10.1007/s00894-020-04461-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/28/2020] [Indexed: 10/23/2022]
Abstract
In order to explore the essence of the hydration process of chitin or chitosan in the presence of cation, the cooperativity effects between the H-bonding and Na+···molecule interactions in the 1,4-dimethoxy-D-glucosamine (DMGA) complexes with H2O and Na+ were investigated at the B3LYP/6-311++G(d,p), M06-2X/6-311++G(2df,2p), and ωB97X-D/6-311++G(2df,2p) levels. The result shows that the complexes in which Na+ or H2O is bonded simultaneously to the -NH and -OH groups connected to the C3 atom of DMGA are the most stable. The cooperativity and anti-cooperativity effects occur in DMGA···H2O···DMGA and DMGA···Na+···H2O, while only the cooperativities are confirmed in DMGA···Na+···DMGA. The cooperativity occurs in the DMGA···Na+···H2O complexes without the hydration, while the anti-cooperativity occurs in those with the hydration. Furthermore, the cooperativity and anti-cooperativity in DMGA···Na+···H2O are far stronger than those in DMGA···Na+···DMGA or DMGA···H2O···DMGA. Therefore, a deduction is given that the cooperativity and anti-cooperativity effects play an important role in the hydration of chitin or chitosan in the presence of Na+. When only Na+ is linked with -OH and -NH groups of chitosan or chitin, due to the cooperativity effect, the hydration does not occur. When both Na+ and H2O are linked with -OH and -NH groups, the anti-cooperativities are dominant in controlling of the aggregation process of Na+, H2O, chitosan, and chitin, leading to the possible hydration. Atoms in molecules (AIM) analysis confirms the cooperativity and anti-cooperativity effects. Graphical abstract.
Collapse
Affiliation(s)
- Jin-An Zhao
- Department of Environment and Security Engineering, Taiyuan institute of technology, Taiyuan, 030008, People's Republic of China.
| | - Fu-de Ren
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, People's Republic of China
| |
Collapse
|
35
|
Younis HGR, Abdellatif HRS, Ye F, Zhao G. Tuning the physicochemical properties of apple pectin films by incorporating chitosan/pectin fiber. Int J Biol Macromol 2020; 159:213-221. [PMID: 32416291 DOI: 10.1016/j.ijbiomac.2020.05.060] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 12/20/2022]
Abstract
Various biodegradable or edible films were designed to deal with the environmental threats from plastic films. To overcome the defects of pectin film, the feasibility for the incorporation of CH/PE fiber was explored. Micron-scale novel artificial CH/PE fibers in needle, spindle or whisker shape with a diameter around 25 μm were fabricated via a shearing regime in virtue of electrostatic complexing. The incorporation of CH/PE fiber (mixture) and its size-fractioned portions (small and large) substantially changed PE films in diverse ways. Structurally, the fiber-incorporated films were heterogeneous with the fibers concentrated in the upper layer, although they presented similar FT-IR spectra and XRD pattern to PE film. Regarding the film performance, the incorporation of CH/PE fibers, especially the small portion, rendered the PE film with higher values in water-proof ability, thermal stability, break resistibility, stretchability and UV blocking capacity. More importantly, this work provided an innovative strategy to improve the performance of edible films.
Collapse
Affiliation(s)
- Heba G R Younis
- College of Food Science, Southwest University, Chongqing 400715, China; Agricultural Engineering Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Hassan R S Abdellatif
- Agricultural Engineering Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
36
|
Di Filippo MF, Panzavolta S, Albertini B, Bonvicini F, Gentilomi GA, Orlacchio R, Passerini N, Bigi A, Dolci LS. Functional properties of chitosan films modified by snail mucus extract. Int J Biol Macromol 2020; 143:126-135. [DOI: 10.1016/j.ijbiomac.2019.11.230] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/21/2022]
|
37
|
Qiao C, Ma X, Wang X, Yao J. Effect of water on the thermal transition in chitosan films. POLYMER CRYSTALLIZATION 2019. [DOI: 10.1002/pcr2.10092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Congde Qiao
- School of Materials Science and EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| | - Xianguang Ma
- School of Materials Science and EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| | - Xujie Wang
- School of Materials Science and EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| | - Jinshui Yao
- School of Materials Science and EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| |
Collapse
|
38
|
Ma X, Qiao C, Wang X, Yao J, Xu J. Structural characterization and properties of polyols plasticized chitosan films. Int J Biol Macromol 2019; 135:240-245. [DOI: 10.1016/j.ijbiomac.2019.05.158] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/30/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
|