1
|
Zhang H, Wu Z, Wu J, Hua Q, Liang Y, Renneckar S. High internal phase Pickering emulsions stabilized by surface-modified dialdehyde xylan nanoparticles. Carbohydr Polym 2025; 354:123324. [PMID: 39978906 DOI: 10.1016/j.carbpol.2025.123324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/22/2025]
Abstract
Polysaccharide-based particles have attracted considerable attention for stabilizing Pickering emulsions due to their sustainability and biocompatibility. In this study, we developed a novel approach utilizing hemicellulose-based nanoparticles for the stabilization of high internal phase Pickering emulsions (HIPPEs). Polyethylenimine-modified dialdehyde xylan nanoparticles (PEI-DAXNPs) were prepared through periodate oxidation of xylan nanoparticles obtained from esparto pulp, followed by a Schiff base reaction with polyethylenimine (PEI). Oil-in-water HIPPEs were fabricated using PEI-DAXNPs as the sole stabilizer through a one-time homogenization method and exhibited long-term stability after 180 days of storage. Furthermore, gel-like HIPPEs were obtained with a minimum concentration of 0.1 wt% PEI-DAXNPs in the continuous phase and exhibited shear-thinning behavior and promising viscoelastic properties, indicating good processability in the fabrication of soft materials and porous scaffolds. Therefore, the produced PEI-DAXNPs demonstrated significant potential as HIPPE stabilizers, providing inspiration for the valorization of hemicellulose-based nanoparticles.
Collapse
Affiliation(s)
- Huaiyu Zhang
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Zemeng Wu
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jie Wu
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Qi Hua
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yalan Liang
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Scott Renneckar
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
2
|
Zhang W, Azizi-Lalabadi M, Can Karaca A, Abedi-Firoozjah R, Assadpour E, Zhang F, Jafari SM. A review of bio-based dialdehyde polysaccharides as multifunctional building blocks for biomedical and food science applications. Int J Biol Macromol 2025; 309:142964. [PMID: 40210025 DOI: 10.1016/j.ijbiomac.2025.142964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Food science and biomedical engineering are key disciplines related to human health, with the development of functional materials being an important research direction in both fields. In recent years, dialdehyde polysaccharides (DAPs), as green biopolymers, have become increasingly important in functional materials within food science and biomedical engineering. This work systematically summarizes the sources and properties of various DAPs, introduces their preparation methods and common DAP-based functional biomaterials, including hydrogels, scaffolds, films, coatings, nanoparticles, and nanofibers. Importantly, this work also reviews DAP applications in functional materials for food science and biomedical engineering, such as drug delivery, wound dressings, tissue engineering, food packaging films/edible coatings, food emulsions, antibacterial nanoparticles, and enzyme immobilization. Finally, the work briefly discusses the biosafety of DAPs. To conclude, this study provides a toolkit for developing functional materials in these fields and offers important reference value regarding the broad application of DAPs.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Maryam Azizi-Lalabadi
- Research Center of Oils and Fats, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asli Can Karaca
- Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Reza Abedi-Firoozjah
- Student Research committee, Kermanshah University of Medical sciences, Kermanshah, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
3
|
Jittham R, Putdon N, Uyama H, Hsu YI, Theerakulpisut S, Okhawilai M, Srikhao N, Kasemsiri P. Injectable gelatin/modified starch waste hydrogels containing metal-phenolic network derived from phenol-rich spent coffee grounds for self-healing and pH-responsive drug release. Int J Biol Macromol 2025; 307:141774. [PMID: 40054817 DOI: 10.1016/j.ijbiomac.2025.141774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Injectable hydrogels hold promise for drug delivery and biomedical applications but often lack multifunctional properties such as antibacterial activity, self-adhesion, and controlled drug release. This study developed a multifunctional gelatin-based hydrogel using modified cassava starch waste (CSW) and a metal-phenolic complex from spent coffee grounds (ex-SCG). The CSW was used to prepare aldehyde starch (DAS), while ferric ions formed metal-ligand bonds with phenolic compounds extracted from ex-SCG. The injectable hydrogel's properties were evaluated based on metal coordination complex with Fe3+ (ex-SCG-Fe3+) content. The presence of 1 % ex-SCG-Fe3+ in the gelatin/DAS hydrogel exhibited a minimum inhibitory concentration against both gram-positive and gram-negative bacteria. The adhesive strength of the samples increased from 1.44 ± 0.45 kPa to 6.50 ± 0.12 kPa with the addition of ex-SCG-Fe3+ ranging from 0 to 3 %. The gelatin/DAS hydrogel containing ex-SCG-Fe3+ exhibited better pH-responsive control of drug release compared to the neat gelatin/DAS hydrogel. Additionally, it demonstrated self-healing ability. The presence of metronidazole (MTZ) as a model drug in the gelatin/DAS hydrogel containing ex-SCG-Fe3+ enhanced antibacterial activities but slightly decreased mechanical properties. The obtained injectable hydrogel presents a promising approach, utilizing food by-products as a beneficial material for medical applications.
Collapse
Affiliation(s)
- Rawit Jittham
- Sustainable Infrastructure Research and Development Center and Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Noppanan Putdon
- Sustainable Infrastructure Research and Development Center and Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Yu-I Hsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Somnuk Theerakulpisut
- Energy Management and Conservation Office, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Manunya Okhawilai
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Natwat Srikhao
- Department of Chemical Engineering, Faculty of Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Pornnapa Kasemsiri
- Sustainable Infrastructure Research and Development Center and Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
4
|
Rahdan F, Abedi F, Saberi A, Vaghefi Moghaddam S, Ghotaslou A, Sharifi S, Alizadeh E. Co-delivery of hsa-miR-34a and 3-methyl adenine by a self-assembled cellulose-based nanocarrier for enhanced anti-tumor effects in HCC. Int J Biol Macromol 2025; 307:141501. [PMID: 40054812 DOI: 10.1016/j.ijbiomac.2025.141501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/18/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
The simultaneous delivery of oligonucleotides and small molecules has garnered significant interest in cancer therapy. Hepatocellular carcinoma (HCC) treatment is hindered by limited efficacy and significant side effects. Homo sapiens microRNA-34a (hsa-miR-34a) has tumor suppressor properties and like small molecule 3-methyl adenine (3MA) can inhibit autophagy. Besides, 3MA has been shown to enhance anticancer effects in combination therapies. In the present study, a novel modified-cellulose-dialdehyde (MDAC) nanocarrier responsive to lysosomal pH was designed to co-load hsa-miR-34a polyplexes and 3MA and evaluate its antitumor efficacy against HCC. Polyplexes containing hsa-miR-34a and poly L lysine (PLL) with an optimal N/P ratio exhibited a zeta potential of +9.28. These polycations significantly modulated the surface charge of 3MA MDAC for optimal cell-membrane transport and dramatically increased their stability. The PLL-miR34a/3MA MDAC NPs had loading efficiency of around 99.7 % for miR-34a and 35 % for 3MA. Comply with pH dependency, PLL-miR34a polyplex/3MA MDAC NPs worked very efficiently on the inhibiting the expression of autophagy genes (p < 0.05), preventing the formation of autophagosomal vacuoles, reducing rate of cell survival, anti-migratory effects (>100 %), and triggering apoptosis (67.15 %) in HepG2. Our cellulose-based nanocarrier may demonstrate potential for enhancing therapeutic efficacy of combination therapies headed for future clinical translation in HCC.
Collapse
Affiliation(s)
- Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Abedi
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alihossein Saberi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sevil Vaghefi Moghaddam
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armita Ghotaslou
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sheyda Sharifi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Jeong JP, Kim K, Oh E, Park S, Jung S. Self-Healing Hydrogels with Intrinsic Antioxidant and Antibacterial Properties Based on Oxidized Hydroxybutanoyl Glycan and Quaternized Carboxymethyl Chitosan for pH-Responsive Drug Delivery. Gels 2025; 11:169. [PMID: 40136873 PMCID: PMC11942413 DOI: 10.3390/gels11030169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
In this study, self-healing hydrogels were created using oxidized hydroxybutanoyl glycan (OHbG) and quaternized carboxymethyl chitosan (QCMCS), displaying antioxidant and antibacterial properties for pH-responsive drug delivery. The structures of the modified polysaccharides were confirmed through 1H NMR analysis. Double crosslinking in the hydrogel occurred via imine bonds (between the aldehyde group of OHbG and the amine group of QCMCS) and ionic interactions (between the carboxyl group of OHbG and the quaternized group of QCMCS). The hydrogel exhibited self-healing properties and improved thermal stability with an increase in OHbG concentration. The OHbG/QCMCS hydrogel demonstrated high compressive strength, significant swelling, and large pore size. Drug release profiles varied between pH 2.0 (96.57%) and pH 7.4 (63.22%). Additionally, the hydrogel displayed antioxidant and antibacterial effects without compromising the polysaccharides' inherent characteristics. No cytotoxicity was observed in any hydrogel samples. These findings indicate that the OHbG/QCMCS hydrogel is a biocompatible and stimuli-responsive drug carrier, with potential for various pharmaceutical, biomedical, and biotechnological applications.
Collapse
Affiliation(s)
- Jae-pil Jeong
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (J.-p.J.); (K.K.); (E.O.); (S.P.)
| | - Kyungho Kim
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (J.-p.J.); (K.K.); (E.O.); (S.P.)
| | - Eunkyung Oh
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (J.-p.J.); (K.K.); (E.O.); (S.P.)
| | - Sohyun Park
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (J.-p.J.); (K.K.); (E.O.); (S.P.)
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (J.-p.J.); (K.K.); (E.O.); (S.P.)
- Department of System Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
6
|
Zhao N, Shi Y, Liu P, Lv C. pH-responsive carbohydrate polymer-based nanoparticles in cancer therapy. Int J Biol Macromol 2025:141236. [PMID: 39978518 DOI: 10.1016/j.ijbiomac.2025.141236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/01/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Using the specific features of the tumor microenvironment (TME) for the development and design of novel nanomaterials can improve the capacity in tumor suppression. One of the prominent features of the TME is the mild acidic pH. Therefore, the development of pH-responsive nanoparticles can lead to the release of cargo and therapeutics at the tumor site, improving the selectivity and specificity. The materials used for the development of nanoparticles should possess a number of unique features including biocompatibility and anti-cancer activity. Hence, a special attention has been directed towards the use of carbohydrate polymers in the development of nanoparticles. The carbohydrate polymers can develop smart nanoparticles respond to the pH in TME to increase targeting ability and provide controlled drug release. Such approach is also beneficial in decreasing the side effects of systemic chemotherapy. The pH-responsive nanoparticles developed from carbohydrate polymers can be also used for the combination chemotherapy/immunotherapy/phototherapy of cancer. Furthermore, these nanoparticles demonstrate theranostic application capable of cancer diagnosis and therapy. Further attention to the large-scale production, biocompatibility and long-term safety of carbohydrate polymer-based pH-responsive nanoparticles should be directed to improve the clinical translation in the treatment of cancer patients.
Collapse
Affiliation(s)
- Nanxi Zhao
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Yang Shi
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Pai Liu
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Chengzhou Lv
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
7
|
Mishra SD, Kawadkar J, Joshi PA, Vats K, Srivastava A, Mishra RK, Rai V. Amphoteric Cross-Linked Cellulose Nanoparticles as a Platform for Immobilization of Proteins and Cells, Enabling Bioanalyte Sensing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7262-7274. [PMID: 39848692 DOI: 10.1021/acsami.4c17239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Cellulosic nanomaterials have significantly promoted the development of sensing devices, drug delivery, and bioreactor processes. Their synthetic flexibility makes them a prominent choice for immobilizing biomolecules or cells. In this work, we developed a practical and user-friendly approach to accessing cellulose nanoparticles (CNPs). The synthetic route is convenient and does not require a separate purification protocol. These particles are extensively characterized with FTIR, PXRD, TGA, DLS, and SEM. Later, we functionalized them with two chemically orthogonal handles: hydroxylamine and aldehyde. While the prior engaged glycan on the bacterial surface, the latter could capture an antibiotic to promote an in vitro controlled drug release. Besides, their dense functionalization enables efficient inter-CNP reactions, resulting in an amphoteric covalent cross-linked CNP capable of immobilizing proteins and cells. Also, it enables orthogonal dual immobilization to offer proximity control. Its capabilities were validated by installing an aldehyde-equipped bacterium and an activable fluorophore to offer a platform for detecting H2S, a secretory reductant. It conveniently extends to H2S detection in chicken eggs. Overall, the probe-, enzyme-, and bacterial cell-equipped amphoteric cross-linked CNP offers the potential to support bioprocesses for producing enzymes, secondary metabolites, vitamins, and hormones.
Collapse
Affiliation(s)
- Surya Dev Mishra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066 India
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Jyotsna Kawadkar
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Pradyumna A Joshi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Kamal Vats
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066 India
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066 India
| | - Ram Kumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066 India
| |
Collapse
|
8
|
Lokesh BS, Ajmeera S, Choudhary R, Moharana SK, Purohit CS, Konkimalla VB. Engineering of redox-triggered polymeric lipid hybrid nanocarriers for selective drug delivery to cancer cells. J Mater Chem B 2025; 13:1437-1458. [PMID: 39690942 DOI: 10.1039/d4tb01236d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Tunable redox-sensitive polymeric-lipid hybrid nanocarriers (RS-PLHNCs) were fabricated using homogenization and nanoprecipitation methods. These nanocarriers were composed of novel redox-cholesterol with disulfide linkages and synthesized by conjugating cholesterol with dithiodipropionic acid via esterification. Berberine (BBR) was loaded into the fabricated nanocarriers to investigate the selective uptake of BBR by cancer cells as well as its release and enhanced cytotoxicity. The optimized BBR nanocarriers BBR NP-17 and -18 exhibited a spherical shape and uniform distribution, with a particle size of 124.7 ± 1.2 nm and 185.2 ± 1.6 nm and a zeta potential of -5.9 ± 2.5 mV and -20.3 ± 1.1 mV, respectively. These NCs released >80% BBR in a simulated intracellular tumor microenvironment (TME), while only 30%-45% was released under normal physiological conditions. The accelerated drug release in the TME was due to disulfide bond cleavage and ester bond hydrolysis in the presence of GSH and acidic pH, whereas under normal conditions, the NCs remained stable/undissociated. Cellular uptake studies confirmed enhanced BBR uptake in GSH-rich cancer cells (H1975) compared with normal cells (BEAS-2B and HEK293A). Following uptake, compared with the free form of the drug, the optimized nanocarriers displayed significant selective cytotoxicity and apoptosis in cancer cells by notably downregulating anti-oxidant (NFE2L2, HO-1, NQO1, and TXRND1) and anti-apoptotic (MCL-1) genes while upregulating pro-apoptotic genes (PUMA and NOXA). This resulted in increased oxidative stress, thereby inducing selective apoptosis in the GSH-rich lung cancer cells. These results suggest that the synthesized novel NCs hold great potential for specifically delivering drugs to cancer cells (with a reduced environment) while sparing normal cells, thus ensuring safe and efficient cancer therapy.
Collapse
Affiliation(s)
- B Siva Lokesh
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Suresh Ajmeera
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India.
- Hasselt University, Institute for Materials Research (IMO), Nano-Biophysics and Soft Matter Interfaces (NSI), Wetenschapspark 1, 3590 Diepenbeek, Belgium
- IMEC, associated lab IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Rajat Choudhary
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Sanjaya Kumar Moharana
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - C S Purohit
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - V Badireenath Konkimalla
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
9
|
Sun X, Jiang F. Periodate oxidation-mediated nanocelluloses: Preparation, functionalization, structural design, and applications. Carbohydr Polym 2024; 341:122305. [PMID: 38876711 DOI: 10.1016/j.carbpol.2024.122305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
In recent years, the remarkable progress in nanotechnology has ignited considerable interest in investigating nanocelluloses, an environmentally friendly and sustainable nanomaterial derived from cellulosic feedstocks. Current research primarily focuses on the preparation and applications of nanocelluloses. However, to enhance the efficiency of nanofibrillation, reduce energy consumption, and expand nanocellulose applications, chemical pre-treatments of cellulose fibers have attracted substantial interest and extensive exploration. Various chemical pre-treatment methods yield nanocelluloses with diverse functional groups. Among these methods, periodate oxidation has garnered significant attention recently, due to the formation of dialdehyde cellulose derived nanocellulose, which exhibits great promise for further modification with various functional groups. This review seeks to provide a comprehensive and in-depth examination of periodate oxidation-mediated nanocelluloses (PONCs), including their preparation, functionalization, hierarchical structural design, and applications. We believe that PONCs stand as highly promising candidates for the development of novel nano-cellulosic materials.
Collapse
Affiliation(s)
- Xia Sun
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
10
|
Yin Q, Luo XY, Ma K, Liu ZZ, Gao Y, Zhang JB, Chen W, Yang YJ. Hyaluronic Acid/Gelatin-Based Multifunctional Bioadhesive Hydrogel Loaded with a Broad-Spectrum Bacteriocin for Enhancing Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47226-47241. [PMID: 39193631 DOI: 10.1021/acsami.4c09309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The development of multifunctional wound adhesives is critical in clinical settings due to the scarcity of dressings with effective adhesive properties while protecting against infection by drug-resistant bacteria. Polysaccharide and gelatin-based hydrogels, known for their biocompatibility and bioactivity, assist in wound healing. This study introduces a multifunctional bioadhesive hydrogel developed through dynamic covalent bonding and light-triggered covalent bonding, comprising oxidized hyaluronic acid, methacrylated gelatin, and the bacteriocin recently discovered by our lab, named jileicin (JC). The adhesion strength of the hydrogel, measured at 180 kPa, was 4.35 times higher than that of the fibrin glue. Furthermore, the hydrogel demonstrated robust platelet adhesion, procoagulant activity, and outstanding hemostatic properties in a mouse liver injury model. Incorporating JC significantly enhanced the phagocytosis and bactericidal capabilities of the macrophages. This immunomodulatory function on host cells, coupled with its potent bacterial membrane-disrupting ability, makes JC an effective killer against methicillin-resistant Staphylococcus aureus. In wound repair experiments on diabetic mice with infected full-thickness skin defects, the hydrogel treatment group showed a notable reduction in bacterial load, accelerated M2-type macrophage polarization, diminished inflammation, and hastened wound healing. Owing to its outstanding biocompatibility, antibacterial activity, and controlled adhesion, this hydrogel presents a promising therapeutic option for treating infected skin wounds.
Collapse
Affiliation(s)
- Qi Yin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130000, China
| | - Xue-Yue Luo
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130000, China
| | - Ke Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy Agricultural Sciences, Lanzhou 730000, China
| | - Zhen-Zhen Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130000, China
| | - Yu Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130000, China
| | - Jia-Bao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130000, China
| | - Wei Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130000, China
| | - Yong-Jun Yang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130000, China
| |
Collapse
|
11
|
Wen J, Liu X, Han Z, Wang Z, Saitoh H, Li H. Guanidine-modified polysaccharide conditioning layer designed for regulating bacterial attachment behaviors. Colloids Surf B Biointerfaces 2024; 245:114215. [PMID: 39243707 DOI: 10.1016/j.colsurfb.2024.114215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/02/2024] [Accepted: 09/05/2024] [Indexed: 09/09/2024]
Abstract
Biofouling has been persisting as a global problem due to the difficulties in finding efficient and environmentally friendly antifouling coatings for long-term applications. Initial attachment of bacteria on material surface and subsequent formation of biofilm are the predominate phenomena accounting for subsequent occurrence of biofouling. Among the various factors influencing the bacterial attachment, conditioning layer formed by organic macromolecules usually plays the key role in mediating bacterial attachment through altering physicochemical properties of substrate surface. In this study, a guanidine-modified polysaccharide conditioning layer with the capability of tuning the bacterial attachment is constructed and characterized. Dextran, a polysaccharide widespread in bacteria extracellular polymeric substances (EPS), is oxidized by sodium periodate, and cationic polymer polyhexamethylene guanidine hydrochloride (PHMG) is anchored to oxidized dextran (ODEX) by Schiff base reaction. AFM characterization reveals morphological changes of the polysaccharide conditioning layer from tangled chain to island conformation after the PHMG modification. The guanidine-based dextran conditioning layer promotes attachment of both P. aeruginosa and S. aureus and disrupted bacterial cytomembranes are seen for the attached bacteria due to electrostatic interaction of the electropositive guanidine group with the electronegative bacteria. The guanidine-based dextran conditioning layer shows a low survival ratio of 22 %-34 % and 1 %-4 % for P. aeruginosa and S. aureus respectively after incubation in the bacterial suspension for 72 hours. The results would give insight into further exploring the potential applications of the newly designed polysaccharides conditioning layer for combating occurrence of biofouling.
Collapse
Affiliation(s)
- Jianxin Wen
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomei Liu
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhuoyue Han
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhijuan Wang
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Hidetoshi Saitoh
- Department of Materials Science and Technology, Graduate School of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka-machi, Nagaoka, Niigata 940-2188, Japan
| | - Hua Li
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Wu Y, Liu X, Yao C, Chen J, Wu X, Zhu M. Fluorescent hyaluronic acid nanoprodrug: A tumor-activated autophagy inhibitor for synergistic cancer therapy. Int J Biol Macromol 2024; 274:133360. [PMID: 38909736 DOI: 10.1016/j.ijbiomac.2024.133360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/21/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Autophagy is a process that eliminates damaged cells and malfunctioning organelles via lysosomes, which is closely linked to cancer. Primaquine (PQ) was reported to impede autophagy flow by preventing autophagosomes from fusing with lysosomes at the late stage of autophagy. It will lead to cellular metabolic collapse and programmed cell death. Excessive or extended autophagy enhances the efficacy of chemotherapeutic drugs in cancer prevention. The utilization of autophagy inhibition in conjunction with chemotherapy has become a prevalent and reliable approach for the safe and efficient treatment of cancer. In this work, an acid-sensitive nanoprodrug (O@PD) targeting CD44 receptors was produced using Schiff-base linkages or electrostatic interactions from oxidized hyaluronic acid (OHA), PQ, and doxorubicin (DOX). The CD44-targeting prodrug system in triple-negative breast cancer (TNBC) cells was designed to selectively release DOX and PQ into the acidic tumor microenvironment and cellular endosomes. DOX was employed to investigate the cellular uptake and ex-vivo drug distribution of O@PD nanoprodrugs. PQ-induced autophagy suppression combined with DOX has a synergistic fatal impact in TNBC. O@PD nanoprodrugs demonstrated robust anticancer efficacy as well as excellent biological safety, making them suitable for clinical use.
Collapse
Affiliation(s)
- Yundi Wu
- School of Biomedical Engineering, State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xudong Liu
- Department of Radiology, The First Affiliated Hospital of Hainan Medical University, Haikou 570228, China
| | - Can Yao
- School of Biomedical Engineering, State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Jianqiang Chen
- Department of Radiology, The First Affiliated Hospital of Hainan Medical University, Haikou 570228, China
| | - Xilong Wu
- School of Biomedical Engineering, State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Mingqiang Zhu
- School of Biomedical Engineering, State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
13
|
Shi L, Peng J, Wu X, Zhu S, Gao Y. Stimuli-responsive antioxidant Pickering emulsions stabilized by functionalized cellulose nanocrystals. Int J Biol Macromol 2024; 275:133676. [PMID: 38971134 DOI: 10.1016/j.ijbiomac.2024.133676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Stimuli-responsive antioxidant Pickering emulsions play crucial role in many industrial areas. This study demonstrated for the first time oil-in-water Pickering emulsions with outstanding antioxidation and responsive demulsification stabilized by functionalized cellulose nanocrystals (CNCs). Dialdehyde cellulose nanocrystals (DACs) were first prepared through the oxidation of CNCs with periodate, followed by the grafting of p-aminophenols (PAPs) onto their surfaces through Schiff base reaction, affording PAP grafted DACs (DAC-g-PAP) via dynamic covalent linkage. The degree of the oxidation (DO) of DACs had a significant effect on the yield of the targeting DAC-g-PAP nanoparticles. High DO (≥40 %) potentially led to the degradation of DACs during the grafting of PAP. The introduced PAP endowed DACs with excellent radical scavenging capability, thereby providing antioxidant properties while improving the hydrophobicity. DAC-g-PAP nanoparticles were then applied as Pickering emulsifiers to prepare oil-in-water Pickering emulsions. The resultant Pickering emulsions indicated exceptional antioxidant and pH-responsiveness together with good freezing-thaw stability. The structures of DAC-g-PAP nanoparticles were thoroughly characterized in this study.
Collapse
Affiliation(s)
- Liangliang Shi
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Jiani Peng
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Xinyi Wu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Siqi Zhu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Yong Gao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China.
| |
Collapse
|
14
|
Fatima M, Almalki WH, Khan T, Sahebkar A, Kesharwani P. Harnessing the Power of Stimuli-Responsive Nanoparticles as an Effective Therapeutic Drug Delivery System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312939. [PMID: 38447161 DOI: 10.1002/adma.202312939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/26/2024] [Indexed: 03/08/2024]
Abstract
The quest for effective and reliable methods of delivering medications, with the aim of improving delivery of therapeutic agent to the intended location, has presented a demanding yet captivating field in biomedical research. The concept of smart drug delivery systems is an evolving therapeutic approach, serving as a model for directing drugs to specific targets or sites. These systems have been developed to specifically target and regulate the administration of therapeutic substances in a diverse array of chronic conditions, including periodontitis, diabetes, cardiac diseases, inflammatory bowel diseases, rheumatoid arthritis, and different cancers. Nevertheless, numerous comprehensive clinical trials are still required to ascertain both the immediate and enduring impacts of such nanosystems on human subjects. This review delves into the benefits of different drug delivery vehicles, aiming to enhance comprehension of their applicability in addressing present medical requirements. Additionally, it touches upon the current applications of these stimuli-reactive nanosystems in biomedicine and outlines future development prospects.
Collapse
Affiliation(s)
- Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 715, Saudi Arabia
| | - Tasneem Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, 9177948954, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
15
|
Fathi A, Gholami M, Motasadizadeh H, Malek-Khatabi A, Sedghi R, Dinarvand R. Thermoresponsive in situ forming and self-healing double-network hydrogels as injectable dressings for silymarin/levofloxacin delivery for treatment of third-degree burn wounds. Carbohydr Polym 2024; 331:121856. [PMID: 38388054 DOI: 10.1016/j.carbpol.2024.121856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/24/2024]
Abstract
Our study aimed to introduce a novel double-cross-linked and thermoresponsive hydrogel with remarkable potential for accelerating third-degree burn wound healing. Burn injuries are recognized as challenging, critical wounds. Especially in third-degree burns, treatment is demanding due to extended wounds, irregular shapes, significant exudation, and intense pain during dressing changes. In this work, hydrogels made of zwitterionic chitosan and dialdehyde starch (ZCS and ZDAS) were created to deliver silymarine (SM) and levofloxacin (LEV). The hydrogels were effortlessly produced using dynamic Schiff base linkages and ionic interactions between ZCS and ZDAS at appropriate times. The pore uniformity, gel fraction, and commendable swelling properties can imply a suitable degree of Schiff base cross-link. The hydrogel demonstrated outstanding shape retention, and significant self-healing and flexibility abilities, enabling it to uphold its form even during bodily movements. After injecting biocompatible hydrogel on the wound, a notable acceleration in wound closure was observed on day 21 (98.1 ± 1.10 %) compared to the control group (75.1 ± 6.13 %), and histopathological analysis revealed a reduction of inflammation that can be linked to remarkable antioxidant and antibiotic properties. The results demonstrate the hydrogel's efficacy in promoting burn wound healing, making it a promising candidate for medical applications.
Collapse
Affiliation(s)
- Anna Fathi
- Department of Polymer & Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, G.C, 1983969411 Tehran, Iran
| | - Marziye Gholami
- Department of Polymer & Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, G.C, 1983969411 Tehran, Iran
| | - Hamidreza Motasadizadeh
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, Iran
| | - Atefeh Malek-Khatabi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Sedghi
- Department of Polymer & Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, G.C, 1983969411 Tehran, Iran.
| | - Rassoul Dinarvand
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, Iran; Leicester School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
16
|
Zhai Z, Edgar KJ. Polysaccharide Aldehydes and Ketones: Synthesis and Reactivity. Biomacromolecules 2024; 25:2261-2276. [PMID: 38490188 PMCID: PMC11005020 DOI: 10.1021/acs.biomac.4c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Polysaccharides are biodegradable, abundant, sustainable, and often benign natural polymers. The achievement of selective modification of polysaccharides is important for targeting specific properties and structures and will benefit future development of highly functional, sustainable materials. The synthesis of polysaccharides containing aldehyde or ketone moieties is a promising tool for achieving this goal because of the rich chemistry of aldehyde or ketone groups, including Schiff base formation, nucleophilic addition, and reductive amination. The obtained polysaccharide aldehydes or ketones themselves have rich potential for making useful materials, such as self-healing hydrogels, polysaccharide-protein therapeutic conjugates, or drug delivery vehicles. Herein, we review recent advances in synthesizing polysaccharides containing aldehyde or ketone moieties and briefly introduce their reactivity and corresponding applications.
Collapse
Affiliation(s)
- Zhenghao Zhai
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kevin J. Edgar
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
17
|
Park S, Shin Y, Kim JM, Kim MS, Jung S. Rhizobial oxidized 3-hydroxylbutanoyl glycan-based gelatin hydrogels with enhanced physiochemical properties for pH-responsive drug delivery. Int J Biol Macromol 2024; 264:130538. [PMID: 38432278 DOI: 10.1016/j.ijbiomac.2024.130538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Rhizobial exopolysaccharide (EPS) is an acidic polysaccharide involved in nitrogen fixation-related signal transduction in the rhizosphere, serving as a structural support for biofilms, and protecting against various external environmental stresses. Rhizobial EPS as a hydrogel biomaterial was used for a pH-responsive drug delivery system combing with gelatins. Pure gelatin (GA) hydrogels have limited practical applications due to their poor mechanical strength and poor thermal stability. We developed new GA hydrogels using oxidized 3-hydroxylbutanoyl glycan (OHbG) as a polymer cross-linking agent to overcome these limitations. OHbG was synthesized from sodium periodate oxidation of 3-hydroxylbutanoyl glycan directly isolated from Rhizobium leguminosarum bv. viciae VF39. The newly fabricated OHbG/GA hydrogels exhibited 21-fold higher compressive stress and 4.7-fold higher storage modulus (G') than GA at the same strain. This result suggested that OHbG provided mechanical improvement. In addition, these OHbG/GA hydrogels showed effective pH-controlled drug release for 5-fluorouracil, self-healable, and self-antioxidant capacity by uronic acids of OHbG. Cell viability tests using HEK-293 cells in vitro also showed that the OHbG/GA hydrogels were non-toxic. This suggests that the new OHbG/GA hydrogels can be used as a potentially novel biomaterial for drug delivery based on its self-healing ability, antioxidant capacity, and pH-responsive drug delivery.
Collapse
Affiliation(s)
- Sohyun Park
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Younghyun Shin
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Jin-Mo Kim
- Convergence Technology Laboratory, Kolmar Korea, 61, Heolleung-ro-8-gil, Seocho-gu, Seoul 06792, South Korea
| | - Moo Sung Kim
- Macrocare, 32 Gangni 1-gil, Cheongju 28126, South Korea
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea; Department of Systems Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea.
| |
Collapse
|
18
|
Zou D, Li X, Wu M, Yang J, Qin W, Zhou Z, Yang J. Schiff base synergized with protonation of PEI to achieve smart antibacteria of nanocellulose packaging films. Carbohydr Polym 2023; 318:121136. [PMID: 37479427 DOI: 10.1016/j.carbpol.2023.121136] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/23/2023]
Abstract
Microbial growth and reproduction can cause food spoilage. Developing the controlled release packaging films for food is an ideal solution. In this study, polyethyleneimine (PEI) was grafted to cellulose nanofibers (CNF) films by Schiff base, and when the CNF/PEI films were stimulated by pH, PEI released from the CNF/PEI films due to Schiff base hydrolysis, improving the antibacterial efficiency of PEI. Stimulated by acid with pH of 4, the PEI cumulative release rate of the CNF/PEI800 and the CNF/PEI2000 films reached to 92.90 % and 87.28 %, respectively. At the same time, the amino groups of PEI protonated by obtaining H+, the charge density increased, and PEI molecular chains extended, enhancing the antibacterial activity of films. The Zeta potential value on the surface of the CNF/PEI film increased with the decrease of pH value. Schiff base synergized with protonation of PEI to achieve smart antibacteria of CNF packaging films. The antibacterial rates of the film against L. monocytogenes and E. coli were 94.7 % and 90.6 % at pH 4, but 29.5 % and 23.6 % at pH 8, respectively. The developed films also had good barrier properties of oxygen, visible light and mechanical properties, and had an attractive application prospect in food preservation to control release of antibacterial agent.
Collapse
Affiliation(s)
- Dongcheng Zou
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Xinwang Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Min Wu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China.
| | - Jian Yang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Weifang Qin
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Zhilong Zhou
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Jiacheng Yang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
19
|
Gu X, Cheng H, Lu X, Li R, Ouyang X, Ma N, Zhang X. Plant-based Biomass/Polyvinyl Alcohol Gels for Flexible Sensors. Chem Asian J 2023; 18:e202300483. [PMID: 37553785 DOI: 10.1002/asia.202300483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/14/2023] [Indexed: 08/10/2023]
Abstract
Flexible sensors show great application potential in wearable electronics, human-computer interaction, medical health, bionic electronic skin and other fields. Compared with rigid sensors, hydrogel-based devices are more flexible and biocompatible and can easily fit the skin or be implanted into the body, making them more advantageous in the field of flexible electronics. In all designs, polyvinyl alcohol (PVA) series hydrogels exhibit high mechanical strength, excellent sensitivity and fatigue resistance, which make them promising candidates for flexible electronic sensing devices. This paper has reviewed the latest progress of PVA/plant-based biomass hydrogels in the construction of flexible sensor applications. We first briefly introduced representative plant biomass materials, including sodium alginate, phytic acid, starch, cellulose and lignin, and summarized their unique physical and chemical properties. After that, the design principles and performance indicators of hydrogel sensors are highlighted, and representative examples of PVA/plant-based biomass hydrogel applications in wearable electronics are illustrated. Finally, the future research is briefly prospected. We hope it can promote the research of novel green flexible sensors based on PVA/biomass hydrogel.
Collapse
Affiliation(s)
- Xiaochun Gu
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Haoge Cheng
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Xinyi Lu
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Rui Li
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Xiao Ouyang
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Ning Ma
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Xinyue Zhang
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| |
Collapse
|
20
|
Lin J, Meng H, Guo X, Tang Z, Yu S. Natural Aldehyde-Chitosan Schiff Base: Fabrication, pH-Responsive Properties, and Vegetable Preservation. Foods 2023; 12:2921. [PMID: 37569191 PMCID: PMC10418757 DOI: 10.3390/foods12152921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The aim of the present work was to fabricate Schiff base compounds between chitosan and aldehydes and use the resultant aldehyde-chitosan Schiff bases for broccoli preservation. Using an element analyzer, the degree of substitution was calculated as 68.27-94.65%. The aldehyde-chitosan Schiff bases showed acidic sensitivity to rapid hydrolysis for releasing aldehyde at a buffer solution of pH 4-6, in which more than 39% of the aldehydes were released within 10 h. The release of aldehydes endows the aldehyde-chitosan Schiff bases with a better antibacterial activity at pH 5 than at pH 7. In a simulated CO2 (5-15%) atmosphere with high humidity (92%), the hydrolysis of imine bonds (C=N) was triggered and continuously released aldehyde, even without direct contact with the aqueous phase. The application of aldehyde-chitosan Schiff bases significantly extended the shelf life of broccoli from 4 d to 5-7 d and decreased the weight loss of broccoli during storage. In summary, the fabrication of aldehyde-chitosan Schiff bases and the strategy of using pH-response imine bond (C=N) hydrolysis (thus releasing aldehyde to kill microorganisms) were feasible for use in developing EO-incorporated intelligent food packages for vegetable preservation.
Collapse
Affiliation(s)
- Jiawei Lin
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; (J.L.)
| | - Hecheng Meng
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; (J.L.)
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Zhongsheng Tang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521011, China
| | - Shujuan Yu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; (J.L.)
| |
Collapse
|
21
|
Jackson N, Ortiz AC, Jerez A, Morales J, Arriagada F. Kinetics and Mechanism of Camptothecin Release from Transferrin-Gated Mesoporous Silica Nanoparticles through a pH-Responsive Surface Linker. Pharmaceutics 2023; 15:1590. [PMID: 37376039 DOI: 10.3390/pharmaceutics15061590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Stimuli-responsive nanomaterials have emerged as a promising strategy for inclusion in anticancer therapy. In particular, pH-responsive silica nanocarriers have been studied to provide controlled drug delivery in acidic tumor microenvironments. However, the intracellular microenvironment that the nanosystem must face has an impact on the anticancer effect; therefore, the design of the nanocarrier and the mechanisms that govern drug release play a crucial role in optimizing efficacy. Here, we synthesized and characterized mesoporous silica nanoparticles with transferrin conjugated on their surface via a pH-sensitive imine bond (MSN-Tf) to assess camptothecin (CPT) loading and release. The results showed that CPT-loaded MSN-Tf (MSN-Tf@CPT) had a size of ca. 90 nm, a zeta potential of -18.9 mV, and a loaded content of 13.4%. The release kinetic data best fit a first-order model, and the predominant mechanism was Fickian diffusion. Additionally, a three-parameter model demonstrated the drug-matrix interaction and impact of transferrin in controlling the release of CPT from the nanocarrier. Taken together, these results provide new insights into the behavior of a hydrophobic drug released from a pH-sensitive nanosystem.
Collapse
Affiliation(s)
- Nicolás Jackson
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Andrea C Ortiz
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lago Panguipulli 1390, Puerto Montt 5501842, Chile
| | - Alejandro Jerez
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Javier Morales
- Department of Pharmaceutical Science and Technology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago 8380494, Chile
| | - Francisco Arriagada
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| |
Collapse
|
22
|
Oliveira ACDJ, Silva EB, Oliveira TCD, Ribeiro FDOS, Nadvorny D, Oliveira JWDF, Borrego-Sánchez A, Rodrigues KADF, Silva MS, Rolim-Neto PJ, Viseras C, Silva-Filho EC, Silva DAD, Chaves LL, Soares MFDLR, Soares-Sobrinho JL. pH-responsive phthalate cashew gum nanoparticles for improving drugs delivery and anti-Trypanosoma cruzi efficacy. Int J Biol Macromol 2023; 230:123272. [PMID: 36649864 DOI: 10.1016/j.ijbiomac.2023.123272] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/19/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Nanotechnology is a crucial technology in recent years has resulted in new and creative applications of nanomedicine. Polymeric nanoparticles have increasing demands in pharmaceutical applications and require high reproducibility, homogeneity, and control over their properties. Work explores the use of cashew phthalate gum (PCG) as a particle-forming polymer. PCG exhibited a pH-sensitive behavior due to the of acid groups on its chains, and control drug release. We report the development of nanoparticles carrying benznidazole. Formulations were characterized by DLS, encapsulation efficiency, drug loading, FTIR, pH-responsive behavior, release, and in vitro kinetics. Interaction between polymer and drug was an evaluated by molecular dynamics. Morphology was observed by SEM, and in vitro cytotoxicity by MTT assay. Trypanocidal effect for epimastigote and trypomastigote forms was also evaluated. NPs responded to the slightly basic pH, triggering the release of BNZ. In acidic medium, they presented small size, spherical shape, and good stability. It was indicated NP with enhanced biological activity, reduced cytotoxicity, high anti T. cruzi performance, and pH-sensitive release. This work investigated properties related to the development and enhancement of nanoparticles. PCG has specific physicochemical properties that make it a promising alternative to drug delivery, however, there are still challenges to be overcome.
Collapse
Affiliation(s)
- Antônia Carla de Jesus Oliveira
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Emilliany Bárbara Silva
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Thaisa Cardoso de Oliveira
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Daniella Nadvorny
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Ana Borrego-Sánchez
- Andalusian Institute of Earth Sciences, CSIC - UGR, Armilla, Granada, Spain; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | | | - Marcelo Sousa Silva
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Portugal
| | - Pedro José Rolim-Neto
- Laboratory of Technology of Medicines - LTM, Federal University of Pernambuco, Recife, Brazil
| | - César Viseras
- Andalusian Institute of Earth Sciences, CSIC - UGR, Armilla, Granada, Spain; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Edson C Silva-Filho
- Interdisciplinary Laboratory for Advanced Materials - LIMAV, Federal University of Piaui, Teresina, PI, Brazil
| | - Durcilene Alves da Silva
- Research Center on Biodiversity and Biotechnology - BIOTEC, Federal University of Delta of Parnaiba, Parnaiba, PI, Brazil
| | - Luíse Lopes Chaves
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Mônica Felts de La Roca Soares
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - José Lamartine Soares-Sobrinho
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
23
|
Heras-Mozos R, López-Carballo G, Hernández R, Gavara R, Hernández Muñoz P. pH modulates antibacterial activity of hydroxybenzaldehyde derivatives immobilized in chitosan films via reversible Schiff bases and its application to preserve freshly-squeezed juice. Food Chem 2023; 403:134292. [DOI: 10.1016/j.foodchem.2022.134292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
|
24
|
Heras-Mozos R, Gavara R, Hernández-Muñoz P. Responsive packaging based on imine-chitosan films for extending the shelf-life of refrigerated fresh-cut pineapple. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
25
|
Jiang M, Wu J, Liu W, Ren H, Wang S, Wang P. Novel selenium-containing photosensitizers for near-infrared fluorescence imaging-guided photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 233:112488. [PMID: 35689930 DOI: 10.1016/j.jphotobiol.2022.112488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Benzopyran nitrile dyes cannot be used as qualified photosensitizers due to the low quantum yield of triplet state. The benzopyran derivatives containing selenium instead of oxygen atom based on the heavy atom effect are expected to become potential agents for photodynamic therapy. In this paper, a series of selenium-containing photosensitizers (PSX) were prepared according to this strategy. PSX can effectively produce both singlet oxygen and superoxide anions upon laser irradiation. PSX exhibited the emission wavelength at 500-800 nm and near-infrared (NIR) fluorescence imaging in HeLa cells. Excellent biocompatibility and phototoxicity further indicated that PSX could be used as efficient photosensitizers for NIR fluorescence imaging and photodynamic therapy.
Collapse
Affiliation(s)
- Meiyu Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Haohui Ren
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Shuai Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
26
|
Yang Y, Xu L, Wang J, Meng Q, Zhong S, Gao Y, Cui X. Recent advances in polysaccharide-based self-healing hydrogels for biomedical applications. Carbohydr Polym 2022; 283:119161. [DOI: 10.1016/j.carbpol.2022.119161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 12/22/2022]
|
27
|
A pH-Gated Functionalized Hollow Mesoporous Silica Delivery System for Photodynamic Sterilization in Staphylococcus aureus Biofilm. MATERIALS 2022; 15:ma15082815. [PMID: 35454508 PMCID: PMC9031160 DOI: 10.3390/ma15082815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022]
Abstract
Multidrug-resistant bacteria are increasing, particularly those embedded in microbial biofilm. These bacteria account for most microbial infections in humans. Traditional antibiotic treatment has low efficiency in sterilization of biofilm-associated pathogens, and thus the development of new approaches is highly desired. In this study, amino-modified hollow mesoporous silica nanoparticles (AHMSN) were synthesized and used as the carrier to load natural photosensitizer curcumin (Cur). Then glutaraldehyde (GA) and polyethyleneimine (PEI) were used to seal the porous structure of AHMSN by the Schiff base reaction, forming positively charged AHMSN@GA@PEI@Cur. The Cur delivery system can smoothly diffuse into the negatively charged biofilm of Staphylococcus aureus (S. aureus). Then Cur can be released to the biofilm after the pH-gated cleavage of the Schiff base bond in the slightly acidic environment of the biofilm. After the release of the photosensitizer, the biofilm was irradiated by the blue LED light at a wavelength of 450 nm and a power of 37.4 mV/cm2 for 5 min. Compared with the control group, the number of viable bacteria in the biofilm was reduced by 98.20%. Therefore, the constructed pH-gated photosensitizer delivery system can efficiently target biofilm-associated pathogens and be used for photodynamic sterilization, without the production of antibiotic resistance.
Collapse
|
28
|
Xie F, Fardim P, Van den Mooter G. Porous soluble dialdehyde cellulose beads: A new carrier for the formulation of poorly water-soluble drugs. Int J Pharm 2022; 615:121491. [PMID: 35063594 DOI: 10.1016/j.ijpharm.2022.121491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/19/2022]
Abstract
Cellulose beads are porous spherical particles with promising futures for drug delivery applications. In this study, novel dialdehyde cellulose (DAC) beads are developed by periodate oxidation of pristine cellulose for oral delivery of weakly basic poorly water-soluble drugs. Diazepam and itraconazole were studied as model drugs. Drug loadings in DAC beads up to 40% were obtained. Depending on the drug loading, complete or partial amorphization of drugs in DAC beads was observed. Drugs in the amorphous state not only presented a higher extent of dissolution from the DAC beads compared to the crystalline model drug, but the obtained concentration was also supersaturated. This supersaturation is attributed to the amorphization of the drugs in the beads in conjunction with the dissolution of the DAC beads at a neutral pH of the dissolution medium. Further, the effects of two different solvent systems used in the lyophilization step during the preparation of the DAC beads (100% water and 90/10% tert-butanol/water mixture) on their structure were investigated. Interestingly, the selection of the solvent system greatly impacted the bead structure, resulting in radically different drug loading capacity, physical properties, and release behavior of the model drugs. In summary, this is the first study that reports on exploiting soluble, porous, dialdehyde cellulose beads, showing great potential as a carrier for improving the rate and extent of dissolution of poorly soluble drugs and maintaining supersaturation.
Collapse
Affiliation(s)
- Fan Xie
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium
| | - Pedro Fardim
- Bio&Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, KU Leuven, 3000 Leuven, Belgium
| | - Guy Van den Mooter
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium.
| |
Collapse
|
29
|
Mayer S, Tallawi M, De Luca I, Calarco A, Reinhardt N, Gray LA, Drechsler K, Moeini A, Germann N. Antimicrobial and physicochemical characterization of 2,3-dialdehyde cellulose-based wound dressings systems. Carbohydr Polym 2021; 272:118506. [PMID: 34420752 DOI: 10.1016/j.carbpol.2021.118506] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/18/2021] [Accepted: 07/26/2021] [Indexed: 01/13/2023]
Abstract
Biobased and biodegradable films were prepared by physically mixing 2,3-dialdehyde cellulose (DAC) with two other biopolymers, zein and gelatin, in three different proportions. The antimicrobial activities of the composite blends against Gram-positive and Gram-negative bacteria increase with the increase of DAC content. Cell viability tests on mammalian cells showed that the materials were not cytotoxic. In addition, DAC and gelatin were able to promote thermal degradation of the blends. However, DAC increased the stiffness and decreased the glass transition temperature of the blends, while gelatin was able to decrease the stiffness of the film. Morphological analysis showed the effect of DAC on the surface smoothness of the blends. The contact angle confirmed that all blends were within the range of hydrophilic materials. Although all the blends showed impressive performance for wound dressing application, the blend with gelatin might be more suitable for this purpose due to its better mechanical performance and antibacterial activity.
Collapse
Affiliation(s)
- Sophie Mayer
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Marwa Tallawi
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Ilenia De Luca
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Nikita Reinhardt
- Chair of Carbon Composites, Department of Aerospace and Geodesy, Technical University of Munich, 85478 Garching, Germany
| | - Luciano Avila Gray
- Chair of Carbon Composites, Department of Aerospace and Geodesy, Technical University of Munich, 85478 Garching, Germany
| | - Klaus Drechsler
- Chair of Carbon Composites, Department of Aerospace and Geodesy, Technical University of Munich, 85478 Garching, Germany
| | - Arash Moeini
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Natalie Germann
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany.
| |
Collapse
|
30
|
Carvalho JPF, Silva ACQ, Silvestre AJD, Freire CSR, Vilela C. Spherical Cellulose Micro and Nanoparticles: A Review of Recent Developments and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2744. [PMID: 34685185 PMCID: PMC8537411 DOI: 10.3390/nano11102744] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/27/2022]
Abstract
Cellulose, the most abundant natural polymer, is a versatile polysaccharide that is being exploited to manufacture innovative blends, composites, and hybrid materials in the form of membranes, films, coatings, hydrogels, and foams, as well as particles at the micro and nano scales. The application fields of cellulose micro and nanoparticles run the gamut from medicine, biology, and environment to electronics and energy. In fact, the number of studies dealing with sphere-shaped micro and nanoparticles based exclusively on cellulose (or its derivatives) or cellulose in combination with other molecules and macromolecules has been steadily increasing in the last five years. Hence, there is a clear need for an up-to-date narrative that gathers the latest advances on this research topic. So, the aim of this review is to portray some of the most recent and relevant developments on the use of cellulose to produce spherical micro- and nano-sized particles. An attempt was made to illustrate the present state of affairs in terms of the go-to strategies (e.g., emulsification processes, nanoprecipitation, microfluidics, and other assembly approaches) for the generation of sphere-shaped particles of cellulose and derivatives thereof. A concise description of the application fields of these cellulose-based spherical micro and nanoparticles is also presented.
Collapse
Affiliation(s)
| | | | | | | | - Carla Vilela
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (J.P.F.C.); (A.C.Q.S.); (A.J.D.S.); (C.S.R.F.)
| |
Collapse
|
31
|
Gao Y, Zhao Q, Dong H, Xiao M, Huang X, Wu X. Developing Acid-Responsive Glyco-Nanoplatform Based Vaccines for Enhanced Cytotoxic T-lymphocyte Responses Against Cancer and SARS-CoV-2. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2105059. [PMID: 34512228 PMCID: PMC8420391 DOI: 10.1002/adfm.202105059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/04/2021] [Indexed: 05/05/2023]
Abstract
Cytotoxic T-lymphocytes (CTLs) are central for eliciting protective immunity against malignancies and infectious diseases. Here, for the first time, partially oxidized acetalated dextran nanoparticles (Ox-AcDEX NPs) with an average diameter of 100 nm are fabricated as a general platform for vaccine delivery. To develop effective anticancer vaccines, Ox-AcDEX NPs are conjugated with a representative CTL peptide epitope (CTLp) from human mucin-1 (MUC1) with the sequence of TSAPDTRPAP (referred to as Mp1) and an immune-enhancing adjuvant R837 (referred to as R) via imine bond formation affording AcDEX-(imine)-Mp1-R NPs. Administration of AcDEX-(imine)-Mp1-R NPs results in robust and long-lasting anti-MUC1 CTL immune responses, which provides mice with superior protection from the tumor. To verify its universality, this nanoplatform is also exploited to deliver epitopes from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to prevent coronavirus disease 2019 (COVID-19). By conjugating Ox-AcDEX NPs with the potential CTL epitope of SARS-CoV-2 (referred to as Sp) and R837, AcDEX-(imine)-Sp-R NPs are fabricated for anti-SARS-CoV-2 vaccine candidates. Several epitopes potentially contributing to the induction of potent and protective anti-SARS-CoV-2 CTL responses are examined and discussed. Collectively, these findings shed light on the universal use of Ox-AcDEX NPs to deliver both tumor-associated and virus-associated epitopes.
Collapse
Affiliation(s)
- Yanan Gao
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based MedicineShandong UniversityQingdaoShandong266237China
| | - Qingyu Zhao
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based MedicineShandong UniversityQingdaoShandong266237China
| | - Huiling Dong
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based MedicineShandong UniversityQingdaoShandong266237China
| | - Min Xiao
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based MedicineShandong UniversityQingdaoShandong266237China
| | - Xuefei Huang
- Departments of Chemistry and Biomedical EngineeringInstitute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Xuanjun Wu
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based MedicineShandong UniversityQingdaoShandong266237China
- Suzhou Research InstituteShandong UniversitySuzhouJiangsu215123China
| |
Collapse
|
32
|
Btk Inhibitors: A Medicinal Chemistry and Drug Delivery Perspective. Int J Mol Sci 2021; 22:ijms22147641. [PMID: 34299259 PMCID: PMC8303217 DOI: 10.3390/ijms22147641] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
In the past few years, Bruton’s tyrosine Kinase (Btk) has emerged as new target in medicinal chemistry. Since approval of ibrutinib in 2013 for treatment of different hematological cancers (as leukemias and lymphomas), two other irreversible Btk inhibitors have been launched on the market. In the attempt to overcome irreversible Btk inhibitor limitations, reversible compounds have been developed and are currently under evaluation. In recent years, many Btk inhibitors have been patented and reported in the literature. In this review, we summarized the (ir)reversible Btk inhibitors recently developed and studied clinical trials and preclinical investigations for malignancies, chronic inflammation conditions and SARS-CoV-2 infection, covering advances in the field of medicinal chemistry. Furthermore, the nanoformulations studied to increase ibrutinib bioavailability are reported.
Collapse
|
33
|
Mehdaoui R, Agren S, Dhahri A, El Haskouri J, Beyou E, Lahcini M, Baouab MHV. New sonochemical magnetite nanoparticles functionalization approach of dithiooxamide–formaldehyde developed cellulose: From easy synthesis to recyclable 4‐nitrophenol reduction. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Rahma Mehdaoui
- Research Unit Materials and Organic Synthesis (UR17ES31), Preparatory Institute for Engineering Studies of Monastir University of Monastir Monastir Tunisia
| | - Soumaya Agren
- Research Unit Materials and Organic Synthesis (UR17ES31), Preparatory Institute for Engineering Studies of Monastir University of Monastir Monastir Tunisia
- Department of Inorganic Chemistry Instituto de Ciencias de Los Materiales de la Universitad de Valencia Paterna Spain
| | - Abdelwahab Dhahri
- Research Unit Materials and Organic Synthesis (UR17ES31), Preparatory Institute for Engineering Studies of Monastir University of Monastir Monastir Tunisia
| | - Jamal El Haskouri
- Department of Inorganic Chemistry Instituto de Ciencias de Los Materiales de la Universitad de Valencia Paterna Spain
| | - Emmanuel Beyou
- Department of Material's Engineering Université Lyon 1, UMR CNRS5223, Ingénierie des Matériaux Polymères Villeurbanne France
| | - Mohammed Lahcini
- Laboratory of organometallic and macromolecular chemistry‐composites Materials, Faculty of Sciences and Technologies Cadi Ayyad University Marrakech Morocco
- Department of Inorganic Chemistry Mohamed VI Polytechnic University Ben Guerir Morocco
| | - Mohamed Hassen V. Baouab
- Research Unit Materials and Organic Synthesis (UR17ES31), Preparatory Institute for Engineering Studies of Monastir University of Monastir Monastir Tunisia
| |
Collapse
|
34
|
Xu J, Yan X, Ge X, Zhang M, Dang X, Yang Y, Xu F, Luo Y, Li G. Novel multi-stimuli responsive functionalized PEG-based co-delivery nanovehicles toward sustainable treatments of multidrug resistant tumor. J Mater Chem B 2021; 9:1297-1314. [PMID: 33443252 DOI: 10.1039/d0tb02192j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The efficacy of ongoing anticancer treatment is often compromised by some barriers, such as low drug content, nonspecific release of drug delivery system, and multidrug resistance (MDR) effect of tumors. Herein, in the research a novel functionalized PEG-based polymer cystine-(polyethylene glycol)2-b-(poly(2-methacryloyloxyethyl ferrocenecarboxylate)2) (Cys-(PEG45)2-b-(PMAOEFC)2) with multi-stimuli sensitive mechanism was constructed, in which doxorubicin (DOX) was chemical bonded through Schiff base structure to provide acid labile DOX prodrug (DOX)2-Cys-(PEG45)2-b-(PMAOEFC)2. Afterwards, paclitaxel (PTX) and its diselenide bond linked PTX dimer were encapsulated into the prodrug through physical loading, to achieve pH and triple redox responsive (DOX)2-Cys-(PEG45)2-b-(PMAOEFC)2@PTX and (DOX)2-Cys-(PEG45)2-b-(PMAOEFC)2@PTX dimer with ultrahigh drugs content. The obtained nanovehicles could self-assemble into globular micelles with good stability based on fluorescence spectra and TEM observation. Moreover, there was a remarkable "reassembly-disassembly" behavior caused by phase transition of micelles under the mimic cancerous physiological environment. DOX and PTX could be on-demand released in acid and redox stress mode, respectively. Meanwhile, in vivo anticancer studies revealed the significant tumor inhibition of nanoformulas. This work offered facile strategies to fabricate drug nanaovehicles with tunable drug content and types, it has a profound significance in overcoming MDR effect, which provided more options for sustainable cancer treatment according to the desired drug dosage and the stage of tumor growth.
Collapse
Affiliation(s)
- Jingwen Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xiangji Yan
- Institute of Medical Engineering, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xin Ge
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Mingzhen Zhang
- Institute of Medical Engineering, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xugang Dang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Feng Xu
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Yanling Luo
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
35
|
Cai L, Zhu P, Huan F, Wang J, Zhou L, Jiang H, Ji M, Chen J. Toxicity-attenuated mesoporous silica Schiff-base bonded anticancer drug complexes for chemotherapy of drug resistant cancer. Colloids Surf B Biointerfaces 2021; 205:111839. [PMID: 34022700 DOI: 10.1016/j.colsurfb.2021.111839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
Multidrug resistance (MDR), evoked by improper chemotherapeutic practices, poses a serious threat to public health, which leads to increased medical burdens and weakened curative effects. Taking advantage of the enhanced pharmaceutical effect of Schiff base compounds, an aldehyde-modified mesoporous silica SBA-15 (CHO-SBA-15)-bonded anticancer drug combined with doxorubicin hydrochloride (DOX) was synthesized via a Schiff base reaction. Due to the acid-sensitive imine bonds formed between CHO-SBA-15 and DOX, the as-prepared nanocomposites exhibited pH-responsive drug releasing behaviours, resulting in a more enhanced cytotoxic effect on DOX-resistant tumour cells than that of free drugs. Notably, the in vivo studies indicated that mice treated with CHO-SBA-15/DOX composites evidently showed more attenuated systemic toxicity than the free drug molecules. The siliceous mesopore Schiff base-bonded anticancer drug nanocomposite, with minimal chemical modifications, provides a simplified yet efficient therapeutic nanoplatform to deal with drug-resistant cancer.
Collapse
Affiliation(s)
- Ling Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China; Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166, Nanjing, China
| | - Ping Zhu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166, Nanjing, China
| | - Fei Huan
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, 211166, Nanjing, China
| | - Jun Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166, Nanjing, China
| | - Liuzhu Zhou
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166, Nanjing, China
| | - Huijun Jiang
- School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing, 211166, China
| | - Jin Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China; Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166, Nanjing, China; Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
36
|
Lin Z, Cheng X. Synthesis and properties of pH sensitive carboxymethylated hydroxypropyl chitosan nanocarriers for delivery of doxorubicin. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1920332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Zhu Lin
- School of Chemistry and Chemical Engineering, Key Laboratory Environment-friendly Polymer Materials of Anhui Province, Anhui University, Hefei, China
| | - Xiaomin Cheng
- School of Chemistry and Chemical Engineering, Key Laboratory Environment-friendly Polymer Materials of Anhui Province, Anhui University, Hefei, China
| |
Collapse
|
37
|
Xu C, Xu J, Zheng Y, Fang Q, Lv X, Wang X, Tang R. Active-targeting and acid-sensitive pluronic prodrug micelles for efficiently overcoming MDR in breast cancer. J Mater Chem B 2021; 8:2726-2737. [PMID: 32154530 DOI: 10.1039/c9tb02328c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multidrug resistance (MDR) seriously hinders therapeutic efficacy in clinical cancer treatment. Herein, we reported new polymeric prodrug micelles with tumor-targeting and acid-sensitivity properties based on two different pluronic copolymers (F127 and P123) for enhancing tumor MDR reversal and chemotherapy efficiency in breast cancer. Hybrid micelles were composed of phenylboric acid (PBA)-modified F127 (active-targeting group) and doxorubicin (DOX)-grafted P123 (prodrug groups), which were named as FBP-CAD. FBP-CAD exhibited good stability in a neutral environment and accelerated drug release under mildly acidic conditions by the cleavage of β-carboxylic amides bonds. In vitro studies demonstrated that FBP-CAD significantly increased cellular uptake and drug concentration in MCF-7/ADR cells through the homing ability of PBA and the anti-MDR effect of P123. In vivo testing further indicated that hybrid micelles facilitated drug accumulation at tumor sites as well as reduced side effects to normal organs. The synergistic effect of active-targeting and MDR-reversal leads to the highest tumor growth inhibition (TGI 78.2%). Thus, these multifunctional micelles provide a feasible approach in nanomedicine for resistant-cancer treatment.
Collapse
Affiliation(s)
- Cheng Xu
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, Hefei, 230601, P. R. China.
| | - Jiaxi Xu
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, Hefei, 230601, P. R. China.
| | - Yan Zheng
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, Hefei, 230601, P. R. China.
| | - Qin Fang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, Hefei, 230601, P. R. China.
| | - Xiaodong Lv
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, Hefei, 230601, P. R. China.
| | - Xin Wang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, Hefei, 230601, P. R. China.
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, Hefei, 230601, P. R. China.
| |
Collapse
|
38
|
Zhang W, Dang G, Dong J, Li Y, Jiao P, Yang M, Zou X, Cao Y, Ji H, Dong L. A multifunctional nanoplatform based on graphitic carbon nitride quantum dots for imaging-guided and tumor-targeted chemo-photodynamic combination therapy. Colloids Surf B Biointerfaces 2021; 199:111549. [PMID: 33388720 DOI: 10.1016/j.colsurfb.2020.111549] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 12/29/2022]
Abstract
Graphitic carbon nitride quantum dots (g-CNQDs) have shown great potential in imaging, drug delivery and photodynamic therapy (PDT). However, relevant research on g-CNQDs for PDT or drug delivery has been conducted separately. Herein, we develop a g-CNQDs-based nanoplatform (g-CPFD) to achieve simultaneously imaging and chemo-photodynamic combination therapy in one system. A g-CNQDs-based nanocarrier (g-CPF) is first prepared by successively introducing carboxyamino-terminated oligomeric polyethylene glycol and folic acid onto the surface of g-CNQDs via two-step amidation. The resultant g-CPF possesses good physiological stability, strong blue fluorescence, desirable biocompatibility, and visible light-stimulated reactive oxygen species generating ability. Further non-covalently loaded doxorubicin enables the system with chemotherapy function. Compared with free doxorubicin, g-CPFD expresses more efficient chemotherapy to HeLa cells due to improved folate receptor-mediated cellular uptake and intracellular pH-triggered drug release. Furthermore, g-CPFD under visible light irradiation shows enhanced inhibition on the growth of cancer cells compared to sole chemotherapy or PDT. Thus, g-CPFD exhibits exceptional anti-tumor efficiency due to folate receptor-mediated targeting ability, intracellular pH-triggered drug release and a combined treatment effect arising from PDT and chemotherapy. Moreover, this nanoplatform benefits imaging-guided drug delivery because of inherent fluorescent properties of doxorubicin and g-CPF, hence achieving the goal of imaging-guided chemo-photodynamic combination treatments.
Collapse
Affiliation(s)
- Wenxian Zhang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Guangyao Dang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Jian Dong
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China.
| | - Yanyan Li
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Peng Jiao
- Life Science Research Center, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Mingfeng Yang
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Xianwen Zou
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Yutao Cao
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Haiwei Ji
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Lifeng Dong
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China.
| |
Collapse
|
39
|
Yang Z, Zhang N, Ma T, Liu L, Zhao L, Xie H. Engineered bovine serum albumin-based nanoparticles with pH-sensitivity for doxorubicin delivery and controlled release. Drug Deliv 2020; 27:1156-1164. [PMID: 32755291 PMCID: PMC7470134 DOI: 10.1080/10717544.2020.1797243] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
In this work, we prepared a stimuli-responsive system for drug delivery and controlled release by engineering the bovine serum albumin (BSA). The doxorubicin (DOX)-loaded BSA nanoparticles (NPs) were conveniently prepared using desolvation method, followed by crosslinking through Schiff base bonds, leading to pH-sensitive DOX-loaded system (DOXs@BSA NPs). The resulted DOXs@BSA NPs showed high drug loading capacity (21.4%), and the particle size was about 130 nm with narrow polydispersity and high negative surface charge (-20.5 mV). The pH-sensitivity of DOXs@BSA NPs was evidenced by the size changes and charge reversal after incubation at different pH values. The DOXs@BSA NPs showed high serum stability which indicated the prolonged circulation time. The in vitro drug release experiment showed that the release of DOX was obviously accelerated by acidity because of disassembly of NPs induced by cleavage of Schiff base bonds. The drug release mechanism was thoroughly studied using a semi-empirical model, further confirming the pH played an important role in drug controlled release process. The results of cytotoxicity assay revealed that DOXs@BSA NPs exhibited much higher toxic effects for tumor cells in comparison to the free DOX control. Collectively, these results demonstrated that DOXs@BSA NPs might be potential application for drug delivery and controlled release in cancer chemotherapy. Moreover, this work also showed that preparation of stimuli-responsive drug delivery system by engineering the commercial biomaterials could be a promising method to develop multi-functional nanomedicine.
Collapse
Affiliation(s)
- Zhihang Yang
- Department of Physiology, College of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Na Zhang
- Department of Electrical Diagnosis, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Teng Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Lini Zhao
- Department of Pharmacology, College of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Hui Xie
- Department of Histology and Embryology, College of Basic Medicine, Shenyang Medical College, Shenyang, China
| |
Collapse
|
40
|
Nimal R. Electrochemical and spectroscopic characterization of biologically important Schiff bases. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03652-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
41
|
Nypelö T, Berke B, Spirk S, Sirviö JA. Review: Periodate oxidation of wood polysaccharides-Modulation of hierarchies. Carbohydr Polym 2020; 252:117105. [PMID: 33183584 DOI: 10.1016/j.carbpol.2020.117105] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/16/2022]
Abstract
Periodate oxidation of polysaccharides has transitioned from structural analysis into a modification method for engineered materials. This review summarizes the research on this topic. Fibers, fibrils, crystals, and molecules originating from forests that have been subjected to periodate oxidation can be crosslinked with other entities via the generated aldehyde functionality, that can also be oxidized or reduced to carboxyl or alcohol functionality or used as a starting point for further modification. Periodate-oxidized materials can be subjected to thermal transitions that differ from the native cellulose. Oxidation of polysaccharides originating from forests often features oxidation of structures rather than liberated molecules. This leads to changes in macro, micro, and supramolecular assemblies and consequently to alterations in physical properties. This review focuses on these aspects of the modulation of structural hierarchies due to periodate oxidation.
Collapse
Affiliation(s)
- Tiina Nypelö
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden.
| | - Barbara Berke
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Stefan Spirk
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Graz, Austria
| | - Juho Antti Sirviö
- Fibre and Particle Engineering Research Unit, University of Oulu, Oulu, Finland
| |
Collapse
|
42
|
Xu Y, Li X, Gong W, Huang HB, Zhu BW, Hu JN. Construction of Ginsenoside Nanoparticles with pH/Reduction Dual Response for Enhancement of Their Cytotoxicity Toward HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8545-8556. [PMID: 32686932 DOI: 10.1021/acs.jafc.0c03698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aim of this study is to construct a pH- and reduction-responsive nanodrug delivery system to effectively deliver a ginsenoside (Rh2) and enhance its cytotoxicity against human hepatocarcinoma cells (HepG2). Here, pullulan polysaccharide was grafted by urocanic acid and α-lipoic acid (α-LA) to obtain a copolymer, α-LA-conjugated N-urocanyl pullulan (LA-URPA), which was expected to have pH and redox dual response. Then, the copolymer LA-URPA was used to encapsulate ginsenoside Rh2 to form Rh2 nanoparticles (Rh2 NPs). The results showed that Rh2 NPs exhibited an average size of 119.87 nm with a uniform spherical morphology. Of note, Rh2 NPs showed a high encapsulation efficiency of 86.00%. Moreover, Rh2 NPs possessed excellent pH/reduction dual-responsive drug release under acidic conditions (pH 5.5) and glutathione (GSH) stimulation with a low drug leakage of 14.8% within 96 h. Furthermore, Rh2 NPs with pH/reduction dual response had higher cytotoxicity than Rh2 after incubation with HepG2 cells for 72 h, indicating that Rh2 NPs had a longer circulation time. After the treatment with Rh2 NPs, the excessive increase of reactive oxygen species and the decrease of superoxide dismutase, glutathione (GSH), and mitochondrial membrane potential suggested that the mitochondrial pathway mediated by oxidative stress played a role in this Rh2 NP-induced apoptosis. In conclusion, this study provides a new strategy for improving the application of ginsenoside Rh2 in the food and pharmaceutical fields.
Collapse
Affiliation(s)
- Yu Xu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Xiang Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Wei Gong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Hai-Bo Huang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Bei-Wei Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Jiang-Ning Hu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
43
|
Zhan J, Wu Y, Wang H, Liu J, Ma Q, Xiao K, Li Z, Li J, Luo F, Tan H. An injectable hydrogel with pH-sensitive and self-healing properties based on 4armPEGDA and N-carboxyethyl chitosan for local treatment of hepatocellular carcinoma. Int J Biol Macromol 2020; 163:1208-1222. [PMID: 32645496 DOI: 10.1016/j.ijbiomac.2020.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 02/05/2023]
Abstract
Injectable hydrogels with pH-sensitive and self-healing properties have great application potential in the field of anti-cancer drug carriers. In this work, an injectable hydrogel is prepared using 4armPEG-benzaldehyde (4armPEGDA) and N-carboxyethyl chitosan (CEC) as a new drug carrier. The gelation time, equilibrium swelling rate, degradation time, and dynamic modulus of the injectable hydrogels can be adjusted by merely changing the concentration of 4armPEGDA. The volume of the hydrogel shrinks at pH 5.6 and expands at pH 7.4, which helps to control the release of anti-cancer drug. At pH 5.6, the hydrogels show a fast and substantial Dox release effect, which is five times higher than that at pH 7.4. In vitro cumulative drug release of all the hydrogels reached equilibrium on about the fourth day, and the hydrogel is completely degraded within five days, which contributes to the Dox-loaded hydrogel to further release the remaining Dox. Moreover, the Dox-loaded hydrogel shows a strong inhibitory effect on the growth of human hepatocellular carcinoma cells (HepG2). Finally, the anti-tumor model experiment in vivo demonstrated that the Dox-loaded hydrogel can significantly inhibit tumor growth within five days. Therefore, such injectable hydrogels are excellent carriers for the potential treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jianghao Zhan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Yujie Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Haihuan Wang
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Jialing Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Kecen Xiao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, China.
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
44
|
Chimeric poly(N-isopropylacrylamide)-b-poly(3,4-dihydroxy-L-phenylalanine) nanocarriers for temperature/pH dual-stimuli-responsive theranostic application. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Lucia A, Bacher M, van Herwijnen HWG, Rosenau T. A Direct Silanization Protocol for Dialdehyde Cellulose. Molecules 2020; 25:E2458. [PMID: 32466232 PMCID: PMC7287999 DOI: 10.3390/molecules25102458] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 02/02/2023] Open
Abstract
Cellulose derivatives have many potential applications in the field of biomaterials and composites, in addition to several ways of modification leading to them. Silanization in aqueous media is one of the most promising routes to create multipurpose and organic-inorganic hybrid materials. Silanization has been widely used for cellulosic and nano-structured celluloses, but was a problem so far if to be applied to the common cellulose derivative "dialdehyde cellulose" (DAC), i.e., highly periodate-oxidized celluloses. In this work, a straightforward silanization protocol for dialdehyde cellulose is proposed, which can be readily modified with (3-aminopropyl)triethoxysilane. After thermal treatment and freeze-drying, the resulting product showed condensation and cross-linking, which was studied with infrared spectroscopy and 13C and 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy. The cross-linking involves both links of the hydroxyl group of the oxidized cellulose with the silanol groups (Si-O-C) and imine-type bonds between the amino group and keto functions of the DAC (-HC=N-). The modification was achieved in aqueous medium under mild reaction conditions. Different treatments cause different levels of hydrolysis of the organosilane compound, which resulted in diverse condensed silica networks in the modified dialdehyde cellulose structure.
Collapse
Affiliation(s)
- Arianna Lucia
- Wood K Plus–Competence Center for Wood Composites and Wood Chemistry, Kompetenzzentrum Holz GmbH, Altenberger Straße 69, A-4040 Linz, Austria; (A.L.); (H.W.G.v.H.)
- Institute for Chemistry of Renewable Resources, University of Natural Resources and Life Science Vienna (BOKU), Konrad-Lorenz-Straße 24, A-3430 Tulln an der Donau, Austria;
| | - Markus Bacher
- Institute for Chemistry of Renewable Resources, University of Natural Resources and Life Science Vienna (BOKU), Konrad-Lorenz-Straße 24, A-3430 Tulln an der Donau, Austria;
| | - Hendrikus W. G. van Herwijnen
- Wood K Plus–Competence Center for Wood Composites and Wood Chemistry, Kompetenzzentrum Holz GmbH, Altenberger Straße 69, A-4040 Linz, Austria; (A.L.); (H.W.G.v.H.)
| | - Thomas Rosenau
- Institute for Chemistry of Renewable Resources, University of Natural Resources and Life Science Vienna (BOKU), Konrad-Lorenz-Straße 24, A-3430 Tulln an der Donau, Austria;
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Porthansgatan 3, FI-20500 Åbo/Turku, Finland
| |
Collapse
|
46
|
Sampath Udeni Gunathilake TM, Ching YC, Chuah CH, Rahman NA, Liou NS. Recent advances in celluloses and their hybrids for stimuli-responsive drug delivery. Int J Biol Macromol 2020; 158:670-688. [PMID: 32389655 DOI: 10.1016/j.ijbiomac.2020.05.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023]
Abstract
The limitations of existing drug delivery systems (DDS) such as non-specific bio-distribution and poor selectivity have led to the exploration of a variety of carrier platforms to facilitate highly desirable and efficient drug delivery. Stimuli-responsive DDS are one of the most versatile and innovative approach to steer the compounds to the intended sites by exploiting their responsiveness to a range of various triggers. Preparation of stimuli-responsive DDS using celluloses and their derivatives offer a remarkable advantage over conventional polymer materials. In this review, we highlight on state-of-art progress in developing cellulose/cellulose hybrid stimuli-responsive DDS, which covers the preparation techniques, physicochemical properties, basic principles and, mechanisms of stimuli effect on drug release from various types of cellulose based carriers, through recent innovative investigations. Attention has been paid to endogenous stimuli (pH, temperature, redox gradient and ionic-strength) responsive DDS and exogenous stimuli (light, magnetic field and electric field) responsive DDS, where the cellulose-based materials have been extensively employed. Furthermore, the current challenges and future prospects of these DDS are also discussed at the end.
Collapse
Affiliation(s)
- Thennakoon M Sampath Udeni Gunathilake
- Advanced Materials Center, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yern Chee Ching
- Advanced Materials Center, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Cheng Hock Chuah
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Noorsaadah Abd Rahman
- Department of Biochemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nai-Shang Liou
- Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, 710 Tainan City, Taiwan, ROC
| |
Collapse
|
47
|
Tumor microenvironment-induced structure changing drug/gene delivery system for overcoming delivery-associated challenges. J Control Release 2020; 323:203-224. [PMID: 32320817 DOI: 10.1016/j.jconrel.2020.04.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Nano-drug/gene delivery systems (DDS) are powerful weapons for the targeted delivery of various therapeutic molecules in treatment of tumors. Nano systems are being extensively investigated for drug and gene delivery applications because of their exceptional ability to protect the payload from degradation in vivo, prolong circulation of the nanoparticles (NPs), realize controlled release of the contents, reduce side effects, and enhance targeted delivery among others. However, the specific properties required for a DDS vary at different phase of the complex delivery process, and these requirements are often conflicting, including the surface charge, particle size, and stability of DDS, which severely reduces the efficiency of the drug/gene delivery. Therefore, researchers have attempted to fabricate structure, size, or charge changeable DDS by introducing various tumor microenvironment (TME) stimuli-responsive elements into the DDS to meet the varying requirements at different phases of the delivery process, thus improving drug/gene delivery efficiency. This paper summarizes the most recent developments in TME stimuli-responsive DDS and addresses the aforementioned challenges.
Collapse
|
48
|
Kong M, Peng X, Cui H, Liu P, Pang B, Zhang K. pH-responsive polymeric nanoparticles with tunable sizes for targeted drug delivery. RSC Adv 2020; 10:4860-4868. [PMID: 35498333 PMCID: PMC9049203 DOI: 10.1039/c9ra10280a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/10/2020] [Indexed: 11/21/2022] Open
Abstract
Biodegradable nanoparticles (NPs) have shown great promise as intracellular imaging probes, nanocarriers and drug delivery vehicles. In this study, we designed and prepared amphiphilic cellulose derivatives via Schiff base reactions between 2,3-dialdehyde cellulose (DAC) and amino compounds. Polymeric NPs were facilely fabricated via the self-assembly of the as-synthesized amphiphilic macromolecules. The size distribution of the obtained NPs can be tuned by changing the amount and length of the grafted hydrophobic side-chains. Anticancer drugs (DOX) were encapsulated in the NPs and the drug-loaded NPs based on cellulose derivatives were stable in neutral and alkaline environments for at least a month. They rapidly decomposed with the efficient release of the drug in acidic tumor microenvironments. These drug-loaded NPs have the potential for application in cancer treatment.
Collapse
Affiliation(s)
- Mengle Kong
- College of Chemistry and Chemical Engineering, College of Life Science, Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University Nanchang Jiangxi 330022 PR China
| | - Xinwen Peng
- College of Chemistry and Chemical Engineering, College of Life Science, Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University Nanchang Jiangxi 330022 PR China
- Wood Technology and Wood Chemistry, Georg-August-University of Goettingen Büsgenweg 4 37077 Göttingen Germany
| | - Hao Cui
- College of Chemistry and Chemical Engineering, College of Life Science, Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University Nanchang Jiangxi 330022 PR China
| | - Peiwen Liu
- Wood Technology and Wood Chemistry, Georg-August-University of Goettingen Büsgenweg 4 37077 Göttingen Germany
| | - Bo Pang
- Wood Technology and Wood Chemistry, Georg-August-University of Goettingen Büsgenweg 4 37077 Göttingen Germany
| | - Kai Zhang
- Wood Technology and Wood Chemistry, Georg-August-University of Goettingen Büsgenweg 4 37077 Göttingen Germany
| |
Collapse
|
49
|
Yang Z, Wang L, Liu Y, Liu S, Tang D, Meng L, Cui B. ZnO capped flower-like porous carbon-Fe 3O 4 composite as carrier for bi-triggered drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110256. [PMID: 31761234 DOI: 10.1016/j.msec.2019.110256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/26/2019] [Accepted: 09/25/2019] [Indexed: 01/21/2023]
Abstract
In this work, ZnO capped flower-like porous carbon-Fe3O4 composite (FPCS-Fe3O4-ZnO) was constructed as a carrier for pH and microwave bi-triggered drug delivery. In the composite, the FPCS achieves high-efficiency drug loading, the Fe3O4 acts as magnetic targeting agent and microwave absorption enhancer, and the ZnO nanoparticle as a sealing agent in response to pH stimulation. The carrier exhibited a flower-mesoporous sphere of 270 nm, a specific surface area of 101 m2/g, a saturation magnetization of 14.08 emu/g, as well as good microwave thermal conversion properties (The temperature was raised from 25 °C to 60 °C only 24 s). Simultaneously, the carrier achieved an efficient drug loading with a drug loading rate of 99.1%. During the drug release experiments, obvious pH-dependent release behavior was observed, the drug release rate at 12 h was 8.2%, 19.0%, and 56.3% at pH 7.4, 5.0 and 3.0 respectively. Moreover the drug release rate increased from 8.2% to 39.9% after microwave stimulation at pH 7.4. In addition, cytotoxicity tests indicate that the carrier has good biocompatibility. Thus, this multifunctional pH and microwave bi-triggered carrier was expected to be further applied to drug delivery system(DDS).
Collapse
Affiliation(s)
- Zhenfeng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China
| | - Lianhua Wang
- Shaanxi Provincial Institute of Modern Agricultural Sciences, Xi'an, Shaanxi, 710068, China
| | - Ye Liu
- Key Laboratory of Synthetic and Natural Functional Molecule (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China
| | - Shimin Liu
- Key Laboratory of Synthetic and Natural Functional Molecule (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China
| | - Dejian Tang
- Key Laboratory of Se-enriched Products Development and Quality Control(Ministry of Agriculture), National and Local Joint Engineering Laboratory for Selenium-enriched Food Development, China Selenium Industry Research Institute, An'kang, Shaanxi, 725000, China
| | - Li Meng
- Key Laboratory of Se-enriched Products Development and Quality Control(Ministry of Agriculture), National and Local Joint Engineering Laboratory for Selenium-enriched Food Development, China Selenium Industry Research Institute, An'kang, Shaanxi, 725000, China
| | - Bin Cui
- Key Laboratory of Synthetic and Natural Functional Molecule (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China.
| |
Collapse
|
50
|
Potential of di-aldehyde cellulose for sustained release of oxytetracycline: A pharmacokinetic study. Int J Biol Macromol 2019; 136:97-105. [PMID: 31185241 DOI: 10.1016/j.ijbiomac.2019.06.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 11/20/2022]
Abstract
This study focused on the in-vivo sustained release of oxytetracycline (OTC) loaded on di-aldehyde cellulose (DAC). The periodate oxidation method was used for the synthesis of DAC. The prepared DAC-OTC material was characterized by different techniques such as Scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Transmission electron microscopy (TEM) and particle size analyzer. The pharmacokinetic studies were performed on DAC-OTC composite system and commercial tablet (COTA). The results of pharmacokinetic studies demonstrated that DAC-OTC exhibited higher area under the curve (AUC) (482.8 μghmL-1) as compared to COTA (90.72 μghmL-1). DAC-OTC composite system has double compartment pattern with improvement in mean residing time (MRT) and area under moment curve (AUMC0-∞) than the commercial tablet (2.8 and 15.13 folds higher, respectively). Swelling index of DAC-OTC at different pH and pKa of OTC release imply that controlled in-vivo release in DAC-OTC composite system could be due to the simultaneous occurrence of the covalent and hydrogen bond between OTC and di-aldehyde cellulose. These results indicate that di-aldehyde cellulose may improve the in-vivo bioavailability of OTC.
Collapse
|