1
|
Guo J, Tang C, Liu Y, Shi J, Vunduk J, Tang C, Feng J, Zhang J. Innovative submerged directed fermentation: Producing high molecular weight polysaccharides from Ganoderma lucidum. Food Chem 2025; 471:142759. [PMID: 39799682 DOI: 10.1016/j.foodchem.2025.142759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Polysaccharides from Ganoderma lucidum (GLPs) exhibit unique bioactivity, but traditional cultivation yields low quantities and unstable quality, limiting their research and application. This study highlights how submerged fermentation processes enable the directed acquisition of structurally defined high molecular weight (MW) bioactive intracellular polysaccharides (IPS). The results showed that inoculation amount and fermentation scales had a significant effect on the content of high MW IPS. In the fermentor, by lowering the initial glucose concentration combined with fed-batch fermentation, the high MW IPS content was improved. The monosaccharide composition indicated that the high MW IPS obtained from different fermentation scales exhibited stability. This polysaccharide, which is a β-glucan with a β-1,3-Glcp backbone and β-1-Glcp attached at the O-6 position, demonstrated immunostimulatory effects in vitro. Overall, the consistent quality of GLPs during submerged fermentation underscores the feasibility of industrial-scale production, presenting a significant advancement over traditional cultivation methods and promising for biotechnological applications.
Collapse
Affiliation(s)
- Jia Guo
- Key Laboratory of Edible Fungi Resources and Utilization (South) of Ministry of Agriculture, China. National Engineering Research Center of Edible Fungi, Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai 201403, China; School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chenmin Tang
- Key Laboratory of Edible Fungi Resources and Utilization (South) of Ministry of Agriculture, China. National Engineering Research Center of Edible Fungi, Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai 201403, China
| | - Yanfang Liu
- Key Laboratory of Edible Fungi Resources and Utilization (South) of Ministry of Agriculture, China. National Engineering Research Center of Edible Fungi, Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai 201403, China
| | - Jia Shi
- Key Laboratory of Edible Fungi Resources and Utilization (South) of Ministry of Agriculture, China. National Engineering Research Center of Edible Fungi, Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai 201403, China
| | - Jovana Vunduk
- Institute of General and Physical Chemistry, Studenski trg 10-12, 11 158 Belgrade, Serbia
| | - Chuanhong Tang
- Key Laboratory of Edible Fungi Resources and Utilization (South) of Ministry of Agriculture, China. National Engineering Research Center of Edible Fungi, Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai 201403, China
| | - Jie Feng
- Key Laboratory of Edible Fungi Resources and Utilization (South) of Ministry of Agriculture, China. National Engineering Research Center of Edible Fungi, Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai 201403, China.
| | - Jingsong Zhang
- Key Laboratory of Edible Fungi Resources and Utilization (South) of Ministry of Agriculture, China. National Engineering Research Center of Edible Fungi, Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai 201403, China.
| |
Collapse
|
2
|
Chen S, Liu L, Feng J, Zhang J, Geng J, Wang J, Yang Y, Wu D, Liu Y, Guo Q. Preparation, Structural Characterization, and In Vitro Modulation of the Gut Microbiota Activity of a Novel α-Glucan in Hericium erinaceus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8338-8351. [PMID: 40130945 DOI: 10.1021/acs.jafc.5c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Hericium erinaceus (H. erinaceus) is a kind of medicinal and edible fungus that contains polysaccharide as the most studied effective component at present. In this paper, a novel α-glucan was successfully isolated from H. erinaceus fruiting bodies by hot water extraction combined with the fractional ethanol precipitation method. To analyze the monosaccharide composition, methylation and nuclear magnetic resonance spectroscopy were performed, and the polysaccharide was identified having α-(1→4)-glycosidic bonds with a single unit α-D-Glcp branch attached at the O-6 position (Mw, 1.43 × 107 g/mol, branching ratio of 9:1). Furthermore, the aqueous solution analysis demonstrated that this α-glucan adopts a rigid spherical conformation. The polysaccharide exhibited resistance to simulated gastrointestinal digestion but was effectively degraded by gut microbiota (GM), leading to significant changes in total polysaccharide content, reducing sugar, and pH value. Notably, the α-glucan was beneficial to increase the contents of acetic and propionic acids in metabolites, stimulated the growth of beneficial bacteria (Lactobacillus and Bifidobacterium), and inhibited the proliferation of harmful bacteria (Fusobacterium). Overall, the study deepened the regulatory effects of α-glucan with different ratios of main and branch chains from H. erinaceus fruiting bodies on GM, which provides theoretical support for developing of GM-targeted foods.
Collapse
Affiliation(s)
- Shuang Chen
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liping Liu
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jie Feng
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jingsong Zhang
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jie Geng
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jinyan Wang
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yan Yang
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Di Wu
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yanfang Liu
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
3
|
Chen S, Ling B, Liu X, Liu L, Feng J, Zhang J, Yang Y, Wu D, Guo Q, Liu Y. Structural characterization of β-glucan in Hericium erinaceus pretreated by steam explosion and its effects on human gut microbiota in vitro. Food Chem 2025; 482:144156. [PMID: 40203697 DOI: 10.1016/j.foodchem.2025.144156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/17/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025]
Abstract
To investigate the impact of steam explosion on the structure of β-glucan and its regulation human gut microbiota (GM), two polysaccharides were prepared from Hericium erinaceus fruit bodies treated by steam explosion and conventional crushing, respectively. Structural analysis indicated that both two fractions were identified as β-(1 → 3)-glucan with different branching ratios attached at O-6 position. Compared with W20E obtained by conventional crushing, Q5E obtained by steam explosion possessed lower molecular weight (Mw, 2.158 × 106 g/mol) and lower branching ratio of 2:7, which influenced its effects on the diversity and metabolites of GM. W20E (Mw, 6.944 × 106 g/mol, branching ratio of 1:3) could promote n-butyrate production by increasing the abundance of Prevotellaceae_NK3B31_group, Lachnospira and Faecalibacterium. Q5E tended to improve the abundance of Lactococcus, as well as the total production of short chain fatty acids, especially for acetic and propionic acids. These findings provide reference for further development of β-glucan in healthy food.
Collapse
Affiliation(s)
- Shuang Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bingqing Ling
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Xiaoyu Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liping Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Jie Feng
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China.
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China.
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China.
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China.
| |
Collapse
|
4
|
Tariq TB, Karishma, Umer M, Mubeen-Ur-Rehman. The potential of seaweed-derived polysaccharides as sustainable biostimulants in agriculture. Int J Biol Macromol 2025; 298:140009. [PMID: 39828156 DOI: 10.1016/j.ijbiomac.2025.140009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Seaweed polysaccharides such as alginate, carrageenan, agar, and ulvan are emerging as key bioresources in sustainable agriculture due to their unique structural characteristics and functional properties. This review highlights their potential as eco-friendly biostimulants capable of enhancing soil health, plant growth, and stress resilience. Specific mechanisms, including the gel-forming capacity of alginate, ion exchange abilities, and the hydrophilic nature of these polysaccharides, enable improved water retention, nutrient uptake, and plant productivity under adverse conditions, including drought, salinity, and extreme temperatures. Moreover, their role as hydrogels and bio-elicitors introduces novel approaches to addressing global challenges in agriculture, such as climate change and food security. Real-world applications, such as the use of Ascophyllum nodosum extract for drought tolerance and Gracilaria tenuistipitata var. liui to boost grain yields, underscore the practicality and success of these biostimulants. Despite their promising applications, challenges like variability in seaweed quality, high extraction costs, and limited product standardization hinder their scalability. This review provides an integrated analysis of their biochemical properties, agricultural applications, and commercial products while proposing solutions to optimize their use for advancing sustainable farming practices.
Collapse
Affiliation(s)
- Tayyaba Bint Tariq
- Department of Agricultural Sciences and Technology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Karishma
- Department of Agricultural Sciences and Technology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Umer
- Department of Agricultural Sciences and Technology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Mubeen-Ur-Rehman
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| |
Collapse
|
5
|
Liu J, Dai Y, Yang W, Chen ZY. Role of Mushroom Polysaccharides in Modulation of GI Homeostasis and Protection of GI Barrier. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6416-6441. [PMID: 40063730 PMCID: PMC11926878 DOI: 10.1021/acs.jafc.5c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Edible and medicinal mushroom polysaccharides (EMMPs) have been widely studied for their various biological activities. It has been shown that EMMPs could modulate microbiota in the large intestine and improve intestinal health. However, the role of EMMPs in protecting the gastric barrier, regulating gastric microbiota, and improving gastric health cannot be ignored. Hence, this review will elucidate the effect of EMMPs on gastric and intestinal barriers, with emphasis on the interaction of EMMPs with microbiota in maintaining overall gastrointestinal health. Additionally, this review highlights the gastroprotective effects and underlying mechanisms of EMMPs against gastric mucosa injury, gastritis, gastric ulcer, and gastric cancer. Furthermore, the effects of EMMPs on intestinal diseases, including inflammatory bowel disease, colorectal cancer, and intestinal infection, are also summarized. This review will also discuss the future perspective and challenges in the use of EMMPs as a dietary supplement or a nutraceutical in preventing and treating gastrointestinal diseases.
Collapse
Affiliation(s)
- Jianhui Liu
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong 999077, China
| | - Yi Dai
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Wenjian Yang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong 999077, China
| |
Collapse
|
6
|
Niu B, Zhang L, Chen B, Liu X, Yang F, Ren Y, Xiang H, Wang P, Li J. Extraction, purification, structural characteristics, biological activities, modifications, and applications from Hericium erinaceus polysaccharides: A review. Int J Biol Macromol 2025; 291:138932. [PMID: 39706449 DOI: 10.1016/j.ijbiomac.2024.138932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Hericium erinaceus (Bull.) Pers. is a respected medicinal and edible fungus known for its outstanding nutritional profile. In traditional Chinese medicine, it is viewed as a valuable medicinal resource offering various benefits, such as liver protection, spleen fortification, stomach nourishment, and improved digestion. The primary active ingredient, H. erinaceus polysaccharides (HEPs), exhibits diverse biological activities, including immunomodulatory, gastrointestinal protective, regulation of intestinal flora, anti-Alzheimer's, and antioxidant activities. These activities underscore the significant potential of HEPs for treating various diseases and developing HEPs-based pharmaceuticals. For instance, HEPs can exert immunomodulatory effects through the TLR4/NFκB/MyD88/MAPK/PI3K/Akt signaling pathways. Additionally, HEPs achieve immunomodulatory, gastrointestinal protection, and anti-inflammatory and anti-cancer effects by modulating intestinal microbiota. This review systematically summarizes the past five years' research on the extraction, purification, structural characteristics, pharmacological properties, structure-activity relationships, structural modifications, toxicological effects, and potential applications of HEPs. It highlights the diverse biological activities of HEPs in vivo and in vitro and discusses structural modification methods and their broad application prospects in food, medicine, industry, and other fields. These studies will enhance the understanding of HEPs and promote further exploration and innovation in the field of biological activity research and the development of potential applications.
Collapse
Affiliation(s)
- Ben Niu
- Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Lei Zhang
- Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Bodong Chen
- Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xianglong Liu
- Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Feng Yang
- Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yongyong Ren
- Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Honglu Xiang
- Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Peilin Wang
- Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jin Li
- Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
7
|
Zhang C, Pi X, Li X, Huo J, Wang W. Edible herbal source-derived polysaccharides as potential prebiotics: Composition, structure, gut microbiota regulation, and its related health effects. Food Chem 2024; 458:140267. [PMID: 38968717 DOI: 10.1016/j.foodchem.2024.140267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
Recently, with changes in dietary patterns, there has been increased interest in the concept of food and medicine homology, which can help prevent disease development. This has led to a growing focus on the development of functional health foods derived from edible herbal sources. Polysaccharides, found in many edible herbal sources, are gaining popularity as natural ingredients in the production of functional food products. The gut microbiota can effectively utilize most edible herbal polysaccharides (EHPs) and produce beneficial metabolites; therefore, the prebiotic potential of EHPs is gradually being recognized. In this review, we comprehensively discuss the structural features and characterization of EHPs to promote gut microbiota regulation as well as the structure-activity relationship between EHPs and gut microbiota. As prebiotics, intestinal microbiota can use EHPs to indirectly produce metabolites such as short-chain fatty acids to promote overall health; on the other hand, different EHP structures possess some degree of selectivity on gut microbiota regulation. Moreover, we evaluate the functionality and mechanism underlying EHPs in terms of anticancer activity, antimetabolic diseases, anti-inflammatory activity, and anti-neuropsychiatric diseases.
Collapse
Affiliation(s)
- Chenxi Zhang
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, China, 150036
| | - Xiaowen Pi
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Xiuwei Li
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, China, 150036
| | - Jinhai Huo
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, China, 150036.
| | - Weiming Wang
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, China, 150036.
| |
Collapse
|
8
|
Wang F, Xu J, Hu C, Lai J, Shen P, Lu Y, Jiang F. β-glucan improves intestinal health of pearl gentian grouper via activation of the p38 mitogen-activated protein kinase signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109868. [PMID: 39216713 DOI: 10.1016/j.fsi.2024.109868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/04/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Our previous study has demonstrated that supplementation of yeast β-glucan improves intestinal health in pearl gentian grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀), accompanied by the activation of the mitogen-activated protein kinase (MAPK) signaling pathway. In this study, we investigated the effects of perturbing p38 MAPK activity using an inhibitor on the intestinal health of β-glucan-injected pearl gentian grouper to elucidate the potential molecular mechanism underlying the protective effects of β-glucan on the fish gut. The pearl gentian grouper was categorized into four groups: PBS injected (CD group), β-glucan injected at a dose of 80 mg/kg (βG group), p38 MAPK inhibitor SB203580 injected at a dose of 1 mg/kg (SB203580 group), and a combination of β-glucan (80 mg/kg) and SB203580 (1 mg/kg) injected together (βG + SB203580 group). The results revealed that the introduction of SB203580 significantly suppressed the β-glucan-induced increase in p38α and p38β mRNA expression, as well as the phosphorylation of p38 MAPK. Both the βG group and SB203580 group exhibited reduced plica height and muscularis thickness. The βG + SB203580 group displayed a significant reduction in mucin cell level; interleukin 1β (il1β) mRNA expression; induced nitric oxide synthase, tumor necrosis factor α, and IL1β concentration; catalase and total antioxidant capacity activities. Additionally, there was a significant increase in the levels of intestinal malondialdehyde in the βG + SB203580 group compared to the βG group. The inhibition of the p38 MAPK signaling halted the trend of apoptosis-related caspase molecular expression induced by β-glucan. In conclusion, β-glucan injection resulted in elevated levels of mucous cells, nonspecific immunity, antioxidant capacity, and anti-apoptosis in grouper by modulating the p38 MAPK pathway. This study offers insights into the potential molecular mechanism underlying the protective effects of β-glucan on intestinal health in pearl gentian grouper.
Collapse
Affiliation(s)
- Fan Wang
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China; College of Life Science and Technology of Guangxi University, Nanning 530005, Guangxi, China
| | - Jia Xu
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Chaoqun Hu
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Junxiang Lai
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Peihong Shen
- College of Life Science and Technology of Guangxi University, Nanning 530005, Guangxi, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Fajun Jiang
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China.
| |
Collapse
|
9
|
Zhang Z, Ge M, Wu D, Li W, Chen W, Liu P, Zhang H, Yang Y. Resveratrol-loaded sulfated Hericium erinaceus β-glucan-chitosan nanoparticles: Preparation, characterization and synergistic anti-inflammatory effects. Carbohydr Polym 2024; 332:121916. [PMID: 38431417 DOI: 10.1016/j.carbpol.2024.121916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 03/05/2024]
Abstract
Resveratrol (RES) is a natural polyphenol with excellent biological activity. But the poor stability and bioavailability of RES severely limit its application. Thus, the resveratrol-loaded sulfated Hericium erinaceus β-glucan-chitosan nanoparticles (DS-CS-RES NPs) were prepared using electrostatic self-assembly to solve these problems in this study. The structure of DS-CS-RES NPs was spherical or sub spherical shape with small average particle size (191.07 nm), which was characterized by FT-IR, FS, XRD and TEM. DS-CS-RES NPs exhibited good stability and RES had a sustainable release from the nanoparticles in gastrointestinal digestion. Meanwhile, DS-CS-RES NPs could improve the inflammatory injury of LPS stimulated RAW264.7 macrophages by inhibiting the production of NO, IL-1β, IL-6 and TNF-α. Furthermore, DS-CS-RES NPs had strong anti-inflammatory activity by regulating protein levels of NF-κB p65, STAT1 and TLR4 through NF-κB and JAK-STAT1 signaling pathway in vitro, and sulfated H. erinaceus β-glucan-chitosan nanoparticle (DS-CS NPs) and RES had synergistic anti-inflammatory effect. Overall, DS-CS NPs can serve as a potential green and safe functional carrier for encapsulating resveratrol, which can improve its anti-inflammatory activity. This work may be conducive to the development of functional carrier for encapsulating RES and applications of hydrophobic active molecules in functional foods or medicines.
Collapse
Affiliation(s)
- Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Meili Ge
- College of Food Science & Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Haiyun Zhang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| |
Collapse
|
10
|
Jesus S, Panão Costa J, Colaço M, Lebre F, Mateus D, Sebastião AI, Cruz MT, Alfaro-Moreno E, Borges O. Exploring the immunomodulatory properties of glucan particles in human primary cells. Int J Pharm 2024; 655:123996. [PMID: 38490404 DOI: 10.1016/j.ijpharm.2024.123996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
The immunomodulatory properties of β-glucans have sparked interest among various medical fields. As vaccine adjuvants, glucan particles offer additional advantages as antigen delivery systems. This study reported the immunomodulatory properties of glucan particles with different size and chemical composition. The effect of glucan microparticles (GPs) and glucan nanoparticles (Glu 130 and 355 NPs) was evaluated on human immune cells. While GPs and Glu 355 NPs demonstrated substantial interaction with Dectin-1 receptor on monocytes, Glu 130 NPs exhibited reduced activation of this receptor. This observation was substantiated by blocking Dectin-1, resulting in inhibition of reactive oxygen species production induced by GPs and Glu 355 NPs. Notably, monocyte-derived dendritic cells (moDCs) stimulated by Glu 355 NPs exhibited phenotypic and functional maturation, essential for antigen cross-presentation. The immunomodulatory efficacy was investigated using an autologous mixed lymphocyte reaction (AMLR), resulting in considerable rates of lymphocyte proliferation and an intriguing profile of cytokine and chemokine release. Our findings highlight the importance of meticulously characterizing the size and chemical composition of β-glucan particles to draw accurate conclusions regarding their immunomodulatory activity. This in vitro model mimics the human cellular immune response, and the results obtained endorse the use of β-glucan-based delivery systems as future vaccine adjuvants.
Collapse
Affiliation(s)
- Sandra Jesus
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - João Panão Costa
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal
| | - Mariana Colaço
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal
| | - Filipa Lebre
- Nanosafety Group, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Daniela Mateus
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal
| | - Ana Isabel Sebastião
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal
| | - Maria T Cruz
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal
| | | | - Olga Borges
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal.
| |
Collapse
|
11
|
Zhu H, Xu L, Chen P, Li Z, Yu W, Sun P, Wu J, Cai M. Structure characteristics, protective effect and mechanisms of ethanol-fractional polysaccharides from Dendrobium officinale on acute ethanol-induced gastritis. Food Funct 2024; 15:4079-4094. [PMID: 38563230 DOI: 10.1039/d3fo05540j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Gastritis is a common disease characterized by gastric ulcers and severe bleeding. Excessive daily alcohol consumption can cause acute gastritis, impacting individuals' quality of life. This study aims to explore the protective effects of different ethanol-fractional polysaccharides of Dendrobium officinale (EPDO) on acute alcohol-induced gastric injury in vivo. Results showed that EPDO-80, identified as a β-glucan, exhibited significant anti-inflammatory properties in pathology. It could reduce the area of gastric mucosal injury and cell infiltration. EPDO-80 had a dose-effect relationship in reducing the levels of malondialdehyde and cyclooxygenase-2 and decreasing the levels of inflammation mediators such as tumor necrosis factor α. More extensively, EPDO-80 could inhibit the activation of the TNFR/IκB/NF-κB signaling pathway, reducing the production of TNF-α mRNA and cell apoptosis in organs. Conversely, EPDO-80 could promote changes in the gut microbiota structure. These findings suggest that EPDO-80 could have great potential in limiting oxidative stress and inflammation mediated by inhibiting the NF-κB signaling pathway, which is highly related to its β-glucan structure and functions in gut microbiota.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China.
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
- Department of Food Science & Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
| | - Lei Xu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China.
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Peng Chen
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China.
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Zhenhao Li
- Longevity Valley Botanical Co., Ltd., Zhejiang 321200, People's Republic of China
| | - Wujin Yu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China.
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China.
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Jianyong Wu
- Department of Food Science & Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
| | - Ming Cai
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China.
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| |
Collapse
|
12
|
Zhang H, Wang Z, Wang S, Zhang J, Qiu L, Chen J. Aminated yeast β-D-glucan for macrophage-targeted delivery of CpG oligodeoxynucleotides and synergistically enhanced cancer immunotherapy. Int J Biol Macromol 2023; 253:126998. [PMID: 37729981 DOI: 10.1016/j.ijbiomac.2023.126998] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
CpG oligodeoxynucleotides (CpG ODNs) activate immune system and show strong potential in cancer immunotherapy. However, therapeutic efficacy of CpG ODNs is hampered due to rapid nuclease degradation and insufficient cellular uptake. Delivery of CpG ODNs into antigen presenting cells (APCs) is vital to enhance their therapeutic efficacy. Herein, we developed a super-convenient yet efficient strategy for macrophage-targeted delivery of CpG ODNs and synergistically enhanced cancer immunotherapy. Aminated yeast β-D-glucan (NH2-Glu) was simply synthesized through functionalization of β-D-glucan with DETA, which exhibited a dendrimer-like shape with size of about 80 nm. NH2-Glu complexed negatively-charged CpG ODNs. The as-prepared NH2-Glu/CpG complexes were positively charged, uniformly dispersed and exhibited good stability against nuclease degradation. Due to the specific recognition with dectin-1 expressed on macrophages, NH2-Glu/CpG complexes targeted macrophage and exhibited significantly enhanced cellular uptake due to dectin-1-mediated endocytosis. NH2-Glu/CpG complexes showed potent immunostimulatory activity. Contributed by the inherent immunostimulatory and antitumor activity, yeast β-D-glucan functioned synergistically with CpG ODNs in inducing antitumor immunity. NH2-Glu/CpG complexes remarkably inhibited tumor growth without causing toxic effect. In summary, this work provides a facile yet efficient macrophage-targeted CpG ODNs delivery system for cancer immunotherapy.
Collapse
Affiliation(s)
- Huijie Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhiqing Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Shuo Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiawen Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Lipeng Qiu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
13
|
Chen SK, Li YH, Wang X, Guo YQ, Song XX, Nie SP, Yin JY. Evaluation of the "Relative Ordered Structure of Hericium erinaceus Polysaccharide" from Different Origins: Based on Similarity and Dissimilarity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17886-17898. [PMID: 37955257 DOI: 10.1021/acs.jafc.3c04329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Polysaccharides are organic compounds widely distributed in nature, but structural order and disorder remain a formidable problem. In this study, based on the theoretical framework of the "relative ordered structure of polysaccharide" proposed in our previous work, the structural order of Hericium erinaceus polysaccharides from different regions was evaluated by FT-IR, methylation analysis, and 1H NMR spectroscopy combined with chemometric methods. The results of principal component analysis and heatmap cluster analysis revealed that 18-subfractions exhibit four different structural types with representative glycoside linkage types: fucogalactoglucan, glucofucogalactan, fucoglucan, and glucan. The main chain of heteroglucans often consists of β-(1 → 6)-Glcp, β-(1 → 4)-Glcp, and β-(1 → 3)-Glcp residues, which are predominantly substituted at the O-3 and O-6 positions. The main chain structure of heterogalactans is α-(1 → 6)-Galp residues, which may be replaced by Fucp and Galp residues at O-2. Overall, our findings demonstrate the validity of the "relative ordered structure of polysaccharide" in Hericium erectus polysaccharides and simplify the complexity of polysaccharide structures.
Collapse
Affiliation(s)
- Shi-Kang Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| | - Yu-Hao Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| | - Yu-Qing Guo
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| | - Xiao-Xiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| |
Collapse
|
14
|
Cui M, Ma Q, Zhang Z, Li W, Chen W, Liu P, Wu D, Yang Y. Semi-solid enzymolysis enhanced the protective effects of fruiting body powders and polysaccharides of Herinaceus erinaceus on gastric mucosal injury. Int J Biol Macromol 2023; 251:126388. [PMID: 37595717 DOI: 10.1016/j.ijbiomac.2023.126388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/03/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
This study demonstrated the effects of semi-solid enzymolysis on physicochemical properties of fruiting body powders and polysaccharides from Hericium erinaceus and protective effects on gastric mucosal injury. Semi-solid enzymolysis could reduce the particle size, change the microstructure of fruiting body powders, increase the contents of soluble polysaccharide (26.26-67.04 %) and uronic acid (16.97-31.12 %) and reduce the molecular weight of polysaccharides. The digestibility of fruiting body powder of H. erinaceus after semi-solid enzymolysis was increased by 31.4 %, compared with that of the fruiting body powder of H. erinaceus without enzymolysis. Semi-solid enzymolysis could enhance the protective effects of the fruiting body powders and polysaccharides on ethanol-induced human gastric mucosal epithelial cells (GES-1) cells, increase the production of superoxide dismutase (SOD, 0-37.33 %) and catalase (CAT, 2.47-18.46 %), and inhibit the production of malonaldehyde (MDA, 2.45-19.62 %), myeloperoxidase (MPO, 0-13.54 %), interleukin (IL-6, 4.39-24.62 %) and tumor necrosis factor-α (TNF-α, 5.97-12.25 %). Semi-solid enzymolysis could improve the inhibition rate of the fruiting body powder on gastric ulcer (32.70-46.26 %), inhibit oxidative stress and inflammation, and protect rats with acute gastric mucosal injury against the stimulation of ethanol on gastric mucosa. In conclusion, semi-solid enzymolysis may enhance the protective effects of the fruiting body powders and polysaccharides on gastric mucosal injury.
Collapse
Affiliation(s)
- Mingxiao Cui
- Department of Food Science, Shanghai Business School, Shanghai 200235, China
| | - Qiang Ma
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China.
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China.
| |
Collapse
|
15
|
Tian B, Liu R, Xu T, Cai M, Mao R, Huang L, Yang K, Zeng X, Peilong S. Modulating effects of Hericium erinaceus polysaccharides on the immune response by regulating gut microbiota in cyclophosphamide-treated mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3050-3064. [PMID: 36546454 DOI: 10.1002/jsfa.12404] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/04/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The gut microbiota (GM) is recognized as a significant contributor to the immune system. In the present study, the effects of Hericium erinaceus polysaccharides (HEP) on immunoregulation and GM in cyclophosphamide (CTX)-treated mice were investigated to elucidate the attenuate of immunosuppression by modulating GM. RESULTS The results revealed that HEP significantly improved the body weight and immune organ index in immunodeficient mice (P < 0.05). They significantly increased operational taxonomic units (OTUs) (P < 0.05), adjusted the α and β diversity of the GM, and the bacterial community structure was more similar to that of control group. Taxonomic composition analysis found that HEP increased the abundance of Alistipse, uncultured_bacterium_f_Muribaculaceae, Lachnospiraceae_NK4A136_group, uncultured_bacterium_f_Lachnospiracea, uncultured_bacterium_f_Ruminococcaceae and Ruminococcaceae_UCG-014, and decreased Lactobacillus, Bacteroides, and Alloprevotella, suggesting that HEP can improve the GM structure and inhibit CTX-induced GM dysregulation. Moreover, HEP increased short-chain fatty acid (SCFA)-producing bacteria, recovered SCFA levels, alleviated immunosuppression caused by CTX, enhanced the serum immune cytokine factors, and upregulated TLR4/NF-κB pathway key proteins (TLR4, NF-κB p65) at mRNA and protein levels. CONCLUSION Hericium erinaceus polysaccharides effectively regulated GM and enhancement of intestinal immune function, so they have the potential to be developed as functional ingredients or foods to modulate immune responses. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
- China Key Laboratory of Food Macromolecular Resource Processing Technology for Light Industry, Zhejiang University of Technology, Huzhou, China
| | - Renjian Liu
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| | - Tianrui Xu
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| | - Ming Cai
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
- China Key Laboratory of Food Macromolecular Resource Processing Technology for Light Industry, Zhejiang University of Technology, Huzhou, China
| | - Rongliang Mao
- Changshan Haofeng Agricultural Development Co. LTD, Quzhou, China
| | - Liangshui Huang
- Research Institute of Changshan Tianle Edible Fungus, Quzhou, China
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
- China Key Laboratory of Food Macromolecular Resource Processing Technology for Light Industry, Zhejiang University of Technology, Huzhou, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Sun Peilong
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
- China Key Laboratory of Food Macromolecular Resource Processing Technology for Light Industry, Zhejiang University of Technology, Huzhou, China
| |
Collapse
|
16
|
Wu J, Mo J, Xiang W, Shi X, Guo L, Li Y, Bao Y, Zheng L. Immunoregulatory effects of Tetrastigma hemsleyanum polysaccharide via TLR4-mediated NF-κB and MAPK signaling pathways in Raw264.7 macrophages. Biomed Pharmacother 2023; 161:114471. [PMID: 36889110 DOI: 10.1016/j.biopha.2023.114471] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Polysaccharide of Tetrastigma hemsleyanum (THP) exert antioxidant, antibacterial, lipid-lowering, and anti-inflammatory properties, especially some evidences have highlighted the efficiency of it as an anti-tumor agent. However, as a biological macromolecule with bidirectional immune regulation, the immunological enhancement effects of THP on macrophages and its underlying mechanisms are still largely unknown. In the present study, THP was prepared and characterized, and then the effect of THP on Raw264.7 cell activation was investigated. Structural characteristics of THP showed that the average molecular weight was 370.26 kDa, and the main monosaccharide composition was galactose, glucuronic acid, mannose, and glucose at a ratio of 31.56: 25.15: 19.44: 12.60, with high viscosity causing by relative high uronic acid. For immunomodulatory activity investigation, THP promoted the production of NO, IL-6 and TNF-α, as well as the expression of IL-1β, MCP-1, iNOS and COX-2, which were almost completely inhibited by TLR4 antagonist. Further study showed that THP could activate NF-κB and MAPK signaling pathways, and thus enhanced the phagocytic activity of Raw264.7 macrophages. In conclusion, the present study provided evidences that THP could be served as a new immunomodulator in both functional foods and the pharmaceutical field.
Collapse
Affiliation(s)
- Jiayuan Wu
- The key Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, China
| | - Juanfen Mo
- The key Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, China
| | - Wei Xiang
- Chongqing College of Traditional Chinese Medicine, Chongqing 402760, China
| | - Xiaowen Shi
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, China
| | - Li Guo
- The key Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, China
| | - Yi Li
- The key Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, China
| | - Yi Bao
- The key Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, China
| | - Li Zheng
- The key Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, China.
| |
Collapse
|
17
|
Zhang Z, Wu D, Li W, Chen W, Liu Y, Zhang J, Wan J, Yu H, Zhou S, Yang Y. Structural elucidation and anti-inflammatory activity of a proteoglycan from spent substrate of Lentinula edodes. Int J Biol Macromol 2023; 224:1509-1523. [PMID: 36550792 DOI: 10.1016/j.ijbiomac.2022.10.239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/28/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
Abstract
A proteoglycan LEPS1 was firstly isolated and purified from the spent substrate of Lentinula edodes, an agricultural waste that may cause environmental pollution. The average molecular weight of LEPS1 was 1.18 × 104 g/mol, and carbohydrate moiety (88.9 %) was composed of glucose, arabinose, galactose, xylose and mannose at a molar ratio of 1.2:1.2:1.0:2.3:1.1. The protein moiety (8.5 %) of LEPS1 was bonded to the polysaccharide chain via O-glycosidic linkage. LEPS1 could significantly improve the inflammatory injury of LPS stimulated RAW264.7 macrophages by inhibiting the secretion of NO and decreasing the levels of pro-inflammatory factors (TNF-α, IL-1β and IL-6). LEPS1 inhibited JAK-STAT1 and p38 MAPK signaling pathway via modulating JAK expression, phosphorylation of STAT1 and phosphorylation of p38, respectively. Moreover, LEPS1 could promote the expression of CD 206 and IL-10 which were the markers for repairing macrophages. Overall, LEPS1 had anti-inflammatory activity and can potentially treat as a novel anti-inflammation agent. This work could provide scientific basis and valuable information for the highly efficient utilization of spent L. edodes substrates as the by-product in mushroom industries.
Collapse
Affiliation(s)
- Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Jianing Wan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Hailong Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Shuai Zhou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| |
Collapse
|
18
|
Wang X, Yin J, Hu J, Nie S, Xie M. Gastroprotective polysaccharide from natural sources: Review on structure, mechanism, and structure–activity relationship. FOOD FRONTIERS 2022; 3:560-591. [DOI: 10.1002/fft2.172] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
Abstract
AbstractPolysaccharides from natural sources have the potentials in being used as substitutes of chemosynthetic drugs for gastroprotection because of its safety and efficacy. For giving a better understanding of gastroprotective polysaccharides, the research progress on preparation, structure, bioactivity, and their action mechanism is comprehensively summarized in this review. Moreover, the structure–activity relationship of gastroprotective polysaccharides is discussed. Accumulating evidence has indicated that natural polysaccharides, which were widely prepared by water extraction and column chromatography purifications, exhibited gastroprotective effects in vitro and in vivo. The action mechanism might be related to gastric secretions, promotion of gastric defensive factor releases, antioxidation, anti‐inflammatory, antiapoptosis, and facilitation of proliferation. Phenolic compounds, molecular weight and conformation, monosaccharide composition, backbone structure and side chain, and functional group have great influences on the gastroprotective activities of polysaccharides. This review gives comprehensive guidance to the exploitation and application of natural polysaccharides in food and other industries for gastroprotection.
Collapse
Affiliation(s)
- Xiao‐Yin Wang
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
- School of Public Health and Health Management Gannan Medical University Ganzhou 341000 China
| | - Jun‐Yi Yin
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| | - Jie‐Lun Hu
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| | - Shao‐Ping Nie
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| | - Ming‐Yong Xie
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| |
Collapse
|
19
|
Yang Y, Li J, Hong Q, Zhang X, Liu Z, Zhang T. Polysaccharides from Hericium erinaceus Fruiting Bodies: Structural Characterization, Immunomodulatory Activity and Mechanism. Nutrients 2022; 14:nu14183721. [PMID: 36145096 PMCID: PMC9503163 DOI: 10.3390/nu14183721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Five fractions from crude Hericium erinaceus polysaccharides (HEPs), including HEP-1, HEP-2, HEP-3, HEP-4 and HEP-5, were obtained through column chromatography with a DEAE Cellulose-52 column and Sephadex G-100 column. The contents of total carbohydrates and uronic acid in HEPs were 53.36% and 32.56%, respectively. HEPs were mainly composed of Fuc, Gal and Glu in a molar ratio of 7.9:68.4:23.7. Its chemical structure was characterized by sugar and methylation analysis, along with 1H and 13C NMR spectroscopy. HEP-1 contains the backbone composed of (1→6)-linked-galactose with branches attached to O-2 of some glucose. The immunological activity assay indicated that HEP-1 significantly promoted the production of nitric oxide, interleukin-6, interleukin-10, interferon-γ and tumor necrosis factor-α and the phosphorylation of signaling molecules. Collectively, these results suggested that HEP-1 could improve immunity via NF-κB, MAPK and PI3K/Akt pathways. Hericium erinaceus polysaccharides might be explored as an immunomodulatory agent for use in dietary supplements.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Jihong Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, 5333 Xi’an Road, Changchun 130062, China
| | - Qing Hong
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
- Correspondence: (Z.L.); (T.Z.); Tel.: +86-021-66553178 (Z.L.); +86-0431-87836361 (T.Z.)
| | - Tiehua Zhang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, 5333 Xi’an Road, Changchun 130062, China
- Correspondence: (Z.L.); (T.Z.); Tel.: +86-021-66553178 (Z.L.); +86-0431-87836361 (T.Z.)
| |
Collapse
|
20
|
Liang J, Zhao M, Xie S, Peng D, An M, Chen Y, Li P, Du B. Effect of steam explosion pretreatment on polysaccharide isolated from Poria cocos: Structure and immunostimulatory activity. J Food Biochem 2022; 46:e14355. [PMID: 35892192 DOI: 10.1111/jfbc.14355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/26/2022] [Accepted: 07/14/2022] [Indexed: 12/01/2022]
Abstract
This study aimed to examine the effects of steam explosion (SE) pretreatment on the structural characteristics and immunostimulatory activity of polysaccharide from Poria cocos. Results showed that the average molecular weights of native polysaccharide (PCP) and SE-pretreated polysaccharide (SEPCP) were 18.67 and 6.52 kDa, respectively. PCP and SEPCP shared the same profiles of monosaccharides (mannose, glucose, galactose, and fucose) in different composition ratios, that is, PCP in a molar percentage of 13.5:33:40.3:13.2 and SEPCP in a molar percentage of 2.1:90.3:5.8:1.8. The surface structure of PCP showed smooth and densely spherical particles, whereas SEPCP had a rough surface and porous honeycomb structure. The main linkage types of PCP comprised 1,6-α-d-Galp, 1,2,6-α-d-Glcp, and T-α-d-Manp, whereas SEPCP primarily contained 1,3-β-d-Glcp backbone and T-β-d-Glcp branches. Compared with PCP, we further revealed that SEPCP had a better immune enhancement on the phagocytic ability, NO production, and the secretion levels of TNF-α and IL-6 in RAW 264.7 cells. Collectively, our observations supported that SE pretreatment could help to change the structure and improve the immunostimulatory activity of polysaccharide from P. cocos. PRACTICAL APPLICATIONS: SE technology is extensively used to extract bioactive components with improved yields owing to this technology's benefits of low energy consumption and high efficiency. SE pretreatment was found to contribute to the destruction of cell-wall structure, which could help to enhance the extraction yields of P. cocos polysaccharide (PCP). Meanwhile, SE pretreatment also could change the structural features and improve the immunostimulatory activity of PCP. This study revealed that more bioactive PCP with strengthened immunoregulatory effect was obtained pretreated by SE. This study was able to provide the effective information on the application of steam explosion technology to promote the further development and utilization of PCP in the pharmaceutical and functional food fields.
Collapse
Affiliation(s)
- Jiehua Liang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Minhao Zhao
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Siwei Xie
- College of Mathematics and Information, South China Agricultural University, Guangzhou, China
| | - Dong Peng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Miaoqing An
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yang Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Ma Z, Dong L, Zhang B, Liang B, Wang L, Ma G, Wang L. Lentinan stabilized bimetallic PdPt 3 dendritic nanoparticles with enhanced oxidase-like property for L-cysteine detection. Int J Biol Macromol 2022; 216:779-788. [PMID: 35902021 DOI: 10.1016/j.ijbiomac.2022.07.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 12/25/2022]
Abstract
The development of nanozymes with enhanced catalytic activity has been drawing great interest. Lentinan with special structure may be used to prepare bimetallic nanomaterials to enhance their catalytic activity. Herein, lentinan stabilized PdPt3 dendritic nanoparticles (PdPt3-LNT NDs) were prepared through reduction of Na2PdCl4 and K2PtCl4 with a molar ratio of 1:3 using lentinan as a biological template. PdPt3-LNT NDs had dendritic shape with size of 10.76 ± 1.82 nm. PdPt3-LNT NDs had the hydrodynamic size about 25.7 nm and the zeta potential between -1.4 mV and - 4.9 mV at different pH. Furthermore, PdPt3-LNT NDs catalyzed 3,3',5,5'-tetramethylbenzidine (TMB) to produce oxidized TMB, suggesting their oxidase-like property. The catalytic activity of PdPt3-LNT NDs was the highest when pH was 4 and the temperature was 40 °C. The catalytic mechanism was the generation of ·O2- and 1O2 from O2 catalyzed by PdPt3-LNT NDs. More importantly, L-cysteine detection method was set up based on the oxidase-like property of PdPt3-LNT NDs. This method had wide linear range for 0-200 μM and low detection limit for 3.099 μM. Taken together, PdPt3-LNT NDs have good potential applications in bio-related detection in the future.
Collapse
Affiliation(s)
- Ziyi Ma
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Le Dong
- Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Bingjie Zhang
- Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Bo Liang
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao, 066004, China.
| | - Liqiu Wang
- Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Guanglong Ma
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton SO166YD, UK
| | - Longgang Wang
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao, 066004, China; Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
22
|
Yang SY, Fang CJ, Chen YW, Chen WP, Lee LY, Chen CC, Lin YY, Liu SC, Tsai CH, Huang WC, Wu YC, Tang CH. Hericium erinaceus Mycelium Ameliorates In Vivo Progression of Osteoarthritis. Nutrients 2022; 14:2605. [PMID: 35807786 PMCID: PMC9268003 DOI: 10.3390/nu14132605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Osteoarthritis (OA) is an age-related disorder that affects the joints and causes functional disability. Hericium erinaceus is a large edible mushroom with several known medicinal functions. However, the therapeutic effects of H. erinaceus in OA are unknown. In this study, data from Sprague-Dawley rats with knee OA induced by anterior cruciate ligament transection (ACLT) indicated that H. erinaceus mycelium improves ACLT-induced weight-bearing asymmetry and minimizes pain. ACLT-induced increases in articular cartilage degradation and bone erosion were significantly reduced by treatment with H. erinaceus mycelium. In addition, H. erinaceus mycelium reduced the synthesis of proinflammatory cytokines interleukin-1β and tumor necrosis factor-α in OA cartilage and synovium. H. erinaceus mycelium shows promise as a functional food in the treatment of OA.
Collapse
Affiliation(s)
- Shang-Yu Yang
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan;
| | - Chi-Jung Fang
- Department of Orthopaedic Surgery, An Nan Hospital, China Medical University, Tainan 40447, Taiwan;
| | - Yu-Wen Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 325002, Taiwan; (Y.-W.C.); (W.-P.C.); (L.-Y.L.)
| | - Wan-Ping Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 325002, Taiwan; (Y.-W.C.); (W.-P.C.); (L.-Y.L.)
| | - Li-Ya Lee
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 325002, Taiwan; (Y.-W.C.); (W.-P.C.); (L.-Y.L.)
| | - Chin-Chu Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei 106617, Taiwan;
- Department of Food Science, Nutrition and Nutraceutical Biotechnology, Shih Chien University, Taipei 104, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Yen-You Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404333, Taiwan;
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin 651012, Taiwan;
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 404333, Taiwan;
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 404333, Taiwan
| | - Wei-Chien Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan;
- Drug Development Center, China Medical University, Taichung 404333, Taiwan
| | - Yang-Chang Wu
- Department of Chinese Medicine, China Medical University Hospital, Taichung 404333, Taiwan;
- Chinese Medicine Research and Development Center, China Medical University Hospital, China Medical University, Taichung 404333, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404333, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 404333, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
23
|
Wang XY, Wang M, Yin JY, Song YH, Wang YX, Nie SP, Xie MY. Gastroprotective activity of polysaccharide from the fruiting body of Hericium erinaceus against acetic acid-induced gastric ulcer in rats and structure of one bioactive fraction. Int J Biol Macromol 2022; 210:455-464. [PMID: 35483513 DOI: 10.1016/j.ijbiomac.2022.04.153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 01/08/2023]
Abstract
This study aimed at investigating gastroprotective activity of Hericium erinaceus polysaccharide (HEP) and characterizing one of its bioactive fractions. Acetic acid-induced gastric ulcer (GU) rat model was used to evaluate the gastroprotective activity of HEP, while H2O2-induced injury GES-1 cell model was conducted to screen the bioactive fractions from HEP. Moreover, one of the bioactive fractions was characterized using methylation and 1D/2D NMR analysis. Results indicated HEP treatment could ameliorate acetic acid-induced GU in rats. HEP supplement decreased levels of interleukin-6, tumor necrosis factor-α and malondialdehyde and myeloperoxidase activity, and increased releases of nitric oxide, prostaglandin E2, epidermal growth factor, vascular endothelial growth factor and basic fibroblast growth factor and superoxide dismutase activity in gastric tissues of ulcerated rats. Five purified polysaccharides from HEP were screened to be bioactive fractions with cytoprotection on H2O2-induced injury in GES-1 cells. Among them, RP-S was characterized to be a (1 → 6)-β-D-glucan, whose backbone was composed of →6)-β-D-Glcp-(1 → residue and branched with T-β-D-Glcp-(1 → residue at O-3 position. In conclusion, HEP possessed gastroprotection against acetic acid-induced GU in rats and one of its bioactive fractions was a β-D-glucan. This study supports the utilization of HEP in anti-GU and provides evidences for the structure of gastroprotective HEP.
Collapse
Affiliation(s)
- Xiao-Yin Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China; School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Miao Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| | - Ye-Hao Song
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| | - Yu-Xiao Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| |
Collapse
|
24
|
Sheng Z, Wen L, Yang B. Structure identification of a polysaccharide in mushroom Lingzhi spore and its immunomodulatory activity. Carbohydr Polym 2022; 278:118939. [PMID: 34973757 DOI: 10.1016/j.carbpol.2021.118939] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022]
Abstract
Ganoderma lucidum spore serves as a well-known immunomodulatory functional food in Asia. The polysaccharides in G. lucidum spore are responsible for the claimed immunomodulatory activity. However, the structural information of polysaccharides remains unclear. In this work, the leading water-soluble polysaccharide in G. lucidum spore (GLSP-I) with a molecular weight of 128.0 kDa was isolated and purified. The monosaccharide composition analysed by gas chromatography indicated that GLSP-I was a glucan. Three side chains, including Glc-(1 → 3)-Glc-(1 → 3)-Glc-(1 → 6)-Glc, Glc-(1 → 6)-Glc-(1 → 6)-Glc-(1 → 6)-Glc and Glc-(1 → 3)-Glc-(1 → 3)-Glc-(1 → 3)-Glc-(1 → 3)-Glc, were identified by UPLC-MS/MS. The structural characteristics were further identified by NMR spectra. The results indicated that the backbone of GLSP-I was (1 → 3)-β-D-glucan, with side chains linking at O-6. The proposed structure was drawn as below. The immunomodulatory activity assay indicated that GLSP-I could activate macrophages in a dose-dependent manner.
Collapse
Affiliation(s)
- Zhili Sheng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Lingrong Wen
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Bao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Wan Y, Xu X, Gilbert RG, Sullivan MA. A Review on the Structure and Anti-Diabetic (Type 2) Functions of β-Glucans. Foods 2021; 11:57. [PMID: 35010185 PMCID: PMC8750484 DOI: 10.3390/foods11010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes, a long-term chronic metabolic disease, causes severe and increasing economic and health problems globally. There is growing evidence that β-glucans can function as bioactive macromolecules that help control type 2 diabetes with minimal side effects. However, conflicting conclusions about the antidiabetic activities of β-glucans have been published, potentially resulting from incomplete understanding of their precise structural characteristics. This review aims to increase clarity on the structure-function relationships of β-glucans in treating type 2 diabetes by examining detailed structural and conformational features of naturally derived β-glucans, as well as both chemical and instrumental methods used in their characterization, and their underlying anti-diabetic mechanisms. This may help to uncover additional structure and function relationships and to expand applications of β-glucans.
Collapse
Affiliation(s)
- Yujun Wan
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China;
| | - Robert G. Gilbert
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia;
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Mitchell A. Sullivan
- Glycation and Diabetes Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4072, Australia
| |
Collapse
|
26
|
Jia X, Wang X, Liu Y, Sun Y, Ma B, Li Z, Xu C. Structural characterization of an alkali-extracted polysaccharide from Dioscorea opposita Thunb. with initial studies on its anti-inflammatory activity. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.2009503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xuewei Jia
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| | - Xuanjing Wang
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuanshang Liu
- Technical Center of Hebei China Tobacco Industry Co, Ltd, Shijiazhuang, China
| | - Yiyan Sun
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Bingjie Ma
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Zhenjie Li
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Chunping Xu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| |
Collapse
|
27
|
Zou G, Ren J, Wu D, Zhang H, Gong M, Li W, Zhang J, Yang Y. Characterization and Heterologous Expression of UDP-Glucose 4-Epimerase From a Hericium erinaceus Mutant with High Polysaccharide Production. Front Bioeng Biotechnol 2021; 9:796278. [PMID: 34900974 PMCID: PMC8655778 DOI: 10.3389/fbioe.2021.796278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/03/2021] [Indexed: 02/02/2023] Open
Abstract
Hericium erinaceus is an important medicinal fungus in traditional Chinese medicine because of its polysaccharides and other natural products. Compared terpenoids and polyketides, the analysis of synthetic pathway of polysaccharides is more difficult because of the many genes involved in central metabolism. In previous studies, A6180, encoding a putative UDP-glucose 4-epimerase (UGE) in an H. erinaceus mutant with high production of active polysaccharides, was significantly upregulated. Since there is no reliable genetic manipulation technology for H. erinaceus, we employed Escherichia coli and Saccharomyces cerevisiae to study the function and activity of A6180. The recombinant overexpression vector pET22b-A6180 was constructed for heterologous expression in E. coli. The enzymatic properties of the recombinant protein were investigated. It showed that the recombinant A6180 could strongly convert UDP-α-D-glucose into UDP-α-D-galactose under optimal conditions (pH 6.0, 30°C). In addition, when A6180 was introduced into S. cerevisiae BY4742, xylose was detected in the polysaccharide composition of the yeast transformant. This suggested that the protein coded by A6180 might be a multifunctional enzyme. The generated polysaccharides with a new composition of sugars showed enhanced macrophage activity in vitro. These results indicate that A6180 plays an important role in the structure and activity of polysaccharides. It is a promising strategy for producing polysaccharides with higher activity by introducing A6180 into polysaccharide-producing mushrooms.
Collapse
Affiliation(s)
- Gen Zou
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Juanbao Ren
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China.,College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Di Wu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Henan Zhang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ming Gong
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wen Li
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jingsong Zhang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yan Yang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
28
|
Wei J, Xiang XH, Tang Y, Qin DL, Wu JM, Yu CL, Qiu WQ, Wu AG, Lv HB. Lychee seed polyphenol protects blood–retinal barrier by increasing tight joint proteins and inhibiting the activation of TLR4/MYD88/NF-κB-mediated NLRP3 inflammasome. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1968352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Jing Wei
- Department of Ophthalmology, Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology; College of Preclinical Medicine, Southwest Medical University, Luzhou, People’s Republic of China
| | - Xiao-Hong Xiang
- Department of Ophthalmology, Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology; College of Preclinical Medicine, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology; College of Preclinical Medicine, Southwest Medical University, Luzhou, People’s Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, People’s Republic of China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology; College of Preclinical Medicine, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology; College of Preclinical Medicine, Southwest Medical University, Luzhou, People’s Republic of China
| | - Chong-Lin Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology; College of Preclinical Medicine, Southwest Medical University, Luzhou, People’s Republic of China
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, People’s Republic of China
| | - Wen-Qiao Qiu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology; College of Preclinical Medicine, Southwest Medical University, Luzhou, People’s Republic of China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology; College of Preclinical Medicine, Southwest Medical University, Luzhou, People’s Republic of China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Hong-Bin Lv
- Department of Ophthalmology, Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
29
|
Yin Z, Liang Z, Li C, Wang J, Ma C, Kang W. Immunomodulatory effects of polysaccharides from edible fungus: a review. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
30
|
Structural analysis and biological effects of a neutral polysaccharide from the fruits of Rosa laevigata. Carbohydr Polym 2021; 265:118080. [PMID: 33966844 DOI: 10.1016/j.carbpol.2021.118080] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
A neutral water-soluble polysaccharide (RLP50-2) was extracted and purified from the fruits of Rosa laevigata. The absolute molecular weight was determined as 1.26 × 104 g/mol. Monosaccharide composition analysis showed that RLP50-2 mainly consisted of glucose, arabinose, and galactose. Structural analysis revealed that RLP50-2 consisted of →5)-α-L-Araf-(1→, →2,5)-α-L-Araf-(1→, →3,5)-α-L-Araf-(1→, →4)-α-D-Glcp-(1→, →6)-α-D-Glcp-(1→, →3,6)-β-D-Glcp-(1→, →4)-α-D-Galp-(1→, →6)-β-D-Galp-(1→, →2)-β-D-Xylp-(1→, terminal α-L-arabinose, and terminal β-D-mannose. Biological assays showed that RLP50-2 had immunomodulatory activities using cell and zebrafish models. Moreover, RLP50-2 showed significantly antitumor activities by inhibiting tumor cell proliferation and migration and blocking angiogenesis. These results suggested that RLP50-2 could be developed as a potential immunomodulatory agent or antitumor candidate drug in biomedicine field.
Collapse
|
31
|
Gong M, Zhang H, Wu D, Zhang Z, Zhang J, Bao D, Yang Y. Key metabolism pathways and regulatory mechanisms of high polysaccharide yielding in Hericium erinaceus. BMC Genomics 2021; 22:160. [PMID: 33676419 PMCID: PMC7937317 DOI: 10.1186/s12864-021-07480-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/25/2021] [Indexed: 12/23/2022] Open
Abstract
Background Hericium erinaceus, a rare edible and medicine fungus, is widely used in the food and medical field. Polysaccharides from H. erinaceus are the main bioactive compound that exert high bioactive value in the medical and healthcare industries. Results The genome of H. erinaceus original strain HEA was reported 38.16 Mb, encoding 9780 predicted genes by single-molecule, real-time sequencing technology. The phylogenomic analysis showed that H. erinaceus had the closest evolutionary affinity with Dentipellis sp. The polysaccharide content in the fermented mycelia of mutated strains HEB and HEC, which obtained by ARTP mutagenesis in our previous study, was improved by 23.25 and 47.45%, and a new β-glucan fraction with molecular weight 1.056 × 106 Da was produced in HEC. Integrative analysis of transcriptome and proteomics showed the upregulation of the carbohydrate metabolism pathway modules in HEB and HEC might lead to the increased production of glucose-6P and promote the repeating units synthesis of polysaccharides. qPCR and PRM analysis confirmed that most of the co-enriched and differentially co-expressed genes involved in carbohydrate metabolism shared a similar expression trend with the transcriptome and proteome data in HEB and HEC. Heatmap analysis showed a noticeably decreased protein expression profile of the RAS-cAMP-PKA pathway in HEC with a highly increased 47.45% of polysaccharide content. The S phase progression blocking experiment further verified that the RAS-cAMP-PKA pathway’s dysfunction might promote high polysaccharide and β-glucan production in the mutant strain HEC. Conclusions The study revealed the primary mechanism of the increased polysaccharide synthesis induced by ARTP mutagenesis and explored the essential genes and pathways of polysaccharide synthesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07480-x.
Collapse
Affiliation(s)
- Ming Gong
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, No.1000, Jinqi Road, Shanghai, 201403, China
| | - Henan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, No.1000, Jinqi Road, Shanghai, 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, No.1000, Jinqi Road, Shanghai, 201403, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, No.1000, Jinqi Road, Shanghai, 201403, China
| | - Jinsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, No.1000, Jinqi Road, Shanghai, 201403, China
| | - Dapeng Bao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, No.1000, Jinqi Road, Shanghai, 201403, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, No.1000, Jinqi Road, Shanghai, 201403, China.
| |
Collapse
|
32
|
Cui Y, Zhu L, Li Y, Jiang S, Sun Q, Xie E, Chen H, Zhao Z, Qiao W, Xu J, Dong C. Structure of a laminarin-type β-(1→3)-glucan from brown algae Sargassum henslowianum and its potential on regulating gut microbiota. Carbohydr Polym 2021; 255:117389. [PMID: 33436218 DOI: 10.1016/j.carbpol.2020.117389] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
A homogeneous polysaccharide named SHNP with apparent molecular weight of 8.4 kDa was purified from brown algae Sargassum henslowianum using ethanol precipitation, ion-exchange chromatography, and gel-filtration column chromatography. Structural analyses reveal that SHNP is completely composed of glucose, and its backbone consists of β-D-(1→3)-Glcp with side chains comprising t-β-D-Glcp attached at the O-6 position. Thus, SHNP is a laminarin-type polysaccharide. In vitro fermentation test results showed that SHNP was digested by gut microbiota; the pH value in the fecal culture of SHNP was significantly decreased; and total short-chain fatty acids, acetic, propionic and n-butyric acids were significantly increased. Furthermore, SHNP regulated the intestinal microbiota composition by stimulating the growth of species belonging to Enterobacteriaceae while depleting Haemophilus parainfluenzae and Gemmiger formicilis. Taken together, these results indicate that SHNP has the potential for regulating gut microbiota, but its specific role in the regulation requires to be further investigated.
Collapse
Affiliation(s)
- Yongsheng Cui
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Lixia Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong; The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518000, China
| | - Yixuan Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Siliang Jiang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Qili Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Enyi Xie
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Zhongzhen Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Wei Qiao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, China.
| | - Caixia Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
33
|
Qu Y, Zhao X, Guo H, Meng Y, Wang Y, Zhou Y, Sun L. Structural analysis and macrophage activation of a novel β‑glucan isolated from Cantharellus cibarius. Int J Mol Med 2021; 47:50. [PMID: 33576436 PMCID: PMC7891825 DOI: 10.3892/ijmm.2021.4883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/12/2021] [Indexed: 11/18/2022] Open
Abstract
The present study was designed to investigate the structure and immunomodulatory activity of a polysaccharide. A novel acidic β-glucan (WCCP-A-b; molecular weight, 7.3 kDa) was purified from the fruiting bodies of the edible mushroom Cantharellus cibarius, which possesses high nutritional values. WCCP-A-b was composed primarily of glucose (89.7%) and glucuronic acid (8.8%). Methylation and nuclear magnetic resonance analysis suggested that WCCP-A-b contained β-D-1,6-glucan as its main chain, which was substituted at O-3 by β-1,3-D-Glcp oligosaccharides or a single-unit of β-Glcp residues. Minor β-1,4-D-GlcpA residues may also be present in the side chains. The degree of branching was ~20.9%. Moreover, WCCP-A-b possessed a macrophage activating effect by promoting the secretion of nitric oxide, TNF-α and IL-6 in a dose-dependent manner. At a cellular mechanistic level, WCCP-A-b activated macrophages via the MAPK signaling pathway. The present results provided useful information for supporting further investigations on the structure-activity association of polysaccharides from C. cibarius, and indicated that the novel β-glucan may be a potent natural immunomodulator, thus promoting the application of C. cibarius as a valuable source for functional food.
Collapse
Affiliation(s)
- Yunhe Qu
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Xiaolin Zhao
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Huijun Guo
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Yue Meng
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Yumeng Wang
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Lin Sun
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| |
Collapse
|
34
|
Tu J, Brennan M, Brennan C. An insight into the mechanism of interactions between mushroom polysaccharides and starch. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
35
|
Yu LS, Liang J, Zhang Y, Kuang HX, Xia YG. Enzymatic-fingerprinting workflow of polysaccharides in Hericium erinaceus fruiting bodies: From HILIC-ESI --MS screening to targeted MIM profiling. Int J Biol Macromol 2021; 173:491-503. [PMID: 33476617 DOI: 10.1016/j.ijbiomac.2021.01.093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/14/2023]
Abstract
In this study, an uncommon enzymatic-fingerprinting workflow, was proposed for characterization and discrimination of mushroom polysaccharides (MPs) by hydrophilic interaction liquid chromatography-negative electrospray mass spectrometry (HILIC-ESI--MS). Firstly, the HILIC-ESI--MS was used to screen and identify the enzymatic digestion products of MPs using HILIC-Orbitrap based on full scan and MS/MS modes. Secondly, a targeted structural-fingerprinting of polysaccharides (SFP) was built in a multiple-ion monitoring (MIM) mode using the same HILIC separation with a triple quadrupole MS. Thirdly, a case study of polysaccharides in Hericium erinaceus fruiting bodies (HEP) was performed to obtain the expected SFP based on dextranase digestion that allows for visual discrimination of polysaccharides from other five edible mushrooms attributed to Agrocybe cylindracea, Arimillaria mellea, Flammulina velutipes, Pleurotus eryngii, and Lentinula edodes. Furthermore, a major structural backbone of HEP was unveiled by occurrence of → 6(Hex)1 → along with multiple possible substitutions including of terminal GalA, Fuc, acetyl, → 4Hex1 →, and → 3Hex1 →. Finally, the similarity analysis, hierarchical cluster analysis (HCA), and partial least squares discriminant analysis (PLS-DA) were performed to visualize various MPs. As a result, the enzymatic-fingerprinting workflow presents an effective example for quality evaluation of fungi polysaccharides using a SFP strategy.
Collapse
Affiliation(s)
- Li-Shi Yu
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Jun Liang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Ying Zhang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China.
| | - Yong-Gang Xia
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China.
| |
Collapse
|
36
|
Structural elucidation of a branch-on-branch β-glucan from Hericium erinaceus with A HPAEC-PAD-MS system. Carbohydr Polym 2021; 251:117080. [DOI: 10.1016/j.carbpol.2020.117080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/28/2022]
|
37
|
Immunomodulatory activity of a novel polysaccharide extracted from Huangshui on THP-1 cells through NO production and increased IL-6 and TNF-α expression. Food Chem 2020; 330:127257. [DOI: 10.1016/j.foodchem.2020.127257] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/11/2020] [Accepted: 06/04/2020] [Indexed: 01/09/2023]
|
38
|
An ultrasonic-extracted arabinoglucan from Tamarindus indica L. pulp: A study on molecular and structural characterizations. Int J Biol Macromol 2020; 164:3687-3697. [PMID: 32882273 DOI: 10.1016/j.ijbiomac.2020.08.206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/30/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
In this study, an ultrasonic-extracted polysaccharide (nCPTP-55) was obtained with the highest yield (61.08%, w/w) from tamarind pulp, which consisted chiefly of total sugar (85.98%, w/w) with few protein (2.10%, w/w). Monosaccharide analysis showed nCPTP-55 was mainly composed of arabinose (39.19 mol%) and glucose (50.48 mol%) with negligible GlcA (2.05 mol%), indicating the neutral nature of nCPTP-55, which was further elucidated structurally via GC-MS and NMR, i.e., an arabinoglucan composed of →3)-β-D-Glcp-(1→ backbone with only T-α-L-Araf-(1→ branched at O-4 (27.82%) and O-6 (39.99%), resulting in relatively high A/G ratio (0.68-0.70). Based on MM2 minimized energy, the 3D schematic structures of nCPTP-55 could be considered as structural basis for its conformational behavior, which was preliminarily estimated via HPSEC-MALLS as between compact sphere and loosely hyper-branched chain (ρ = 0.84). Therefore, the relationship between molecular structure and conformational behavior was basically established for nCPTP-55, which was in a bid to have a better knowledge of its structure-property and structure-bioactivity relationships potentially required for more applications in food, cosmetic and pharmaceutical fields.
Collapse
|
39
|
Structural characterization and hypoglycemic activity of an intracellular polysaccharide from Sanghuangporus sanghuang mycelia. Int J Biol Macromol 2020; 164:3305-3314. [PMID: 32871118 DOI: 10.1016/j.ijbiomac.2020.08.202] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/11/2020] [Accepted: 08/26/2020] [Indexed: 01/10/2023]
Abstract
A neutral polysaccharide (SSIPS1) was isolated and purified from cultured mycelia of Sanghuangporus sanghuang by DEAE Sepharose Fast Flow and Sephacryl S-100 columns. Basic monosaccharide composition indicated that SSIPS1 was mainly composed of d-glucose. The results of methylation and 2D-NMR analysis suggested that the glycosidic linkages of SSIPS1 were elucidated to consisted of 1,4-linked α-d-glucopyranose (Glcp) residues with two branched points at O-6. The two branches were composed of 1,4-linked α-D-Glcp terminated with α-D-Glcp, 1,4-linked α-D-Glcp and 1,4-linked β-Galp terminated by α-D-Glcp. Moreover, its chain conformation was revealed to present a flexible chain conformation in 0.1 NaNO3 with a hydrodynamic radius and radius of gyration of 3.26 and 6.45 nm by multi-angle laser light scattering, with a single chain of 0.559 nm observed by atomic force microscopy. Further, SSIPS1 exhibited a potential inhibitory activity against α-amylase and α-glucosidase, and it had hypoglycemic effects on in vitro insulin resistance of HepG2 cells as well.
Collapse
|
40
|
Chen W, Wu D, Jin Y, Li Q, Liu Y, Qiao X, Zhang J, Dong G, Li Z, Li T, Yang Y. Pre-protective effect of polysaccharides purified from Hericium erinaceus against ethanol-induced gastric mucosal injury in rats. Int J Biol Macromol 2020; 159:948-956. [PMID: 32450327 DOI: 10.1016/j.ijbiomac.2020.05.163] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022]
Abstract
The β-glucan H6PC20 (Mw: 2390 kDa) and α-heteropolysaccharide HPB-3 (Mw: 15 kDa) were purified from the fruiting body of Hericium erinaceus according to the previous methods. Their gastroprotective activities and corresponding structure-activity relationship were studied in the ethanol-induced gastric ulcer model of rats. After intragastric administrated with H6PC20 and HPB-3 for 14 days, macroscopic and histological evaluation of gastric mucosa was improved significantly. The defense and repair factors (EGF, bFGF and PGE2) were increased, meanwhile, the inflammatory cytokines (IL-1β and TNF-α) and MDA were reduced. These results indicated that H6PC20 and HPB-3 presented gastroprotective activities with the mechanism of activating repair and defense system, decreasing the inflammatory response and alleviating the oxidative injury. Furthermore, the structure-activity relationship showed that the macromolecular β-glucan was better for repair and defense system, while the low weight molecular α-heteropolysaccharide focused on the anti-inflammatory effect. The polysaccharides purified from H. erinaceus can be developed as a potential gastroprotective ingredient for applications in pharmaceutical field.
Collapse
Affiliation(s)
- Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Yueling Jin
- Shanghai University of Medicine & Health Sciences, Shanghai, 200237, PR China
| | - Qiaozhen Li
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Xuxin Qiao
- Shanghai University of Medicine & Health Sciences, Shanghai, 200237, PR China
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Guochao Dong
- Shanghai University of Medicine & Health Sciences, Shanghai, 200237, PR China
| | - Zhengpeng Li
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Tingting Li
- Shanghai University of Medicine & Health Sciences, Shanghai, 200237, PR China.
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China.
| |
Collapse
|
41
|
Teng JF, Mei QB, Zhou XG, Tang Y, Xiong R, Qiu WQ, Pan R, Law BYK, Wong VKW, Yu CL, Long HA, Xiao XL, Zhang F, Wu JM, Qin DL, Wu AG. Polyphyllin VI Induces Caspase-1-Mediated Pyroptosis via the Induction of ROS/NF-κB/NLRP3/GSDMD Signal Axis in Non-Small Cell Lung Cancer. Cancers (Basel) 2020; 12:193. [PMID: 31941010 PMCID: PMC7017302 DOI: 10.3390/cancers12010193] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Trillium tschonoskii Maxim (TTM), a traditional Chinese medicine, has been demonstrated to have a potent anti-tumor effect. Recently, polyphyllin VI (PPVI), a main saponin isolated from TTM, was reported by us to significantly suppress the proliferation of non-small cell lung cancer (NSCLC) via the induction of apoptosis and autophagy in vitro and in vivo. In this study, we further found that the NLRP3 inflammasome was activated in PPVI administrated A549-bearing athymic nude mice. As is known to us, pyroptosis is an inflammatory form of caspase-1-dependent programmed cell death that plays an important role in cancer. By using A549 and H1299 cells, the in vitro effect and action mechanism by which PPVI induces activation of the NLRP3 inflammasome in NSCLC were investigated. The anti-proliferative effect of PPVI in A549 and H1299 cells was firstly measured and validated by MTT assay. The activation of the NLRP3 inflammasome was detected by using Hoechst33324/PI staining, flow cytometry analysis and real-time live cell imaging methods. We found that PPVI significantly increased the percentage of cells with PI signal in A549 and H1299, and the dynamic change in cell morphology and the process of cell death of A549 cells indicated that PPVI induced an apoptosis-to-pyroptosis switch, and, ultimately, lytic cell death. In addition, belnacasan (VX-765), an inhibitor of caspase-1, could remarkably decrease the pyroptotic cell death of PPVI-treated A549 and H1299 cells. Moreover, by detecting the expression of NLRP3, ASC, caspase-1, IL-1β, IL-18 and GSDMD in A549 and h1299 cells using Western blotting, immunofluorescence imaging and flow cytometric analysis, measuring the caspase-1 activity using colorimetric assay, and quantifying the cytokines level of IL-1β and IL-18 using ELISA, the NLRP3 inflammasome was found to be activated in a dose manner, while VX-765 and necrosulfonamide (NSA), an inhibitor of GSDMD, could inhibit PPVI-induced activation of the NLRP3 inflammasome. Furthermore, the mechanism study found that PPVI could activate the NF-κB signaling pathway via increasing reactive oxygen species (ROS) levels in A549 and H1299 cells, and N-acetyl-L-cysteine (NAC), a scavenger of ROS, remarkably inhibited the cell death, and the activation of NF-κB and the NLRP3 inflammasome in PPVI-treated A549 and H1299 cells. Taken together, these data suggested that PPVI-induced, caspase-1-mediated pyroptosis via the induction of the ROS/NF-κB/NLRP3/GSDMD signal axis in NSCLC, which further clarified the mechanism of PPVI in the inhibition of NSCLC, and thereby provided a possibility for PPVI to serve as a novel therapeutic agent for NSCLC in the future.
Collapse
Affiliation(s)
- Jin-Feng Teng
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (J.-F.T.); (Q.-B.M.); (X.-G.Z.); (Y.T.); (R.X.); (W.-Q.Q.); (F.Z.); (D.-L.Q.)
| | - Qi-Bing Mei
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (J.-F.T.); (Q.-B.M.); (X.-G.Z.); (Y.T.); (R.X.); (W.-Q.Q.); (F.Z.); (D.-L.Q.)
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (J.-F.T.); (Q.-B.M.); (X.-G.Z.); (Y.T.); (R.X.); (W.-Q.Q.); (F.Z.); (D.-L.Q.)
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (J.-F.T.); (Q.-B.M.); (X.-G.Z.); (Y.T.); (R.X.); (W.-Q.Q.); (F.Z.); (D.-L.Q.)
| | - Rui Xiong
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (J.-F.T.); (Q.-B.M.); (X.-G.Z.); (Y.T.); (R.X.); (W.-Q.Q.); (F.Z.); (D.-L.Q.)
| | - Wen-Qiao Qiu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (J.-F.T.); (Q.-B.M.); (X.-G.Z.); (Y.T.); (R.X.); (W.-Q.Q.); (F.Z.); (D.-L.Q.)
| | - Rong Pan
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China; (R.P.); (C.-L.Y.)
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (B.Y.-K.L.); (V.K.-W.W.)
| | - Vincent Kam-Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (B.Y.-K.L.); (V.K.-W.W.)
| | - Chong-Lin Yu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China; (R.P.); (C.-L.Y.)
| | - Han-An Long
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (J.-F.T.); (Q.-B.M.); (X.-G.Z.); (Y.T.); (R.X.); (W.-Q.Q.); (F.Z.); (D.-L.Q.)
| | - Xiu-Li Xiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (J.-F.T.); (Q.-B.M.); (X.-G.Z.); (Y.T.); (R.X.); (W.-Q.Q.); (F.Z.); (D.-L.Q.)
| | - Feng Zhang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (J.-F.T.); (Q.-B.M.); (X.-G.Z.); (Y.T.); (R.X.); (W.-Q.Q.); (F.Z.); (D.-L.Q.)
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (J.-F.T.); (Q.-B.M.); (X.-G.Z.); (Y.T.); (R.X.); (W.-Q.Q.); (F.Z.); (D.-L.Q.)
- Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (J.-F.T.); (Q.-B.M.); (X.-G.Z.); (Y.T.); (R.X.); (W.-Q.Q.); (F.Z.); (D.-L.Q.)
- Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (J.-F.T.); (Q.-B.M.); (X.-G.Z.); (Y.T.); (R.X.); (W.-Q.Q.); (F.Z.); (D.-L.Q.)
- Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
42
|
In-depth spectral characterization of antioxidative (1,3)-β-D-glucan from the mycelium of an identified tiger milk mushroom Lignosus rhinocerus strain ABI in a stirred-tank bioreactor. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|