1
|
Zhao K, Huang N, Qi W, Liu R, Wang C, Huan Y, Zhang Z. Using nanocellulose to strengthen and toughen collagen-based film: Effect of carboxymethyl content of nanocellulose and relative humidity. Int J Biol Macromol 2025; 309:143209. [PMID: 40246095 DOI: 10.1016/j.ijbiomac.2025.143209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/27/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Collagen-based films possess numerous merits due to their biodegradability, edibility, and widespread existence. Although extensive research focuses on the mechanical strengthening of collagen films, the mechanisms underlying conformational changes of collagen during the film-forming stage and the impact of interface alterations on film's mechanical properties remain ill-defined. This work investigated the dynamic drying process of different-sized collagen fibers. It revealed that smaller size of collagen fiber exhibited a shorter gelatin stage and more rapid conformational transition. Subsequently, the effects of substitution degree (SD) of carboxymethylated nanocellulose (CNF) and relative humidity (RH) were analyzed on the mechanical behaviors of collagen-based film. When RH was in the range of 50 %-90 %, increasing RH and SD of CNF gradually weakens the interfacial strength between CNF and matrix, thereby increasing the toughness and decreasing strength of collagen-based film. The highest strength (110.76 ± 6.60 MPa) was achieved in COL/CNF-C2 film. Combined with water content and microstructure results, the transformation from brittle to ductile fracture could be observed in collagen-based films, ascribing the toughening of water molecules and hydration of CN with water. These results can provide a guidance for the actual production of collagen-based film and offer strategies for the adjustable mechanical properties of biopolymer films.
Collapse
Affiliation(s)
- Kaixuan Zhao
- Collage of Food Science and Technology, Hebei Agricultural University, Hebei 071001, China.
| | - Na Huang
- Hebei University Health Science Center, Hebei University, Hebei 071002, China
| | - Wenhui Qi
- Collage of Food Science and Technology, Hebei Agricultural University, Hebei 071001, China
| | - Ruitong Liu
- Collage of Food Science and Technology, Hebei Agricultural University, Hebei 071001, China
| | - Conghui Wang
- Collage of Food Science and Technology, Hebei Agricultural University, Hebei 071001, China
| | - Yufei Huan
- Collage of Food Science and Technology, Hebei Agricultural University, Hebei 071001, China
| | - Zhisheng Zhang
- Collage of Food Science and Technology, Hebei Agricultural University, Hebei 071001, China.
| |
Collapse
|
2
|
Tong R, Gu P, Wang Y, Ye H, Li T, Zheng X, Su L, Li H, Xu J. Facile fabrication of transparent and stretchable cellulose ionic gel paper for sustainable use in multifunctional sensors and optoelectronic devices. Int J Biol Macromol 2025; 307:142101. [PMID: 40089234 DOI: 10.1016/j.ijbiomac.2025.142101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/19/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Although transparent paper derived from cellulose has been successfully demonstrated as an inexpensive, renewable and biodegradable substrate used for flexible electronics, the inherently stiff characteristic and intrinsic poor conductivity of the cellulose paper inevitably hinders its application in stretchable electronic devices. Herein, we report a new avenue for construction of highly stretchable, transparent, and ionic conductive cellulose gel paper via glycerol inducing plasticizing and CaCl2 initiating chelating, a facile casting and drying strategy. The renewable carboxymethyl cellulose is employed for its intrinsically abundant carboxyl groups for crosslinking with Ca2+ via ionic coordination bonds, benefiting the improvement of various performances. The resultant cellulose ionic gel paper (CIGP) displays high stretchability (tensile strain 320 % and strength 978 kPa at fracture), and transparency (over 90 % in 400 nm to 780 nm wavelength). In addition, the CIGP also has high ionic conductivity (82.78 mS/m), and displays highly reliable, sensitive and wide range strain sensing abilities to various stimuli. Significantly, the transparent CIGP with excellent sensing performances has been successfully integrated into multifunctional sensors and optoelectronic device, showing broad applications in flexible electronics.
Collapse
Affiliation(s)
- Ruiping Tong
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Ping Gu
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Yifu Wang
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Huan Ye
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Tengfei Li
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China.
| | - Xiang Zheng
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Longjun Su
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Hongchao Li
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Junfei Xu
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China.
| |
Collapse
|
3
|
Li Q, Sun Z, Sun K, Wang X, Chen H. Study on the barrier properties of carboxymethyl cellulose/montmorillonite mulch films regulated by magnetic field. Int J Biol Macromol 2025; 308:142428. [PMID: 40122428 DOI: 10.1016/j.ijbiomac.2025.142428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025]
Abstract
To enhance the barrier performance of biomass films, carboxymethyl cellulose (CMC) was combined with montmorillonite (MMT) modified by stearyltrimethylammonium bromide (STAB) and loaded with Fe₃O₄ particles as a nano-filler, and a CMC/m-OMMT mulch film was fabricated using magnetic field orientation. The characterization of m-OMMT was conducted through Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and vibrating sample magnetometry (VSM), which confirmed the successful intercalation of STAB into the MMT structure, along with the effective loading of Fe₃O4 particles onto the MMT matrix. A comprehensive investigation into the mechanical properties of CMC/m-OMMT films revealed that, in the dry state, the films exhibited a tensile strength of 29 MPa and an elongation at break of 64 %. A series of barrier performance tests were conducted on the films. The findings demonstrated that the incorporation of MMT and the application of a magnetic field substantially enhanced the water contact angle, increasing it from 86° to 112°. Additionally, water vapor permeability increased by approximately 30 %, soil erosion was reduced by about 22 %, and UV resistance was notably improved by 94 %. Moreover, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and biodegradation tests on the CMC/m-OMMT/40mT films revealed that the magnetic field effectively oriented the MMT nanosheets within the composite matrix. This study presents a novel approach for enhancing the barrier properties of biomass-based mulch films.
Collapse
Affiliation(s)
- Qing Li
- College of Engineering, Qufu Normal University, Rizhao 276826, China
| | - Zhonghua Sun
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271000, China.
| | - Kangheng Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaodi Wang
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271000, China
| | - Haojie Chen
- College of Engineering, Qufu Normal University, Rizhao 276826, China
| |
Collapse
|
4
|
Cao Y, Dong Y, Wu T, Chen L, Zhu W, Jiang T, He N, Liu Y, Huang R, Yu X, Xiao Y, Zhong T. A carboxymethyl cellulose-based pH-responsive chlorine dioxide release film for strawberry preservation. Int J Biol Macromol 2025; 294:139457. [PMID: 39755315 DOI: 10.1016/j.ijbiomac.2025.139457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/05/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Fruit spoilage caused by microorganisms results in huge economic losses and health risks worldwide every year. To develop an intelligent antimicrobial material capable of responding to the physiological activity of postharvest fruits and releasing antibacterial agents on demand, we fabricated a pH-responsive film for the release of chlorine dioxide (ClO2) using carboxymethyl cellulose (CMC) and sodium chlorite (NaClO2) via the solution casting method, with a CMC:NaClO2 ratio of 1:2 w/w. An acid environment simulated by 4 % acetic acid activated 43 % of ClO2 released by the film within 7 days. A 1 × 2 cm2 film in acid environment effectively inhibited the growth of Staphylococcus aureus (106 CFU/mL), Escherichia coli (105 CFU/mL), and Aspergillus niger on agar media (with colony diameters reduced from 60.00 mm to 19.07 mm). A 3 × 3 cm2 film reduced the decay incidence caused by A. niger in strawberry from 100 % (control) to only 20 % on day 6. Compared with the control group, no significant differences in color, total soluble solids (TSSs) or triable acidity (TA) were observed in the film-treated groups. The development of pH-responsive NaClO2-CMC films offers a practical and effective solution for extending the shelf-life and maintaining the quality of fruit.
Collapse
Affiliation(s)
- Yuantong Cao
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Yuhe Dong
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Tong Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Linyan Chen
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Wanying Zhu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Tao Jiang
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao; School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519040, China
| | - Nan He
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519040, China
| | - Yao Liu
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao; School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519040, China
| | - Ran Huang
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; Yiwu Research Institute of Fudan University, Yiwu 322099, China; Zhuhai Fudan Innovation Research Institute, Zhuhai 519031, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao; Zhuhai MUST Science and Technology Research Institute, Zhuhai 519031, Guangdong, China.
| |
Collapse
|
5
|
Park J, Kim MY, Yoon HY. Comparison of five preservation methods for fascia allograft. J Vet Sci 2025; 26:e13. [PMID: 40183903 PMCID: PMC11972942 DOI: 10.4142/jvs.24276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/25/2024] [Accepted: 12/15/2024] [Indexed: 04/05/2025] Open
Abstract
IMPORTANCE Research on tissue preservation, including cortical bone, skin, nerves, and vessels in glycerol and cortical bone in honey, has shown positive results. On the other hand, relatively few studies have been performed on fascia preservation, and comparisons between different fascia preservation methods remain scarce. OBJECTIVE This in vitro study compared the biomechanical properties of five different methods of preserving fascia lata. METHODS The control group underwent biomechanical testing immediately after decellularization, while the other five groups were stored in glycerol, honey, deep freezer, lyophilizer, and liquid nitrogen for 30 days. The ultimate load, elongation at failure, and stiffness for each group were determined from a load-elongation curve. RESULTS A comparison of the ultimate load showed that the control group had the highest value, followed by the glycerol group. The glycerol group was the only group that did not show a significant difference from the control group, while all the other groups showed a significantly lower ultimate load. A comparison of elongation at failure revealed the glycerol group to have the highest value at failure among all groups and was significantly higher than the deep freeze, honey, and cryopreservation groups. CONCLUSIONS AND RELEVANCE Glycerol can be used as an effective method for preserving fascia allografts because the resulting allografts show a similar ultimate load to the control group and the highest mean elongation at failure.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Mu-Young Kim
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.
| | - Hun-Young Yoon
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
- KU Center for Animal Blood Medical Science, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
6
|
Siddique N, Din MI, Hussain Z, Khalid R, Alsafari IA. Syzgium cumini seed/poly vinyl alcohol based water resistant biodegradable nano-cellulose composite reinforced with zinc oxide and silver oxide nanoparticles for improved mechanical properties. Int J Biol Macromol 2024; 277:134218. [PMID: 39069065 DOI: 10.1016/j.ijbiomac.2024.134218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/30/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
The current work explored a comparative study of biodegradable jamun seed/polyvinyl alcohol (JS) nanocomposites reinforced with varying concentrations of ZnO and Ag2O nano-fillers. The effect of spherical shaped ZnO and Ag2O nanoparticles (NPs) on the on structure, morphology, swelling and solubility, crystallinity and mechanical properties together with biodegradation performance of the composite films was fully studied. SEM results showed uniform distribution of ZnO and Ag2O nanofillers into the JS matrix and dense or compact nanocomposite films were formed. JS-ZnO and JS-Ag2O nanocomposites with 0.5 wt% ZnO and Ag2O content showed maximum crystallinity i.e. 11.3 and 9.58 %, respectively, as determined by XRD. When compared to the virgin JS film (8.41 MPa), the resultant JS-ZnO-0.5 and JS-Ag2O-0.5 nanocomposites showed significantly enhanced tensile strength (35.7 MPa, 29.2 MPa), elongation at break (15.42 %, 14.62 %) and Young's modulus (141 MPa, 126 MPa), respectively. Also, reduced swelling (120.4 % and 116.1 %) and solubility ratio (17.45 % and 18.42 %) was observed for JS-ZnO-0.5 and JS-Ag2O-0.5 nanocomposites, respectively. Biodegradation results showed that maximum degradation (88 %) was achieved for the JS film within 180 days of soil burial whereas JS-ZnO-0.1 and JS-Ag2O-0.1 nanocomposites showed 78 % and 72 % degradation within 180 days, respectively.
Collapse
Affiliation(s)
- Nida Siddique
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Muhammad Imran Din
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Zaib Hussain
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Rida Khalid
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Ibrahim A Alsafari
- Department of Biology, College of Science, University of Hafr Al Batin, P.O. Box 1803, Hafar Al Batin 31991, Saudi Arabia
| |
Collapse
|
7
|
Gillani SMH, Mughal A, Khan RAA, Nawaz MH, Razzaq Z, Ismat MS, Hussain R, Wadood A, Ahmed S, Minhas B, Abbas M, Vayalpurayil T, Rehman MAU. Development of hybrid polyvinylpyrrolidone/carboxymethyl cellulose/collagen incorporated oregano scaffolds via direct ink write printing for potential wound healing applications. Int J Biol Macromol 2024; 278:134528. [PMID: 39111499 DOI: 10.1016/j.ijbiomac.2024.134528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/08/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
Additive manufacturing can develop regenerative scaffolds for wound healing. 3D printing offers meticulous porosity, mechanical integrity, cell adhesion and cost-effectiveness. Herein, we prepared ink composed of carboxymethyl cellulose (CMC), polyvinylpyrrolidone (PVP), collagen, and oregano extract for the fabrication of tissue constructs. The blend was optimized to form a homogeneous ink and rheological characterization demonstrated shear thinning behavior. The scaffolds were printed using Direct Ink Write (DIW) at a flow speed of 4 mm3/s and a layer height of 0.18 mm. The fabricated scaffolds demonstrated an ultimate tensile strength (UTS) and toughness of 730 KPa and 2.72 MJ/m3, respectively. Scanning Electron Microscopy (SEM) revealed an average pore size of 300 ± 30 μm. Fourier transform infrared spectroscopy (FTIR) analysis confirmed that all materials were present. The contact angle of the composite scaffold was 68° ± 1°. Moreover, the scaffolds presented 82 % mass loss (degradation) in phosphate buffer saline (PBS) over 14 days. The composite scaffold exhibited inhibition zones of 9 mm and 12 mm against Staphylococcus aureus and Escherichia coli, respectively. The PVP/CMC/collagen/oregano 3D printed scaffolds exhibited excellent biocompatibility with the mesenchymal stem cells and humman dermal fibroblast cells, confirmed by water-soluble tetrazolium - 8 (WST-8) assay (test conducted for 7 days). The enhanced angiogenic potential of said scaffold was assesed by release of vascular endothelial growth factor followed by further validation through in-vivo CAM assay. Thus, confirming suitability for the potential wound healing application.
Collapse
Affiliation(s)
- Syed Muneeb Haider Gillani
- Center of Excellence in Biomaterials and Tissue Engineering, Materials Science and Engineering Department Government Collage University, 54000 Lahore, Pakistan
| | - Awab Mughal
- Center of Excellence in Biomaterials and Tissue Engineering, Materials Science and Engineering Department Government Collage University, 54000 Lahore, Pakistan
| | - Raja Aqib Akmal Khan
- Department of Materials Science & Engineering, Institute of Space Technology, 44000 Islamabad, Pakistan
| | - Muhammad Haseeb Nawaz
- Department of Materials Science & Engineering, Institute of Space Technology, 44000 Islamabad, Pakistan
| | - Zohaib Razzaq
- Department of Materials Science & Engineering, Institute of Space Technology, 44000 Islamabad, Pakistan
| | - Muhammad Sameet Ismat
- Center of Excellence in Biomaterials and Tissue Engineering, Materials Science and Engineering Department Government Collage University, 54000 Lahore, Pakistan
| | - Rabia Hussain
- Center of Excellence in Biomaterials and Tissue Engineering, Materials Science and Engineering Department Government Collage University, 54000 Lahore, Pakistan
| | - Abdul Wadood
- Department of Materials Science & Engineering, Institute of Space Technology, 44000 Islamabad, Pakistan
| | - Sheraz Ahmed
- Department of Materials Science & Engineering, Institute of Space Technology, 44000 Islamabad, Pakistan
| | - Badar Minhas
- Center of Excellence in Biomaterials and Tissue Engineering, Materials Science and Engineering Department Government Collage University, 54000 Lahore, Pakistan.
| | - Mohamed Abbas
- Central Labs, King Khalid University, AlQura'a, Abha, P.O. Box 960, Saudi Arabia; Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Thafasalijyas Vayalpurayil
- Central Labs, King Khalid University, AlQura'a, Abha, P.O. Box 960, Saudi Arabia; Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Muhammad Atiq Ur Rehman
- Center of Excellence in Biomaterials and Tissue Engineering, Materials Science and Engineering Department Government Collage University, 54000 Lahore, Pakistan; Department of Materials Science & Engineering, Institute of Space Technology, 44000 Islamabad, Pakistan.
| |
Collapse
|
8
|
Rawat R, Saini CS. A novel biopolymeric composite edible film based on sunnhemp protein isolate and potato starch incorporated with clove oil: Fabrication, characterization, and amino acid composition. Int J Biol Macromol 2024; 268:131940. [PMID: 38692554 DOI: 10.1016/j.ijbiomac.2024.131940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Composite edible films were developed by casting method using sunnhemp protein isolate (SHPI) and potato starch (PS) at various proportions (100:0, 90:10, 80:20; 70:30, 60:40, and 50:50) containing glycerol as a plasticizer and clove oil. All the edible films were evaluated for thickness, moisture content, solubility, swelling ratio, water activity. Further characterization of edible films was done on the basis of mechanical, optical, thermal and structural attributes along with morphology. Among all the films, composite film containing 50 % SHPI, 50 % PS and 1 % clove oil were having better characteristics. The solubility and WVP decreased, while the tensile strength and elongation at break of composite film increased with the inclusion of potato starch and clove oil. Intermolecular interactions in the composite film matrix were confirmed by FTIR and XRD analysis. SEM images confirmed the structural compactness and integrity of all the developed films. The amino acid composition of edible films indicated presence of most of the essential amino acids. The present finding of this research work shows that the utilization of sunnhemp protein in the development of biocomposite edible films represents an alternative opportunity of sustainable edible food packaging.
Collapse
Affiliation(s)
- Rashmi Rawat
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, 148106 Sangrur, Punjab, India
| | - Charanjiv Singh Saini
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, 148106 Sangrur, Punjab, India.
| |
Collapse
|
9
|
Ahmad MI, Li Y, Pan J, Liu F, Dai H, Fu Y, Huang T, Farooq S, Zhang H. Collagen and gelatin: Structure, properties, and applications in food industry. Int J Biol Macromol 2024; 254:128037. [PMID: 37963506 DOI: 10.1016/j.ijbiomac.2023.128037] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023]
Abstract
Food-producing animals have the highest concentration of collagen in their extracellular matrix. Collagen and gelatin are widely used in food industry due to their specific structural, physicochemical, and biochemical properties, which enable them to improve health and nutritional value as well as to increase the stability, consistency, and elasticity of food products. This paper reviews the structural and functional properties including inherent self-assembly, gel forming, water-retaining, emulsifying, foaming, and thickening properties of collagen and gelatin. Then the colloid structures formed by collagen such as emulsions, films or coatings, and fibers are summarized. Finally, the potential applications of collagen and gelatin in muscle foods, dairy products, confectionary and dessert, and beverage products are also reviewed. The objective of this review is to provide the current market value, progress as well as applications of collagen and its derivatives in food industry.
Collapse
Affiliation(s)
- Muhammad Ijaz Ahmad
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Jinfeng Pan
- National Engineering Research Centre for Seafood, Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Centre for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Fei Liu
- State Key Laboratory of Food Science and Technology, Science Center for Future Foods, Jiangnan University, School of Food Science and Technology, International Joint Laboratory on Food Safety, Wuxi 214122, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Shahzad Farooq
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Liu F, Yu Z, Wang B, Chiou BS. Changes in Structures and Properties of Collagen Fibers during Collagen Casing Film Manufacturing. Foods 2023; 12:foods12091847. [PMID: 37174385 PMCID: PMC10178574 DOI: 10.3390/foods12091847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Collagen casing is an edible film, which is widely used in the industrial production of sausages. However, the detailed changes in the collagen fibers, from the raw material to the final collagen film, have rarely been reported. In this research, the changes in the collagen fibers during the manufacturing process, including the fiber arrangement, the triple-helix structure and the thermal stability, were investigated using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR) spectroscopy. The relationship between the structure stability and the arrangement of the collagen fibers was also discussed. According to the SEM, XRD, TGA, DSC and FTIR results, the collagen fibers were depolymerized during the acid swelling and became uniformly aligned after the homogenization process. Degassing had no obvious effect on the triple-helix structure. Alkaline neutralization with ammonia destroyed the triple-helix structure, which could be partly reversed through the washing and soaking processes. During the final drying step, the depolymerized triple helix of the collagen fibers recombined to form new structures that showed decreased thermal stability. This study expands our knowledge about the behavior of collagen fibers during the industrial process of producing collagen biobased casings.
Collapse
Affiliation(s)
- Fei Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhe Yu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Beibei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bor-Sen Chiou
- Western Regional Research Center, ARS, U.S. Department of Agriculture, Albany, CA 94710, USA
| |
Collapse
|
11
|
Pei Y, Yang W, Tang K, Kaplan DL. Collagen processing with mesoscale aggregates as templates and building blocks. Biotechnol Adv 2023; 63:108099. [PMID: 36649798 DOI: 10.1016/j.biotechadv.2023.108099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Collagen presents a well-organized hierarchical multilevel structure. Microfibers, fibers, and fiber bundles are the aggregates of natural collagen; which achieve an ideal balance of mechanical strength and toughness at the mesoscopic scale for biological tissue. These mesostructured aggregates of collagen isolated from biological tissues retain these inherent organizational features to enable their use as building blocks for constructing new collagen materials with ideal mechanical performance, thermal and dimensional stability. This strategy is distinct from the more common bottom-up or molecular-level design and assembly approach to generating collagen materials. The present review introduces the hierarchical structure of biological collagen with a focus on mesostructural features. Isolation strategies for these collagen aggregates (CAs) are summarized. Recent progress in the use of these mesostructural components for the construction of new collagen materials with emerging applications is reviewed, including in catalysis, environmental applications, biomedicine, food packaging, electrical energy storage, and flexible sensors. Finally, challenges and prospects are assessed for controllable production of CAs as well as material designs.
Collapse
Affiliation(s)
- Ying Pei
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Wen Yang
- Institute of Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Keyong Tang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - David L Kaplan
- Biomedical Engineering, Tufts University, MA 02155, United States
| |
Collapse
|
12
|
Liu F, Zhu K, Ma Y, Yu Z, Chiou BS, Jia M, Chen M, Zhong F. Collagen films with improved wet state mechanical properties by mineralization. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
13
|
Zhao K, Tian X, Zhang K, Huang N, Wang Y, Zhang Y, Wang W. Using celluloses in different geometries to reinforce collagen-based composites: Effect of cellulose concentration. Int J Biol Macromol 2023; 226:202-210. [PMID: 36502942 DOI: 10.1016/j.ijbiomac.2022.12.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/18/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Cellulose is frequently used to strengthen biocomposite films, but few literature systematically deliberates the effects of concentration of celluloses in different geometries on the reinforcement of these composites. Here we prepared three types of celluloses, including rod-like cellulose nanocrystalline (CNC), long-chain cellulose nanofiber (CNF) and microscopic cellulosic fines (CF). The effect of concentration of the three celluloses was examined on the barrier properties to water and light, thermostability, microstructure, and mechanical properties of collagen (COL) films. The addition of celluloses increased the watertightness and thermostability of composite films. Besides, FTIR showed a increased hydrogen bonding for COL/CNF and COL/CNC composite films, but decrease for COL/CF composites. As the concentration of CF and CNF increased, the strength of composites improved. The TS for COL/CNF (124 MPa) and COL/CF composites (113 MPa) were largely increased, compared with that of collagen ones (90 MPa). Considering the factors of crystallinity, hydrogen bonding, and interfacial tortuosity, COL/CNF composites possessed better mechanical behaviors than that of COL/CF and COL/CNC composites. Furthermore, Halpin-Kardos and Ouali models well predicted the modulus of COL/CNF composites when CNF was below and above percolation threshold (2.7 wt%), respectively.
Collapse
Affiliation(s)
- Kaixuan Zhao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Kai Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Na Huang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yang Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yafei Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
14
|
Tian X, Zhao K, Teng A, Li Y, Wang W. A rethinking of collagen as tough biomaterials in meat packaging: assembly from native to synthetic. Crit Rev Food Sci Nutr 2022; 64:957-977. [PMID: 35997287 DOI: 10.1080/10408398.2022.2111401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Due to the high moisture-associated typical rheology and the changeable and harsh processing conditions in the production process, packaging materials for meat products have higher requirements including a sufficient mechanical strength and proper ductility. Collagen, a highly conserved structural protein consisting of a triple helix of Gly-X-Y repeats, has been proved to be suitable packaging material for meat products. The treated animal digestive tract (i.e. the casing) is the perfect natural packaging material for wrapping meat into sausage. Its thin walls, strong toughness and impact resistance make it the oldest and best edible meat packaging. Collagen casing is another wisdom of meat packaging, which is made by collagen fibers from hide skin, presenting a rapid growth in casing market. To strengthen mechanical strength and barrier behaviors of collagen-based packaging materials, different physical, chemical, and biological cross-linking methods are springing up exuberantly, as well as a variety of reinforcement approaches including nanotechnology. In addition, the rapid development of biomimetic technology also provides a good research idea and means for the promotion of collagen's assembly and relevant mechanical properties. This review can offer some reference on fundamental theory and practical application of collagenous materials in meat products.
Collapse
Affiliation(s)
- Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - KaiXuan Zhao
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Anguo Teng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Yu Li
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
15
|
Zhao K, Tian X, Xing J, Huang N, Zhang H, Zhao H, Wang W. Tunable mechanical behavior of collagen-based films: A comparison of celluloses in different geometries. Int J Biol Macromol 2022; 214:120-127. [PMID: 35661672 DOI: 10.1016/j.ijbiomac.2022.05.191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 01/12/2023]
Abstract
Collagen (Col) films were reinforced by celluloses in different geometries: microcrystalline cellulose (MCC), cellulosic fines (CF), cellulose nanofiber (CNF) and cellulose nanocrystals (CNC). The reinforcement mechanisms were investigated by the elastoplasticity and fracture appearance. Compared with the fracture stress of collagen film (67.5 MPa), the Col-CNF films effectively borne the stress (95.8 MPa) by intercrystalline fracture, ascribing the abundant hydrogen bonding and mechanical locking between cellulose and collagen. The toughness of Col-CF films was increased by the interfibrillar slippage of CF and pull-off of CF within the matrix, improving the strain-to-break from 8.37% to 12.13%. The films added with MCC and CNC weaken the mechanical behavior, due to the defects and lack of mechanical locking. Besides, the effects of celluloses' geometries on the thickness, density, water-tightness, thermal stability, crystallinity and FTIR of films were also investigated. These provide the evidence that the geometries of fillers diversely improve the behaviors of collagen film offering strategies for the film with adjustable mechanical properties.
Collapse
Affiliation(s)
- Kaixuan Zhao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jinfeng Xing
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Na Huang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hongjie Zhang
- National Engineering Lab for Pulp and Paper, China National Pulp and Paper Research Institute Co., Ltd., Beijing 100102, China.
| | - Huanying Zhao
- Shandong Haiaos Biotechnology Co., Ltd., Shandong, Zibo, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
16
|
Characterization and Evaluation of Commercial Carboxymethyl Cellulose Potential as an Active Ingredient for Cosmetics. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136560] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Carboxymethyl cellulose is the most used water-soluble cellulose with applications in industries such as food, cosmetics, and tissue engineering. However, due to a perceived lack of biological activity, carboxymethyl cellulose is mostly used as a structural element. As such, this work sought to investigate whether CMC possesses relevant biological properties that could grant it added value as a cosmeceutical ingredient in future skincare formulations. To that end, CMC samples (Mw between 471 and 322 kDa) skin cell cytotoxicity, impact upon pro-collagen I α I production, and inflammatory response were evaluated. Results showed that samples were not cytotoxic towards HaCat and HDFa up to 10 mg/mL while simultaneously promoting intracellular production of pro-collagen I α I up by 228% relative to the basal metabolism, which appeared to be related to the highest DS and Mw. Additionally, CMC samples modulated HaCat immune response as they decreased by ca. 1.4-fold IL-8 production and increased IL-6 levels by ca. five fold. Despite this increase, only two samples presented IL-6 levels similar to those of the inflammation control. Considering these results, CMC showed potential to be a more natural alternative to traditional bioactive cosmetic ingredients and, as it is capable of being a bioactive and structural ingredient, it may play a key role in future skincare formulations.
Collapse
|
17
|
Flexible Wearable Pressure Sensor Based on Collagen Fiber Material. MICROMACHINES 2022; 13:mi13050694. [PMID: 35630161 PMCID: PMC9143406 DOI: 10.3390/mi13050694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023]
Abstract
Flexible wearable pressure sensors play a pivotal role in healthcare monitoring, disease prevention, and humanmachine interactions. However, their narrow sensing ranges, low detection sensitivities, slow responses, and complex preparation processes restrict their application in smart wearable devices. Herein, a capacitive pressure sensor with high sensitivity and flexibility that uses an ionic collagen fiber material as the dielectric layer is proposed. The sensor exhibits a high sensitivity (5.24 kPa−1), fast response time (40 ms), long-term stability, and excellent repeatability over 3000 cycles. Because the sensor is resizable, flexible, and has a simple preparation process, it can be flexibly attached to clothes and the human body for wearable monitoring. Furthermore, the practicality of the sensor is proven by attaching it to different measurement positions on the human body to monitor the activity signal.
Collapse
|
18
|
Zhang Y, Wang Y, Chen L, Zheng J, Fan X, Xu X, Zhou G, Ullah N, Feng X. An injectable antibacterial chitosan-based cryogel with high absorbency and rapid shape recovery for noncompressible hemorrhage and wound healing. Biomaterials 2022; 285:121546. [DOI: 10.1016/j.biomaterials.2022.121546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/10/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022]
|
19
|
Zhang T, Yu Z, Ma Y, Chiou BS, Liu F, Zhong F. Modulating physicochemical properties of collagen films by cross-linking with glutaraldehyde at varied pH values. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107270] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Calcium spraying for fabricating collagen-alginate composite films with excellent wet mechanical properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Li J, Xiao P, Xu Y, Dong L, Wang Z, Liu F, Shen J, Van der Bruggen B. Collagen Fibril-Assembled Skin-Simulated Membrane for Continuous Molecular Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7358-7368. [PMID: 35025208 DOI: 10.1021/acsami.1c23811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A skin-simulated thin-film-composite membrane was fabricated using a vacuum-assisted interfacial polymerization method. A negatively charged surface-selective layer on a polyacrylonitrile (PAN) substrate was cross-linked using trimesoyl chloride to form polyamide and polyester with a three-layer structure that was similar to skin. The loading of collagen fibrils assembled on the membrane surface was varied, and a selective layer was obtained, of which the thickness, morphology, and hydrophilicity can be manipulated. The optimal membrane decorated with 0.5 mg of collagen fibril had a selective layer thickness of around 130 nm with pure water permeability up to 84.7 LMH bar-1. Furthermore, the membrane exhibited impressive rejections toward dyes (Congo red with a molecular weight of 696.68 Da: 99.6%, reactive blue 19 with a molecular weight of 626.54 Da: 99.8%, and Coomassie blueG-250 with a molecular weight of 854.02 Da: 98.6%) while high permeations of Na2SO4 and NaCl were achieved. This facile strategy provides a useful guideline for constructing bionic membranes through biomaterials.
Collapse
Affiliation(s)
- Jian Li
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Pei Xiao
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yilin Xu
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Liangliang Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhenyu Wang
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Fei Liu
- State Key Laboratory of Food Science and Technology, Science Center for Future Foods, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Jiangnan Shen
- Chemical Engineering College, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven 3001, Belgium
- Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|
22
|
Xiang ZX, Gong JS, Li H, Shi WT, Jiang M, Xu ZH, Shi JS. Heterologous expression, fermentation strategies and molecular modification of collagen for versatile applications. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34907819 DOI: 10.1080/10408398.2021.2016599] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Collagen is a kind of high macromolecular protein with unique tissue distribution and distinctive functions in the body. At present, most collagen products are extracted from the tissues and organs of mammals or marine fish. However, this method exhibits several disadvantages, including low efficiency and serious waste generation, which makes it difficult to meet the current market demand. With the rapid development of synthetic biology and the deepening of high-density fermentation technology, the collagen preparation by biosynthesis strategy emerges as the times require. Co-expression with the proline hydroxylase gene can solve the problem of non-hydroxylated collagen, but the yield may be affected. Therefore, improving the expression through molecular modification and dynamic regulation of synthesis is an entry point for future research. Due to the defects in certain properties of the natural collagen, modification of properties would be benefit for meeting the requirements of practical application. In this paper, in-depth investigations on recombinant expression, fermentation, and modification studies of collagen are conducted. Also, it summarizes the research progress of collagen in food, medicine, and beauty industry in recent years. Furthermore, the future development trend and application prospect of collagen are discussed, which would provide guidance for its preparation and application.
Collapse
Affiliation(s)
- Zhi-Xiang Xiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Wei-Ting Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Min Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, PR China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| |
Collapse
|
23
|
Xu J, Liu F, Yu Z, Chen M, Zhong F. Influence of softwood cellulose fiber and chitosan on the film-forming properties of collagen fiber. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Mondal H, Karmakar M, Chattopadhyay PK, Halder A, Singha NR. Scale-up one-pot synthesis of waste collagen and apple pomace pectin incorporated pentapolymer biocomposites: Roles of waste collagen for elevations of properties and unary/ ternary removals of Ti(IV), As(V), and V(V). JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124873. [PMID: 33548741 DOI: 10.1016/j.jhazmat.2020.124873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/24/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Herein, hazardous solid particulate waste collagenic fibers (SWCFs) of leather industries were incorporated into apple pomace pectin (APPN)-grafted-pentapolymer, i.e., APPN-g-[sodium 2-methylidenebutanedioate(SMBD)-co-N-((3-(isopropylamino)-3-oxopropoxy) methyl) butyramide (CM1)-co-N-(hydroxymethyl)prop-2-enamide (NHMPE)-co-N-(hydroxymethyl)-4-(N-isopropylbutyramido)butanamide (CM2)-co-N-(propan-2-yl)prop-2-enamide NPYPE)/ PENP1], i.e., APPN-g-PENP1/ PENP2, prepared via one-pot facile polymerization of APPN and synthetic monomers, i.e., SMBD, NHMPE, and NPYPE, in aqueous medium, to fabricate an optimum multifunctional hybrid biocomposite adsorbent/ HCOM3. In PENP1, PENP2, and HCOM3, fourth/ CM1 and fifth/ CM2 multifunctional comonomers were anchored in situ. The structures of PENP1, PENP2, HCOM3, CM1, CM2, and metal-ion adsorbed HCOM3; APPN-grafting; SWCF incorporation; and surface properties were analyzed through NMR, XPS, FTIR, XRD, and SEM. The elevated adsorption efficiencies (AEs), reusability, thermostability, swelling, network durability, and crosslink density of HCOM3 were attributed to variable functionalities of SWCF/ APPN, explored by DLS and TGA, swelling, network, and thermodynamic parameters. Compared to SWCF, APPN, PENP1, and PENP2, the elevated AEs and reusability compelled HCOM3 as more suitable for scalable waste management. The maximum AEs, i.e., 171.79, 180.47, and 177.27 mg g-1, for Ti(IV), As(V), and V(V) at pHop = 7.0, 3.0, and 5.0, respectively, within 5-100 mg L-1 and at 298 K for 25 mg HCOM3 deteriorated during ternary adsorption by the antagonistic effects.
Collapse
Affiliation(s)
- Himarati Mondal
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Mrinmoy Karmakar
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Aparna Halder
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India.
| |
Collapse
|
25
|
Beghetto V, Gatto V, Conca S, Bardella N, Buranello C, Gasparetto G, Sole R. Development of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride cross-linked carboxymethyl cellulose films. Carbohydr Polym 2020; 249:116810. [PMID: 32933659 DOI: 10.1016/j.carbpol.2020.116810] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 11/18/2022]
Abstract
First example of the use of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride (DMTMM) as cross-linking agent for the development of carboxymethyl cellulose (CMC) films for food packaging is reported. Influence of different wt % of DMTMM and glycerol on the physical-mechanical properties of CMC films was investigated. The presence of DMTMM effectively improved moisture uptake, moisture content, water vapour permeability, water solubility of the films, oil resistance together with good biodegradability. Best compromise between high water resistance, vapour permeability and mechanical properties was accomplished with 5 wt % DMTMM and 50 wt % glycerol giving tensile strength and elongation at break of 52.25 ± 4.33 and 37.32 ± 2.04 respectively. DSC, TGA and SEM analysis further confirmed CMC cross-linking by DMTMM. All films prepared showed low opacity and high transparencies. Therefore, data reported show that DMTMM can efficiently cross-link CMC to produce films for food packaging.
Collapse
Affiliation(s)
- Valentina Beghetto
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30170, Venezia, Italy; Crossing S.r.l., Viale della Repubblica 193/b, 31100, Treviso, Italy.
| | - Vanessa Gatto
- Crossing S.r.l., Viale della Repubblica 193/b, 31100, Treviso, Italy.
| | - Silvia Conca
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30170, Venezia, Italy.
| | - Noemi Bardella
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30170, Venezia, Italy.
| | - Chiara Buranello
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30170, Venezia, Italy.
| | - Giulia Gasparetto
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30170, Venezia, Italy.
| | - Roberto Sole
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30170, Venezia, Italy.
| |
Collapse
|