1
|
Xie Y, Sun C, Zhang Y, Yang Z, Gao X, Liu L, Zhu W, Xue D, Zou J, Pei F, Yue L. Curcumin encapsulation in self-assembled nanoparticles based on amphiphilic stearic acid-grafted inulin: Preparation, characterization, and functional evaluation. Int J Biol Macromol 2025; 301:140302. [PMID: 39864681 DOI: 10.1016/j.ijbiomac.2025.140302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
The clinical application of curcumin (CUR) is restricted by its low solubility, instability, and poor bioavailability. To overcome these limitations, we developed a novel stearic acid-grafted inulin-based nano-delivery system for CUR encapsulation. The structure of stearoyl inulin (SA-IN) was characterized using Fourier-transform infrared spectroscopy, hydrogen nuclear magnetic resonance, thermogravimetric analysis, and contact angle measurements. CUR-loaded SA-IN nanoparticles (CUR@SA-IN NPs) demonstrated a high encapsulation efficiency of 91.59 % ± 3.26 %, nanoscale dispersion, and an average particle size of 190.6 ± 11.2 nm. The CUR@SA-IN NPs exhibited excellent stability and sustained-release properties. Compared with free CUR, the minimum inhibitory concentration of CUR@SA-IN NPs against Escherichia coli and Staphylococcus aureus decreased by 1.5- and 1.6-fold, respectively. The antioxidant activity increased by 2.34-fold with CUR@SA-IN NPs compared with free CUR. Also, the NPs showed superior efficacy in suppressing the expression of inflammatory cytokines and inhibiting cancer cell proliferation. The cellular uptake studies confirmed enhanced CUR absorption from the NPs compared with free CUR. The CUR@SA-IN NPs exhibited good biocompatibility. These findings highlighted the potential of amphiphilic SA-IN as an effective delivery vector for hydrophobic bioactive compounds, thereby offering a promising approach for developing efficient nanoparticle-based delivery systems.
Collapse
Affiliation(s)
- Yinzhuo Xie
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Jiangsu, Nanjing 210009, China.
| | - Chenxi Sun
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Yongrui Zhang
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China
| | - Zilong Yang
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China
| | - Xiuli Gao
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China
| | - Likun Liu
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China
| | - Wenbin Zhu
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China
| | - Di Xue
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China
| | - Jiaqi Zou
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China
| | - Fangyi Pei
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China.
| | - Liling Yue
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China.
| |
Collapse
|
2
|
Karimi I, Ghowsi M, Mohammed LJ, Haidari Z, Nazari K, Schiöth HB. Inulin as a Biopolymer; Chemical Structure, Anticancer Effects, Nutraceutical Potential and Industrial Applications: A Comprehensive Review. Polymers (Basel) 2025; 17:412. [PMID: 39940613 PMCID: PMC11819723 DOI: 10.3390/polym17030412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Inulin is a versatile biopolymer that is non-digestible in the upper alimentary tract and acts as a bifidogenic prebiotic which selectively promotes gut health and modulates gut-organ axes through short-chain fatty acids and possibly yet-to-be-known interactions. Inulin usage as a fiber ingredient in food has been approved by the FDA since June 2018 and it is predicted that the universal inulin market demand will skyrocket in the near future because of its novel applications in health and diseases. This comprehensive review outlines the known applications of inulin in various disciplines ranging from medicine to industry, covering its benefits in gut health and diseases, metabolism, drug delivery, therapeutic pharmacology, nutrition, and the prebiotics industry. Furthermore, this review acknowledges the attention of researchers to knowledge gaps regarding the usages of inulin as a key modulator in the gut-organ axes.
Collapse
Affiliation(s)
- Isaac Karimi
- Research Group of Bioengineering and Biotechnology, Laboratory for Computational Physiology, Department of Biology, Faculty of Science, Razi University, P.O. Box 67149-67346, Kermanshah, Iran; (Z.H.); (K.N.)
- Department of Biology, Faculty of Science, Razi University, P.O. Box 67149-67346, Kermanshah, Iran;
| | - Mahnaz Ghowsi
- Department of Biology, Faculty of Science, Razi University, P.O. Box 67149-67346, Kermanshah, Iran;
| | - Layth Jasim Mohammed
- Department of Medical Microbiology, College of Medicine, Babylon University, Hilla City 51002, Babylon Governorate, Iraq;
| | - Zohreh Haidari
- Research Group of Bioengineering and Biotechnology, Laboratory for Computational Physiology, Department of Biology, Faculty of Science, Razi University, P.O. Box 67149-67346, Kermanshah, Iran; (Z.H.); (K.N.)
| | - Kosar Nazari
- Research Group of Bioengineering and Biotechnology, Laboratory for Computational Physiology, Department of Biology, Faculty of Science, Razi University, P.O. Box 67149-67346, Kermanshah, Iran; (Z.H.); (K.N.)
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| |
Collapse
|
3
|
Xu C, Liu Y, Li K, Zhang J, Wei B, Wang H. Absorption of food-derived peptides: Mechanisms, influencing factors, and enhancement strategies. Food Res Int 2024; 197:115190. [PMID: 39593400 DOI: 10.1016/j.foodres.2024.115190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 11/28/2024]
Abstract
Food-derived peptides (FPs) are bioactive molecules produced from dietary proteins through enzymatic hydrolysis or fermentation. These peptides exhibit various biological activities. However, their efficacy largely depends on bioavailability, the ability to cross absorption barriers, and reach target sites within the body. This review addresses key issues in FP absorption, including barriers, pathways, influencing factors, and strategies to enhance absorption. The biochemical and physical barriers to FP absorption include pH variations, enzymes, unstirred water layer, mucus layer, and intestinal epithelial cells. FPs enter the bloodstream via four main pathways: carrier-mediated transport, endocytosis, paracellular, and passive diffusion. The barrier-crossing efficiency depends on the structural properties and state of FPs and coexisting substances. Absorption efficiency can be significantly improved with permeability enhancers, nano-delivery systems, and chemical modifications. These insights provide a scientific basis and practical guidance for optimizing the bioactivity and health benefits of food-derived peptides.
Collapse
Affiliation(s)
- Chengzhi Xu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Yuting Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Ke Li
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Juntao Zhang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Benmei Wei
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China.
| | - Haibo Wang
- College of Life Science and Technology, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, Hubei, China.
| |
Collapse
|
4
|
Jangid AK, Noh KM, Kim S, Kim K. Engineered inulin-based hybrid biomaterials for augmented immunomodulatory responses. Carbohydr Polym 2024; 340:122311. [PMID: 38858027 DOI: 10.1016/j.carbpol.2024.122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024]
Abstract
Modified biopolymers that are based on prebiotics have been found to significantly contribute to immunomodulatory events. In recent years, there has been a growing use of modified biomaterials and polymer-functionalized nanomaterials in the treatment of various tumors by activating immune cells. However, the effectiveness of immune cells against tumors is hindered by several biological barriers, which highlights the importance of harnessing prebiotic-based biopolymers to enhance host defenses against cancer, thus advancing cancer prevention strategies. Inulin, in particular, plays a crucial role in activating immune cells and promoting the secretion of cytokines. Therefore, this mini-review aims to emphasize the importance of inulin in immunomodulatory responses, the development of inulin-based hybrid biopolymers, and the role of inulin in enhancing immunity and modifying cell surfaces. Furthermore, we discuss the various approaches of chemical modification for inulin and their potential use in cancer treatment, particularly in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyung Mu Noh
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
5
|
Melilli MG, Buzzanca C, Di Stefano V. Quality characteristics of cereal-based foods enriched with different degree of polymerization inulin: A review. Carbohydr Polym 2024; 332:121918. [PMID: 38431396 DOI: 10.1016/j.carbpol.2024.121918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 03/05/2024]
Abstract
Vegetables, cereals and fruit are foods rich in fibre with beneficial and nutritional effects as their consumption reduces the onset of degenerative diseases, especially cardiovascular ones. Among fibres, inulin, oligofructose or fructooligosaccharide (FOS) are the best-studied. Inulin is a generic term to cover all linear β(2-1) fructans, with a variable degree of polymerization. In this review a better understanding of the importance of the degree of polymerization of inulin as a dietary fibre, functions, health benefits, classifications, types and its applications in the food industry was considered in different fortified foods. Inulin has been used to increase the nutritional and healthy properties of the product as a sweetener and as a substitute for fats and carbohydrates, improving the nutritional value and decreasing the glycemic index, with the advantage of not compromising taste and consistency of the product. Bifidogenic and prebiotic effects of inulin have been well established, inulin-type fructans are fermented by the colon to produce short-chain fatty acids, with important local and systemic actions. Addition of inulin with different degrees of polymerization to daily foods for the production of fortified pasta and bread was reviewed, and the impact on sensorial, technological and organoleptic characteristics even of gluten-free bread was also reported.
Collapse
Affiliation(s)
- Maria Grazia Melilli
- National Council of Research, Institute of Biomolecular Chemistry (CNR-ICB), Catania, Italy.
| | - Carla Buzzanca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Italy.
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Italy; National Biodiversity Future Center (NBFC), 90123, Palermo, Italy.
| |
Collapse
|
6
|
Zhang X, Gao X, Yi X, Yu H, Shao M, Li Y, Shen X. Multi-targeting inulin-based nanoparticles with cannabidiol for effective prevention of ulcerative colitis. Mater Today Bio 2024; 25:100965. [PMID: 38318477 PMCID: PMC10839446 DOI: 10.1016/j.mtbio.2024.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
The pathogenesis of ulcerative colitis (UC) is closely related to severe inflammation, damaged colonic mucosal barrier, increased oxidative stress and intestinal ecological imbalance. However, due to the nonspecific distribution and poor bioavailability of drugs, UC treatment is still a serious challenge. Here, a mitochondria/colon dual targeted nanoparticles based on redox response was developed to effectively alleviate UC. Cannabidiol nanoparticles (CBD NPs) with a particle size of 143.2 ± 3.11 nm were prepared by self-assembly using polymers (TPP-IN-LA) obtained by modifying inulin with (5-carboxypentyl) triphenyl phosphonium bromide (TPP) and α-lipoic acid (α-LA). Excitingly, the constructed CBD NPs showed excellent mitochondrial targeting, with a Pearson correlation coefficient of 0.76 at 12 h. The results of animal imaging in vivo showed that CBD NPs could be effectively accumulated in colon tissue. Not only that, CBD showed significant glutathione stimulated release in the presence of 10 mM glutathione at pH 7.4. The results of in vivo animal experiments showed that CBD NPs significantly ameliorated DSS-induced colonic inflammation by modulating the TLR4-NF-κB signaling pathway. Moreover, CBD NPs significantly improved the histological damage of colon in UC mice, increased the expression level of tight junction protein ZO-1, and effectively restored the intestinal mucosal barrier function and intestinal mucosal permeability. More importantly, CBD NPs significantly improved the species composition, abundance and amount of short chain fatty acids of intestinal flora in UC mice, thus effectively maintaining the balance of intestinal flora. The dual-targeted and glutathione-responsive nanoparticles prepared in this study provide a promising idea for achieving targeted delivery of CBD for effective treatment of UC.
Collapse
Affiliation(s)
- Xuan Zhang
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Xia Gao
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Xiangzhou Yi
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Hui Yu
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Mingyang Shao
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Yongcheng Li
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Xuanri Shen
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya, 572022, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, 570228, China
| |
Collapse
|
7
|
Shen J, Jiao W, Yuan B, Xie H, Chen Z, Wei M, Sun Y, Wu Y, Zhang F, Li Z, Jin X, Du L, Jin Y. Oral Curcumin-Thioketal-Inulin Conjugate Micelles against Radiation-Induced Enteritis. Antioxidants (Basel) 2024; 13:417. [PMID: 38671865 PMCID: PMC11047665 DOI: 10.3390/antiox13040417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Radiation-induced enteritis is an unavoidable complication associated with pelvic tumor radiotherapy, significantly influencing the prognosis of cancer patients. The limited availability of commercial gastrointestinal radioprotectors in clinical settings poses a substantial challenge in preventing radiation enteritis. Despite the inherent radioprotective characteristics of Cur in vitro, its poor solubility in water, instability, and low bioavailability lead to inferior therapeutic effects in vivo. Herein, we developed novel ROS-responsive micelles (CTI) from inulin and curcumin, aimed at mitigating radiation enteritis. CTI micelles had excellent solubility and stability. Importantly, CTI improved the cytotoxicity and bioavailability of curcumin, thereby showing enhanced effectiveness in neutralizing ROS induced by radiation, safeguarding against DNA damage, and reducing radiation-induced cellular mortality. Moreover, in a radiation enteritis mice model, CTI not only alleviated severe radiation-induced intestinal injury but also improved redox-related indicators and reduced inflammatory cytokine expression. Furthermore, CTI effectively increased gut microbiota abundance and maintained gut homeostasis. In conclusion, CTI could be a promising candidate for the clinical management of radiation enteritis. Our study provides a new perspective for radioprotection using natural antioxidants.
Collapse
Affiliation(s)
- Jintao Shen
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wencheng Jiao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bochuan Yuan
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hua Xie
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ziyuan Chen
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Meng Wei
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yingbao Sun
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yanping Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Feng Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhangyu Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xu Jin
- Department of Anesthesiology, Cancer Hospital Chinese Academy of Medical Sciences, Beijing 100191, China
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Lina Du
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yiguang Jin
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
8
|
Lv K, Shen H, Sun J, Huang X, Du H. Acylated Inulin as a Potential Shale Hydration Inhibitor in Water Based Drilling Fluids for Wellbore Stabilization. Molecules 2024; 29:1456. [PMID: 38611735 PMCID: PMC11012789 DOI: 10.3390/molecules29071456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Shale hydration dispersion and swelling are primary causes of wellbore instability in oil and gas reservoir exploration. In this study, inulin, a fructo-oligosaccharide extracted from Jerusalem artichoke roots, was modified by acylation with three acyl chlorides, and the products (C10-, C12-, and C14-inulin) were investigated for their use as novel shale hydration inhibitors. The inhibition properties were evaluated through the shale cuttings hot-rolling dispersion test, the sodium-based bentonite hydration test, and capillary suction. The three acylated inulins exhibited superb hydration-inhibiting performance at low concentrations, compared to the commonly used inhibitors of KCl and poly (ester amine). An inhibition mechanism was proposed based on surface tension measurements, contact angle measurements, Fourier-transform infrared analysis, and scanning electron microscopy. The acylated inulin reduced the water surface tension significantly, thus, retarding the invasion of water into the shale formation. Then, the acylated inulin was adsorbed onto the shale surface by hydrogen bonding to form a compact, sealed, hydrophobic membrane. Furthermore, the acylated inulins are non-toxic and biodegradable, which meet the increasingly stringent environmental regulations in this field. This method might provide a new avenue for developing high-performance and ecofriendly shale hydration inhibitors.
Collapse
Affiliation(s)
- Kaihe Lv
- Department of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | | | | | | | | |
Collapse
|
9
|
Senthilkumar P, Natarajan A, Salmen SH, Alharbi SA, Shavrov V, Lega P, Subramani R, Pushparaj C. Utilizing protein nanofibrils as a scaffold for enhancing nutritional value in toned milk. ENVIRONMENTAL RESEARCH 2023; 239:117420. [PMID: 37852464 DOI: 10.1016/j.envres.2023.117420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Toned milk is a lower-fat, healthier alternative to whole milk that still contains all essential nutrients. A number of methods have been developed to improve the functionality of toned milk and make it more appealing to the consumers. However, these methods often involve extensive processing techniques and can be expensive. Therefore, alternative methods are needed. Proteins are well known for their ability to form well-defined nanofibril materials that can be used as a scaffold for various applications. In this article, a straightforward self-assembly process was used to load inulin into protein nanofibrils, creating unique composite nanofibrils. Characterization using AFM and SEM revealed well-defined composite nanofibrils with an average diameter of 4-6 nm and lengths ranging from 0.25 μm up to 10 μm. FT-IR and in-vitro release assays show that inulin was successfully attached to prepared protein nanofibrils. The composite nanofibrils were tested on toned milk to enhance the physico/chemical properties and nutritional values. The findings can be applied to the food industry to create a number of novel functional food products cost-effectively.
Collapse
Affiliation(s)
- Praveetha Senthilkumar
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, Tamilnadu, 641004, India
| | - Arunadevi Natarajan
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, Tamilnadu, 641004, India
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Vladimir Shavrov
- The Kotel'nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia, 125009
| | - Petr Lega
- The Kotel'nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia, 125009; RUDN University, Moscow, Russia 117198
| | - Ramesh Subramani
- Department of Food Processing Technology & Management, PSGR Krishnammal College for Women, Coimbatore, Tamilnadu, 641004, India.
| | - Charumathi Pushparaj
- Department of Zoology, PSGR Krishnammal College for Women, Coimbatore, Tamilnadu, 641004, India.
| |
Collapse
|
10
|
Yu W, Nan X, Schroyen M, Wang Y, Xiong B. Inulin-induced differences on serum extracellular vesicles derived miRNAs in dairy cows suffering from subclinical mastitis. Animal 2023; 17:100954. [PMID: 37690274 DOI: 10.1016/j.animal.2023.100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
MicroRNA (miRNA) profiles vary with the nutritional and pathological conditions of cattle. In this study, we aimed to investigate the effects of inulin supplement on miRNA profiles derived from serum extracellular vesicles (EVs). Our goal was to determine the differences in miRNA expressions and analyse the pathways in which they are involved. Based on the results of California mastitis test and milk somatic cell counts, ten lactating cows with subclinical mastitis were randomly divided into two groups: an inulin group and a control group (n = 5 in each group). The inulin group received a daily supplement of 300 g of inulin while the control group did not receive any supplementation. After a 5-week treatment period, serum-derived EV-miRNAs from each cow were isolated. High-throughput sequencing was conducted to identify differentially expressed miRNAs. GO and KEGG bioinformatics analysis was performed to examine the target genes of these differentially expressed miRNAs. The EV-RNA concentration and small RNA content were not affected by the inulin treatment. A total of 162 known miRNAs and 180 novel miRNAs were identified from 10 samples in the two groups. Among the known miRNAs, 23 miRNAs were found to be differentially expressed between the two groups, with 18 upregulated and five downregulated in the inulin group compared to the control group. Pathway analysis revealed the involvement of these differentially expressed miRNAs in the regulation of cell structure and function, lipid oxidation and metabolism, immunity and inflammation, as well as digestion and absorption of nutrients. Overall, our study provides a molecular-level explanation for the reported beneficial health effects of inulin supplementation in cows with subclinical mastitis.
Collapse
Affiliation(s)
- W Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - X Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - M Schroyen
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Y Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - B Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
11
|
Cabrera-Rode E, Cubas-Dueñas I, Acosta JR, Hernández JC, González AIC, Calero TMG, Domínguez YA, Rodríguez JH, Rodríguez ADR, Álvarez Álvarez A, Valdés RE, Espinosa LJ, Belent OT, Benavides ZB, Estévez ES, Rodríguez YA, del Valle Rodríguez J, Juliá SM. Efficacy and safety of Obex® in overweight and obese subjects: a randomised, double-blind, placebo-controlled clinical trial. BMC Complement Med Ther 2023; 23:58. [PMID: 36804035 PMCID: PMC9940432 DOI: 10.1186/s12906-023-03847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/16/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Obex® may be helpful in reducing body weight and fat. The current study was carried out to evaluate the efficacy and safety of Obex® in the treatment of overweight and obese subjects. METHODS A double-blind, randomised, controlled phase III clinical trial was conducted involving 160 overweight and obese subjects (BMI ≥ 25.0 and < 40 kg/m2) aged 20 to 60 years, who received Obex® (n = 80) and placebo (n = 80) plus non-pharmacological treatment (physical activity and nutritional counseling). One sachet of Obex® or placebo were administered before the two main meals each day for 6 months. In addition to anthropometric measurements and blood pressure, fasting plasma and 2 h glucose levels during the oral glucose tolerance test, lipid profile, insulin, liver enzymes, creatinine, and uric acid (UA) were determined, insulin resistance (HOMA-IR) beta-cell function (HOMA-β) were assessed and insulin sensitivity (IS) was calculated with three indirect indexes. RESULTS After 3 months of Obex®, 48.3% of the participants (28/58) achieved complete success in reducing both weight and waist circumference by greater than or equal to 5% from baseline, as opposed to 26.0% (13/50) of individuals receiving placebo (p = 0.022). Compared to baseline, at 6 months no differences were found between the groups concerning anthropometric and biochemical measurements, except for high-density lipoprotein cholesterol (HDL-c) levels, which were higher in subjects receiving Obex® compared to those receiving placebo (p = 0.030). After 6 months of treatment, both groups showed reduced cholesterol and triglyceride levels (p < 0.012) compared to baseline value. However, only those intake Obex® showed reduced insulin concentrations and HOMA-IR, improved IS (p < 0.05), and decreased creatinine and UA levels (p < 0.005). CONCLUSIONS The consumption of Obex® together with lifestyle changes increased HDL-c, contributed to a rapid reduction of weight and waist circumference, as well as improved insulin homeostasis, which did not occur in the placebo group, and appears to be safe as an adjunct at conventional obesity treatment. TRIAL REGISTRATION Clinical trial protocol was registered in the Cuban public registry of clinical trials under code RPCEC00000267 on 17/04/2018 and also registered in the international registry of clinical trials, ClinicalTrials.gov, under code: NCT03541005 on 30/05/2018.
Collapse
Affiliation(s)
- Eduardo Cabrera-Rode
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba.
| | - Ileana Cubas-Dueñas
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Janet Rodríguez Acosta
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Jeddú Cruz Hernández
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Ana Ibis Conesa González
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Teresa M. González Calero
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Yuri Arnold Domínguez
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - José Hernández Rodríguez
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Antonio D. Reyes Rodríguez
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Aimee Álvarez Álvarez
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Ragmila Echevarría Valdés
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Liudmila Jorge Espinosa
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Onelia Torres Belent
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Zoila Bell Benavides
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Elizabeth Senra Estévez
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Yanet Abreu Rodríguez
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Juana del Valle Rodríguez
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| | - Silvia Marín Juliá
- Institute of Endocrinology, University of Medical Sciences of Havana, Zapata and D, Vedado 10400, Havana, Cuba
| |
Collapse
|
12
|
Saud KT, Xu J, Wilkanowicz S, He Y, Moon JJ, Solomon MJ. Electrosprayed microparticles from inulin and poly(vinyl) alcohol for colon targeted delivery of prebiotics. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
13
|
Yu W, Nan X, Schroyen M, Wang Y, Zhou M, Tang X, Xiong B. Effect of inulin on small extracellular vesicles microRNAs in milk from dairy cows with subclinical mastitis. J Anim Sci 2023; 101:skae366. [PMID: 39656780 DOI: 10.1093/jas/skae366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
Milk contains microRNAs (miRNA) that are shielded by small extracellular vesicles (sEVs). Beyond variations among individuals, many factors including nutrition play a role in shaping miRNA expression profiles. This study is to explore milk-derived sEVs-miRNA variations induced by inulin supplementation in subclinical mastitis-suffering cows. Fourteen lactating cows diagnosed with subclinical mastitis were equally assigned to either an inulin or a control group. Apart from total mixed rations, cows in the inulin group were provided with 300 g/d inulin during the morning feeding, while the control group did not receive any supplement. Following 1 wk of adaptation and 5 wk of treatment, sEVs-miRNA were isolated from the milk of each cow. RNA is subjected to high-throughput sequencing and differentially expressed (DE) miRNA (P < 0.05 and ∣ log2FC∣> 1) were detected through bioinformatics analysis. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to examine the target genes of DE miRNA. A sum of 350 miRNA was discovered, including 332 in the control group and 249 in the inulin group. Among these, 9 miRNA showed differential expression within the 2 groups, including 3 upregulated and 6 downregulated in the inulin group. The DE miRNA participates in regulating organismal systems, cellular processes, and signal transduction, which may affect inflammatory response and milk production. Overall, our study provides insight into the micromolecular-level mechanism of inulin in alleviating subclinical mastitis in dairy cows.
Collapse
Affiliation(s)
- Wanjie Yu
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Martine Schroyen
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Yue Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Mengting Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
14
|
Chemical modification of Opuntia ficus-indica mucilage: characterization, physicochemical, and functional properties. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Qiaorun Z, Honghong S, Yao L, Bing J, Xiao X, Julian McClements D, Chongjiang C, Biao Y. Investigation of the interactions between food plant carbohydrates and titanium dioxide nanoparticles. Food Res Int 2022; 159:111574. [DOI: 10.1016/j.foodres.2022.111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/16/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022]
|
16
|
Yadav S, Singh R, Kumar P. Bioresponsive inulin‐azobenzene nanostructures for targeted drug delivery to colon. J Appl Polym Sci 2022. [DOI: 10.1002/app.52950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Santosh Yadav
- Nucleic Acids Research Laboratory CSIR‐Institute of Genomics and Integrative Biology Delhi India
| | - Reena Singh
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory CSIR‐Institute of Genomics and Integrative Biology Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
17
|
Iftikhar A, Rehman A, Usman M, Ali A, Ahmad MM, Shehzad Q, Fatim H, Mehmood A, Moiz A, Shabbir MA, Manzoor MF, Siddeeg A. Influence of guar gum and chitosan enriched with lemon peel essential oil coatings on the quality of pears. Food Sci Nutr 2022; 10:2443-2454. [PMID: 35844913 PMCID: PMC9281935 DOI: 10.1002/fsn3.2851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/28/2022] [Accepted: 03/16/2022] [Indexed: 01/30/2023] Open
Abstract
Pear is a typically climacteric fruit and highly perishable with a low shelf life owing to extreme metabolic activity after harvesting. The present study aimed to reduce weight loss and improve the firmness of pear during storage. The lemon peel essential oil (LPEO) has gained considerable attention due to being the richest source of bioactive compounds that behaved as a natural antioxidant agent, being cost-effective, and being generally recognized as safe. Edible coatings equipped with a natural antioxidant agent and renewable biopolymers have gained more research fame owing to their involvement in the direction of biodegradability and food safety. In this work, edible skin coating materials (ESCMs) embedded by chitosan (1%) and guar gum (2%) were fabricated, and afterward, five concentrations of LPEO (1, 1.5, 2, 2.5, and 3.0%) were incorporated individually into the ESCMs. Findings revealed that LPEO-ESCMs significantly reduced the weight loss and improved the firmness of pear up to 45 days of storage at 4 ± 2°C. Furthermore, the LPEO-ESCMs have enhanced the antioxidant capacity, antibacterial efficiency, and malondialdehyde level of pear during storage time. It was concluded that 3% of LPEO-ESCMs improved the overall acceptability of pear fruits. Taken together, the novel insights of guar gum and chitosan-based ESCMs entrapped with LPEO will remain a subject of research interest for researchers in the future.
Collapse
Affiliation(s)
- Ayesha Iftikhar
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
- Department of AgriculturalEnvironmental and Food Sciences (DiAAA)University of MoliseCampobassoItaly
| | - Abdur Rehman
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuChina
| | - Muhammad Usman
- Beijing Advance Innovation Center for Food Nutrition and Human HealthSchool of Food and HealthBeijing Technology and Business UniversityBeijingChina
- Department of Food Science and TechnologyRiphah International University FaisalabadFaisalabadPakistan
| | - Ahmad Ali
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuChina
| | - Muhammad Mushtaq Ahmad
- Department of Food Science and TechnologyRiphah International University FaisalabadFaisalabadPakistan
| | - Qayyum Shehzad
- Beijing Advance Innovation Center for Food Nutrition and Human HealthSchool of Food and HealthBeijing Technology and Business UniversityBeijingChina
| | - Hina Fatim
- Beijing Advance Innovation Center for Food Nutrition and Human HealthSchool of Food and HealthBeijing Technology and Business UniversityBeijingChina
| | - Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human HealthSchool of Food and HealthBeijing Technology and Business UniversityBeijingChina
| | - Abdul Moiz
- Section of Chemical and Food EngineeringDepartment of Industrial EngineeringUniversity of SalernoFiscianoItaly
| | - Muhammad Asim Shabbir
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | | | - Azhari Siddeeg
- Department of Food Engineering and TechnologyFaculty of Engineering and TechnologyUniversity of GeziraWad MedaniSudan
| |
Collapse
|
18
|
Shi L, Li Y, Zhang S, Gong X, Xu J, Guo Y. Construction of inulin-based selenium nanoparticles to improve the antitumor activity of an inulin-type fructan from chicory. Int J Biol Macromol 2022; 210:261-270. [PMID: 35469953 DOI: 10.1016/j.ijbiomac.2022.04.125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 11/05/2022]
Abstract
Cancer has become one of the leading causes of death worldwide. It is urgent to develop new antitumor drugs with high efficiency and low toxicity. In this study, an inulin-type fructan CIP70-1 was purified and characterized from chicory and showed weak antitumor activity. To improve its antitumor effects, inulin-based selenium nanoparticles (CIP-SeNPs) were constructed and characterized. CIP-SeNPs were spherical nanoparticles (60 nm), which remained stable in water for more than 3 months. A cellular antitumor assay revealed that CIP-SeNPs had stronger inhibitory effects on cancer cells (MCF-7, A549, and HepG2) than CIP70-1 alone. Furthermore, the in vivo antitumor effects of CIP-SeNPs were confirmed using zebrafish models. The results showed that CIP-SeNPs significantly inhibited the proliferation and migration of tumors as well as the angiogenesis of transgenic zebrafish in the concentration range of 1-4 μg/mL.
Collapse
Affiliation(s)
- Lijuan Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yeling Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Shaojie Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Xiaotang Gong
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
19
|
Wu Z, Li H, Zhao X, Ye F, Zhao G. Hydrophobically modified polysaccharides and their self-assembled systems: A review on structures and food applications. Carbohydr Polym 2022; 284:119182. [DOI: 10.1016/j.carbpol.2022.119182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/27/2021] [Accepted: 01/21/2022] [Indexed: 01/05/2023]
|
20
|
Silva RD, Carvalho LT, Moraes RM, Medeiros SDF, Lacerda TM. Biomimetic Biomaterials Based on Polysaccharides: Recent Progress and Future Perspectives. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rodrigo Duarte Silva
- Nanotechnology National Laboratory for Agriculture (LNNA) Embrapa Instrumentation Rua XV de Novembro 1452 São Carlos SP 13560‐970 Brazil
| | - Layde Teixeira Carvalho
- Department of Chemical Engineering Engineering School of Lorena University of São Paulo (EEL‐USP) Lorena SP 12602‐810 Brazil
| | - Rodolfo Minto Moraes
- Department of Material Engineering Engineering School of Lorena University of São Paulo, (EEL‐USP) Lorena SP 12602‐810 Brazil
| | - Simone de Fátima Medeiros
- Department of Chemical Engineering Engineering School of Lorena University of São Paulo (EEL‐USP) Lorena SP 12602‐810 Brazil
| | - Talita Martins Lacerda
- Department of Biotechnology Engineering School of Lorena University of São Paulo (EEL‐USP) Lorena SP 12602‐810 Brazil
| |
Collapse
|
21
|
Patil PJ, Usman M, Zhang C, Mehmood A, Zhou M, Teng C, Li X. An updated review on food-derived bioactive peptides: Focus on the regulatory requirements, safety, and bioavailability. Compr Rev Food Sci Food Saf 2022; 21:1732-1776. [PMID: 35142435 DOI: 10.1111/1541-4337.12911] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/07/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023]
Abstract
Food-derived bioactive peptides (BAPs) are recently utilized as functional food raw materials owing to their potential health benefits. Although there is a huge amount of scientific research about BAPs' identification, purification, characterization, and physiological functions, and subsequently, many BAPs have been marketed, there is a paucity of review on the regulatory requirements, bioavailability, and safety of BAPs. Thus, this review focuses on the toxic peptides that could arise from their primary proteins throughout protein extraction, protein pretreatment, and BAPs' formulation. Also, the influences of BAPs' length and administration dosage on safety are summarized. Lastly, the challenges and possibilities in BAPs' bioavailability and regulatory requirements in different countries were also presented. Results revealed that the human studies of BAPs are essential for approvals as healthy food and to prevent the consumers from misinformation and false promises. The BAPs that escape the gastrointestinal tract epithelium and move to the stomach are considered good peptides and get circulated into the blood using different pathways. In addition, the hydrophobicity, net charge, molecular size, length, amino acids composition/sequences, and structural characteristics of BAPs are critical for bioavailability, and appropriate food-grade carriers can enhance it. The abovementioned features are also vital to optimize the solubility, water holding capacity, emulsifying ability, and foaming property of BAPs in food products. In the case of safety, the possible allergenic and toxic peptides often exhibit physiological functions and could be produced during the hydrolysis of food proteins. It was also noted that the production of iso-peptides bonds and undesirable Maillard reaction might occur during protein extraction, sample pretreatments, and peptide synthesis.
Collapse
Affiliation(s)
- Prasanna J Patil
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Muhammad Usman
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Chengnan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Arshad Mehmood
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Mingchun Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
22
|
Abstract
The large-scale industrial use of polysaccharides to obtain energy is one of the most discussed subjects in science. However, modern concepts of biorefinery have promoted the diversification of the use of these polymers in several bioproducts incorporating concepts of sustainability and the circular economy. This work summarizes the major sources of agro-industrial residues, physico-chemical properties, and recent application trends of cellulose, chitin, hyaluronic acid, inulin, and pectin. These macromolecules were selected due to their industrial importance and valuable functional and biological applications that have aroused market interests, such as for the production of medicines, cosmetics, and sustainable packaging. Estimations of global industrial residue production based on major crop data from the United States Department of Agriculture were performed for cellulose content from maize, rice, and wheat, showing that these residues may contain up to 18%, 44%, and 35% of cellulose and 45%, 22%, and 22% of hemicellulose, respectively. The United States (~32%), China (~20%), and the European Union (~18%) are the main countries producing cellulose and hemicellulose-rich residues from maize, rice, and wheat crops, respectively. Pectin and inulin are commonly obtained from fruit (~30%) and vegetable (~28%) residues, while chitin and hyaluronic acid are primarily found in animal waste, e.g., seafood (~3%) and poultry (~4%).
Collapse
|