1
|
Men C, Wu C, Wang L, Liu S, Ning C, Liu C, Zheng L. A novel LA@Cu-MOF film with dual response to pH and humidity: Preparation, antibacterial activity, and fruit preservation. Food Chem 2025; 475:143304. [PMID: 39938257 DOI: 10.1016/j.foodchem.2025.143304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
At present, fruits still undergo extensive decay and deterioration after harvesting. α-Lipoic acid (α-LA) is a natural, pollution-free, and low-cost preservative, which can effectively inhibit the senescence of postharvest fruits. To better utilize the preservation potential of α-LA, in this study, it was reacted with Cu-metal-organic framework (Cu-MOF) and loaded in large quantities onto the Cu-MOF, known as LA@Cu-MOF. On this basis, an antibacterial film with dual responsive release was prepared. The results indicated that LA@Cu-MOF exhibited a significant inhibitory effect on S. aureus, E. coli, and B. cinerea. Additionally, the release of α-LA in the film demonstrated superior response release in weakly acidic and high humidity environments. Moreover, the coating film could maintain the appearance and quality indicators of fruits for at least 6 days. Therefore, this method effectively extended the shelf life of fruits while maintaining their quality, making it a promising intelligent responsive fruits preservation material.
Collapse
Affiliation(s)
- Chuanlong Men
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chenchen Wu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lei Wang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shuai Liu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Cheng Ning
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Changhong Liu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Lei Zheng
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
2
|
Du S, Xia Q, Sun Y, Wu Z, Deng Q, Ji J, Pan D, Zhou C. The fabrication and intelligent evaluation for meat freshness of colorimetric hydrogels using zein and sodium alginate loading anthocyanin and curcumin: Stability and sensitivity to pH and volatile amines. Int J Biol Macromol 2025; 309:142889. [PMID: 40210061 DOI: 10.1016/j.ijbiomac.2025.142889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/24/2025] [Accepted: 04/05/2025] [Indexed: 04/12/2025]
Abstract
Intelligent packaging designed to detect food spoilage is receiving increasing attention, and pH-sensitive colorimetric hydrogels show great potential for monitoring food spoilage. The pH-sensitive colorimetric hydrogels incorporating dual indicators of anthocyanin (BA) and curcumin (CUR) were fabricated via the interactions of zein and sodium alginate (SA) to assess meat freshness. The effects of the addition ratios of BA and CUR on zein/sodium alginate hydrogels were characterized by morphological observation, structural analysis and cumulative release profiles, and the sensitivity of the colorimetric hydrogels was also evaluated. The zein/sodium alginate hydrogel (zein/SA/Mix2), which incorporated the mixture of BA and CUR at a ratio of 70:1, exhibited the smallest particle size (1152.67 nm) and displayed a more homogeneous and dense gel structure compared with other treatments. FTIR and XRD results indicated that the interactions between sodium alginate and zein were primarily governed by hydrogen bonds and electrostatic forces, and the zein/SA/Mix2 hydrogel exhibited the weakest peak intensity at 3422 cm-1 and at 2θ = 28.25°, indicating the highest degree of crosslinking among these treatments. The zein/SA/Mix2 hydrogel rapidly responded to volatile amines within 2 min, and the release rates of BA and CUR remained below 26 % and 5 % in 95 % ethanol solution within 96 h, respectively, indicating its high stability and sensitivity. During the storage of air-dried goose meat and chilled chicken meat, the zein/SA/Mix2 hydrogel transitioned from yellow to green, and finally to dark brown, effectively distinguishing meat freshness, which was further confirmed by partial least squares regression analysis.
Collapse
Affiliation(s)
- Shiyang Du
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Qiang Xia
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Yangying Sun
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Zhen Wu
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Qiao Deng
- Ningbo Laodizi Food Technology Limited Company, Ningbo 315731, China
| | - Junwu Ji
- Ningbo Laodizi Food Technology Limited Company, Ningbo 315731, China
| | - Daodong Pan
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China.
| | - Changyu Zhou
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
3
|
Wan Yahaya WA, Mohd Azman NA, Hashim NA, Abdul Mudalip SK, Gimbun J. Release kinetics of eugenol and α-tocopherol from carrageenan films for meat preservation. Int J Biol Macromol 2025; 303:140605. [PMID: 39914533 DOI: 10.1016/j.ijbiomac.2025.140605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/17/2025] [Accepted: 01/31/2025] [Indexed: 02/09/2025]
Abstract
This paper introduces a novel active carrageenan film designed for meat preservation, featuring the release of antioxidants eugenol (Eu) and α-tocopherol (Tp). The film is composed of semi-refined carrageenan, plasticized with 0.9 % glycerol, and reinforced with 10 % cellulose nanofibers derived from waste biomass. Lipid oxidation was measured through TBARS and percent metmyoglobin to evaluate the film's effectiveness in extending the shelf-life and maintaining the quality of meat. The film containing 0.4 % Tp demonstrates superior mechanical properties and thermal stability, achieving a tensile strength of 66.79 MPa and an elongation at break of 46.54 %. Notably, it exhibits a significant antioxidant release rate over 25 days, with TBARS and percent metmyoglobin values of 0.652 and 35.98 %, respectively. These results suggest that this biodegradable packaging solution not only prolongs meat shelf-life but also aligns with sustainable practices in food preservation. The release profiles of Eu and Tp follow a first-order kinetic model, indicating a controlled and sustained release mechanism. Overall, these findings highlight the potential of active films in enhancing food packaging solutions while promoting eco-friendliness.
Collapse
Affiliation(s)
- Wan Amnin Wan Yahaya
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
| | - Nurul Aini Mohd Azman
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia; Centre for Research in Advanced Fluid and Processes (Fluid Centre), Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia.
| | - Nurmaryam Aini Hashim
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
| | - Siti Kholijah Abdul Mudalip
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
| | - Jolius Gimbun
- Centre for Research in Advanced Fluid and Processes (Fluid Centre), Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
| |
Collapse
|
4
|
Zeng J, Ren X, Li X, Chen P, Zhu S. Development of pH-responsive active intelligent chitosan film incorporated with pomegranate cellulose nanocrystals and curcumin nanoparticles. Int J Biol Macromol 2025; 309:142051. [PMID: 40132719 DOI: 10.1016/j.ijbiomac.2025.142051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
Casein Sodium coated curcumin nanocapsules (Cas@Cur) were fabricated by a pH shift method, which improved the water solubility of curcumin (Cur). Hydrogen bonds and hydrophobic interactions were the main forces for the formation of Cas@Cur. Chitosan films (CS) reinforced with pomegranate cellulose nanocrystals (PCNCs), Cas@Cur, PCNC/Cas@Cur, and PCNC/Cur were developed and named CP, CS-Cas@Cur, CP-Cas@Cur and CP-Cur, respectively. The addition of Cas@Cur decreased the moisture content, crystallinity and water contact angle of chitosan film, and increased its water solubility and light barrier property. The CP-Cur film presented the roughest cross-sectional SEM image owing to the hydrophobicity of Cur. CP-Cas@Cur film exhibited the excellent cumulative release of Cur, and was 1.60 and 3.70 times of that of CP-Cur in the semi-fatty and fatty food simulation systems at 2 h, respectively, owing to the controlled-release function of PCNCs and great water solubility of Cas@Cur. Furthermore, the CP-Cas@Cur film displayed excellent antioxidant property, antibacterial activity and sensitive color responsiveness to pH and NH3. Interestingly, the CP-Cas@Cur films exhibited a visible color change at pH 3-7. The application of CP-Cas@Cur film in the preservation of milk and shrimp indicated its potential for the visual monitoring of food freshness.
Collapse
Affiliation(s)
- Jun Zeng
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Key Laboratory of Biological Resources and Ecology of Pamirs Plateau of Xinjiang Uygur Autonomous Region, Kashi University, Kashi 844000, China
| | - Xiaona Ren
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China; Key Laboratory of Biological Resources and Ecology of Pamirs Plateau of Xinjiang Uygur Autonomous Region, Kashi University, Kashi 844000, China
| | - Xinpeng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ping Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Siming Zhu
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
5
|
Zhang Z, Argenziano R, Konate A, Shi X, Salazar SA, Cerruti P, Panzella L, Terrasson V, Guénin E. Preparation of chitosan/lignin nanoparticles-based nanocomposite films with high-performance and improved physicochemical properties for food packaging applications. Int J Biol Macromol 2025; 293:139079. [PMID: 39743121 DOI: 10.1016/j.ijbiomac.2024.139079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
Chitosan (CH)-based composite films have attracted increasing attention as promising green food packaging materials due to their biodegradability and ease of fabrication. Additionally, lignin (LN) has been widely used as additive for chitosan-based films to improve their physicochemical properties. In this study, a series of composite films made of chitosan nanoparticles (NCH) as a matrix and alkali lignin nanoparticles (LNPs) as functional filler were prepared. The NCH-LNPs composite films exhibited a more uniform appearance and enhanced crystallinity compared to NCH-LN films. The maximum pyrolysis temperature of NCH-LNPs films, determined by TG, reached 309 °C. Moreover, the antioxidant capacity of NCH-LNPs film was 1.5 and 3.4 times higher than those of NCH-LN and NCH films, respectively. The tensile modulus of NCH-LNPs films increased by 8.9 % and 36.5 %, while the tensile strain decreased by 16.0 % and 52.8 % compared to NCH and NCH-LN films, respectively. Finally, the suitability of prepared films for food preservation was studied on grape and cheese samples. The ability of NCH-LNPs films to inhibit lipid peroxidation in cheese was 2 times higher than that of NCH-LN films. These results showed that the improvement of physicochemical properties of NCH-based films by LNPs was significantly higher than that observed with LN.
Collapse
Affiliation(s)
- Zhao Zhang
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu-CS 60 319-60 203, Compiègne Cedex, France
| | - Rita Argenziano
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy
| | - Adama Konate
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu-CS 60 319-60 203, Compiègne Cedex, France
| | - Xiangru Shi
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu-CS 60 319-60 203, Compiègne Cedex, France
| | - Sarai Agustin Salazar
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy..
| | - Vincent Terrasson
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu-CS 60 319-60 203, Compiègne Cedex, France.
| | - Erwann Guénin
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu-CS 60 319-60 203, Compiègne Cedex, France.
| |
Collapse
|
6
|
Sun Y, Wu S, Jiao Z, Liu D, Li X, Shang T, Tian Z. Preparation and characterization of active packaging film containing chitosan/gelatin/brassica crude extract. Sci Rep 2025; 15:6729. [PMID: 40000666 PMCID: PMC11862006 DOI: 10.1038/s41598-025-90638-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Chitosan (CS), gelatin (GE), and brassica (BR) were utilized as the primary components to develop an active packaging film with outstanding properties. Active film-forming solutions were prepared using the solution casting method to produce these films. The resulting active films were characterized through various techniques, including X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared (FT-IR) spectroscopy, and light transmittance (T%), opacity, water solubility (WS), water vapour transmittance rate (WVTR), oxygen permeability (OP), mechanical properties, and antioxidant and antimicrobial properties. Orthogonal test results indicated that the optimal preparation ratio for the composite film was achieved with 2.5 g CS, 3.5 g GE, 6 g glycerol (GL) dissolved in distilled water. Under these conditions, the active packaging film exhibited excellent mechanical properties. In summary, the chitosan/gelatin/brassica crude extract-based active packaging film developed in this study presents a promising option for practical applications.
Collapse
Affiliation(s)
- Yanmei Sun
- College of Biological Science and Technology, Yili Normal University, Yining, 835000, China
| | - Shifang Wu
- College of Biological Science and Technology, Yili Normal University, Yining, 835000, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, Yining, China
| | - Ziwei Jiao
- College of Biological Science and Technology, Yili Normal University, Yining, 835000, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, Yining, China
| | - Dafeng Liu
- College of Biological Science and Technology, Yili Normal University, Yining, 835000, China
| | - Xueru Li
- College of Biological Science and Technology, Yili Normal University, Yining, 835000, China
| | - Tiancui Shang
- College of Biological Science and Technology, Yili Normal University, Yining, 835000, China.
| | - Zhu Tian
- College of Biological Science and Technology, Yili Normal University, Yining, 835000, China.
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, Yining, China.
| |
Collapse
|
7
|
Ghosh S, Mandal RK, Mukherjee A, Roy S. Nanotechnology in the manufacturing of sustainable food packaging: a review. DISCOVER NANO 2025; 20:36. [PMID: 39951222 PMCID: PMC11828777 DOI: 10.1186/s11671-025-04213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
At present, there is an escalating concern among consumers regarding the spoilage and safety of food items. Furthermore, the packaging materials used within the packaging industry are typically unsustainable food packaging. To confront this significant challenge, nanotechnology may offer a feasible alternative to standard packaging practices. Several naturally derived polymers are capable of substituting petrochemical-based polymers. The application of biopolymers has demonstrated an ability to prolong the shelf life of food items. However, these materials frequently exhibit limited functionality. The incorporation of nanomaterials can significantly enhance the capabilities of these films. Furthermore, the fields of nanotechnology and food packaging are trending areas of research that hold promise for addressing various challenges within the packaging sector. Integrating nanomaterials into food packaging materials yields significant advantages relative to traditional packaging approaches. It contributes to enhanced food quality and safety, provides consumers with insights into their dietary practices, enables the repair of packaging tears, and increases the longevity of food storage. Incorporating various nanomaterials into biobased films has gained prominence in sustainable food packaging. This review explores the general overview of the historical perspective of nanotechnology. In addition, we addressed the various kinds of nanomaterials involved in food packaging. The functions of nanomaterials in food packaging applications are briefly reviewed. The compilation and discussion highlight the nanotechnology for safe, sustainable, and satisfiable food packaging. Finally, the toxicity, safety, and future trends of the nanomaterials in sustainable food packaging were briefly summarized. This review underscores the necessity of nanotechnology in sustainable food packaging.
Collapse
Affiliation(s)
- Sabyasachi Ghosh
- Department of Biotechnology, Swami Vivekananda University, Barrackpore, West Bengal, 700121, India.
| | - Rakesh Kumar Mandal
- Department of Physics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Ayan Mukherjee
- Department of Environment, West Bengal Pollution Control Board, Govt. of West Bengal, Kolkata, 700106, India
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
8
|
Wang Z, Li S, Zhao X, Liu Z, Shi R, Hao M. Applications of bacterial cellulose in the food industry and its health-promoting potential. Food Chem 2025; 464:141763. [PMID: 39467502 DOI: 10.1016/j.foodchem.2024.141763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Bacterial cellulose (BC) is a naturally occurring biomaterial with a wide range of potential applications in the food industry because of its exceptional mechanical qualities, unique nanofiber structure, high purity, and outstanding biocompatibility. Beyond its physical attributes, BC has gained interest recently due to research demonstrating its potential health benefits as a functional food ingredient. This article examines the many uses of BC in the food business, with a focus on how it may enhance food texture, operate as a bioactive carrier, and have promise in the packaging sector. Further research was done on the health-promoting properties of BC in functional foods, particularly with regard to its functions as a blood glucose regulator, and gastrointestinal health. This review seeks to bring fresh ideas for the study of bioactive components in the food industry by providing a summary of the existing research and demonstrating the possible role of BC in food. It also suggests future paths for research.
Collapse
Affiliation(s)
- Zhongjuan Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Shuangjun Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Xiuhua Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, PR China; National Engineering Laboratory of BioResource EcoUtilization, Harbin 150040, PR China.
| | - Zhicun Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Aulin Collage, Northeast Forestry University, Harbin 150040, PR China
| | - Ruyue Shi
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Mengyuan Hao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| |
Collapse
|
9
|
Fatima A, Ul-Islam M, Yasir S, Khan S, Manan S, Shehzad A, Ahmad MW, Al-Shannaq R, Islam SU, Abbas Y, Subhan F, Sabour AAA, Alshiekheid MA, Ullah MW. Ex situ fabrication and bioactivity characterization of Neem and Sage-infused bacterial cellulose membranes for sustainable antimicrobial applications. Int J Biol Macromol 2025; 287:138433. [PMID: 39647734 DOI: 10.1016/j.ijbiomac.2024.138433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/16/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
This study presents the ex situ development and characterization of bacterial cellulose (BC) membranes loaded with bioactive Sage and Neem extracts for enhanced antimicrobial applications. Utilizing discarded fruit waste as a cost-effective carbon source, BC production was optimized, yielding membranes with improved properties. Neem and Sage extracts, obtained via Soxhlet extraction, exhibited significant antibacterial activity against Escherichia coli and Staphylococcus aureus, with minimum inhibitory concentrations of 3.125 mg/mL and 25 mg/mL, respectively, for Neem extract, and 25 mg/mL and 50 mg/mL for Sage extract. These extracts (20 wt%) were successfully incorporated into BC membranes ex situ, resulting in BC-Neem (BC-N) and BC-Sage (BC-S) composites. Fourier-transform infrared spectroscopy (FTIR) confirmed the chemical interactions between the extracts and the BC matrix, revealing the introduction of new functional groups and enhancing the composite properties. Scanning electron microscopy (SEM) illustrated changes in morphology, indicating deeper penetration and attachment of the extracts within the BC structure. Quantitative analysis of water holding capacity demonstrated that BC-N and BC-S absorbed about 90 times water of their dry weight. Antibacterial assays through the colony-forming unit method showed that BC-N significantly inhibited S. aureus growth by 78 % and E. coli by 51 %, while BC-S exhibited a 48 % reduction against S. aureus. Agar disc-diffusion assay showed the formation of inhibition zones of 1.2 cm and 0.1 cm by BC-N against S. aureus and E. coli, respectively, in contrast to 0.2 cm and no inhibition by BC-S composite. These results highlight the potential of bioactive plant extract-loaded BC membranes as effective antimicrobial agents, offering a sustainable alternative to conventional materials in medical and food packaging applications.
Collapse
Affiliation(s)
- Atiya Fatima
- Department of Chemical Engineering, Dhofar University, Salalah 211, Oman
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, Dhofar University, Salalah 211, Oman.
| | - Sumayia Yasir
- Department of Chemical Engineering, Dhofar University, Salalah 211, Oman
| | - Shaukat Khan
- Department of Chemical Engineering, Dhofar University, Salalah 211, Oman
| | - Sehrish Manan
- Department of Pulp & Paper Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Adeeb Shehzad
- Biodiversity Unit, Research Centre, Dhofar University, Salalah 211, Oman
| | - Md Wasi Ahmad
- Department of Chemical Engineering, Dhofar University, Salalah 211, Oman
| | - Refat Al-Shannaq
- Department of Chemical Engineering, Dhofar University, Salalah 211, Oman
| | - Salman Ul Islam
- Department of Pharmacy, International Institute of Science, Arts and Technology, Gujranwala 52250, Pakistan
| | - Yawar Abbas
- Department of Physics, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Fazli Subhan
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Amal Abdullah A Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maha A Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Wajid Ullah
- Department of Pulp & Paper Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
10
|
Wang H, Waterhouse GIN, Xiang H, Sun-Waterhouse D, Zhao Y, Chen S, Wu Y, Wang Y. Mechanisms of slow-release antibacterial properties in chitosan‑titanium dioxide stabilized perilla essential oil Pickering emulsions: Focusing on oil-water interfacial behaviors. Carbohydr Polym 2024; 346:122613. [PMID: 39245524 DOI: 10.1016/j.carbpol.2024.122613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
Perilla essential oil (PLEO) offers benefits for food preservation and healthcare, yet its instability restricts its applications. In this study, chitosan (CS) and TiO2 used to prepare composite particles. TiO2, after being modified with sodium laurate (SL), was successfully introduced at 0.1 %-3 % into the CS matrix. The resulting CS-SL-TiO2 composite particles can be formed by intertwining and rearranging through intramolecular and intermolecular interactions, and form an O/W interface with stability and viscoelasticity. The Pickering emulsions stabilized by these particles exhibit non-Newtonian pseudoplastic behavior, shear-thinning properties, and slow-release characteristics, along with antibacterial activity. Emulsions with 0.5 % and 1 % CS-SL-TiO2 composites demonstrated superior antibacterial effects against Escherichia coli and Staphylococcus aureus. The study revealed that all emulsions undergo Fickian diffusion and a sustained release of PLEO, with the Ritger-Peppas model best describing this release mechanism. The slow-release behaviors positively correlates with interfacial pressure, composite particle size, composite particle potential, composite contact angle, emulsion particle size and emulsion potential, but negatively correlates with diffusion rate, penetration rate, release kinetics and release rate. The findings lay groundwork for developing slow-release antimicrobial emulsions within polysaccharide matrices, showcasing promise for antimicrobial packaging solutions and enhanced food preservation techniques.
Collapse
Affiliation(s)
- Hengheng Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Geoffrey I N Waterhouse
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Huan Xiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangxi College and University Key Laboratory Development and High-value Utilization of Buibu Gulf Seafood Resources, College of Food Engineering, Beibu Gulf University, Qinzhou, Guangxi 535000, China.
| |
Collapse
|
11
|
Regmi S, Paudel S, Janaswamy S. Development of Eco-Friendly Packaging Films from Soyhull Lignocellulose: Towards Valorizing Agro-Industrial Byproducts. Foods 2024; 13:4000. [PMID: 39766941 PMCID: PMC11675783 DOI: 10.3390/foods13244000] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Due to their inability to biodegrade, petroleum-based plastics pose significant environmental challenges by disrupting aquatic, marine, and terrestrial ecosystems. Additionally, the widespread presence of microplastics and nanoplastics induces serious health risks for humans and animals. These pressing issues create an urgent need for designing and developing eco-friendly, biodegradable, renewable, and non-toxic plastic alternatives. To this end, agro-industrial byproducts such as soyhulls, which contain 29-50% lignocellulosic residue, are handy. This study extracted lignocellulosic residue from soyhulls using alkali treatment, dissolved it in ZnCl2 solution, and crosslinked it with calcium ions and glycerol to create biodegradable films. The film formulation was optimized using the Box-Behnken design, with response to tensile strength (TS), elongation at break (EB), and water vapor permeability (WVP). The optimized films were further characterized for color, light transmittance, UV-blocking capacity, water absorption, contact angle, and biodegradability. The resulting optimized film demonstrated a tensile strength of 10.4 ± 1.0 MPa, an elongation at break of 9.4 ± 1.8%, and a WVP of 3.5 ± 0.4 × 10-11 g·m-1·s-1·Pa-1. Importantly, 90% of the film degrades within 37 days at 24% soil moisture. This outcome underscores the potential of soyhull-derived films as a sustainable, innovative alternative to plastic packaging, contributing to the circular economy and generating additional income for farmers and allied industries.
Collapse
Affiliation(s)
| | | | - Srinivas Janaswamy
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007, USA; (S.R.); (S.P.)
| |
Collapse
|
12
|
Pan J, Li C, Liu J, Jiao Z, Zhang Q, Lv Z, Yang W, Chen D, Liu H. Polysaccharide-Based Packaging Coatings and Films with Phenolic Compounds in Preservation of Fruits and Vegetables-A Review. Foods 2024; 13:3896. [PMID: 39682968 DOI: 10.3390/foods13233896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Considerable interest has emerged in developing biodegradable food packaging materials derived from polysaccharides. Phenolic compounds serve as natural bioactive substances with a range of functional properties. Various phenolic compounds have been incorporated into polysaccharide-based films and coatings for food packaging, thereby enhancing product shelf life by mitigating quality degradation due to oxidation and microbial growth. This review offers a comprehensive overview of the current state of polysaccharide-based active films and coatings enriched with phenolic compounds for preserving fruits and vegetables. The different approaches for the addition of phenols to polysaccharides-based packaging materials are discussed. The modifications in film properties resulting from incorporating polyphenols are systematically characterized. Then, the application of these composite materials as protectants and intelligent packaging in fruit and vegetables preservation is highlighted. In future, several points, such as the preservative mechanism, safety evaluation, and combination with other techniques along the whole supply chain could be considered to design polyphenol-polysaccharides packaging more in line with actual production needs.
Collapse
Affiliation(s)
- Junkun Pan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Chengheng Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jiechao Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Zhonggao Jiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Qiang Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Zhenzhen Lv
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Wenbo Yang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Dalei Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Hui Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| |
Collapse
|
13
|
Pramana A, Firmanda A, Arnata IW, Sartika D, Sari EO. Reduction of biofilm and pathogenic microorganisms using curcumin-mediated photodynamic inactivation to prolong food shelf-life. Int J Food Microbiol 2024; 425:110866. [PMID: 39146626 DOI: 10.1016/j.ijfoodmicro.2024.110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Pathogenic microbial contamination (bacteria and fungi) in food products during production poses a significant global health risk, leading to food waste, greenhouse gas emissions, and aesthetic and financial losses. Bacteria and fungi, by forming solid biofilms, enhance their resistance to antimicrobial agents, thereby increasing the potential for cross-contamination of food products. Curcumin molecule-mediated photodynamic inactivation (Cur-m-PDI) technology has shown promising results in sterilizing microbial contaminants and their biofilms, significantly contributing to food preservation without compromising quality. Photosensitizers (curcumin) absorb light, leading to a chemical reaction with oxygen and producing reactive oxygen species (ROS) that effectively reduce bacteria, fungi, and biofilms. The mechanism of microorganism inhibition is caused by exposure to ROS generated via the type 1 pathway involving electron transfer (such as O2•-, H2O2, -OH•, and other radicals), the type 2 pathway involving energy transfer (such as 1O2), secondary ROS, and weakening of antioxidant enzymes. The effectiveness of the inactivation of microorganisms is influenced by the concentration of curcumin, light (source type and energy density), oxygen availability, and duration of exposure. This article reviews the mechanism of reducing microbial food contamination and inhibiting their biofilms through Cur-m-PDI. It also highlights future directions, challenges, and considerations related to the effects of ROS in oxidizing food, the toxicity of PDI to living cells and tissues, conditions/types of food products, and the stability and degradation of curcumin.
Collapse
Affiliation(s)
- Angga Pramana
- Department of Agricultural Technology, Faculty of Agriculture, Universitas Riau, Pekanbaru 28292, Indonesia.
| | - Afrinal Firmanda
- Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia
| | - I Wayan Arnata
- Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Badung, Bali, Indonesia
| | - Dewi Sartika
- Faculty of Agriculture, Muhammadiyah University of Makassar, Makassar, South Sulawesi, Indonesia
| | - Esty Octiana Sari
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
14
|
Das PP, Prathapan R, Ng KW. Advances in biomaterials based food packaging systems: Current status and the way forward. BIOMATERIALS ADVANCES 2024; 164:213988. [PMID: 39116599 DOI: 10.1016/j.bioadv.2024.213988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
World hunger is getting worse, while one-third of food produced around the globe is wasted and never consumed. It is vital to reduce food waste to promote the sustainability of food systems, and improved food packaging solutions can augment this effort. The utilization of biomaterials in smart food packaging not only enhances food preservation and safety but also aligns with current demands for eco-friendly technologies to mitigate the impacts of climate change. This review provides a comprehensive overview of the developments in the field of food packaging based on the innovative use of biomaterials. It emphasizes the potential use of biomaterials derived from nature including cellulose, chitosan, keratin, etc. for this purpose. Various smart food packaging technologies such as active and intelligent packaging are discussed in detail including scavenging additives, colour-changing environment indicators, sensors, RFID tags, etc. The article also delves into the utilization of edible films and coatings, nanoparticle fillers and 2D materials in food packaging systems. Furthermore, it outlines the challenges and opportunities in this dynamic domain, emphasizing the ongoing need for research and innovation to shape the future of sustainable and smart food packaging solutions to enhance and monitor the shelf-life of food products.
Collapse
Affiliation(s)
- Partha Pratim Das
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Ragesh Prathapan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment and Water Research Institute (NEWRI), 1 Cleantech Loop, Singapore 637141, Singapore.
| |
Collapse
|
15
|
Miao Z, Yang M, Abdalkarim SYH, Yu HY. In situ growth of curcumin-loaded cellulose composite film for real-time monitoring of food freshness in smart packaging. Int J Biol Macromol 2024; 279:135090. [PMID: 39191342 DOI: 10.1016/j.ijbiomac.2024.135090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/12/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
Visual pH-responsive packaging material is particularly important in food supply chain safety monitoring due to their non-destructive monitoring method and intuitive result. However, it has always been limited by the instability performance of pH-response components and carriers, which further hinders its wide food safety application. To address these challenges, we selected cellulose with remarkable biocompatibility and mechanical properties as the carrier, and high pH-responsive curcumin to develop a smart packaging material (RC/GC composite film) with real-time food safety monitoring. Compared with pure cellulose film, the RC/GC composite film exhibited excellent mechanical properties (4-fold enhancement) and thermal stability (100 °C increasing). Meanwhile, based on the first reported strategy of curcumin in-situ growth during cellulose film formation, the RC/GC composite film exhibited exceptional antioxidant activity (89.2 %), antimicrobial property (91.6 %), and significant pH-responsive sensitivity (within 15 s). This innovative approach offers a new strategy for easy-to-use and effective monitoring of food spoilage in packaging materials.
Collapse
Affiliation(s)
- Zhouyu Miao
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Mingchen Yang
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Somia Yassin Hussain Abdalkarim
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Hou-Yong Yu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| |
Collapse
|
16
|
Crispini A, Aiello I, Godbert N, La Deda M, di Maio G, Tagarelli A, Elliani R, De Rose R, Scarpelli F. Hybrid Ethylcellulose Polymeric Films: Ag(I)-Based Components and Curcumin as Reinforcing Ingredients for Enhanced Food Packaging Properties. Chemistry 2024; 30:e202400452. [PMID: 38837264 DOI: 10.1002/chem.202400452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Bio-active ethylcellulose (EC) polymeric films have been obtained by incorporating curcumin (curc) and Ag(I)-based compounds, known for their antioxidant and antimicrobial activity, respectively, within the polymeric matrix. The recently reported Ag(I) coordination polymer, in both its structural forms (α-[(bpy)Ag(OTf)]∞ and β-{[(bpy)Ag][OTf]}∞), and the [(bpy)Ag(OTf)]∞-curc polymeric co-crystal (bpy=2,2'-bipyridine; OTf=trifluoromethanesulfonate) have been selected as Ag(I) species. The hybrid composite films have been prepared through the simple solvent casting method and characterized through Powder X-Ray Diffraction (PXRD), Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscope (SEM), UV-vis spectroscopy. The deep investigation of the film samples highlighted the non-inert behaviour of EC towards these specific active ingredients. Antimicrobial tests showed that EC films embedding the Ag(I)-based compounds present good antimicrobial performance, in particular against Staphylococcus aureus, used as a model of Gram-positive bacteria. In addition, Silver migration tests, performed on the Ag(I)-incorporating EC films, evidenced low values of silver release particularly in the case of the EC films incorporating [(bpy)Ag(OTf)]∞-curc.
Collapse
Affiliation(s)
- Alessandra Crispini
- MAT-InLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Iolinda Aiello
- MAT-InLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
- LPM-Laboratorio Preparazione Materiali, Star-Lab, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
- CNR NANOTEC-Istituto di Nanotecnologia UOS Cosenza, 87036, Arcavacata di Rende, CS, Italy
| | - Nicolas Godbert
- MAT-InLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
- LPM-Laboratorio Preparazione Materiali, Star-Lab, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Massimo La Deda
- MAT-InLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
- CNR NANOTEC-Istituto di Nanotecnologia UOS Cosenza, 87036, Arcavacata di Rende, CS, Italy
| | - Giuseppe di Maio
- MAT-InLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Antonio Tagarelli
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Rosangela Elliani
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Renata De Rose
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Francesca Scarpelli
- MAT-InLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
| |
Collapse
|
17
|
Yang X, Ci Y, Zhu P, Chen T, Li F, Tang Y. Preparation and characterization of cellulose-chitosan/β-FeOOH composite hydrogels for adsorption and photocatalytic degradation of methyl orange. Int J Biol Macromol 2024; 274:133201. [PMID: 38889833 DOI: 10.1016/j.ijbiomac.2024.133201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Biopolymer-based hydrogels have received great attention in wastewater treatment due to their excellent properties, e.g., high adsorption capacity, fast kinetics, reusability and ease of operation. In the present work, cellulose-chitosan/β-FeOOH composite hydrogels were prepared via co-dissolution and regeneration process as well as hydrothermal in situ synthesis of β-FeOOH. Effect of β-FeOOH loading on the properties of the composite hydrogels and the removal efficiency of methyl orange (MO) was investigated. Results showed that β-FeOOH was uniformly loaded onto the hydrogel framework, and the nanoporous structure of composite hydrogels could increase not only the effective contact area between β-FeOOH and the pollutants but also the active sites. Moreover, the increased β-FeOOH loading led to the enhanced MO removal rate under light conditions. When the loading time was extended from 6 h to 9 h, the MO removal rate increased by 21%, which can be mainly due to the photocatalytic degradation. In addition, MO removal rate reached 97.75% within 40 min under optimal conditions and attained 80.81% after five repetitions. The trapping experiment and EPR results indicated that the main active species were hydrogel radicals and holes. Consequently, this work provides an effective preparation approach for cellulose-chitosan/β-FeOOH composite hydrogel with high adsorption and photocatalytic degradation, which would hold great promise for wastewater treatment applications.
Collapse
Affiliation(s)
- Xiaoyu Yang
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuhui Ci
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Peng Zhu
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tianying Chen
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Feiyun Li
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yanjun Tang
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
18
|
Shahaban OPS, Khasherao BY, Shams R, Dar AH, Dash KK. Recent advancements in development and application of microbial cellulose in food and non-food systems. Food Sci Biotechnol 2024; 33:1529-1540. [PMID: 38623437 PMCID: PMC11016021 DOI: 10.1007/s10068-024-01524-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 04/17/2024] Open
Abstract
Microbial cellulose is a fermented form of very pure cellulose with a fibrous structure. The media rich in glucose or other carbon sources are fermented by bacteria to produce microbial cellulose. The bacteria use the carbon to produce cellulose, which grows as a dense, gel-like mat on the surface of the medium. The product was then collected, cleaned, and reused in various ways. The properties of microbial cellulose, such as water holding capacity, gas permeability, and ability to form a flexible, transparent film make it intriguing for food applications. Non-digestible microbial cellulose has been shown to improve digestive health and may have further advantages. It is also very absorbent, making it a great option for use in wound dressings. The review discusses the generation of microbial cellulose and several potential applications of microbial cellulose in fields including pharmacy, biology, materials research, and the food industry.
Collapse
Affiliation(s)
- O. P. Shemil Shahaban
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab India
| | - Bhosale Yuvraj Khasherao
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology Kashmir, Awantipora, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology Malda, Maligram, West Bengal India
| |
Collapse
|
19
|
Liang F, Liu C, Geng J, Chen N, Lai W, Mo H, Liu K. Chitosan-fucoidan encapsulating cinnamaldehyde composite coating films: Preparation, pH-responsive release, antibacterial activity and preservation for litchi. Carbohydr Polym 2024; 333:121968. [PMID: 38494223 DOI: 10.1016/j.carbpol.2024.121968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/19/2024]
Abstract
In this study, an edible composite film with pH-responsive release was prepared by the formation of Schiff-base imine bonds between chitosan (CS) and oxidized fucoidan (CS-FU) and encapsulating cinnamaldehyde (CA). Fourier-transform infrared, 1H nuclear magnetic resonance, X-ray photoelectron spectroscopy and gel permeation chromatography confirmed the formation of CS-FU. The result showed that, oxidation degree of FU, degrees of substitution, average molecular weight and yield of CS-FU were 25.57 %, 10.48 %, 23.3094 kDa and 45.63 ± 0.64 %, respectively. Scanning electron microscopy revealed that CA was encapsulated within the CS-FU matrix. Increasing the CA content could improve the mechanical properties and ultraviolet and visible-light resistances of the CS-FU coating films but enhance their water vapor permeabilities. The release of CA increased as the pH decreased, and the antibacterial rate at pH 5 was 2.3-fold higher than that at pH 7, indicating good pH-responsive release and antibacterial properties in mildly acidic environments. Owing to their excellent properties, the CA/CS-FU-0.1 coating films maintained the appearance and quality indices of litchis for at least eight days. Hence, multifunctional composite coating films are prospective eco-friendly and intelligently responsive controlled-release packaging materials for fruit preservation.
Collapse
Affiliation(s)
- Fengyan Liang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China.
| | - Chusi Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China
| | - Jinwen Geng
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China; School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Nachuan Chen
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China
| | - Weida Lai
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China
| | - Haitong Mo
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China.
| |
Collapse
|
20
|
Thivya P, Gururaj PN, Reddy NBP, Rajam R. Recent advances in protein-polysaccharide based biocomposites and their potential applications in food packaging: A review. Int J Biol Macromol 2024; 268:131757. [PMID: 38657934 DOI: 10.1016/j.ijbiomac.2024.131757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
This review addresses the current trend of replacing petroleum-based polymers in food packaging with bio-based alternatives, specifically focusing on proteins and polysaccharides. While these biopolymers exhibit excellent film-forming properties and are abundant in nature, their individual use in packaging lacks ideal plastic-like characteristics, especially in terms of mechanical and barrier properties. A recent solution involves the formulation of biocomposites through the reinforcement of one biopolymer with another (e.g., protein with a polysaccharide), significantly enhancing the physical, mechanical, and barrier properties of packaging materials. The review concentrates on the integration of proteins and polysaccharides in biocomposite materials, emphasizing their potential applications in active and intelligent food packaging systems. It covers sources, manufacturing methods, interaction mechanisms, recent developments, perspectives, and opportunities. The exploration extends to practical implementations of these biocomposites in enhancing food quality, safety, and shelf life-a green technological approach contributing to the reduction of food waste and loss.
Collapse
Affiliation(s)
- P Thivya
- Department of Food Technology, Kalasalingam Academy of Research and Education (KARE), Krishnankoil, Virudhunagar, Tamilnadu, India.
| | - P N Gururaj
- Department of Food Science and Technology, Hamelmalo Agricultural College, Hamelmalo, Zoba-Anseba, Eritrea
| | - N Bhanu Prakash Reddy
- Department of Food Process Engineering, National Institute of Food Technology, Entrepreneurship and Management, (NIFTEM-T), Thanjavur, Tamil Nadu, India
| | - R Rajam
- Department of Food Technology, Kalasalingam Academy of Research and Education (KARE), Virudhunagar 626126, Tamilnadu, India
| |
Collapse
|
21
|
Huo J, Lv X, Duan Q, Jiang R, Yang D, Sun L, Li S, Qian X. Antimicrobial and hydrophobic cellulose paper prepared by covalently attaching cinnamaldehyde for strawberries preservation. Int J Biol Macromol 2024; 268:131790. [PMID: 38677693 DOI: 10.1016/j.ijbiomac.2024.131790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
The demand for paper-based packaging materials as an alternative to incumbent disposable petroleum-derived polymers for food packaging applications is ever-growing. However, typical paper-based formats are not suitable for use in unconventional applications due to inherent limitations (e.g., excessive hydrophilicity, lack antimicrobial ability), and accordingly, enabling new capabilities is necessity. Herein, a simple and environmentally friendly strategy was proposed to introduce antimicrobial and hydrophobic functions to cellulose paper through successive chemical grafting of 3-aminopropyltriethoxysilane (APS) and cinnamaldehyde (CA). The results revealed that cellulose paper not only showed long-term antibacterial effect on different bacteria, but also inhibited a wide range of fungi. Encouragingly, the modified paper, which is fluorine-free, displays a high contact angle of 119.7°. Thus, even in the wet state, the modified paper can still maintain good mechanical strength. Meanwhile, the multifunctional composite papers have excellent biocompatibility and biodegradability. Compared with ordinary cellulose paper, multifunctional composite paper can effectively prolong the shelf life of strawberries. Therefore, the multifunctional composite paper represents good application potential as a fruit packaging material.
Collapse
Affiliation(s)
- Jiaqi Huo
- Research Division for Sustainable Papermaking & Advanced Materials, Key Laboratory of Biobased Materials Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, China
| | - Xingyu Lv
- Research Division for Sustainable Papermaking & Advanced Materials, Key Laboratory of Biobased Materials Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, China
| | - Qinghui Duan
- Research Division for Sustainable Papermaking & Advanced Materials, Key Laboratory of Biobased Materials Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, China
| | - Ruyi Jiang
- Research Division for Sustainable Papermaking & Advanced Materials, Key Laboratory of Biobased Materials Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, China
| | - Dongmei Yang
- Research Division for Sustainable Papermaking & Advanced Materials, Key Laboratory of Biobased Materials Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, China; Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China.
| | - Lijian Sun
- College of Light Industry and Textile, Qiqihar University, Qiqihar, China.
| | - Shujun Li
- Research Division for Sustainable Papermaking & Advanced Materials, Key Laboratory of Biobased Materials Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, China.
| | - Xueren Qian
- Research Division for Sustainable Papermaking & Advanced Materials, Key Laboratory of Biobased Materials Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, China
| |
Collapse
|
22
|
Hong SJ, Riahi Z, Shin GH, Kim JT. Development of innovative active packaging films using gelatin/pullulan-based composites incorporated with cinnamon essential oil-loaded metal-organic frameworks for meat preservation. Int J Biol Macromol 2024; 267:131606. [PMID: 38631566 DOI: 10.1016/j.ijbiomac.2024.131606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/28/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
This study aimed to investigate the effect of cinnamon essential oil (CEO)-loaded metal-organic frameworks (CEO@MOF) on the properties of gelatin/pullulan (Gel/Pull)-based composite films (Gel/Pull-based films). The incorporation of CEO@MOF into Gel/Pull-based films demonstrated significant antimicrobial activity against S. aureus, S. enterica, E. coli, and L. monocytogenes. Additionally, CEO@MOF integrated film exhibited a 98.16 % ABTS radical scavenging, with no significant change in the mechanical properties of the neat Gel/Pull film. The UV blocking efficiency of the composite films increased significantly from 81.38 to 99.56 % at 280 nm with the addition of 3 wt% CEO@MOF. Additionally, Gel/Pull/CEO@MOF films effectively extended the shelf life of meat preserved at 4 °C by reducing moisture loss by 3.35 %, maintaining the pH within the threshold limit (6.2), and inhibiting bacterial growth by 99.9 %. These results propose that CEO@MOF has significant potential as an effective additive in active packaging to improve shelf life and food safety.
Collapse
Affiliation(s)
- Su Jung Hong
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Zohreh Riahi
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gye Hwa Shin
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea.
| | - Jun Tae Kim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
23
|
Huang L, Zhang D, Bu N, Zhong Y, Tan P, Lin H, Pang J, Mu R. Pullulan nanofibrous films incorporated with W/O emulsions via microfluidic solution blow spinning technology. Int J Biol Macromol 2024; 263:130437. [PMID: 38412935 DOI: 10.1016/j.ijbiomac.2024.130437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
In this work, pullulan (PUL) nanofibrous films incorporated with water-in-oil emulsions (PE) were prepared by microfluidic blowing spinning (MBS). The microstructures of nanofibers were characterized by scanning electron microscopy (SEM), fourier transform infrared (FT-IR), and X-ray diffraction (XRD). With the addition of W/O emulsions, the thermal stability, mechanical, and water barrier properties of PUL nanofibers were improved. Increases in emulsion content significantly affected the antioxidant and antimicrobial properties of nanofibrous films. ABTS and DPPH free radical scavenging rates increased from 10.26 % and 8.57 % to 60.66 % and 57.54 %, respectively. The inhibition zone of PE nanofibers against E. coli and S. aureus increased from 11.00 to 20.00 and from 15.67 to 21.17 mm, respectively. In addition, we investigated the freshness effectiveness of PE nanofibrous films on fresh-cut apples. PE nanofibrous films significantly maintained the firmness, and reduced the weight loss and browning index of the fresh-cut apple, throughout the 4 days of storage. Thus, the PE nanofibrous films exhibited good potential to prolong the shelf life of fresh-cut fruit and promote the development of active food packaging.
Collapse
Affiliation(s)
- Liying Huang
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Di Zhang
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Nitong Bu
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuanbo Zhong
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Pingping Tan
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Huanglong Lin
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jie Pang
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Ruojun Mu
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
24
|
Zhou Y, Zheng L, Chen X, Huang Y, Essawy H, Du G, Zhou X, Zhang J. Developing high performance biodegradable film based on crosslinking of cellulose acetate and tannin using caprolactone. Int J Biol Macromol 2024; 262:130067. [PMID: 38336318 DOI: 10.1016/j.ijbiomac.2024.130067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
The use of metal catalysts during the production process of cellulose acetate (CA) film can have an impact on the environment, due to their toxicity. Diphenyl phosphate (DPP) was used instead of toxic metal catalyst to react with cellulose acetate, tannin (T) and caprolactone (CL) for preparation of cellulose acetate-caprolactone-tannin (CA-CL-T) film. The results show that DPP can produce a cross-linked network structure composed of tannin, caprolactone and cellulose acetate. The maximum molecular weight reached 113,260 Da. The introduction of tannin and caprolactone into cellulose acetate caused the resulting CA-CL-T film acquire excellent strengthening/toughening effect, in which a tensile strength of 23 MPa and elongation at break of 18 % were attained. More importantly, the resistance of the film to UV radiation was significantly improved with the tannin addition, which was corroborated by the CA-CL-T film still exhibiting a tensile strength of 13 MPa and elongation at break around 13 % after continuous exposure to UV radiation for 9 days. On the other hand, the insertion of caprolactone provoked enhancement of the overall moisture resistance. Five days treatment of the films with Penicillium sp. induced gradual drop in quality, indicating the CA-CL-T film show response to biodegradation. In all, the effective crosslinking between the components of the developed material is responsible for the acquired set of these distinct characteristics.
Collapse
Affiliation(s)
- Yunxia Zhou
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; Research Institute of Wood Industry, Chinese Academy of Forestry, Haidian, 100091 Beijing, China
| | - LuLu Zheng
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Xinyi Chen
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Yuxiang Huang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Haidian, 100091 Beijing, China.
| | - Hisham Essawy
- Department of Polymers and Pigments, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Guanben Du
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Xiaojian Zhou
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China.
| | - Jun Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
25
|
Zhang L, Wang W, He W, Du T, Wang S, Hu P, Pan B, Jin J, Liu L, Wang J. A tailored slow-release film with synergistic antibacterial and antioxidant activities for ultra-persistent preservation of perishable products. Food Chem 2024; 430:136993. [PMID: 37527577 DOI: 10.1016/j.foodchem.2023.136993] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 08/03/2023]
Abstract
Rapid decrease in antibacterial efficacy of existing active packages is difficult to promisingly prevent microbial infection during the storage of perishable products. Here, we pioneered an advanced ZnO-doped hollow carbon-encapsulated curcumin (ZHC-Cur)-chitosan (CS) slow-release film (ZHC-Cur-CS) with "nano-barricade" structure through demand-oriented tailoring of the structure and components of zeolitic imidazolate framework-8 (ZIF-8) carrier. Such an exquisite structure realized the effective sustained release of Curcumin through the dual complexity of diffusion pathway by the disordered hierarchical pore structure and steric hindrance. Prepared ZHC-Cur-CS film exhibited boosting bactericidal and antioxidant abilities by virtue of the functional synergy between curcumin and ZnO. Thus, ZHC-Cur-CS film demonstrated excellent preservation performance by significantly prolonging the shelf life of Citrus (∼2.4 times). Furthermore, the upgraded mechanical strength, improved barrier ability, and proven safety laid the foundation for its practical application. These satisfactory properties underscore the applicability of ZHC-Cur-CS film for the efficient preservation of perishable products.
Collapse
Affiliation(s)
- Liang Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wenze Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wen He
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Shaochi Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Puyuan Hu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Bing Pan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jingjing Jin
- Institute of Water-saving Agriculture in Arid Areas of China, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Lizhi Liu
- Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA..
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| |
Collapse
|
26
|
Liu S, Zhao Y, Xu M, Wen J, Wang H, Yan H, Gao X, Niu B, Li W. Antibacterial photodynamic properties of silver nanoparticles-loaded curcumin composite material in chitosan-based films. Int J Biol Macromol 2024; 256:128014. [PMID: 37951439 DOI: 10.1016/j.ijbiomac.2023.128014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
In order to cope with the increasingly severe food contamination and safety problems, a powerful sterilization of food packaging material is urgently needed. Chitosan (CS) has potential applications in food packaging due to its good film-forming properties, but its antibacterial activity is not sufficient to meet the needs in practical applications. Silver nanoparticles (AgNPs) have the problem of weak immediate antibacterial activity as a broad-spectrum antibacterial agent. Therefore, in this study, AgNPs@GA@Cur-POTS (AGCP) composite antibacterial system was prepared by combining AgNPs with antibacterial photodynamic therapy using gallic acid (GA) as a reducing agent, curcumin (Cur) as a photosensitizer and perfluorosilane (POTS) for surface modification. The results showed that AGCP could produce a large number of reactive oxygen species under blue light irradiation, killing >90 % of E. coli and S. aureus within 2 h. Subsequently, the composite film of CS loaded with AGCP (CS/AGCP) was prepared by the flow-delay method. The CS/AGCP composite film exhibited excellent barrier properties and antioxidant activity, while its antibacterial rates against E. coli and S. aureus reached 98.44 ± 1.27 % and 99.11 ± 0.24 %, respectively, while the OD630 values of the two groups of bacteria treated with it showed no significant increase in incubation for up to 132 h, exhibiting remarkable and sustained antibacterial effects. Taken together, this work will provide a new strategy for antibacterial food packaging.
Collapse
Affiliation(s)
- Siqun Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China
| | - Yanzhen Zhao
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China
| | - Meirong Xu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China
| | - Jiaxin Wen
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China
| | - Huifang Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China
| | - Hong Yan
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China
| | - Xianghua Gao
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China
| | - Baolong Niu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China.
| | - Wenfeng Li
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China.
| |
Collapse
|
27
|
Mosaffa E, Patel D, Ramsheh NA, Patel RI, Banerjee A, Ghafuri H. Bacterial cellulose microfiber reinforced hollow chitosan beads decorated with cross-linked melamine plates for the removal of the Congo red. Int J Biol Macromol 2024; 254:127794. [PMID: 37923035 DOI: 10.1016/j.ijbiomac.2023.127794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/12/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
In this epoch, the disposal of multipollutant wastewater inevitably compromises life on Earth. In this study, the inclusion of Bacterial cellulose microfilaments reinforced chitosan adorned with melamine 2D plates creates a unique 3D bead structure for anionic dye removal. The establishment of an imine network between melamine and chitosan, along with the quantity of inter- and intra‑hydrogen bonds, boosts the specific surface area to 106.68 m2.g-1. Removal efficiency and in-depth comprehension of synthesized adsorbent characteristics were assessed using batch adsorption experiments and characterization methods. Additionally, pH, adsorbent quantity, time, beginning concentration of solution, and temperature were analyzed and optimized as adsorption essential factors. Owing to the profusion of hydroxyl, amine, imine functional groups and aromatic rings, the synthesized adsorbent intimated an astonishing maximum adsorption capacity of 3168 mg.g-1 in Congo red dye removal at pH 5.5. Based on the kinetic evaluation, pseudo-second-order (R2 = 0.999), pseudo-first-order (R2 = 0.964), and Avrami (R2 = 0.986) models were well-fitted with the kinetic results among the seven investigated models. The isothermal study reveals that the adsorption mechanism predominantly follows the Redlich-Peterson (R2 = 0.996), Koble-Carrigan, and Hill isotherm models (R2 = 0.994). The developed semi-natural sorbent suggests high adsorption capacity, which results from its exceptional structure, presenting promising implications for wastewater treatment.
Collapse
Affiliation(s)
- Elias Mosaffa
- Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujrat, India; P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), 388 421, Anand, Gujrat, India; Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846 Tehran, Iran
| | - Dhruvi Patel
- Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujrat, India; P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), 388 421, Anand, Gujrat, India
| | - Nasim Amiri Ramsheh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846 Tehran, Iran
| | - Rishikumar Indravadan Patel
- Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujrat, India; P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), 388 421, Anand, Gujrat, India
| | - Atanu Banerjee
- Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujrat, India.
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846 Tehran, Iran
| |
Collapse
|
28
|
Adhikary ND, Bains A, Sridhar K, Kaushik R, Chawla P, Sharma M. Recent advances in plant-based polysaccharide ternary complexes for biodegradable packaging. Int J Biol Macromol 2023; 253:126725. [PMID: 37678691 DOI: 10.1016/j.ijbiomac.2023.126725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Polysaccharide-based packaging has been directed toward the development of technologies for the generation of packaging with biodegradable materials that can serve as substitutes for conventional packaging. Polysaccharides are reliable sources of edible packaging materials with excellent renewability, biodegradability, and bio-compatibility as well as antioxidant and antimicrobial activities. Apart from these properties, packaging film developed from a single polysaccharide has various disadvantages due to undesirable properties. Thus, to overcome these problems, researchers focused on ternary blend-based bio-packaging instead of the primary and binary complex to improve their characteristics and properties. The review emphasizes the extraction of polysaccharides and their combination with other polymers to provide desirable characteristics and physico-mechanical properties of the biodegradable film which will upgrade the green packaging technology in the future generation This review also explores the advancement of ternary blend-based biodegradable film and their application in foods with different requirements and the future aspects for developing advanced biodegradable film. Moreover, the review concludes that cellulose, modified starch, and another plant-based polysaccharide film mostly provides good gas barrier property and better tensile strength, which can be used as a safeguard of perishable and semi-perishable foods which brings them closer to replacing commercial synthetic packaging.
Collapse
Affiliation(s)
- Nibedita Das Adhikary
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Ravinder Kaushik
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India.
| | - Minaxi Sharma
- CARAH ASBL, Rue Paul Pastur, 11, Ath - 7800, Belgium.
| |
Collapse
|
29
|
Liao W, Liu X, Zhao Q, Lu Z, Feng A, Sun X. Physicochemical, antibacterial and food preservation properties of active packaging films based on chitosan/ε-polylysine-grafted bacterial cellulose. Int J Biol Macromol 2023; 253:127231. [PMID: 37804899 DOI: 10.1016/j.ijbiomac.2023.127231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/23/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
To address the environmental and food contamination issues caused by plastics and microorganisms, antimicrobial films using natural polymers has attracted enormous attention. In this work, we proposed a green, convenient and fast approach to prepare antimicrobial films from chitosan (CS), bacterial cellulose (BC) and ε-polylysine (ε-PL). The effects of different concentrations of ε-PL (0 %, 0.25 %, 0.5 %, 0.75 %, 1 %, w/v) on the physicochemical properties and antibacterial activity of composite films (CS-DABC-x%PL) were systematically investigated. Furthermore, a comprehensive comparison with purely physically mixed CS-BC-x%PL films provides a deeper understanding of the subject matter. Characterization tests of the films were conducted using scanning electron microscope (SEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The results suggested that the incorporation of 0.5 % ε-PL reduced the water solubility of the composite film by 19.82 %, along with improved the tensile strength and thermal stability by 37.31 % and 28.54 %. As ε-PL concentration increased to 1 %, the antibacterial performance of the films gradually enhanced. Additionally, the CS-DABC-0.5%PL film demonstrated effectiveness in delaying the deterioration of tilapia. These findings imply that this novel green packaging material holds significant potential in food preservation due to its promising antibacterial properties.
Collapse
Affiliation(s)
- Wenying Liao
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu, 214122, China
| | - Xiaoli Liu
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu, 214122, China.
| | - Qing Zhao
- Pharmacy Departmen, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China.
| | - Zhanhui Lu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Anqi Feng
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu, 214122, China
| | - Xin Sun
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
30
|
Candra A, Darge HF, Ahmed YW, Saragi IR, Kitaw SL, Tsai HC. Eco-benign synthesis of nano‑gold chitosan-bacterial cellulose in spent ground coffee kombucha consortium: Characterization, microbiome community, and biological performance. Int J Biol Macromol 2023; 253:126869. [PMID: 37703976 DOI: 10.1016/j.ijbiomac.2023.126869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Biomaterials that are mediocre for cell adhesion have been a concern for medical purposes. In this study, we fabricated nano‑gold chitosan-bacterial cellulose (CBC-Au) via a facile in-situ method using spent ground coffee (SGC) in a kombucha consortium. The eco-benign synthesis of monodispersed gold nanoparticles (Au NPs) in modified bacterial cellulose (BC) was successfully achieved in the presence of chitosan (CHI) and a symbiotic culture of bacteria and yeast (SCOBY). The dominant microbiome community in SGC kombucha were Lactobacillaceae and Saccharomycetes. Chitosan-bacterial cellulose (CBC) and CBC-Au affected the microfibril networks in the nano cellulose structures and decreased the porosity. The modified BC maintained its crystallinity up to 80 % after incorporating CHI and Au NPs. Depth profiling using X-ray photoelectron spectroscopy (XPS) indicated that the Au NPs were distributed in the deeper layers of the scaffolds and a limited amount on the surface of the scaffold. Aspergillus niger fungal strains validated the biodegradability of each scaffold as a decomposer. Bacteriostatically CBC-Au showed better antimicrobial activity than BC, in line with the adhesion of NIH-3T3 fibroblast cells and red blood cells (RBCs), which displayed good biocompatibility performance, indicating its potential use as a medical scaffold.
Collapse
Affiliation(s)
- Andy Candra
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Haile Fentahun Darge
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada; College of Medicine and Health Science, Bahir Dar University, Bahir Dar 79, Ethiopia
| | - Yohannis Wondwosen Ahmed
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Indah Revita Saragi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Sintayehu Leshe Kitaw
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC.
| |
Collapse
|
31
|
Jafri NF, Mohd Salleh K, Ahmad Ghazali N, Nyak Mazlan NS, Ab Halim NH, Zakaria S. Effects of carboxymethyl cellulose fiber formations with chitosan incorporation via coating and mixing processes. Int J Biol Macromol 2023; 253:126971. [PMID: 37729993 DOI: 10.1016/j.ijbiomac.2023.126971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/23/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
To date, the utilization of carboxymethyl cellulose (CMC) fibers are only restricted to weak mechanical application such as wound dressing. Physically, CMC has a weak mechanical strength due to the high hydrophilicity trait. However, this flaw was saved by the extensive number of reactive functional groups, allowing this macromolecule to form linkages with chitosan to ensure its versatility. This work successfully fabricated CMC-chitosan fiber via dissolution, crosslinking, dry-jet wet-spinning extrusion, and coagulation processes. Chitosan was constituted with CMC fiber in two approaches, coating, and inclusion at various concentrations. Morphologically, chitosan incorporation has triggered agglomerations and roughness toward CMC fibers (CMCF). Chemically, the interaction between CMC and chitosan was proved through FTIR analysis at peaks 1245 cm-1 (ECH covalent crosslinking), while 3340 cm-1 and 1586 cm-1 were due to ionic and hydrogen bonding. The result from analysis showed that at higher chitosan concentrations, the chitosan-included CMC fiber (CMCF-I) and chitosan-coated CMC fiber (CMFC) were mechanically enhanced (up to 86.77 and 82.72 MPa), thermally more stable (33 % residual mass), and less hydrophilic compared to the plain CMCF. The properties of CMC-chitosan fibers have opened up vast possible applications, especially as a reinforcement in a watery medium such as a hydrogel.
Collapse
Affiliation(s)
- Nur Fathihah Jafri
- Bioresource and Biorefinery Laboratory, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Kushairi Mohd Salleh
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Nursyamimi Ahmad Ghazali
- Bioresource and Biorefinery Laboratory, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Nyak Syazwani Nyak Mazlan
- Bioresource and Biorefinery Laboratory, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Nurul Husna Ab Halim
- Bioresource and Biorefinery Laboratory, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Sarani Zakaria
- Bioresource and Biorefinery Laboratory, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
32
|
Bai Y, Jing Z, Ma R, Wan X, Liu J, Huang W. A critical review of enzymes immobilized on chitosan composites: characterization and applications. Bioprocess Biosyst Eng 2023; 46:1539-1567. [PMID: 37540309 DOI: 10.1007/s00449-023-02914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
Enzymes with industrial significance are typically used in biological processes. However, instability, high sensitivity, and impractical recovery are the major drawbacks of enzymes in practical applications. In recent years, the immobilization technology has attracted wide attention to overcoming these restrictions and improving the efficiency of enzyme applications. Chitosan (CS) is a unique functional substance with biocompatibility, biodegradability, non-toxicity, and antibacterial properties. Chitosan composites are anticipated to be widely used in the near future for a variety of purposes, including as supports for enzyme immobilization, because of their advantages. Therefor this review explores the effects of the chitosan's structure, molecular weight, degree of deacetylation on the enzyme immobilized, effect of key factors, and the enzymes immobilized on chitosan based composites for numerous applications, including the fields of biosensor, biomedical science, food industry, environmental protection, and industrial production. Moreover, this study carefully investigates the advantages and disadvantages of using these composites as well as their potential in the future.
Collapse
Affiliation(s)
- Yuan Bai
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China.
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China.
| | - Zongxian Jing
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Rui Ma
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Xinwen Wan
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Jie Liu
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Weiting Huang
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
33
|
Bu N, Wang L, Zhang D, Xiao H, Liu X, Chen X, Pang J, Ma C, Mu R. Highly Hydrophobic Gelatin Nanocomposite Film Assisted by Nano-ZnO/(3-Aminopropyl) Triethoxysilane/Stearic Acid Coating for Liquid Food Packaging. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37881864 DOI: 10.1021/acsami.3c10757] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Biodegradable gelatin (G) food packaging films are in increasing demand as the substitution of petroleum-based preservative materials. However, G packaging films universally suffer from weak hydrophobicity in practical applications. Constructing a hydrophobic micro/nanocoating with low surface energy is an effective countermeasure. However, the poor compatibility with the hydrophilic G substrate often leads to the weak interfacial adhesion and poor durability of the hydrophobic coating. To overcome this obstacle, we used (3-aminopropyl) triethoxysilane (APS) as an interfacial bridging agent to prepare a highly hydrophobic, versatile G nanocomposite film. Specifically, tannic acid (TA)-modified nanohydroxyapatite (n-HA) particles (THA) were introduced in G matrix (G-THA) to improve the mechanical properties. Micro/nanostructure with low surface energy composed of nanozinc oxide (Nano-ZnO)/APS/stearic acid (SA) (NAS) was constructed on the surface of G-THA film (G-THA/NAS) through one-step spray treatment. Consequently, as-prepared G-THA/NAS film presented excellent mechanics (tensile strength: 7.6 MPa, elongation at break: 292.7%), water resistance ability (water contact angle: 150.4°), high UV-shielding (0% transmittance at 200 nm), degradability (100% degradation rate after buried in the natural soil for 15 days), antioxidant (78.8% of 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity), and antimicrobial (inhibition zone against Escherichia coli: 15.0 mm and Staphylococcus aureus: 16.5 mm) properties. It should be emphasized that the bridging function of APS significantly improves the interfacial adhesion ability of the NAS coating with more than 95% remaining area after the cross-cut adhesion test. Meanwhile, the G-THA/NAS film could maintain stable and long-lasting hydrophobic surfaces against UV radiation, high temperature, and abrasion. Based on these multifunctional properties, the G-THA/NAS film was successfully applied as a liquid packaging material. To sum up, we provide a feasible and effective method to prepare high-performance green packaging films.
Collapse
Affiliation(s)
- Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Di Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huimin Xiao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoman Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xianrui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Ma
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
34
|
Li Q, Guo Y, Wu M, Deng F, Feng J, Liu J, Liu S, Ouyang C, Duan W, Yi S, Liao G. Fluorinated Polyimide/Allomelanin Nanocomposites for UV-Shielding Applications. Molecules 2023; 28:5523. [PMID: 37513395 PMCID: PMC10386243 DOI: 10.3390/molecules28145523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
A series of highly fluorinated polyimide/allomelanin nanoparticles (FPI/AMNPs) films were prepared with FPI as the matrix and AMNPs as the filler. Due to the formation of hydrogen bonds, significantly reinforced mechanical and UV-shielding properties are acquired. Stress-strain curves demonstrated a maximum tensile strength of 150.59 MPa and a fracture elongation of 1.40% (0.7 wt.% AMNPs), respectively, 1.78 and 1.56× that of pure FPI. The measurements of the UV-vis spectrum, photodegradation of curcumin and repeated running tests confirmed the splendid UV-shielding capabilities of FPI/AMNPs films. The enhancement mechanisms, such as synergistic UV absorption of the charge transfer complexes in FPI and AMNPs and photothermal conversion, were the reasons for its exceptional UV shielding. The excellent comprehensive properties above enable FPI/AMNPs nanocomposites to be potential candidates in the field of UV shielding.
Collapse
Affiliation(s)
- Qing Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Yujuan Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Meijia Wu
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Fei Deng
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Jieying Feng
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Jiafeng Liu
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Sheng Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Chaoliu Ouyang
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Wengui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Shunmin Yi
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Guangfu Liao
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
35
|
Ben Amor I, Hemmami H, Laouini SE, Zeghoud S, Benzina M, Achour S, Naseef A, Alsalme A, Barhoum A. Use of Insect-Derived Chitosan for the Removal of Methylene Blue Dye from Wastewater: Process Optimization Using a Central Composite Design. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5049. [PMID: 37512323 PMCID: PMC10383991 DOI: 10.3390/ma16145049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Insects are a readily available source of chitosan due to their high reproductive rates, ease of breeding, and resistance to changes in their ecosystem. This study aimed to extract chitosan from several widespread insects: Blaps lethifera (CS-BL), Pimelia fernandezlopezi (CS-PF), and Musca domestica (CS-MD). The study was also extended to using the obtained chitosans in removing methylene blue dye (MB) from wastewater. The source of the chitosan, the initial concentration of MB dye, and the reaction time were chosen as the working parameters. The experiments were designed using a central composite design (CCD) based on the dye removal efficiency as the response variable. The experimental work and statistical calculation of the CCD showed that the dye removal efficiency ranged from 35.9% to 88.7% for CS-BL, from 18.8% to 47.1% for CS-PF, and from 10.3% to 29.0% for CS-MD at an initial MB concentration of 12.79 mg/L. The highest methylene blue dye removal efficiency was 88.7% for CS-BL at a reaction time of 120 min. This indicates that the extraction of chitosan from insects (Blaps lethifera) and its application in dye removal is a promising, environmentally friendly, economical, biodegradable, and cost-effective process. Furthermore, the CCD is a statistical experimental design technique that can be used to optimize process variables for removing other organic pollutants using chitosan.
Collapse
Affiliation(s)
- Ilham Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
| | - Hadia Hemmami
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
| | - Salah Eddine Laouini
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria
- Laboratory of Biotechnology Biomaterials and Condensed Materials, Faculte de la Technologie, University of El Oued, El Oued 39000, Algeria
| | - Soumeia Zeghoud
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
| | - Mourad Benzina
- Water, Energy and Environment Laboratory, National School of Engineers of Sfax, University of Sfax, Sfax 3083, Tunisia
| | - Sami Achour
- Institut Supérieur de Biotechnologie de Monastir ISBM, Monastir 5000, Tunisia
| | - Abanoub Naseef
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
36
|
Varamesh A, Abraham BD, Wang H, Berton P, Zhao H, Gourlay K, Minhas G, Lu Q, Bryant SL, Hu J. Multifunctional fully biobased aerogels for water remediation: Applications for dye and heavy metal adsorption and oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131824. [PMID: 37327610 DOI: 10.1016/j.jhazmat.2023.131824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023]
Abstract
Water ecosystem contamination from industrial pollutants is an emerging threat to both humans and native species, making it a point of global concern. In this work, fully biobased aerogels (FBAs) were developed by using low-cost cellulose filament (CF), chitosan (CS), citric acid (CA), and a simple and scalable approach, for water remediation applications. The FBAs displayed superior mechanical properties (up to ∼65 kPa m3 kg-1 specific Young's modulus and ∼111 kJ/m3 energy absorption) due to CA acting as a covalent crosslinker in addition to the natural hydrogen bonding and electrostatic interactions between CF and CS. The addition of CS and CA increased the variety of functional groups (carboxylic acid, hydroxyl and amines) on the materials' surface, resulting in super-high dye and heavy metal adsorption capacities (619 mg/g and 206 mg/g for methylene blue and copper, respectively). Further modification of FBAs with a simple approach using methyltrimethoxysilane endowed aerogel oleophilic and hydrophobic properties. The developed FBAs showed a fast performance in water and oil/organic solvents separation with more than 96% efficiency. Besides, the FBA sorbents could be regenerated and reused for multiple cycles without any significant impact on their performance. Moreover, thanks to the presence of amine groups by addition of CS, FBAs also displayed antibacterial properties by preventing the growth of Escherichia coli on their surface. This work demonstrates the preparation of FBAs from abundant, sustainable, and inexpensive natural resources for applications in wastewater purification.
Collapse
Affiliation(s)
- Amir Varamesh
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Brett David Abraham
- Department of Biomedical Engineering, University of Calgary, Calgary T2N 1N4, Canada; Pharmaceutical Production Research Facility, University of Calgary, Calgary T2N 1N4, Canada
| | - Hui Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Paula Berton
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Keith Gourlay
- Performance BioFilaments, 700 West Pender Street, Vancouver V6C 1G8, Canada
| | - Gurminder Minhas
- Performance BioFilaments, 700 West Pender Street, Vancouver V6C 1G8, Canada
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Steven L Bryant
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada.
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada.
| |
Collapse
|
37
|
A comprehensive review of chitosan applications in paper science and technologies. Carbohydr Polym 2023; 309:120665. [PMID: 36906368 DOI: 10.1016/j.carbpol.2023.120665] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Using environmentally friendly biomaterials in different aspects of human life has been considered extensively. In this respect, different biomaterials have been identified and different applications have been found for them. Currently, chitosan, the well-known derivative of the second most abundant polysaccharide in the nature (i.e., chitin), has been receiving a lot of attention. This unique biomaterial can be defined as a renewable, high cationic charge density, antibacterial, biodegradable, biocompatible, non-toxic biomaterial with high compatibility with cellulose structure, where it can be used in different applications. This review takes a deep and comprehensive look at chitosan and its derivative applications in different aspects of papermaking.
Collapse
|
38
|
Chen Z, Aziz T, Sun H, Ullah A, Ali A, Cheng L, Ullah R, Khan FU. Advances and Applications of Cellulose Bio-Composites in Biodegradable Materials. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2023; 31:2273-2284. [PMID: 0 DOI: 10.1007/s10924-022-02561-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 05/27/2023]
|
39
|
Liu YQ, Song QW, Mo CR, Yu WW, Hu CY. Effect of neutralization treatment on properties of chitosan/bamboo leaf flavonoids/nano-metal oxide composite films and application of films in antioxidation of rapeseed oil. Int J Biol Macromol 2023; 242:124951. [PMID: 37211071 DOI: 10.1016/j.ijbiomac.2023.124951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Neutralization treatment improved the slow-release antioxidant food packaging function of chitosan (CS)/bamboo leaf flavone (BLF)/nano-metal oxides composite films. The film cast from the CS composite solution neutralized by KOH solution had good thermal stability. The elongation at break of the neutralized CS/BLF film was increased by about 5 times, which provided the possibility for its packaging application. After 24 h of soaking in different pH solutions, the unneutralized films swelled severely and even dissolved, while the neutralized films maintained the basic structure with a small degree of swelling, and the release trend of BLF conformed to the logistic function (R2 ≥ 0.9186). The films had a good ability to resist free radicals, which was related to the release amount of BLF and the pH of the solution. The antimicrobial neutralized CS/BLF/nano-ZnO film, like the nano-CuO and Fe3O4 films, were effective in inhibiting the increase in peroxide value and 2-thiobarbituric acid induced by thermal oxygen oxidation of rapeseed oil and had no toxicity to normal human gastric epithelial cells. Therefore, the neutralized CS/BLF/nano-ZnO film is likely to become an active food packaging material for oil-packed food, which can prolong the shelf life of packaged food.
Collapse
Affiliation(s)
- Yi-Qi Liu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, Guangdong, China
| | - Qiao-Wei Song
- Packaging Engineering Institute, Jinan University, Qianshan Road 206, Zhuhai, Guangdong 519070, China
| | - Chun-Ru Mo
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, Guangdong, China
| | - Wen-Wen Yu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, Guangdong, China
| | - Chang-Ying Hu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, Guangdong, China.
| |
Collapse
|
40
|
Liu J, Wang Y, Liu Y, Shao S, Zheng X, Tang K. Synergistic effect of nano zinc oxide and tea tree essential oil on the properties of soluble soybean polysaccharide films. Int J Biol Macromol 2023; 239:124361. [PMID: 37028629 DOI: 10.1016/j.ijbiomac.2023.124361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Soluble soybean polysaccharide (SSPS)-based composite films with the addition of nano zinc oxide (nZnO, 5 wt% based on SSPS) and tea tree essential oil (TTEO, 10 wt% based on SSPS) were developed by the casting method. The effect of the combination of nZnO and TTEO on the microstructure and physical, mechanical and functional properties of SSPS films was evaluated. The results showed that the SSPS/TTEO/nZnO film exhibited enhanced water vapor barrier properties, thermal stability, water resistance, surface wettability, and total color difference, and almost completely prevented ultraviolet light transmission. The addition of TTEO and nZnO had no significant effect on the tensile strength and elongation at break of the films, but decreased the percentage of light transmittance of the films at 600 nm from 85.5 % to 10.1 %. The DPPH radical scavenging activity of the films significantly increased from 46.8 % (SSPS) to 67.7 % (SSPS/TTEO/nZnO) due to the presence of TTEO. Scanning electron microscopy analysis indicated that nZnO and TTEO were evenly dispersed in the SSPS matrix. The synergistic effect of nZnO and TTEO endowed the SSPS film with excellent antibacterial activity against E. coli and S. aureus, suggesting that the SSPS/TTEO/nZnO film could be a promising material for active packaging applications.
Collapse
Affiliation(s)
- Jie Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Yiwei Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yanchun Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Shuaiqi Shao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Xuejing Zheng
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
41
|
Du N, Huang LY, Xiong YS, Tian R, Yin JY, Cao DY, Hu DB, Lu HQ, Li W, Li K. Micro-mechanism insights into the adsorption of anionic dyes using quaternary ammonium-functionalised chitosan aerogels. Carbohydr Polym 2023; 313:120855. [PMID: 37182955 DOI: 10.1016/j.carbpol.2023.120855] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/13/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
The development of adsorbents with outstanding adsorption capacities, wide versatility, and excellent recyclability for the removal of organic dyes remains a challenge. In this study, a quaternised chitosan-based aerogel (QCSA) was fabricated via a facile method to effectively treat concomitant anionic dyes. Porous QCSA with high hydrophilicity, nontoxicity, excellent thermal stability, and sustainability exhibits adsorption properties superior to most previously reported adsorbents. The equilibrium adsorption capacities for Congo red, Sunset yellow, and Methyl orange were 1259.6, 550.2, and 607.5 mg/g, respectively. Notably, the spent QCSA exhibits excellent cyclic performance. The multilayer adsorption, external-internal mass transfer resistance, and adsorption on the active site models were employed to enable a more accurate description of the dynamic characteristics, confirming that double-layer chemisorption was the dominant process. A quantitative analysis of the electrostatic potential and the independent gradient model further verified that electrostatic interactions, hydrogen bonding, and van der Waals forces led to the highly efficient adsorption of dye molecules. Therefore, the eco-friendly and recyclable QCSA is a promising adsorbent for trapping anionic dyes from aquatic systems.
Collapse
|
42
|
Liu X, Xu Y, Liao W, Guo C, Gan M, Wang Q. Preparation and characterization of chitosan/bacterial cellulose composite biodegradable films combined with curcumin and its application on preservation of strawberries. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Rodrigues PR, Nascimento LES, Godoy HT, Vieira RP. Improving chitosan performance in the simultaneous adsorption of multiple polycyclic aromatic hydrocarbons by oligo(β-pinene) incorporation. Carbohydr Polym 2023; 302:120379. [PMID: 36604057 DOI: 10.1016/j.carbpol.2022.120379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
The occurrence of persistent organic pollutants in aquatic bodies, namely polycyclic aromatic hydrocarbons (PAHs), has been increasingly detected. The presence of such contaminants represents a serious threat to human health due to their toxicity. Therefore, aiming to provide a novel and efficient alternative for PAHs' removal from water, the present study assesses the effect of oligo(β-pinene) blended with chitosan for the adsorption of these pollutants. Oligo(β-pinene) with phenyl end-groups was synthesized by organocatalyzed atom transfer radical polymerization (O-ATRP) and incorporated in different concentrations (6, 12, and 18 %) to chitosan films. The oligo(β-pinene) loading in the chitosan matrix impressively improved this polysaccharide adsorption capacity. The formulation containing 12 % of oligomer demonstrated a contaminant removal performance three times higher (298.82 %) than pure chitosan during only 1 h of the decontamination process. Adsorption isotherms showed an improved uptake of PAHs with the increase of the contaminants' concentration in the aqueous media due to the formation of a higher concentration gradient. Additionally, a comprehensive characterization of oligo(β-pinene)/chitosan formulation was performed to provide a better understanding of the interactions between the components of the blends. Overall, it was concluded that oligo(β-pinene)/chitosan blends can be used as a high-performance and sustainable alternative for PAHs removal.
Collapse
Affiliation(s)
- Plínio Ribeiro Rodrigues
- Department of Bioprocesses and Materials Engineering, School of Chemical Engineering, University of Campinas, 13083-852 Albert Einstein St. N. 500, Campinas, São Paulo, Brazil.
| | - Luis Eduardo Silva Nascimento
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, 13083-862 Monteiro Lobato St. n. 80, Campinas, São Paulo, Brazil
| | - Helena Teixeira Godoy
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, 13083-862 Monteiro Lobato St. n. 80, Campinas, São Paulo, Brazil
| | - Roniérik Pioli Vieira
- Department of Bioprocesses and Materials Engineering, School of Chemical Engineering, University of Campinas, 13083-852 Albert Einstein St. N. 500, Campinas, São Paulo, Brazil.
| |
Collapse
|
44
|
Casalini S, Giacinti Baschetti M. The use of essential oils in chitosan or cellulose-based materials for the production of active food packaging solutions: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1021-1041. [PMID: 35396735 PMCID: PMC10084250 DOI: 10.1002/jsfa.11918] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
In recent decades, interest in sustainable food packaging systems with additional functionality, able to increase the shelf life of products, has grown steadily. Following this trend, the present review analyzes the state of the art of this active renewable packaging. The focus is on antimicrobial systems containing nanocellulose and chitosan, as support for the incorporation of essential oils. These are the most sustainable and readily available options to produce completely natural active packaging materials. After a brief overview of the different active packaging technologies, the main features of nanocellulose, chitosan, and of the different essential oils used in the field of active packaging are introduced and described. The latest findings about the nanocellulose- and chitosan-based active packaging are then presented. The antimicrobial effectiveness of the different solutions is discussed, focusing on their effect on other material properties. The effect of the different inclusion strategies is also reviewed considering both in vivo and in vitro studies, in an attempt to understand more promising solutions and possible pathways for further development. In general, essential oils are very successful in exerting antimicrobial effects against the most diffused gram-positive and gram-negative bacteria, and affecting other material properties (tensile strength, water vapor transmission rate) positively. Due to the wide variety of biopolymer matrices and essential oils available, it is difficult to create general guidelines for the development of active packaging systems. However, more attention should be dedicated to sensory analysis, release kinetics, and synergetic action of different essential oils to optimize the active packaging on different food products. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sara Casalini
- Department of Civil, Chemical, Environmental and Materials Engineering‐DICAMUniversity of BolognaBolognaItaly
| | - Marco Giacinti Baschetti
- Department of Civil, Chemical, Environmental and Materials Engineering‐DICAMUniversity of BolognaBolognaItaly
| |
Collapse
|
45
|
Singhi H, Kumar L, Sarkar P, Gaikwad KK. Chitosan based antioxidant biofilm with waste Citrus limetta pomace extract and impregnated with halloysite nanotubes for food packaging. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
46
|
Zou Z, Ismail BB, Zhang X, Yang Z, Liu D, Guo M. Improving barrier and antibacterial properties of chitosan composite films by incorporating lignin nanoparticles and acylated soy protein isolate nanogel. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
47
|
Płoska J, Garbowska M, Pluta A, Stasiak-Różańska L. Bacterial cellulose - innovative biopolymer and possibilities of its applications in dairy industry. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
48
|
Latest Trends in Sustainable Polymeric Food Packaging Films. Foods 2022; 12:foods12010168. [PMID: 36613384 PMCID: PMC9818434 DOI: 10.3390/foods12010168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
Food packaging is the best way to protect food while it moves along the entire supply chain to the consumer. However, conventional food packaging poses some problems related to food wastage and excessive plastic production. Considering this, the aim of this work was to examine recent findings related to bio-based alternative food packaging films by means of conventional methodologies and additive manufacturing technologies, such as 3D printing (3D-P), with potential to replace conventional petroleum-based food packaging. Based on the findings, progress in the development of bio-based packaging films, biopolymer-based feedstocks for 3D-P, and innovative food packaging materials produced by this technology was identified. However, the lack of studies suggests that 3D-P has not been well-explored in this field. Nonetheless, it is probable that in the future this technology will be more widely employed in the food packaging field, which could lead to a reduction in plastic production as well as safer food consumption.
Collapse
|
49
|
Hu X, Sun Y, Zhou X, Zhang B, Guan H, Xia F, Gui S, Kong X, Li F, Ling D. Insight into Drug Loading Regulated Micellar Rigidity by Nuclear Magnetic Resonance. ACS NANO 2022; 16:21407-21416. [PMID: 36375116 DOI: 10.1021/acsnano.2c09785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The rigidity of polymeric micelles plays an important role in their biological behaviors. However, how drug loading affects the rigidity of polymeric micelles remains elusive. Herein, the indomethacin (IMC)-loaded Pluronic F127 micelle is used as a model system to illustrate the impact of drug loading on the rigidity and biological behaviors of polymeric micelles. Against expectations, micelles with moderate drug loading show higher cellular uptake and more severe cytotoxicity as compared to both high and low drug loading counterparts. Extensive one- and two-dimensional nuclear magnetic resonance (NMR) measurements are employed to reveal that the higher drug loading induces stronger interaction between IMC and hydrophilic block to boost the micellar rigidity; consequently, the moderate drug loading imparts micelles with appropriate rigidity for satisfactory cellular uptake and cytotoxicity. In summary, NMR spectroscopy is an important tool to gain insight into drug loading regulated micellar rigidity, which is helpful to understand their biological behaviors.
Collapse
Affiliation(s)
- Xi Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei230012, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, China
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China
| | - Yu Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei230012, China
| | - Xiaoqi Zhou
- Department of Chemistry, Zhejiang University, Hangzhou310027, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
- WLA Laboratories, Shanghai201203, China
| | - Hanxi Guan
- Department of Chemistry, Zhejiang University, Hangzhou310027, China
| | - Fan Xia
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, China
| | - Shuangying Gui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei230012, China
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, Hangzhou310027, China
| | - Fangyuan Li
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, China
- WLA Laboratories, Shanghai201203, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou310009, China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, China
- WLA Laboratories, Shanghai201203, China
| |
Collapse
|
50
|
Li N, Yang X, Lin D. Development of bacterial cellulose nanofibers/konjac glucomannan-based intelligent films loaded with curcumin for the fresh-keeping and freshness monitoring of fresh beef. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|