1
|
Altynov Y, Bexeitova K, Nazhipkyzy M, Azat S, Konarov A, Rakhman D, Sahiner N, Kudaibergenov K. Nanocellulose hydrogels from agricultural wastes: methods, properties, and application prospects. NANOSCALE 2025. [PMID: 40341332 DOI: 10.1039/d5nr00997a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Escalating environmental concerns and the depletion of non-renewable resources have intensified interest in sustainable and eco-friendly materials. Cellulose-based hydrogels, renowned for their biocompatibility, biodegradability, and excellent mechanical properties, have emerged as promising candidates for diverse applications, including biomedicine, agriculture, and water purification. This review focuses on methods for extracting nanocellulose from agricultural wastes and their use in creating cellulose hydrogels. Special emphasis is placed on the mechanical, chemical, thermal, and environmental properties of nanocellulose, as well as its applications in packaging materials, medical devices, biocomposites, and filtration systems. The literature review examines cellulose extraction methods, hydrogel properties, and their industrial applications. The key advantages and disadvantages of these methods are identified, and directions for future research are proposed. This work provides a comprehensive overview of the current state of research on cellulose-based hydrogels and contributes to the development of more efficient and sustainable production methods for these materials.
Collapse
Affiliation(s)
- Yerkebulan Altynov
- Satbayev University, Department of Materials Science, Nanotechnology and Engineering Physics, 22 Satbaev street, Almaty, 050013, Kazakhstan.
| | - Kalampyr Bexeitova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty, 050038, Kazakhstan
| | - Meruyert Nazhipkyzy
- Department of Chemical Physics and Material Science, Al-Farabi Kazakh National University, 71 al-Farabi Ave., Almaty, 050040, Kazakhstan
- Institute of Combustion Problems, Bogenbai batyr street 172, Almaty, 050012, Kazakhstan
- Imperial College London, Kensington, London, SW7 2AZ, UK
| | - Seitkhan Azat
- Laboratory of Engineering Profile, Satbayev University, 22 Satbaev street, Almaty, 050013, Kazakhstan
| | - Aishuak Konarov
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay batyr Ave., 010000, Kazakhstan
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., 010000, Kazakhstan
| | - Damira Rakhman
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., 010000, Kazakhstan
| | - Nurettin Sahiner
- Florida Gulf Cost University, U. A. Whitaker College of Engineering, Department of Bioengineering, Fort Myers, FL, 33965, USA
- Canakkale Onsekiz Mart University, Faculty of Sciences, Department of Chemistry, Terzioglu Campus, Canakkale, 17100, Turkey
| | - Kenes Kudaibergenov
- Satbayev University, Department of Materials Science, Nanotechnology and Engineering Physics, 22 Satbaev street, Almaty, 050013, Kazakhstan.
| |
Collapse
|
2
|
Wei D, Chen Y, Lv S, Zuo J, Liu L, Mu Y, Liu J, Wang J. One-step fabrication of dual-network cellulose-based hydrogel sensors with high flexibility and conductivity under ZnCl 2 solvent method for flexible sensing properties. Int J Biol Macromol 2025; 295:139440. [PMID: 39765296 DOI: 10.1016/j.ijbiomac.2024.139440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/05/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
Flexible smart sensing materials are gaining tremendous momentum in wearable and bionic smart electronics. To satisfy the growing demand for sustainability and eco-friendliness, biomass-based hydrogel sensors for green and biologically safe wearable sensors have attracted significant attention. In this work, we have prepared MCC/PAA/AgNWs/CNTs hydrogel sensors with excellent conductive sensing properties by a simple physical blending method. The ZnCl2 solvent system was used to dissolve the MCC, followed by introducing acrylic acid to polymerize under UV illumination. Subsequently, CNTs and AgNWs were introduced into the hydrogel network to obtain hydrogel with excellent conductive sensing and antibacterial properties. Here, the physical and chemical interactions between the components significantly improved the mechanical properties of the hydrogels, exhibiting good tensile strength (0.45 MPa), elongation at break (558 %) and adhesion properties. Hydrogel presented outstanding electrical conductivity and significantly elongation sensitive (GF = 4.73 when elongated 90-120 %). Additionally, the hydrogel was also found to have significant antimicrobial activity against both Escherichia coli and Staphylococcus aureus, and the antibacterial effect was almost 100 %. With high sensitivity, stability, and reproducibility, these hydrogel strain transducers can detect various human movements, including finger flexion, wrist movement, joint motion, and heartbeat.
Collapse
Affiliation(s)
- Dequan Wei
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ying Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shenghua Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Jingjing Zuo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Leipeng Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yanlu Mu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jinru Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiaqi Wang
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China.
| |
Collapse
|
3
|
Li X, Xu L, Gao J, Yan M, Wang Q. Highly Stretchable, Tough, and Transparent Chitin Nanofiber-Reinforced Multifunctional Eutectogels for Self-Powered Wearable Sensors. ACS Sens 2025; 10:886-896. [PMID: 39936831 DOI: 10.1021/acssensors.4c02535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Traditional conductive hydrogels have disadvantages for wearable sensors, such as poor electrical conductivity, weak mechanical properties, narrow application temperature range, and required external power supply, which limit their wide application. However, manufacturing hydrogel sensors with excellent mechanical properties and self-adhesive, temperature-resistant, and self-powered properties remains a challenge. Herein, chitin nanofiber-reinforced eutectogels (CAANF) with self-adhesive, self-healing, transparent, environment tolerant, and good mechanical properties were obtained via a simple one-pot method with the deep eutectic solvent (DES) system composed of acrylic acid, acrylamide, and choline chloride (ChCl). High-density hydrogen bond networks between CAANFs can act as strong cross-linking sites, conferring high stretchability (1680%) and elasticity. Moreover, high-density hydrogen bond networks with dynamic reversibility can provide excellent self-healing and adhesion abilities. Due to the unique properties of DES, CAANF eutectic gels also exhibit good ionic conductivity and environmental resistance, allowing the sensor to be applied over a wide temperature range (-30 to 60 °C). Additionally, CAANF-based self-powered flexible sensors can be used to detect human movement, monitor health status, and transmit signals for the encryption and decryption of information according to the Morse code. This work expands the scope of portable applications in the field of wearable electronic devices.
Collapse
Affiliation(s)
- Xiaomeng Li
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Lina Xu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Jianliang Gao
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Manqing Yan
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Qiyang Wang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| |
Collapse
|
4
|
Dai Y, Li Y, Xuan S, Dai Y, Xu T, Yu H. Triboelectric Nanogenerator-Based Flexible Acoustic Sensor for Speech Recognition. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11117-11125. [PMID: 39912319 DOI: 10.1021/acsami.4c21563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The way people interact with machines through flexible acoustic sensors is revolutionizing the way we live. However, developing a human-machine interaction acoustic sensor that simultaneously offers low cost, high stability, high fidelity, and high sensitivity remains a significant challenge. In this study, a sensor based on a sound-driven triboelectric nanogenerator was proposed. A poly(vinylidene fluoride) (PVDF)/graphene oxide (GO) composite nanofiber film was obtained as the dielectric layer through electrospinning, and copper-nickel alloy conductive fabric was used as the electrode. An imitation embroidery shed structure was designed in the shape of a ring to secure the upper and lower electrodes and the dielectric layer as a whole. Due to the porosity of the electrode, the large contact area of the dielectric layer, and the high stability of the imitation embroidery shed structure, the sensor achieves a sensitivity of 4.76 V·Pa-1 and a frequency response range of 20-2000 Hz. A multilayer attention convolutional network (MLACN) was designed for speech recognition. The designed speech recognition system achieved a 99.5% accuracy rate in recognizing common word pronunciations. The integration of sound-driven triboelectric nanogenerator-based flexible acoustic sensors with deep learning techniques holds great promise in the field of human-machine interaction.
Collapse
Affiliation(s)
- Yang Dai
- School of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Yunlong Li
- School of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Shixian Xuan
- School of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Yuheng Dai
- School of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Tao Xu
- School of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Hu Yu
- Wuhan Institute of Marine Electric Propulsion, Wuhan 430064, China
| |
Collapse
|
5
|
Cai Z, Xiao X, Wei Y, Yin J. Stretchable Polymer Hydrogels Based Flexible Triboelectric Nanogenerators for Self-Powered Bioelectronics. Biomacromolecules 2025; 26:787-813. [PMID: 39777943 DOI: 10.1021/acs.biomac.4c01709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The rapid development of flexible electronics has led to unprecedented social and economic improvements. But conventional power devices cannot adapt to the advances of flexible electronics. Triboelectric nanogenerators (TENGs) have been used as robust power sources to transform ambient mechanical energy into electricity, thus meeting the power requirements of flexible electronics. Hydrogels are widely used for soft bioelectronics owing to the decent stretchability and biocompatibility. This Review presents the recent progress in the use of hydrogels for TENGs and self-powered hydrogel bioelectronics, including hydrogel synthesis, hydrogel TENGs fabrication, and their applications in wearable electricity generation, self-powered active sensing, and therapeutics. Hydrogel-enabled TENGs are emerging as a novel form of soft bioelectronics. We provided a critical analysis of hydrogel TENGs and insights into future opportunities and directions of this rapidly evolving field. These advancements will push the boundaries of hydrogel bioelectronics and contribute to the development of personalized healthcare solutions.
Collapse
Affiliation(s)
- Zhixiang Cai
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Xiao Xiao
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Yue Wei
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junyi Yin
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Liu Y, Fu S, Jin K, Cheng Y, Li Y, Zhao Y, Liu R, Tian Y. Advances in polysaccharide-based conductive hydrogel for flexible electronics. Carbohydr Polym 2025; 348:122836. [PMID: 39562110 DOI: 10.1016/j.carbpol.2024.122836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 11/21/2024]
Abstract
Polysaccharides, being the most abundant natural polymers, play a pivotal role in the development of hydrogel materials. Polysaccharide-based conductive hydrogels have found extensive applications in flexible electronics due to their excellent conductivity and biocompatibility. This review highlights recent advancements in this area, starting with an overview of polysaccharide materials such as chitosan, cellulose, starch, cyclodextrin, alginate, hyaluronic acid, and agarose. It then explores different classifications of conductive hydrogels: ionic conductive, electronic conductive, and ionic-electronic composite types. The review also covers key characteristics of these hydrogels, including mechanical properties, self-healing, adhesion, structural color, antibacterial, responsiveness, biocompatibility and anti-swelling. Representative applications, such as flexible sensors, triboelectric nanogenerators, supercapacitors, and flexible electronic wound dressings, are summarized. Finally, the review addresses current challenges and provides guidance for future research, aiming to advance the field of polysaccharide-based conductive hydrogels in flexible electronics.
Collapse
Affiliation(s)
- Yiying Liu
- Department of Intelligent Medical Engineering, College of Life and Health Management, Shenyang City University, Shenyang 110112, China
| | - Simian Fu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Kaiming Jin
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Yugui Cheng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Yiqi Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Yunjun Zhao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Ruonan Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China.
| | - Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; Foshan Graduate School of Innovation, Northeastern University, Foshan 528300, China.
| |
Collapse
|
7
|
Al-Qahtani SD, Al-Senani GM, Alrasheedi M, Mohammed AEME. Multi-Stimuli Responsive Viologen-Imprinted Polyvinyl Alcohol and Tricarboxy Cellulose Nanocomposite Hydrogels. SENSORS (BASEL, SWITZERLAND) 2024; 24:6860. [PMID: 39517757 PMCID: PMC11548534 DOI: 10.3390/s24216860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Photochromic inks have shown disadvantages, such as poor durability and high cost. Self-healable hydrogels have shown photostability and durability. Herein, a viologen-based covalent polymer was printed onto a paper surface toward the development of a multi-stimuli responsive chromogenic sheet with thermochromic, photochromic, and vapochromic properties. Viologen polymer was created by polymerizing a dialdehyde-based viologen with a hydroxyl-bearing dihydrazide in an acidic aqueous medium. The viologen polymer was well immobilized as a colorimetric agent into a polyvinyl alcohol (PVA)/tricarboxy cellulose (TCC)-based self-healable hydrogel. The viologen/hydrogel nanocomposite films were applied onto a paper surface. The coloration measurements showed that when exposed to ultraviolet light, the orange layer printed on the paper surface switched to green. The photochromic film was used to develop anti-counterfeiting prints using the organic hydrogel composed of a PVA/TCC composite and a viologen polymer. Reversible photochromism with strong photostability was observed when the printed papers were exposed to UV irradiation. A detection limit was monitored in the range of 0.5-300 ppm for NH3(aq). The exposure to heat (70 °C) was found to reversibly initiate a colorimetric change.
Collapse
Affiliation(s)
- Salhah D. Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Ghadah M. Al-Senani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Muneera Alrasheedi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
| | | |
Collapse
|
8
|
Liu H, Zhang XF, Li M, Yao J. Attapulgite-Reinforced Cellulose Hydrogels with High Conductivity and Antifreezing Property for Flexible Sensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20986-20994. [PMID: 39321402 DOI: 10.1021/acs.langmuir.4c02244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Ionic conductive cellulose hydrogels are some of the most promising candidates for flexible sensors. However, it is difficult to simultaneously prepare cellulose hydrogels with high mechanical strength, good ionic conductivity, and antifreeze performance. In this work, a natural clay (attapulgite)-reinforced cellulose hydrogel was fabricated. Through a one-pot method, cellulose and attapulgite were dispersed in a concentrated ZnCl2 solution. The obtained hydrogel exhibited a dual network of hydrogen bonds and Zn2+-induced ionic interactions. Attapulgite serves as an inorganic filler that can regulate the hydrogen-bonding density among cellulose molecules and provides abundant channels for fast ion transport. By optimizing the attapulgite loading, a mechanically strong (compressive strength up to 1.10 MPa), tough (fracture energy up to 0.36 MJ m-3), highly ionic conductive (4.15 S m-1), and freezing-tolerant hydrogel was prepared. These hydrogels can be used for sensitive and stable human motion sensing, demonstrating their great potential for healthcare applications.
Collapse
Affiliation(s)
- Hu Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiong-Fei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mengjie Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Shi X, Lee A, Yang B, Ning H, Liu H, An K, Liao H, Huang K, Wen J, Luo X, Zhang L, Gu B, Hu N. Machine Learning Assisted Electronic/Ionic Skin Recognition of Thermal Stimuli and Mechanical Deformation for Soft Robots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401123. [PMID: 38864344 PMCID: PMC11321626 DOI: 10.1002/advs.202401123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/16/2024] [Indexed: 06/13/2024]
Abstract
Soft robots have the advantage of adaptability and flexibility in various scenarios and tasks due to their inherent flexibility and mouldability, which makes them highly promising for real-world applications. The development of electronic skin (E-skin) perception systems is crucial for the advancement of soft robots. However, achieving both exteroceptive and proprioceptive capabilities in E-skins, particularly in terms of decoupling and classifying sensing signals, remains a challenge. This study presents an E-skin with mixed electronic and ionic conductivity that can simultaneously achieve exteroceptive and proprioceptive, based on the resistance response of conductive hydrogels. It is integrated with soft robots to enable state perception, with the sensed signals further decoded using the machine learning model of decision trees and random forest algorithms. The results demonstrate that the newly developed hydrogel sensing system can accurately predict attitude changes in soft robots when subjected to varying degrees of pressing, hot pressing, bending, twisting, and stretching. These findings that multifunctional hydrogels combine with machine learning to decode signals may serve as a basis for improving the sensing capabilities of intelligent soft robots in future advancements.
Collapse
Affiliation(s)
- Xuewei Shi
- School of Mechanical EngineeringHebei University of TechnologyTianjin300401China
| | - Alamusi Lee
- School of Mechanical EngineeringHebei University of TechnologyTianjin300401China
| | - Bo Yang
- School of Mechanical EngineeringHebei University of TechnologyTianjin300401China
| | - Huiming Ning
- College of Aerospace EngineeringChongqing UniversityChongqing400044China
| | - Haowen Liu
- School of Mechanical EngineeringHebei University of TechnologyTianjin300401China
| | - Kexu An
- School of Mechanical EngineeringHebei University of TechnologyTianjin300401China
| | - Hansheng Liao
- School of Mechanical EngineeringHebei University of TechnologyTianjin300401China
| | - Kaiyan Huang
- School of Manufacturing Science and EngineeringSouthwest University of Science and Technology59 Qinglong RoadMianyang621010China
| | - Jie Wen
- School of Mechanical EngineeringHebei University of TechnologyTianjin300401China
| | - Xiaolin Luo
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjin300381China
| | - Lidan Zhang
- School of Basic MedicineChongqing Medical UniversityChongqing400042China
| | - Bin Gu
- School of Manufacturing Science and EngineeringSouthwest University of Science and Technology59 Qinglong RoadMianyang621010China
| | - Ning Hu
- School of Mechanical EngineeringHebei University of TechnologyTianjin300401China
- State Key Laboratory of Reliability and Intelligence Electrical EquipmentHebei University of TechnologyTianjin300130China
- Key Laboratory of Advanced Intelligent Protective Equipment TechnologyMinistry of EducationHebei University of TechnologyTianjin300401China
| |
Collapse
|
10
|
Guan Y, Yan L, Liu H, Xu T, Chen J, Xu J, Dai L, Si C. Cellulose-derived raw materials towards advanced functional transparent papers. Carbohydr Polym 2024; 336:122109. [PMID: 38670767 DOI: 10.1016/j.carbpol.2024.122109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Pulp and paper are gradually transforming from a traditional industry into a new green strategic industry. In parallel, cellulose-derived transparent paper is gaining ground for the development of advanced functional materials for light management with eco-friendly, high performance, and multifunctionality. This review focuses on methods and processes for the preparation of cellulose-derived transparent papers, highlighting the characterization of raw materials linked to responses to different properties, such as optical and mechanical properties. The applications in electronic devices, energy conversion and storage, and eco-friendly packaging are also highlighted with the objective to showcase the untapped potential of cellulose-derived transparent paper, challenging the prevailing notion that paper is merely a daily life product. Finally, the challenges and propose future directions for the development of cellulose-derived transparent paper are identified.
Collapse
Affiliation(s)
- Yanhua Guan
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Li Yan
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hai Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ting Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Robustnique Co. Ltd. Block C, Phase II, Pioneer Park, Lanyuan Road, Tianjin 300384, China; Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jinghuan Chen
- National Engineering Lab for Pulp and Paper, China National Pulp and Paper Research Institute Co. Ltd., 100102 Beijing, China
| | - Jikun Xu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Lin Dai
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Robustnique Co. Ltd. Block C, Phase II, Pioneer Park, Lanyuan Road, Tianjin 300384, China; Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Robustnique Co. Ltd. Block C, Phase II, Pioneer Park, Lanyuan Road, Tianjin 300384, China.
| |
Collapse
|
11
|
Kim Y, Kim K, Jeong JP, Jung S. Drug delivery using reduction-responsive hydrogel based on carboxyethyl-succinoglycan with highly improved rheological, antibacterial, and antioxidant properties. Carbohydr Polym 2024; 335:122076. [PMID: 38616075 DOI: 10.1016/j.carbpol.2024.122076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
The development of exopolysaccharide-based polymers is gaining increasing attention in various industrial biotechnology fields for materials such as thickeners, texture modifiers, anti-freeze agents, antioxidants, and antibacterial agents. High-viscosity carboxyethyl-succinoglycan (CE-SG) was directly synthesized from succinoglycan (SG) isolated from Sinorhizobium meliloti Rm 1021, and its structural, rheological, and physiological properties were investigated. The viscosity of CE-SG gradually increased in proportion to the degree of carboxyethylation substitution. In particular, when the molar ratio of SG and 3-chloropropionic acid was 1:100, the viscosity was significantly improved by 21.18 times at a shear rate of 10 s-1. Increased carboxyethylation of SG also improved the thermal stability of CE-SG. Furthermore, the CE-SG solution showed 90.18 and 91.78 % antibacterial effects against Escherichia coli and Staphylococcus aureus and effective antioxidant activity against DPPH and hydroxyl radicals. In particular, CE-SG hydrogels coordinated with Fe3+ ions, which improved both viscosity and rheological properties, while also exhibiting reduction-responsive drug release through 1,4-dithiothreitol. The results of this study suggest that SG derivatives, such as CE-SG, can be used as functional biomaterials in various fields such as food, cosmetics, and pharmaceutical industries.
Collapse
Affiliation(s)
- Yohan Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Kyungho Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Jae-Pil Jeong
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea; Department of System Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea.
| |
Collapse
|
12
|
Yang C, Ji C, Guo F, Mi H, Wang Y, Qiu J. Wireless Sensor System Based on Organohydrogel Ionic Skin for Physiological Activity Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38698676 DOI: 10.1021/acsami.3c19473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Supermolecular hydrogel ionic skin (i-skin) linked with smartphones has attracted widespread attention in physiological activity detection due to its good stability in complex scenarios. However, the low ionic conductivity, inferior mechanical properties, poor contact adhesion, and insufficient freeze resistance of most used hydrogels limit their practical application in flexible electronics. Herein, a novel multifunctional poly(vinyl alcohol)-based conductive organohydrogel (PCEL5.0%) with a supermolecular structure was constructed by innovatively employing sodium carboxymethyl cellulose (CMC-Na) as reinforcement material, ethylene glycol as antifreeze, and lithium chloride as a water retaining agent. Thanks to the synergistic effect of these components, the PCEL5.0% organohydrogel shows excellent performance in terms of ionic conductivity (1.61 S m-1), mechanical properties (tensile strength of 70.38 kPa and elongation at break of 537.84%), interfacial adhesion (1.06 kPa to pig skin), frost resistance (-50.4 °C), water retention (67.1% at 22% relative humidity), and remoldability. The resultant PCEL5.0%-based i-skin delivers satisfactory sensitivity (GF = 1.38) with fast response (348 ms) and high precision under different deformations and low temperature (-25 °C). Significantly, the wireless sensor system based on the PCEL5.0% organohydrogel i-skin can transmit signals from physiological activities and sign language to a smartphone by Bluetooth technology and dynamically displays the status of these movements. The organohydrogel i-skin shows great potential in diverse fields of physiological activity detection, human-computer interaction, and rehabilitation medicine.
Collapse
Affiliation(s)
- Congcong Yang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P. R. China
| | - Chenchen Ji
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P. R. China
| | - Fengjiao Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P. R. China
| | - Hongyu Mi
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P. R. China
| | - Yongwei Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P. R. China
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
13
|
Yan Z, Jiang S, Xi J, Ye W, Meng L, Xiao H, Wu W. Frost-resistant nanocellulose-based organohydrogel with high mechanical strength and transparency. J Colloid Interface Sci 2024; 661:879-887. [PMID: 38330660 DOI: 10.1016/j.jcis.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Improving mechanical strength and frost-resistance is an important research direction in the field of hydrogel materials. Herein, using bacterial nanocellulose (BC) as a reinforcing agent and polyvinyl alcohol (PVA) as a polymer matrix, a frost-resistant organohydrogel was constructed via the freezing-thawing method in a new binary solvent system of N, N-dimethylformamide and water (DMF-H2O), which was designed according to the Hansen Solubility Parameter. Owing to the solvent-induced crystallization effect that led to the enhanced 3D hydrogen bonding network during the freezing-thawing process, the optimal organohydrogel achieved excellent mechanical properties with the tensile strength of 2,974 kPa and the stretchability of 277 % at room temperature, respectively. In the visiblelight range, the organohydrogel demonstrated high transmittance. Moreover, the presence of a DMF-H2O binary solvent endows it with frost-resistance, retaining the tensile strength of 508 kPa and a stretchability of 190 % even at -70 °C, respectively. This kind of transparent, frost-resistant organohydrogel has potential uses in harsh settings due to its great mechanical strength.
Collapse
Affiliation(s)
- Zifei Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Shan Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Xi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Wenjie Ye
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Liucheng Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Weibing Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
14
|
Dutta T, Chaturvedi P, Llamas-Garro I, Velázquez-González JS, Dubey R, Mishra SK. Smart materials for flexible electronics and devices: hydrogel. RSC Adv 2024; 14:12984-13004. [PMID: 38655485 PMCID: PMC11033831 DOI: 10.1039/d4ra01168f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
In recent years, flexible conductive materials have attracted considerable attention for their potential use in flexible energy storage devices, touch panels, sensors, memristors, and other applications. The outstanding flexibility, electricity, and tunable mechanical properties of hydrogels make them ideal conductive materials for flexible electronic devices. Various synthetic strategies have been developed to produce conductive and environmentally friendly hydrogels for high-performance flexible electronics. In this review, we discuss the state-of-the-art applications of hydrogels in flexible electronics, such as energy storage, touch panels, memristor devices, and sensors like temperature, gas, humidity, chemical, strain, and textile sensors, and the latest synthesis methods of hydrogels. Describe the process of fabricating sensors as well. Finally, we discussed the challenges and future research avenues for flexible and portable electronic devices based on hydrogels.
Collapse
Affiliation(s)
- Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur Howrah W.B. - 711103 India
| | - Pavan Chaturvedi
- Department of Physics, Vanderbilt University 3414 Murphy Rd, Apt#4 Nashville TN-37203 USA +575-650-4595
| | - Ignacio Llamas-Garro
- Navigation and Positioning Research Unit, Centre Tecnològic de Telecomunicacions de Catalunya Castelldefels Spain
| | | | - Rakesh Dubey
- Instiute of Physics, University of Szczecin Poland
| | - Satyendra Kumar Mishra
- Space and Reslinent Research Unit, Centre Tecnològic de Telecomunicacions de Catalunya Castelldefels Spain
| |
Collapse
|
15
|
Bi X, Yao M, Huang Z, Wang Z, Shen H, Wong CP, Jiang C. Biomimetic Electronic Skin Based on a Stretchable Ionogel Mechanoreceptor Composed of Crumpled Conductive Rubber Electrodes for Synchronous Strain, Pressure, and Temperature Detection. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38592053 DOI: 10.1021/acsami.4c01899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Electronic skin (e-skin) is showing a huge potential in human-computer interaction, intelligent robots, human health, motion monitoring, etc. However, it is still challenging for e-skin to realize distinguishable detection of stretching strain, vertical pressure, and temperature through a simple noncoupling structure design. Here, a stretchable multimodal biomimetic e-skin was fabricated by integrating layer-by-layer self-assembled crumpled reduced graphene oxide/multiwalled carbon nanotubes film on natural rubber (RGO/MWCNTs@NR) as stretchable conductive electrodes and polyacrylamide/NaCl ionogel as a dielectric layer into an ionotropic capacitive mechanoreceptor. Unlike natural skin receptors, the sandwich-like stretchable ionogel mechanoreceptor possessed a distinct ionotropic capacitive behavior for strain and pressure detection. The results showed that the biomimetic e-skin displayed a negative capacitance change with superior stretchability (0-300%) and a high gauge factor of 0.27 in 180-300% strain, while exhibiting a normal positive piezo-capacitance behavior in vertical pressure range of 0-15 kPa with a maximal sensitivity of 1.759 kPa-1. Based on this feature, the biomimetic e-skin showed an excellent synchronous detection capability of planar strain and vertical pressure in practical wearable applications such as gesture recognition and grasping movement detection without a complicated mathematical or signal decoupling process. In addition, the biomimetic e-skin exhibited a quantifiable linear responsiveness to temperature from 20-90 °C with a temperature coefficient of 0.55%/°C. These intriguing properties gave the biomimetic e-skin the ability to perform a complete function similar to natural skin but beyond its performance for future wearable devices and artificial intelligence devices.
Collapse
Affiliation(s)
- Xiaoyun Bi
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Manzhao Yao
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhaoyan Huang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zuhao Wang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Huahao Shen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ching-Ping Wong
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Can Jiang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
16
|
Imani KBC, Dodda JM, Yoon J, Torres FG, Imran AB, Deen GR, Al‐Ansari R. Seamless Integration of Conducting Hydrogels in Daily Life: From Preparation to Wearable Application. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306784. [PMID: 38240470 PMCID: PMC10987148 DOI: 10.1002/advs.202306784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/12/2023] [Indexed: 04/04/2024]
Abstract
Conductive hydrogels (CHs) have received significant attention for use in wearable devices because they retain their softness and flexibility while maintaining high conductivity. CHs are well suited for applications in skin-contact electronics and biomedical devices owing to their high biocompatibility and conformality. Although highly conductive hydrogels for smart wearable devices are extensively researched, a detailed summary of the outstanding results of CHs is required for a comprehensive understanding. In this review, the recent progress in the preparation and fabrication of CHs is summarized for smart wearable devices. Improvements in the mechanical, electrical, and functional properties of high-performance wearable devices are also discussed. Furthermore, recent examples of innovative and highly functional devices based on CHs that can be seamlessly integrated into daily lives are reviewed.
Collapse
Affiliation(s)
- Kusuma Betha Cahaya Imani
- Graduate Department of Chemical MaterialsInstitute for Plastic Information and Energy MaterialsSustainable Utilization of Photovoltaic Energy Research CenterPusan National UniversityBusan46241Republic of Korea
| | - Jagan Mohan Dodda
- New Technologies – Research Centre (NTC)University of West Bohemia, Univerzitní 8Pilsen301 00Czech Republic
| | - Jinhwan Yoon
- Graduate Department of Chemical MaterialsInstitute for Plastic Information and Energy MaterialsSustainable Utilization of Photovoltaic Energy Research CenterPusan National UniversityBusan46241Republic of Korea
| | - Fernando G. Torres
- Department of Mechanical EngineeringPontificia Universidad Catolica del Peru. Av. Universitaria 1801Lima15088Peru
| | - Abu Bin Imran
- Department of ChemistryBangladesh University of Engineering and TechnologyDhaka1000Bangladesh
| | - G. Roshan Deen
- Materials for Medicine Research GroupSchool of MedicineThe Royal College of Surgeons in Ireland (RCSI)Medical University of BahrainBusaiteen15503Kingdom of Bahrain
| | - Renad Al‐Ansari
- Materials for Medicine Research GroupSchool of MedicineThe Royal College of Surgeons in Ireland (RCSI)Medical University of BahrainBusaiteen15503Kingdom of Bahrain
| |
Collapse
|
17
|
Zhang H, Wang S, Zhang J, Zhou G, Sun X, Wang Y, Wang Y, Zhang K. High-sensitivity piezoresistive sensors based on cellulose handsheets using origami-inspired corrugated structures. Carbohydr Polym 2024; 328:121742. [PMID: 38220352 DOI: 10.1016/j.carbpol.2023.121742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
Cellulose-based composites have attracted significant attention in the fabrication and advancement of wearable devices due to their sustainable, degradable, and cost-effective properties. However, achieving a cellulosic sensor with reliable sensory feedback remains challenging owing to the deficiency in reversible microstructures during response processes. In this study, we developed a piezoresistive sensor consisting of nearly pure cellulose handsheets using origami-inspired corrugated structures to achieve durable and sensitive piezoresistive responses. Multi-walled carbon nanotubes (MWCNTs) were used as conducting agents. With the addition of 7 wt% MWCNTs, 36.27 % of the cellulose fiber surface was covered and the conductivity of cellulose handsheets was increased to 8.7 S/m. The obtained conductive cellulose handsheets were transformed into corrugated structures and integrated orthogonally to construct the piezoresistive sensors with reversible electrical paths for electrons. The restorable corrugated structure endowed the sensors with a wide workable pressure range (0-10 kPa), high sensitivity (6.09 kPa-1 in a range of 0-0.92 kPa), fast response time (<280 ms), and good durability (>1000 cycles). Furthermore, the practical applications of the proposed sensors as wearable devices were demonstrated through phonation, real-time sports monitoring, and step pressure tests.
Collapse
Affiliation(s)
- Hao Zhang
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, Henan 450000, PR China.
| | - Shijun Wang
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, Henan 450000, PR China
| | - Jie Zhang
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, Henan 450000, PR China
| | - Gan Zhou
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, Henan 450000, PR China
| | - Xiaohang Sun
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong 519082, PR China
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yujie Wang
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, Henan 450000, PR China
| | - Kang Zhang
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, Henan 450000, PR China
| |
Collapse
|
18
|
Meng X, Zhou J, Jin X, Xia C, Ma S, Hong S, Aladejana JT, Dong A, Luo Y, Li J, Zhan X, Yang R. High-Strength, High-Swelling-Resistant, High-Sensitivity Hydrogel Sensor Prepared with Wood That Retains Lignin. Biomacromolecules 2024; 25:1696-1708. [PMID: 38381837 DOI: 10.1021/acs.biomac.3c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Wood-derived hydrogels possess satisfactory longitudinal strength but lack excellent swelling resistance and dry shrinkage resistance when achieving high anisotropy. In this study, we displayed the preparation of highly dimensional stable wood/polyacrylamide hydrogels (wood/PAM-Al3+). The alkali-treated wood retains lignin as the skeleton of the hydrogel. Second, Al ions were added to the metal coordination with lignin. Finally, by employing free radical polymerization, we construct a conductive electronic network using polyaniline within the wood/PAM-Al3+ matrix to create the flexible sensor. This approach leverages lignin's integrated structure within the middle lamella to provide enhanced swelling resistance and stronger binding strength in the transverse direction. Furthermore, coordination between lignin and Al ions improves the mechanical strength of the wood hydrogel. Polyaniline provides stable linear pressure and temperature responses. The wood/PAM-Al3+ exhibits a transverse swelling ratio of 3.90% while achieving a longitudinal tensile strength of 20.5 MPa. This high-strength and high-stability sensor is capable of monitoring macroscale human behavior. Therefore, this study presents a simple yet innovative strategy for constructing tough hydrogels while also establishing an alternative pathway for exploring lignin networks in new functional materials development.
Collapse
Affiliation(s)
- Xiangzhen Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jing Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- China Jiangsu Key Open Laboratory of Wood Processing and Wood-Based Panel Technology, Nanjing, Jiangsu 210037, China
| | - Shanyu Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shu Hong
- Hollingsworth & Vose (Suzhou) Co., Ltd., Suzhou Industrial Park, Suzhou 215126, China
| | - John Tosin Aladejana
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Anran Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yujia Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jianzhang Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xianxu Zhan
- Dehua Tubaobao New Decoration Material Co., Ltd., Huzhou 313200, China
| | - Rui Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- China Jiangsu Key Open Laboratory of Wood Processing and Wood-Based Panel Technology, Nanjing, Jiangsu 210037, China
- Dehua Tubaobao New Decoration Material Co., Ltd., Huzhou 313200, China
| |
Collapse
|
19
|
Li P, Jia X, Sun Z, Tang J, Ji Q, Ma X. Conductive interpenetrating network organohydrogels of gellan gum/polypyrrole with weather-tolerance, piezoresistive sensing and shape-memory capability. Int J Biol Macromol 2024; 262:130215. [PMID: 38365141 DOI: 10.1016/j.ijbiomac.2024.130215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
To develop ecofriendly multifunctional gel materials for sustainable flexible electronic devices, composite organohydrogels of gellan gum (GG) and polypyrrole (PPy) with an interpenetrating network structure (IPN-GG/PPy organohydrogels) were developed first time, through fabrication of GG organohydrogels followed by in-situ oxidation polymerization of pyrrole inside. Combination of water with glycerol can not only impart environment-stability to GG hydrogels but promote the mechanics remarkably, with the compressive strength amplified by 1250 % from 0.02 to 0.27 MPa. Incorporation of PPy confers electrical conductivity to the GG organohydrogel as well as promoting the mechanical performance further. The maximum conductivity of the IPN-GG/PPy organohydrogels reached 1.2 mS/cm at 25 °C, and retained at 0.6 mS/cm under -20 °C and 0.56 mS/cm after 7 days' exposure in 25 °C and 60 % RH. The compression strength of that with the maximum conductivity increases by 170 % from 0.27 to 0.73 MPa. The excellent conductivity and mechanical properties endow the IPN-GG/PPy organohydrogels good piezoresistive strain/pressure sensing behavior. Moreover, the thermo-reversible GG network bestows them shape-memory capability. The multifunctionality and intrinsic eco-friendliness is favorable for sustainable application in fields such as flexible electronics, soft robotics and artificial intelligence, competent in motion recognition, physiological signal monitoring, intelligent actuation.
Collapse
Affiliation(s)
- Panpan Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xinyu Jia
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Zhaolong Sun
- School of Public Health, Qingdao University, Qingdao 266071, PR China
| | - Jinglong Tang
- School of Public Health, Qingdao University, Qingdao 266071, PR China
| | - Quan Ji
- Institute of Marine Biobased Materials, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China
| | - Xiaomei Ma
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China; Institute of Marine Biobased Materials, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
20
|
Wan H, Chen Y, Tao Y, Chen P, Wang S, Jiang X, Lu A. MXene-Mediated Cellulose Conductive Hydrogel with Ultrastretchability and Self-Healing Ability. ACS NANO 2023; 17:20699-20710. [PMID: 37823822 DOI: 10.1021/acsnano.3c08859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Constructing natural polymers such as cellulose, chitin, and chitosan into hydrogels with excellent stretchability and self-healing properties can greatly expand their applications but remains very challenging. Generally, the polysaccharide-based hydrogels have suffered from the trade-off between stiffness of the polysaccharide and stretchability due to the inherent nature. Thus, polysaccharide-based hydrogels (polysaccharides act as the matrix) with self-healing properties and excellent stretchability are scarcely reported. Here, a solvent-assisted strategy was developed to construct MXene-mediated cellulose conductive hydrogels with excellent stretchability (∼5300%) and self-healability. MXene (an emerging two-dimensional nanomaterial) was introduced as emerging noncovalent cross-linking sites between the solvated cellulose chains in a benzyltrimethylammonium hydroxide aqueous solution. The electrostatic interaction between the cellulose chains and terminal functional groups (O, OH, F) of MXene led to cross-linking of the cellulose chains by MXene to form a hydrogel. Due to the excellent properties of the cellulose-MXene conductive hydrogel, the work not only enabled their strong potential in both fields of electronic skins and energy storage but provided fresh ideas for some other stubborn polymers such as chitin to prepare hydrogels with excellent properties.
Collapse
Affiliation(s)
- Huixiong Wan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yongzhen Tao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, China
| | - Pan Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Sen Wang
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| | - Xueyu Jiang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ang Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
21
|
Wang DC, Lei SN, Zhong S, Xiao X, Guo QH. Cellulose-Based Conductive Materials for Energy and Sensing Applications. Polymers (Basel) 2023; 15:4159. [PMID: 37896403 PMCID: PMC10610528 DOI: 10.3390/polym15204159] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Cellulose-based conductive materials (CCMs) have emerged as a promising class of materials with various applications in energy and sensing. This review provides a comprehensive overview of the synthesis methods and properties of CCMs and their applications in batteries, supercapacitors, chemical sensors, biosensors, and mechanical sensors. Derived from renewable resources, cellulose serves as a scaffold for integrating conductive additives such as carbon nanotubes (CNTs), graphene, metal particles, metal-organic frameworks (MOFs), carbides and nitrides of transition metals (MXene), and conductive polymers. This combination results in materials with excellent electrical conductivity while retaining the eco-friendliness and biocompatibility of cellulose. In the field of energy storage, CCMs show great potential for batteries and supercapacitors due to their high surface area, excellent mechanical strength, tunable chemistry, and high porosity. Their flexibility makes them ideal for wearable and flexible electronics, contributing to advances in portable energy storage and electronic integration into various substrates. In addition, CCMs play a key role in sensing applications. Their biocompatibility allows for the development of implantable biosensors and biodegradable environmental sensors to meet the growing demand for health and environmental monitoring. Looking to the future, this review emphasizes the need for scalable synthetic methods, improved mechanical and thermal properties, and exploration of novel cellulose sources and modifications. Continued innovation in CCMs promises to revolutionize sustainable energy storage and sensing technologies, providing environmentally friendly solutions to pressing global challenges.
Collapse
Affiliation(s)
- Duan-Chao Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Sheng-Nan Lei
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Shenjie Zhong
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311231, China
| | - Xuedong Xiao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Qing-Hui Guo
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
22
|
Bo X, Wang L, Zhao H, Almardi JM, Li W, Daoud WA. A Stretchable Solid Ionic Electrode-Based Triboelectric Nanogenerator for Biomechanical Energy Harvesting and Self-Powered Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303415. [PMID: 37222111 DOI: 10.1002/smll.202303415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/11/2023] [Indexed: 05/25/2023]
Abstract
Stretchable power devices and self-powered sensors have become increasingly desired for wearable electronics and artificial intelligence. In this study, an all-solid-state triboelectric nanogenerator (TENG) is reported, whose one solid-state structure prevents delamination during stretch and release cycles and increasing the patch adhesive force (3.5 N) and strain (586% elongation at break). Through the synergetic virtues of stretchability, ionic conductivity, and excellent adhesion to the tribo-layer, reproducible open-circuit voltage (VOC ) of 84 V, charge (QSC ) of 27.5 nC, and short-circuit current (ISC ) of 3.1 µA after drying at 60°C or 20,000 contact-separation cycles are obtained. Apart from contact-separation, this device shows unprecedented electricity generation through stretch-release of solid materials leading to a linear relationship between VOC and strain. For the first time, this work provides a clear explanation of the working mechanism of contact-free stretching-releasing and investigates the relationships of exerted force, strain, thickness of the device, and electric output. Benefitting from the one solid-state structure, this contact-free device remains stable even after repeated stretch-release cycling, maintaining 100% of its VOC after 2500 stretch-release cycles. These findings provide a strategy toward highly conductive and stretchable electrodes for harvesting mechanical energy and health monitoring.
Collapse
Affiliation(s)
- Xiangkun Bo
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, P. R. China
| | - Lingyun Wang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, P. R. China
| | - Hong Zhao
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, P. R. China
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528225, P. R. China
| | - Jasim M Almardi
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, P. R. China
| | - Weilu Li
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, P. R. China
| | - Walid A Daoud
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518000, P. R. China
| |
Collapse
|
23
|
Tao K, Yu J, Zhang J, Bao A, Hu H, Ye T, Ding Q, Wang Y, Lin H, Wu J, Chang H, Zhang H, Yuan W. Deep-Learning Enabled Active Biomimetic Multifunctional Hydrogel Electronic Skin. ACS NANO 2023; 17:16160-16173. [PMID: 37523784 DOI: 10.1021/acsnano.3c05253] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
There is huge demand for recreating human skin with the functions of epidermis and dermis for interactions with the physical world. Herein, a biomimetic, ultrasensitive, and multifunctional hydrogel-based electronic skin (BHES) was proposed. Its epidermis function was mimicked using poly(ethylene terephthalate) with nanoscale wrinkles, enabling accurate identification of materials through the capabilities to gain/lose electrons during contact electrification. Internal mechanoreceptor was mimicked by interdigital silver electrodes with stick-slip sensing capabilities to identify textures/roughness. The dermis function was mimicked by patterned microcone hydrogel, achieving pressure sensors with high sensitivity (17.32 mV/Pa), large pressure range (20-5000 Pa), low detection limit, and fast response (10 ms)/recovery time (17 ms). Assisted by deep learning, this BHES achieved high accuracy and minimized interference in identifying materials (95.00% for 10 materials) and textures (97.20% for four roughness cases). By integrating signal acquisition/processing circuits, a wearable drone control system was demonstrated with three-degree-of-freedom movement and enormous potentials for soft robots, self-powered human-machine interaction interfaces of digital twins.
Collapse
Affiliation(s)
- Kai Tao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Sanhang Science & Technology Building, No.45th, Gaoxin South ninth Road, Nanshan District, Shenzhen City 518063, China
| | - Jiahao Yu
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Sanhang Science & Technology Building, No.45th, Gaoxin South ninth Road, Nanshan District, Shenzhen City 518063, China
| | - Jiyuan Zhang
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Sanhang Science & Technology Building, No.45th, Gaoxin South ninth Road, Nanshan District, Shenzhen City 518063, China
| | - Aocheng Bao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Haowen Hu
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tao Ye
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yaozheng Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Haobin Lin
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, China
| | - Honglong Chang
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Haixia Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Weizheng Yuan
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
24
|
Ye Y, Yu L, Lizundia E, Zhu Y, Chen C, Jiang F. Cellulose-Based Ionic Conductor: An Emerging Material toward Sustainable Devices. Chem Rev 2023; 123:9204-9264. [PMID: 37419504 DOI: 10.1021/acs.chemrev.2c00618] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Ionic conductors (ICs) find widespread applications across different fields, such as smart electronic, ionotronic, sensor, biomedical, and energy harvesting/storage devices, and largely determine the function and performance of these devices. In the pursuit of developing ICs required for better performing and sustainable devices, cellulose appears as an attractive and promising building block due to its high abundance, renewability, striking mechanical strength, and other functional features. In this review, we provide a comprehensive summary regarding ICs fabricated from cellulose and cellulose-derived materials in terms of fundamental structural features of cellulose, the materials design and fabrication techniques for engineering, main properties and characterization, and diverse applications. Next, the potential of cellulose-based ICs to relieve the increasing concern about electronic waste within the frame of circularity and environmental sustainability and the future directions to be explored for advancing this field are discussed. Overall, we hope this review can provide a comprehensive summary and unique perspectives on the design and application of advanced cellulose-based ICs and thereby encourage the utilization of cellulosic materials toward sustainable devices.
Collapse
Affiliation(s)
- Yuhang Ye
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Le Yu
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao University of the Basque Country (UPV/EHU), Bilbao 48013, Spain
- BCMaterials Lab, Basque Center for Materials, Applications and Nanostructures, Leioa 48940, Spain
| | - Yeling Zhu
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Chaoji Chen
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China
| | - Feng Jiang
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
25
|
Taokaew S. Recent Advances in Cellulose-Based Hydrogels Prepared by Ionic Liquid-Based Processes. Gels 2023; 9:546. [PMID: 37504425 PMCID: PMC10379057 DOI: 10.3390/gels9070546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
This review summarizes the recent advances in preparing cellulose hydrogels via ionic liquid-based processes and the applications of regenerated cellulose hydrogels/iongels in electrochemical materials, separation membranes, and 3D printing bioinks. Cellulose is the most abundant natural polymer, which has attracted great attention due to the demand for eco-friendly and sustainable materials. The sustainability of cellulose products also depends on the selection of the dissolution solvent. The current state of knowledge in cellulose preparation, performed by directly dissolving in ionic liquids and then regenerating in antisolvents, as described in this review, provides innovative ideas from the new findings presented in recent research papers and with the perspective of the current challenges.
Collapse
Affiliation(s)
- Siriporn Taokaew
- Department of Materials Science and Bioengineering, School of Engineering, Nagaoka University of Technology, Nagaoka 940-2188, Niigata, Japan
| |
Collapse
|
26
|
Zhao Z, Mi Y, Lu Y, Zhu Q, Cao X, Wang N. From Biochemical Sensor to Wearable Device: The Key Role of the Conductive Polymer in the Triboelectric Nanogenerator. BIOSENSORS 2023; 13:604. [PMID: 37366969 DOI: 10.3390/bios13060604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Triboelectric nanogenerators (TENGs) have revolutionized energy harvesting and active sensing, holding tremendous potential in personalized healthcare, sustainable diagnoses, and green energy applications. In these scenarios, conductive polymers play a vital role in enhancing the performance of both TENG and TENG-based biosensors, enabling the development of flexible, wearable, and highly sensitive diagnostic devices. This review summarizes the impact of conductive polymers on TENG-based sensors, focusing on their contributions to triboelectric properties, sensitivity, detection limits, and wearability. We discuss various strategies for incorporating conductive polymers into TENG-based biosensors, promoting the creation of innovative and customizable devices tailored for specific healthcare applications. Additionally, we consider the potential of integrating TENG-based sensors with energy storage devices, signal conditioning circuits, and wireless communication modules, ultimately leading to the development of advanced, self-powered diagnostic systems. Finally, we outline the challenges and future directions in developing TENGs that integrate conducting polymers for personalized healthcare, emphasizing the need to improve biocompatibility, stability, and device integration for practical applications.
Collapse
Affiliation(s)
- Zequan Zhao
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yajun Mi
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yin Lu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Qiliang Zhu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xia Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ning Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| |
Collapse
|
27
|
Shu L, Zhang XF, Wu Y, Wang Z, Yao J. Facile fabrication of strong and conductive cellulose hydrogels with wide temperature tolerance for flexible sensors. Int J Biol Macromol 2023; 240:124438. [PMID: 37060973 DOI: 10.1016/j.ijbiomac.2023.124438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Cellulose-based ionic conductive hydrogels (ICHs) have found extensive applications in flexible electronics and multifunctional sensors. However, simultaneous realization of sufficient conductivity, superior mechanical property and extreme environment tolerance for ICHs remains to be a huge challenge. In this work, a facile one-pot approach was developed to fabricate ICHs by directly dissolving cotton linter cellulose and polyvinyl alcohol (PVA) in a concentrated ZnCl2 solution. By regulating the content of PVA in ICHs, the optimal hydrogel (Gel-5) exhibits a tensile strength of 0.30 MPa, a compressive strength of 2.05 MPa and a conductivity of 8.16 S m-1. Moreover, the resulting dual-network ICHs present high transparency, good thermal reversibility and desirable ionic conductivity. Due to the high concentration of inorganic salts in the porous dual-network structure, the ICH presents good anti-drying and anti-freezing (as low as -90 °C) properties. Such hydrogel can be assembled into multi-functional sensors for human motion and temperature monitoring, and they demonstrate durable sensitivity, cycling stability in a wide operating temperature. This work will shed light on the design of cellulose-based hydrogels with good ionic conductivity and mechanical performance under extreme conditions.
Collapse
Affiliation(s)
- Lian Shu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiong-Fei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yufang Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhongguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
28
|
Zou Y, Yue P, Cao H, Wu L, Xu L, Liu Z, Wu S, Ye Q. Biocompatible and biodegradable chitin-based hydrogels crosslinked by BDDE with excellent mechanical properties for effective prevention of postoperative peritoneal adhesion. Carbohydr Polym 2023; 305:120543. [PMID: 36737194 DOI: 10.1016/j.carbpol.2023.120543] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
Postoperative peritoneal adhesions are common complications caused by abdominal and pelvic surgery, which seriously impact the quality of life of patients and impose additional financial burdens. Using of biomedical materials as physical barriers to completely isolate the traumatic organ and injured tissue is an optimal strategy for preventing postoperative adhesions. However, the limited efficacy and difficulties in the complete degradation or integration of biomedical materials with living tissues restrict the application of these materials. In this study, novel chitin-based crosslinked hydrogels with appropriate mechanical properties and flexibilities were developed using a facile and green strategy. The developed hydrogels simultaneously exhibited excellent biocompatibilities and resistance to nonspecific protein adsorption and NIH/3T3 fibroblast adhesion. Furthermore, these hydrogels were biodegradable and could be completely integrated into the native extracellular matrix. The chitin-based crosslinked hydrogels also effectively inhibited postoperative peritoneal adhesions in rat models of adhesion and recurrence. Therefore, these novel chitin-based crosslinked hydrogels are excellent candidate physical barriers for the efficient prevention of postoperative peritoneal adhesions and provide a new anti-adhesion strategy for biomedical applications.
Collapse
Affiliation(s)
- Yongkang Zou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Pengpeng Yue
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Hankun Cao
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Liqin Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Li Xu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Zhongzhong Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Shuangquan Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China.
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China; The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha 410013, China.
| |
Collapse
|
29
|
Zhou Y, Li R, Wan L, Zhang F, Liu Z, Cao Y. Self-adhesive, ionic-conductive, mechanically robust cellulose-based organogels with anti-freezing and rapid recovery properties for flexible sensors. Int J Biol Macromol 2023; 240:124171. [PMID: 36966862 DOI: 10.1016/j.ijbiomac.2023.124171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/26/2023]
Abstract
Cellulose-based functional gels have received considerable attention because of their good mechanical properties, biocompatibility, and low cost. However, the preparation of cellulose gels with self-adhesion, mechanical robustness, ionic conductivity, anti-freezing ability, and environmental stability remains a challenge. Here, gallic acid esterified microcrystalline cellulose (MCC-GA) was obtained by grafting gallic acid (GA) onto the macromolecular chains of microcrystalline cellulose (MCC) through a one-step esterification method. Then the prepared MCC-GA was dissolved in Lithium chloride/dimethyl sulfoxide (LiCl/DMSO) system and polymerized with acrylic acid (AA) to prepare a multi-functional cellulose-based organogel. The prepared MCC-GA/polyacrylic acid (PAA) organogels exhibited enhanced interfacial adhesion through hydrogen bonding, π-π interactions, and electrostatic interactions. Additionally, the MCC-GA/PAA organogels could withstand 95 % of the compressive deformation and rapidly self-recover owing to chemical cross-linking and dynamic non-covalent interactions. The organogels also exhibited excellent anti-freezing properties (up to -80 °C), solvent retention, and ionic conductivity. Considering its excellent overall performance, the MCC-GA/PAA organogel was used as an effective flexible sensor for human motion detection and is expected to play an important role in the future development of flexible bioelectronics.
Collapse
Affiliation(s)
- You Zhou
- Jiangsu Co-innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Ren'ai Li
- Jiangsu Co-innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Linguang Wan
- Jiangsu Co-innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | | | - Zhulan Liu
- Jiangsu Co-innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; Huatai Group Co. Ltd, Dongying 257335, Shandong, China.
| | - Yunfeng Cao
- Jiangsu Co-innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
30
|
Zhao Z, Hu YP, Liu KY, Yu W, Li GX, Meng CZ, Guo SJ. Recent Development of Self-Powered Tactile Sensors Based on Ionic Hydrogels. Gels 2023; 9:gels9030257. [PMID: 36975706 PMCID: PMC10048595 DOI: 10.3390/gels9030257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Hydrogels are three-dimensional polymer networks with excellent flexibility. In recent years, ionic hydrogels have attracted extensive attention in the development of tactile sensors owing to their unique properties, such as ionic conductivity and mechanical properties. These features enable ionic hydrogel-based tactile sensors with exceptional performance in detecting human body movement and identifying external stimuli. Currently, there is a pressing demand for the development of self-powered tactile sensors that integrate ionic conductors and portable power sources into a single device for practical applications. In this paper, we introduce the basic properties of ionic hydrogels and highlight their application in self-powered sensors working in triboelectric, piezoionic, ionic diode, battery, and thermoelectric modes. We also summarize the current difficulty and prospect the future development of ionic hydrogel self-powered sensors.
Collapse
Affiliation(s)
- Zhen Zhao
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yong-Peng Hu
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Kai-Yang Liu
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Wei Yu
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Guo-Xian Li
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Chui-Zhou Meng
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Shi-Jie Guo
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
31
|
Yang M, Tian X, Hua T. Transparent, Stretchable, and Adhesive Conductive Ionic Hydrogel-Based Self-Powered Sensors for Smart Elderly Care Systems. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11802-11811. [PMID: 36808938 DOI: 10.1021/acsami.2c22331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nowadays, with the intensification of the aging society, the demand for elderly care and medical services is increasing and the elderly care and health systems are facing serious challenges. Therefore, it is imperative to develop a smart elderly care system to achieve real-time interaction between the elderly, the community, and medical personnel and to improve the efficiency of caring for the elderly. Here, we prepared ionic hydrogels with stable properties of high mechanical strength, high electrical conductivity, and high transparency by the one-step immersion method and used them in self-powered sensors for smart elderly care systems. The complexation of Cu2+ ions with polyacrylamide (PAAm) endows ionic hydrogels with excellent mechanical properties and electrical conductivity. Meanwhile, potassium sodium tartrate prevents the generated complex ions from precipitating into precipitates, thus ensuring the transparency of the ionic conductive hydrogel. After optimization, the transparency, tensile strength, elongation at break, and conductivity of the ionic hydrogel reached 94.1% at 445 nm, 192 kPa, 1130%, and 6.25 S/m, respectively. By processing and coding the collected triboelectric signals, a self-powered human-machine interaction system attached to the finger of the elderly was developed. The elderly can complete the transmission of distress and basic needs by simply bending their fingers, greatly reducing the pressure of inadequate medical care in an aging society. This work demonstrates the value of self-powered sensors in the field of smart elderly care systems, showing a wide implication in human-computer interface.
Collapse
Affiliation(s)
- Mengyan Yang
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Xiao Tian
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Tao Hua
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| |
Collapse
|
32
|
Jurtík M, Gřešková B, Prucková Z, Rouchal M, Dastychová L, Vítková L, Valášková K, Achbergerová E, Vícha R. Assembling a supramolecular 3D network with tuneable mechanical properties using adamantylated cross-linking agents and β-cyclodextrin-modified hyaluronan. Carbohydr Polym 2023; 313:120872. [PMID: 37182963 DOI: 10.1016/j.carbpol.2023.120872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Hydrogels based on the supramolecular host-guest concept can be prepared if at least one constituent is a polymer chain modified with supramolecular host or guest (or both) units. Low-molecular-weight multitopic counterparts can also be used, however, guest molecules in the role of cross-linking agents are seldom reported, although such an approach offers wide-ranging possibilities for tuning the system properties via easily achievable structural modifications. In this paper, a series of adamantane-based star-like guest molecules was used for cross-linking of two types of β-cyclodextrin-modified hyaluronan (CD-HA). The prepared 3D supramolecular networks were characterised using nuclear magnetic resonance, titration calorimetry and rheological measurements to confirm the formation of the host-guest complexes between adamantane moieties and β-cyclodextrin units, including their typical properties such as self-healing and dynamic nature. The results indicate that the nature of the cross-linker (amides versus esters) has a greater impact on mechanical properties than the length of the guest's arms. In addition, the results show that the length of the HA polymer chain is more important than the degree of modification with supramolecular units. In conclusion, it was proven that the modular concept employing low-molecular-weight cross-linking guests is valuable for the formulation of supramolecular networks, including hydrogels.
Collapse
|
33
|
Zheng D, Zhang C, Chen Z, Zhu P, Gao C. Tough and anti‐swelling γ‐polyglutamic acid/polyvinyl alcohol hydrogels for wearable sensors. J Appl Polym Sci 2023. [DOI: 10.1002/app.53792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Deyang Zheng
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| | - Chenyang Zhang
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| | - Ziwei Chen
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| | - Peizhi Zhu
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| | - Chunxia Gao
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| |
Collapse
|
34
|
Rong Y, Zhu L, Zhang X, Fei J, Li H, Huang D, Huang X, Yao X. Photocurable 3D printing gels with dual networks for high-sensitivity wearable sensors. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Blažic R, Marušić K, Vidović E. Swelling and Viscoelastic Properties of Cellulose-Based Hydrogels Prepared by Free Radical Polymerization of Dimethylaminoethyl Methacrylate in Cellulose Solution. Gels 2023; 9:94. [PMID: 36826264 PMCID: PMC9956197 DOI: 10.3390/gels9020094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
The grafting of a stimuli-responsive polymer (poly(dimethylaminoethyl methacrylate)) onto cellulose was achieved by performing free radical polymerization of a vinyl/divinyl monomer in cellulose solution. The grafting and crosslinking efficiency in the material have been increased by subsequent irradiation of the samples with ionizing radiation (doses of 10, 30, or 100 kGy). The relative amount of poly(dimethylaminoethyl methacrylate) in the prepared hydrogels was determined by infrared spectroscopy. The swelling behavior of the hydrogels was studied thoroughly, including microgelation extent, equilibrium swelling, and reswelling degree, as well as the dependence on the gelation procedure. The dynamic viscoelastic behavior of prepared hydrogels was also studied. The tan δ values indicate a solid-like behavior while the obtained hydrogels have a complex modulus in the range of 14-39 kPa, which is suitable for hydrogels used in biomedical applications. In addition, the incorporation of Ag particles and the adsorption of Fe3+ ions were tested to evaluate the additional functionalities of the prepared hydrogels. It was found that the introduction of PDMAEMA to the hydrogels enhanced their ability to synthesize Ag particles and absorb Fe3+ ions, providing a platform for the potential preparation of hydrogels for the treatment of wounds.
Collapse
Affiliation(s)
- Roko Blažic
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
| | - Katarina Marušić
- Radiation Chemistry and Dosimetry Laboratory, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Elvira Vidović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
| |
Collapse
|
36
|
Hilal A, Florowska A, Wroniak M. Binary Hydrogels: Induction Methods and Recent Application Progress as Food Matrices for Bioactive Compounds Delivery-A Bibliometric Review. Gels 2023; 9:68. [PMID: 36661834 PMCID: PMC9857866 DOI: 10.3390/gels9010068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Food hydrogels are biopolymeric materials made from food-grade biopolymers with gelling properties (proteins and polysaccharides) and a 3D network capable of incorporating large amounts of water. They have sparked considerable interest because of their potential and broad application range in the biomedical and pharmaceutical sectors. However, hydrogel research in the field of food science is still limited. This knowledge gap provides numerous opportunities for implementing their unique properties, such as high water-holding capacity, moderated texture, compatibility with other substances, cell biocompatibility, biodegradability, and high resemblance to living tissues, for the development of novel, functional food matrices. For that reason, this article includes a bibliometric analysis characterizing research trends in food protein-polysaccharide hydrogels (over the last ten years). Additionally, it characterizes the most recent developments in hydrogel induction methods and the most recent application progress of hydrogels as food matrices as carriers for the targeted delivery of bioactive compounds. Finally, this article provides a future perspective on the need to evaluate the feasibility of using plant-based proteins and polysaccharides to develop food matrices that protect nutrients, including bioactive substances, throughout processing, storage, and digestion until they reach the specific targeted area of the digestive system.
Collapse
Affiliation(s)
- Adonis Hilal
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | | | | |
Collapse
|
37
|
Yang Y, Sun H, Shi C, Liu Y, Zhu Y, Song Y. Self-healing hydrogel with multiple adhesion as sensors for winter sports. J Colloid Interface Sci 2023; 629:1021-1031. [DOI: 10.1016/j.jcis.2022.08.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
|
38
|
Zhang H, Shen H, Lan J, Wu H, Wang L, Zhou J. Dual-network polyacrylamide/carboxymethyl chitosan-grafted-polyaniline conductive hydrogels for wearable strain sensors. Carbohydr Polym 2022; 295:119848. [DOI: 10.1016/j.carbpol.2022.119848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/13/2023]
|
39
|
He S, Guo B, Sun X, Shi M, Zhang H, Yao F, Sun H, Li J. Bio-Inspired Instant Underwater Adhesive Hydrogel Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45869-45879. [PMID: 36165460 DOI: 10.1021/acsami.2c13371] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Underwater adhesion plays an essential role in soft electronics for the underwater interface. Although hydrogel-based electronics are of great interest, because of their versatility, water molecules prevent hydrogels from adhering to substrates, thus bottlenecking further applications. Herein, inspired by the barnacle proteins, MXene/PHMP hydrogels with strong repeatable underwater adhesion are developed through the random copolymerization of 2-phenoxyethyl acrylate, 2-methoxyethyl acrylate, and N-(2-hydroxyethyl) acrylamide with the presence of MXene nanosheets. The hydrogels are mechanically tough (elastic modulus of 32 kPa, fracture stress of 0.11 MPa), and 2-phenoxyethyl acrylate (PEA) with aromatic groups endows the hydrogel with nonswelling property and prevents water molecules from invading the adhesive interface, rendering the hydrogels an outstanding adhesive behavior toward various substrates (including glass, iron, polyethylene terephthalate (PET), porcine). Besides, dynamic physical interactions allow for instant and repeatable underwater adhesion. Furthermore, the MXene/PHMP hydrogels exhibit a high conductivity (0.016 S/m), fast responsiveness, and superior sensitivity as a strain sensor (gauge factor = 7.17 at 200%-500% strain) and pressure sensor (0.63 kPa-1 at 0-70 kPa). The underwater applications of bionic hydrogel-based sensors have been demonstrated, such as human motion, pressure sensing, and holding objects. It is anticipated that the instant and repeatable underwater adhesive hydrogel-based sensors extend the underwater applications of hydrogel electronics.
Collapse
Affiliation(s)
- Shaoshuai He
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Bingyan Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xia Sun
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mingyue Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Hong Sun
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
40
|
Zhang K, Pang Y, Chen C, Wu M, Liu Y, Yu S, Li L, Ji Z, Pang J. Stretchable and conductive cellulose hydrogel electrolytes for flexible and foldable solid-state supercapacitors. Carbohydr Polym 2022; 293:119673. [DOI: 10.1016/j.carbpol.2022.119673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/12/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022]
|
41
|
Chen M, Qian X, Cai J, Zhou J, Lu A. Electronic skin based on cellulose/KCl/sorbitol organohydrogel. Carbohydr Polym 2022; 292:119645. [DOI: 10.1016/j.carbpol.2022.119645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/30/2022]
|
42
|
High-performance triboelectric nanogenerator based on chitin for mechanical-energy harvesting and self-powered sensing. Carbohydr Polym 2022; 291:119586. [DOI: 10.1016/j.carbpol.2022.119586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/07/2022] [Accepted: 05/05/2022] [Indexed: 11/22/2022]
|
43
|
Gao Y, Zhang Z, Ren X, Jia F, Gao G. A hydrogel sensor driven by sodium carboxymethyl starch with synergistic enhancement of toughness and conductivity. J Mater Chem B 2022; 10:5743-5752. [PMID: 35802130 DOI: 10.1039/d2tb00839d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conductive hydrogels are potential materials for fabricating wearable strain sensors owing to their excellent mechanical properties and high conductivity. However, it is a challenge to simultaneously enhance the mechanical properties and conductivity of hydrogels. Herein, a simple strategy was proposed for concurrently enhancing the mechanical properties and conductivity of the wearable hydrogel sensors by introducing carboxymethyl starch sodium (CMS). The introduction of CMS not only dramatically enhanced the mechanical performance of the hydrogel due to hydrogen bonding and electrostatic interaction, but also improved the conductivity of the hydrogel owing to the existence of sodium ions. As a result, the hydrogel sensors with excellent durability and stability could repeatedly detect and distinguish various human activities, including walking, chewing and speaking. Meanwhile, multiple sensors are also assembled into a 3D sensor array for detecting the three-dimensional distribution of stress and strain. Moreover, the peaks of EMG signals and the waveforms of ECG signals could be recorded because the hydrogel sensor presented super sensitivity and fast response. Therefore, the multifunctional hydrogel presented remarkable potential for applications in human medical diagnosis, health monitoring and artificial intelligence.
Collapse
Affiliation(s)
- Yiyan Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China.
| | - Zhixin Zhang
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China.
| | - Xiuyan Ren
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China.
| | - Fei Jia
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China.
| | - Guanghui Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China.
| |
Collapse
|
44
|
Zhan Y, Xing Y, Ji Q, Ma X, Xia Y. Strain-sensitive alginate/polyvinyl alcohol composite hydrogels with Janus hierarchy and conductivity mediated by tannic acid. Int J Biol Macromol 2022; 212:202-210. [PMID: 35569679 DOI: 10.1016/j.ijbiomac.2022.05.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 01/08/2023]
Abstract
To construct conductive hydrogels with a conductive and a non- or weakly conductive layer for comfortable and safe electronic application, marine biobased anionic polysaccharide sodium alginate (SA) and neutral polyvinyl alcohol (PVA) were employed as the hydrogel matrixes. Tannic acid (TA) was exploited to mediate the demixing of the miscible aqueous solution of SA and PVA in view of the much larger interaction strength of TA with PVA than both of TA with SA and PVA with SA calculated from the density functional theory (-40.21, -29.77 and -21.00 kcal·mol-1 respectively). The finally-fabricated alginate/PVA composite hydrogels not only possess a "Janus" hierarchy but manifest asymmetrical conductivity, i.e., one layer strongly conductive and another weakly conductive. The strongly conductive layer achieves a conductivity of more than 2.95 S·m-1, facilitating their application in soft electronic areas like human-machine interfaces, smart wearable devices and soft robots. The weakly conductive layer with the conductivity less than 0.60 S·m-1 and the thickness adjustable, constitutes a protective screen for another layer. The Janus hydrogels exhibit good mechanical performance, excellent strain-sensing performance and fatigue-resistant mechanics, conductivity and sensitivity.
Collapse
Affiliation(s)
- Yiwei Zhan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yacheng Xing
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Quan Ji
- Institute of Marine Biobased Materials, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China
| | - Xiaomei Ma
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China; Institute of Marine Biobased Materials, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China.
| | - Yanzhi Xia
- Institute of Marine Biobased Materials, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China
| |
Collapse
|
45
|
Wang SJ, Jing X, Mi HY, Chen Z, Zou J, Liu ZH, Feng PY, Liu Y, Zhang Z, Shang Y. Development and Applications of Hydrogel-Based Triboelectric Nanogenerators: A Mini-Review. Polymers (Basel) 2022; 14:1452. [PMID: 35406325 PMCID: PMC9002585 DOI: 10.3390/polym14071452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/31/2022] Open
Abstract
In recent years, with the appearance of the triboelectric nanogenerator (TENG), there has been a wave of research on small energy harvesting devices and self-powered wearable electronics. Hydrogels-as conductive materials with excellent tensile properties-have been widely focused on by researchers, which encouraged the development of the hydrogel-based TENGs (H-TENGs) that use the hydrogel as an electrode. Due to the great feasibility of adjusting the conductivity and mechanical property as well as the microstructure of the hydrogels, many H-TENGs with excellent performance have emerged, some of which are capable of excellent outputting ability with an output voltage of 992 V, and self-healing performance which can spontaneously heal within 1 min without any external stimuli. Although there are numerous studies on H-TENGs with excellent performance, a comprehensive review paper that systematically correlates hydrogels' properties to TENGs is still absent. Therefore, in this review, we aim to provide a panoramic overview of the working principle as well as the preparation strategies that significantly affect the properties of H-TENGs. We review hydrogel classification categories such as their network composition and their potential applications on sensing and energy harvesting, and in biomedical fields. Moreover, the challenges faced by the H-TENGs are also discussed, and relative future development of the H-TENGs are also provided to address them. The booming growth of H-TENGs not only broadens the applications of hydrogels into new areas, but also provides a novel alternative for the sustainable power sources.
Collapse
Affiliation(s)
- Sheng-Ji Wang
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.-J.W.); (Z.C.); (Z.-H.L.); (P.-Y.F.); (Y.L.)
| | - Xin Jing
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.-J.W.); (Z.C.); (Z.-H.L.); (P.-Y.F.); (Y.L.)
| | - Hao-Yang Mi
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.-J.W.); (Z.C.); (Z.-H.L.); (P.-Y.F.); (Y.L.)
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, China;
| | - Zhuo Chen
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.-J.W.); (Z.C.); (Z.-H.L.); (P.-Y.F.); (Y.L.)
| | - Jian Zou
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, China;
| | - Zi-Hao Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.-J.W.); (Z.C.); (Z.-H.L.); (P.-Y.F.); (Y.L.)
| | - Pei-Yong Feng
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.-J.W.); (Z.C.); (Z.-H.L.); (P.-Y.F.); (Y.L.)
| | - Yuejun Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.-J.W.); (Z.C.); (Z.-H.L.); (P.-Y.F.); (Y.L.)
| | - Zhi Zhang
- Shenzhen Weijian Wuyou Technology Co., Ltd., Shenzhen 518102, China; (Z.Z.); (Y.S.)
| | - Yinghui Shang
- Shenzhen Weijian Wuyou Technology Co., Ltd., Shenzhen 518102, China; (Z.Z.); (Y.S.)
| |
Collapse
|
46
|
Ultrasound in cellulose-based hydrogel for biomedical use: From extraction to preparation. Colloids Surf B Biointerfaces 2022; 212:112368. [PMID: 35114437 DOI: 10.1016/j.colsurfb.2022.112368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/12/2022] [Accepted: 01/23/2022] [Indexed: 02/07/2023]
Abstract
As the most abundant natural polymer on the pl anet, cellulose has a wide range of applications in the biomedical field. Cellulose-based hydrogels further expand the applications of this class of biomaterials. However, a number of publications and technical reports are mainly about traditional preparation methods. Sonochemistry offers a simple and green route to material synthesis with the biomedical application of ultrasound. The tiny acoustic bubbles, produced by the propagating sound wave, enclose an incredible facility where matter interact among at energy as high as 13 eV to spark extraordinary chemical reactions. Ultrasonication not only improves the efficiency of cellulose extraction from raw materials, but also influences the hydrogel preparation process. The primary objective of this article is to review the literature concerning the biomedical cellulose-based hydrogel prepared via sonochemistry and application of ultrasound for hydrogel. An innovated category of recent generations of hydrogel materials prepared via ultrasound was also presented in some details.
Collapse
|
47
|
Wu Y, Luo Y, Cuthbert TJ, Shokurov AV, Chu PK, Feng S, Menon C. Hydrogels as Soft Ionic Conductors in Flexible and Wearable Triboelectric Nanogenerators. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106008. [PMID: 35187859 PMCID: PMC9009134 DOI: 10.1002/advs.202106008] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/07/2022] [Indexed: 05/12/2023]
Abstract
Flexible triboelectric nanogenerators (TENGs) have attracted increasing interest since their advent in 2012. In comparison with other flexible electrodes, hydrogels possess transparency, stretchability, biocompatibility, and tunable ionic conductivity, which together provide great potential as current collectors in TENGs for wearable applications. The development of hydrogel-based TENGs (H-TENGs) is currently a burgeoning field but research efforts have lagged behind those of other common flexible TENGs. In order to spur research and development of this important area, a comprehensive review that summarizes recent advances and challenges of H-TENGs will be very useful to researchers and engineers in this emerging field. Herein, the advantages and types of hydrogels as soft ionic conductors in TENGs are presented, followed by detailed descriptions of the advanced functions, enhanced output performance, as well as flexible and wearable applications of H-TENGs. Finally, the challenges and prospects of H-TENGs are discussed.
Collapse
Affiliation(s)
- Yinghong Wu
- Biomedical and Mobile Health Technology LabDepartment of Health Sciences and TechnologyETH ZurichZurich8008Switzerland
| | - Yang Luo
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongHong Kong999077China
| | - Tyler J. Cuthbert
- Biomedical and Mobile Health Technology LabDepartment of Health Sciences and TechnologyETH ZurichZurich8008Switzerland
| | - Alexander V. Shokurov
- Biomedical and Mobile Health Technology LabDepartment of Health Sciences and TechnologyETH ZurichZurich8008Switzerland
| | - Paul K. Chu
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongHong Kong999077China
| | - Shien‐Ping Feng
- Department of Mechanical EngineeringThe University of Hong KongHong Kong999077China
- Department of Advanced Design and Systems EngineeringCity University of Hong KongKowloonHong Kong999077China
| | - Carlo Menon
- Biomedical and Mobile Health Technology LabDepartment of Health Sciences and TechnologyETH ZurichZurich8008Switzerland
| |
Collapse
|
48
|
Zhang J, Zhang Q, Liu X, Xia S, Gao Y, Gao G. Flexible and wearable strain sensors based on conductive hydrogels. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiawei Zhang
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun China
| | - Qin Zhang
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun China
| | - Xin Liu
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun China
| | - Shan Xia
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun China
| | - Yang Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun China
| | - Guanghui Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun China
| |
Collapse
|
49
|
Wang L, Hui L, Su W. Superhydrophobic modification of nanocellulose based on an octadecylamine/dopamine system. Carbohydr Polym 2022; 275:118710. [PMID: 34742435 DOI: 10.1016/j.carbpol.2021.118710] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 01/03/2023]
Abstract
We prepared super-hydrophobic nanocellulose films using a non-toxic octadecylamine/polydopamine system. Octadecylamine, a low surface energy material, was used to provide hydrophobic alkyl long chains. Polydopamine was produced by dopamine under alkaline conditions, creating an adhesive substance, which reinforced the hydrophobic long chains and increased the surface roughness of nanocellulose. The effects of reagent concentration, reaction temperature, and reaction time on hydrophobicity were then investigated. The results showed that with a 1:1 mass ratio of nanocellulose to octadecylamine, and reacting at 60 °C for 4 h, the contact angle of the obtained composite membrane reached 168.2°. Scanning electron microscope images revealed that the modified nanocellulose had a smaller particle size and more uniform distribution, which effectively improved the hydrophobicity of the nanocellulose. Thus, the green preparation of superhydrophobic films with high-temperature resistance and wear resistance was realized, which contributed to the high-value utilization of nanocellulose.
Collapse
Affiliation(s)
- Lingyuan Wang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lanfeng Hui
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Weiyin Su
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
50
|
Zhang Y, Xu J, Wang H. Bio-based, self-adhesive, and self-healing ionogel with excellent mechanical properties for flexible strain sensor. RSC Adv 2021; 11:37661-37666. [PMID: 35496444 PMCID: PMC9043983 DOI: 10.1039/d1ra06686b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023] Open
Abstract
Bio-based ionogels with versatile properties are highly desired for practical applications. Herein, we designed a novel self-healing, anti-freezing, and self-adhesive ionogel with excellent sensor capability. The ionogel was obtained by cross-linking amino groups (chitosan) and aldehyde groups (dextran oxide) to form Schiff-base bonds in the ionic liquids (EMIMOAc) with TA. Ionogels inherited the superior electrical conductivity of ionic liquids (IG2, 1.1 mS cm-1). Due to the dynamic reaction of Schiff-base bonds, the obtained IG2 possessed self-healing properties (self-healing efficiency = 89%). The presence of TA also provided the ionogel with excellent self-adhesive properties (IG2/TA, adhesive strength to hogskin = 8.05 kPa). Owing to the low freezing point and low vapor pressure of ionic liquids, ionogels were endowed with anti-freeze properties and resistance to solvent volatility. Moreover, the ionogel can act as a strain sensor, and exhibited excellent sensitivity and sensing performance. Our work provided a green and effective method in preparation of the high performance ionogel sensor, which could accommodate future practical industrial applications.
Collapse
Affiliation(s)
- Yipeng Zhang
- West China Hospital of Sichuan University Chengdu 610041 China
| | - Junhuai Xu
- College of Biomass Science and Engineering, Sichuan University Chengdu 610065 P. R. China
| | - Haibo Wang
- College of Biomass Science and Engineering, Sichuan University Chengdu 610065 P. R. China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University Chengdu 610065 PR China
| |
Collapse
|