1
|
Zhang L, Wang W, Liu X, Yan K, Li Q, Li M, Li C, Li Y, Chen L. Traditional Chinese medicine compounds modulate signaling pathways to improve cardiac-related pathology. Front Pharmacol 2025; 16:1499060. [PMID: 40242436 PMCID: PMC12000890 DOI: 10.3389/fphar.2025.1499060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Cardiovascular disease poses a significant risk to human health and remains the leading cause of illness and death globally, with its incidence continuing to rise. The intricate pathophysiological mechanisms of CVDs include inflammation, oxidative stress, autophagy, and myocardial fibrosis. In light of these underlying mechanisms, traditional Chinese medicine (TCM) and its constituents have demonstrated distinct advantages in managing CVDs. By exerting synergistic effects across multiple components and targets, traditional Chinese medicine can modulate the inflammatory response, mitigate oxidative stress, regulate excessive autophagy, and enhance myocardial fibrosis repair. This article reviews the latest advancements in understanding how TCM compounds regulate signaling pathways involved in the treatment of CVDs.
Collapse
Affiliation(s)
- Luwen Zhang
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Wei Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Henan Province Traditional Chinese Medicine Epidemic Diseases Engineering Research Center, Zhengzhou, Henan, China
| | - Xincan Liu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Kuipo Yan
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Qiang Li
- The First Affiliated Hospital of Hena University of Chinese Medicine, Henan Key Laboratory of Viral Diseases Prevention and Treatment of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Ming Li
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Chunying Li
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Yanxin Li
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Lei Chen
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Amatto PDPG, Coppede JDS, Kitanishi CR, Braga GG, de Faria TC, Rizzi E, França SDC, Basso F, Lopes AA, Carmona F, Contini SHT, Pereira AMS. Kalanchoe crenata Andrews (Haw.) Improves Losartan's Antihypertensive Activity. Molecules 2024; 29:6010. [PMID: 39770106 PMCID: PMC11676209 DOI: 10.3390/molecules29246010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Cardiovascular diseases constitute one of the leading causes of morbidity and mortality worldwide. Herbal medicines represent viable alternatives to the synthetic drugs currently employed in the control of hypertension. This study aimed to isolate and identify the chemical markers of Kalanchoe crenata and to investigate the antihypertensive and anti-matrix metalloproteinase (MMP2) activities of an aqueous extract of the leaves. METHODS The main constituents of the aqueous extract of K. crenata were separated by ultra-performance liquid chromatography-mass spectrometry, and their presence was identified by NMR spectroscopy. Renovascular hypertension was induced in male Wistar rats using the two-kidney one-clip method (HTN groups), while control animals (Sham groups) were submitted to Sham surgery. Six groups of 10 animals each were treated daily for eight weeks as follows: Sham 1 (carrier), Sham 2 (K. crenata extract), HTN.1 (carrier), HTN.2 (K. crenata extract), HTN 3 (losartan), and HTN 4 (K. crenata extract with losartan). RESULTS The main compounds of the extract were patuletin 3-O-(4″-O-acetyl-α-L-rhamnopyranosyl)-7-O-(3‴-O-acetyl-α-L-rhamnopyranoside) (1), patuletin 3-O-α-L-rhamnopyranosyl-7-O-L-rhamnopyranoside (2), and trans-caffeoyl-malic acid (3), with compounds 1 and 2 being chemical markers of the species. Significant reductions (p < 0.05) in systolic blood pressure and MMP2 (72kDa isoform) activity were observed in the HTN 4 group. CONCLUSIONS The association of K. crenata extract and losartan presented in vivo effects against hypertension.
Collapse
Affiliation(s)
- Pedro de Padua G. Amatto
- Department of Biotechnology of Medicinal Plants, University of Ribeirão Preto, Ribeirão Preto 14096-900, Brazil; (P.d.P.G.A.); (J.d.S.C.); (C.R.K.); (G.G.B.); (T.C.d.F.); (E.R.); (S.d.C.F.); (A.A.L.); (S.H.T.C.)
| | - Juliana da Silva Coppede
- Department of Biotechnology of Medicinal Plants, University of Ribeirão Preto, Ribeirão Preto 14096-900, Brazil; (P.d.P.G.A.); (J.d.S.C.); (C.R.K.); (G.G.B.); (T.C.d.F.); (E.R.); (S.d.C.F.); (A.A.L.); (S.H.T.C.)
| | - Carla Renata Kitanishi
- Department of Biotechnology of Medicinal Plants, University of Ribeirão Preto, Ribeirão Preto 14096-900, Brazil; (P.d.P.G.A.); (J.d.S.C.); (C.R.K.); (G.G.B.); (T.C.d.F.); (E.R.); (S.d.C.F.); (A.A.L.); (S.H.T.C.)
| | - Giovana Graça Braga
- Department of Biotechnology of Medicinal Plants, University of Ribeirão Preto, Ribeirão Preto 14096-900, Brazil; (P.d.P.G.A.); (J.d.S.C.); (C.R.K.); (G.G.B.); (T.C.d.F.); (E.R.); (S.d.C.F.); (A.A.L.); (S.H.T.C.)
| | - Thaysa Carvalho de Faria
- Department of Biotechnology of Medicinal Plants, University of Ribeirão Preto, Ribeirão Preto 14096-900, Brazil; (P.d.P.G.A.); (J.d.S.C.); (C.R.K.); (G.G.B.); (T.C.d.F.); (E.R.); (S.d.C.F.); (A.A.L.); (S.H.T.C.)
| | - Elen Rizzi
- Department of Biotechnology of Medicinal Plants, University of Ribeirão Preto, Ribeirão Preto 14096-900, Brazil; (P.d.P.G.A.); (J.d.S.C.); (C.R.K.); (G.G.B.); (T.C.d.F.); (E.R.); (S.d.C.F.); (A.A.L.); (S.H.T.C.)
| | - Suzelei de Castro França
- Department of Biotechnology of Medicinal Plants, University of Ribeirão Preto, Ribeirão Preto 14096-900, Brazil; (P.d.P.G.A.); (J.d.S.C.); (C.R.K.); (G.G.B.); (T.C.d.F.); (E.R.); (S.d.C.F.); (A.A.L.); (S.H.T.C.)
| | - Fernanda Basso
- School of Dentistry, São Paulo State University Júlio de Mesquita Filho, Araraquara 14800-060, Brazil;
| | - Adriana Aparecida Lopes
- Department of Biotechnology of Medicinal Plants, University of Ribeirão Preto, Ribeirão Preto 14096-900, Brazil; (P.d.P.G.A.); (J.d.S.C.); (C.R.K.); (G.G.B.); (T.C.d.F.); (E.R.); (S.d.C.F.); (A.A.L.); (S.H.T.C.)
| | - Fábio Carmona
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
- Botanical Garden of Medicinal Plants Ordem e Progresso, Jardinopólis 14680-000, Brazil
| | - Silvia Helena Taleb Contini
- Department of Biotechnology of Medicinal Plants, University of Ribeirão Preto, Ribeirão Preto 14096-900, Brazil; (P.d.P.G.A.); (J.d.S.C.); (C.R.K.); (G.G.B.); (T.C.d.F.); (E.R.); (S.d.C.F.); (A.A.L.); (S.H.T.C.)
| | - Ana Maria Soares Pereira
- Department of Biotechnology of Medicinal Plants, University of Ribeirão Preto, Ribeirão Preto 14096-900, Brazil; (P.d.P.G.A.); (J.d.S.C.); (C.R.K.); (G.G.B.); (T.C.d.F.); (E.R.); (S.d.C.F.); (A.A.L.); (S.H.T.C.)
- Botanical Garden of Medicinal Plants Ordem e Progresso, Jardinopólis 14680-000, Brazil
| |
Collapse
|
3
|
Huang YN, Hsu CN, Hou CY, Chen SY, Tain YL. Resveratrol Butyrate Esters Reduce Hypertension in a Juvenile Rat Model of Chronic Kidney Disease Exacerbated by Microplastics. Nutrients 2024; 16:4076. [PMID: 39683469 DOI: 10.3390/nu16234076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Resveratrol is recognized as a promising nutraceutical with antihypertensive and prebiotic properties; however, its bioavailability in vivo is limited. To enhance its bioactivity, we developed resveratrol butyrate esters (RBEs). This study investigates whether RBEs can mitigate hypertension induced by chronic kidney disease (CKD) and exacerbated by microplastics (MPs) exposure in juvenile rats. METHODS Three-week-old male Sprague Dawley rats were fed either regular chow or 0.5% adenine chow for three weeks. The adenine-fed CKD rats (N = 8 per group) received either 5 μM MPs (10 mg/L) or MPs combined with RBE (25 mg/L) in their drinking water from weeks 3 to 9. RESULTS Our results indicate that MP exposure worsened CKD-induced hypertension, while RBE treatment resulted in a reduction in systolic BP by 15 mmHg (155 ± 2 mmHg vs. 140 ± 1 mmHg, p < 0.05). The combined exposure to adenine and MPs was associated with nitric oxide (NO) deficiency, which RBE treatment alleviated. Additionally, our findings revealed that RBE modulated both the classical and nonclassical renin-angiotensin system (RAS), contributing to its protective effects. We also observed changes in gut microbiota composition, increased butyric acid levels, and elevated renal GPR41 expression associated with RBE treatment. CONCLUSIONS In conclusion, in this juvenile rat model of combined CKD and MP exposure, RBE demonstrates antihypertensive effects by modulating NO levels, the RAS, gut microbiota, and their metabolites.
Collapse
Affiliation(s)
- Yi-Ning Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Shin-Yu Chen
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 330, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
4
|
Li Q, Cao H, Xu X, Chen Y, Zhang Y, Mi Y, Zhu X, Shi Y, Liu J, Wang B, Xu CB, Wang C. Resveratrol attenuates cyclosporin A-induced upregulation of the thromboxane A 2 receptor and hypertension via the AMPK/SIRT1 and MAPK/NF-κB pathways in the rat mesenteric artery. Eur J Pharmacol 2024; 972:176543. [PMID: 38582274 DOI: 10.1016/j.ejphar.2024.176543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Cyclosporin A, an immunosuppressive agent, is extensively utilized for the prevention of transplant rejection and treat autoimmune disease in the clinic, despite its association with a high risk of hypertension development among patients. Resveratrol is a kind of non-flavonoid phenolic compound that widely exists in many plants. The aim of the present study was to investigate the mechanism by which resveratrol ameliorates cyclosporin A-induced hypertension. The arterial rings of the mesentery were incubated with cyclosporin A and resveratrol in vitro. Rats were administered cyclosporin A and/or resveratrol for 3 weeks in vivo. Blood pressure was measured via the tail arteries. Vasoconstriction curves were recorded using a sensitive myograph. The protein expression was evaluated through Western blotting. This study demonstrated that resveratrol mitigated the cyclosporin A-induced increase in blood pressure in rats. Furthermore, resveratrol markedly inhibited the cyclosporin A-induced upregulation of thromboxane A2 receptor-mediated vasoconstriction in the rat mesenteric artery both in vitro and in vivo. Moreover, resveratrol activated AMPK/SIRT1 and inhibited the MAPK/NF-κB signaling pathway. In conclusion, resveratrol restored the cyclosporin A-induced upregulation of the thromboxane A2 receptor and hypertension via the AMPK/SIRT1 and MAPK/NF-κB pathways in rats.
Collapse
Affiliation(s)
- Qian Li
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Hanjing Cao
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xinya Xu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China
| | - Yumeng Chen
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yufang Zhang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yanni Mi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China
| | - Xingmei Zhu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China
| | - Yongheng Shi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China
| | - Jiping Liu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China; Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang 712046, China
| | - Bin Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China; Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang 712046, China
| | - Cang-Bao Xu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Chuan Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China; Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang 712046, China.
| |
Collapse
|
5
|
Yang HW, Chun-Yu Ho D, Liao HY, Liao YW, Fang CY, Ng MY, Yu CC, Lin FC. Resveratrol inhibits arecoline-induced fibrotic properties of buccal mucosal fibroblasts via miR-200a activation. J Dent Sci 2024; 19:1028-1035. [PMID: 38618058 PMCID: PMC11010603 DOI: 10.1016/j.jds.2023.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Indexed: 04/16/2024] Open
Abstract
Background/purpose Oral submucous fibrosis (OSF) is a precancerous lesion in the oral cavity, commonly results from the Areca nut chewing habit. Arecoline, the main component of Areca nut, is known to stimulate the activation of myofibroblasts, which can lead to abnormal collagen I deposition. Meanwhile, Resveratrol is a non-flavonoid phenolic substance that can be naturally obtained from various berries and foods. Given that resveratrol has significant anti-fibrosis traits in other organs, but little is known about its effect on OSF, this study aimed to investigate the therapeutic impact of resveratrol on OSF and its underlying mechanism. Materials and methods The cytotoxicity of resveratrol was tested using normal buccal mucosal fibroblasts (BMFs). Myofibroblast phenotypes such as collagen contractile, enhanced migration, and wound healing capacities in dose-dependently resveratrol-treated fBMFs were examined. Results Current results showed that arecoline induced cell migration and contractile activity in BMFs as well as upregulated the expressions of α-SMA, type I collagen, and ZEB1 markers. Resveratrol intervention, on the other hand, was shown to inhibit arecoline-induced myofibroblast activation and reduce myofibroblast hallmarks and EMT markers. Additionally, resveratrol was also demonstrated to restore the downregulated miR-200a in the arecoline-stimulated cells. Conclusion In a nutshell, these findings implicate that resveratrol may have an inhibitory influence on arecoline-induced fibrosis via the regulation of miR-200a. Hence, resveratrol may be used as a therapeutic strategy for OSF intervention.
Collapse
Affiliation(s)
- Hui-Wen Yang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Dennis Chun-Yu Ho
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Heng-Yi Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Wen Liao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Yuan Fang
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Min Yee Ng
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Fu-Chen Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
6
|
Suárez-Rivero JM, Pastor-Maldonado CJ, Povea-Cabello S, Álvarez-Córdoba M, Villalón-García I, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Reche-López D, Cilleros-Holgado P, Piñero-Pérez R, Sánchez-Alcázar JA. Activation of the Mitochondrial Unfolded Protein Response: A New Therapeutic Target? Biomedicines 2022; 10:1611. [PMID: 35884915 PMCID: PMC9313171 DOI: 10.3390/biomedicines10071611] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction is a key hub that is common to many diseases. Mitochondria's role in energy production, calcium homeostasis, and ROS balance makes them essential for cell survival and fitness. However, there are no effective treatments for most mitochondrial and related diseases to this day. Therefore, new therapeutic approaches, such as activation of the mitochondrial unfolded protein response (UPRmt), are being examined. UPRmt englobes several compensation processes related to proteostasis and antioxidant mechanisms. UPRmt activation, through an hormetic response, promotes cell homeostasis and improves lifespan and disease conditions in biological models of neurodegenerative diseases, cardiopathies, and mitochondrial diseases. Although UPRmt activation is a promising therapeutic option for many conditions, its overactivation could lead to non-desired side effects, such as increased heteroplasmy of mitochondrial DNA mutations or cancer progression in oncologic patients. In this review, we present the most recent UPRmt activation therapeutic strategies, UPRmt's role in diseases, and its possible negative consequences in particular pathological conditions.
Collapse
Affiliation(s)
- Juan M. Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Carmen J. Pastor-Maldonado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Sevilla, Spain
| |
Collapse
|
7
|
Suárez-Rivero JM, Pastor-Maldonado CJ, Romero-González A, Gómez-Fernandez D, Povea-Cabello S, Álvarez-Córdoba M, Villalón-García I, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Sánchez-Alcázar JA. Pterostilbene in Combination With Mitochondrial Cofactors Improve Mitochondrial Function in Cellular Models of Mitochondrial Diseases. Front Pharmacol 2022; 13:862085. [PMID: 35370630 PMCID: PMC8971666 DOI: 10.3389/fphar.2022.862085] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial diseases are genetic disorders caused by mutations in genes in the nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) that encode mitochondrial structural or functional proteins. Although considered “rare” due to their low incidence, such diseases affect thousands of patients’ lives worldwide. Despite intensive research efforts, most mitochondrial diseases are still incurable. Recent studies have proposed the modulation of cellular compensatory pathways such as mitophagy, AMP-activated protein kinase (AMPK) activation or the mitochondrial unfolded protein response (UPRmt) as novel therapeutic approaches for the treatment of these pathologies. UPRmt is an intracellular compensatory pathway that signals mitochondrial stress to the nucleus for the activation of mitochondrial proteostasis mechanisms including chaperones, proteases and antioxidants. In this work a potentially beneficial molecule, pterostilbene (a resveratrol analogue), was identified as mitochondrial booster in drug screenings. The positive effects of pterostilbene were significantly increased in combination with a mitochondrial cocktail (CoC3) consisting of: pterostilbene, nicotinamide, riboflavin, thiamine, biotin, lipoic acid and l-carnitine. CoC3 increases sirtuins’ activity and UPRmt activation, thus improving pathological alterations in mutant fibroblasts and induced neurons.
Collapse
|
8
|
Aires R, Gobbi Amorim F, Côco LZ, da Conceição AP, Zanardo TÉC, Taufner GH, Nogueira BV, Vasquez EC, Melo Costa Pereira T, Campagnaro BP, Dos Santos Meyrelles S. Use of kefir peptide (Kef-1) as an emerging approach for the treatment of oxidative stress and inflammation in 2K1C mice. Food Funct 2022; 13:1965-1974. [PMID: 35088783 DOI: 10.1039/d1fo01798e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The benefits of kefir consumption are partially due to the rich composition of bioactive molecules released from its fermentation. Angiotensin-converting enzyme (ACE) inhibitors are bioactive molecules with potential use in the treatment or prevention of hypertension, heart failure, and myocardial infarction. Here, the in vivo actions of the Kef-1 peptide, an ACE inhibitor derived from kefir, were evaluated in an angiotensin II-dependent hypertension model. The Kef-1 peptide showed a potential anti-hypertensive effect. Additionally, Kef-1 exhibited systemic antioxidant and anti-inflammatory activities. In smooth muscle cells (SMCs), the Kef-1 peptide decreased ROS production through the reduced participation of NADPH oxidase and mitochondria. The aorta of 2K1C mice treated with Kef-1 showed lesser wall-thickening and partial restoration of the endothelial structure. In conclusion, these novel findings highlight the in vivo biological potential of this peptide demonstrating that Kef-1 may be a relevant nutraceutical treatment for cardiovascular diseases.
Collapse
Affiliation(s)
- Rafaela Aires
- Laboratory of Translational Physiology, Physiological Sciences Graduate Program, Federal University of Espirito Santo (UFES), Vitoria, Brazil.
| | - Fernanda Gobbi Amorim
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liège, Liège, Belgium
| | - Larissa Zambom Côco
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| | - Amanda Pompermayer da Conceição
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| | - Tadeu Ériton Caliman Zanardo
- Biotechnology Graduate Program, Rede Nordeste de Biotecnologia (RENORBIO), Vitória, Brazil.,Tissue Engineering Core, Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Gabriel Henrique Taufner
- Biotechnology Graduate Program, Rede Nordeste de Biotecnologia (RENORBIO), Vitória, Brazil.,Tissue Engineering Core, Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Breno Valentim Nogueira
- Biotechnology Graduate Program, Rede Nordeste de Biotecnologia (RENORBIO), Vitória, Brazil.,Tissue Engineering Core, Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Elisardo Corral Vasquez
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| | - Thiago Melo Costa Pereira
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil.,Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
| | - Bianca Prandi Campagnaro
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| | - Silvana Dos Santos Meyrelles
- Laboratory of Translational Physiology, Physiological Sciences Graduate Program, Federal University of Espirito Santo (UFES), Vitoria, Brazil.
| |
Collapse
|
9
|
Hosseini SA, Zahedipour F, Sathyapalan T, Jamialahmadi T, Sahebkar A. Pulmonary fibrosis: Therapeutic and mechanistic insights into the role of phytochemicals. Biofactors 2021; 47:250-269. [PMID: 33548106 DOI: 10.1002/biof.1713] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
Pulmonary fibrosis (PF) is the devastating consequence of various inflammatory diseases of the lung. PF leads to a reduction of lung function, respiratory failure, and death. Several molecular pathways are involved in PF, such as inflammatory cytokines including tumor necrosis factor α (TNFα), tumor necrosis factor β1 (TNFβ1), interleukin 6 (IL-6), and interleukin 4 (IL-4), reactive oxygen species, matrix metalloproteases, and transforming growth factor-beta (TGF-β). Targeting these processes involved in the progression of PF is essential for the treatment of this disease. Natural products, including plant extracts and active compound that directly target the processes involved in PF, could be suitable therapeutic options with less adverse effects. In the present study, we reviewed the protective effects and the therapeutic role of various bioactive compounds from plants in PF management.
Collapse
Affiliation(s)
- Seyede Atefe Hosseini
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zahedipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
- Halal Research Center of IRI, FDA, Tehran, Iran
| |
Collapse
|
10
|
Miotto DS, Dionizio A, Jacomini AM, Zago AS, Buzalaf MAR, Amaral SL. Identification of Aortic Proteins Involved in Arterial Stiffness in Spontaneously Hypertensive Rats Treated With Perindopril:A Proteomic Approach. Front Physiol 2021; 12:624515. [PMID: 33679438 PMCID: PMC7928294 DOI: 10.3389/fphys.2021.624515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
Arterial stiffness, frequently associated with hypertension, is associated with disorganization of the vascular wall and has been recognized as an independent predictor of all-cause mortality. The identification of the molecular mechanisms involved in aortic stiffness would be an emerging target for hypertension therapeutic intervention. This study evaluated the effects of perindopril on pulse wave velocity (PWV) and on the differentially expressed proteins in aorta of spontaneously hypertensive rats (SHR), using a proteomic approach. SHR and Wistar rats were treated with perindopril (SHRP) or water (SHRc and Wistar rats) for 8 weeks. At the end, SHRC presented higher systolic blood pressure (SBP, +70%) and PWV (+31%) compared with Wistar rats. SHRP had higher values of nitrite concentration and lower PWV compared with SHRC. From 21 upregulated proteins in the aortic wall from SHRC, most of them were involved with the actin cytoskeleton organization, like Tropomyosin and Cofilin-1. After perindopril treatment, there was an upregulation of the GDP dissociation inhibitors (GDIs), which normally inhibits the RhoA/Rho-kinase/cofilin-1 pathway and may contribute to decreased arterial stiffening. In conclusion, the results of the present study revealed that treatment with perindopril reduced SBP and PWV in SHR. In addition, the proteomic analysis in aorta suggested, for the first time, that the RhoA/Rho-kinase/Cofilin-1 pathway may be inhibited by perindopril-induced upregulation of GDIs or increases in NO bioavailability in SHR. Therefore, we may propose that activation of GDIs or inhibition of RhoA/Rho-kinase pathway could be a possible strategy to treat arterial stiffness.
Collapse
Affiliation(s)
- Danyelle S Miotto
- Joint Graduate Program in Physiological Sciences, Federal University of Sao Carlos and São Paulo State University, UFSCar/UNESP, São Carlos, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - André M Jacomini
- Post-Graduate Program in Movement Sciences, São Paulo State University, Bauru, Brazil
| | - Anderson S Zago
- Post-Graduate Program in Movement Sciences, São Paulo State University, Bauru, Brazil.,Department of Physical Education, School of Sciences, São Paulo State University, Bauru, Brazil
| | | | - Sandra L Amaral
- Joint Graduate Program in Physiological Sciences, Federal University of Sao Carlos and São Paulo State University, UFSCar/UNESP, São Carlos, Brazil.,Department of Physical Education, School of Sciences, São Paulo State University, Bauru, Brazil
| |
Collapse
|
11
|
Hong MH, Jin XJ, Yoon JJ, Lee YJ, Oh HC, Lee HS, Kim HY, Kang DG. Antihypertensive Effects of Gynura divaricata (L.) DC in Rats with Renovascular Hypertension. Nutrients 2020; 12:E3321. [PMID: 33138042 PMCID: PMC7692656 DOI: 10.3390/nu12113321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Gynura divaricata (L.) DC (Compositae) (GD) could be found in various parts of Asia. It has been used as a traditional medicine to treat diabetes, high blood pressure, and other diseases, but its effects have not yet been scientifically confirmed. Therefore, we aimed at determining whether GD could affect renal function regulation, blood pressure, and the renin-angiotensin-aldosterone system (RAAS). Cardio-renal syndrome (CRS) is a disease caused by the interaction between the kidney and the cardiovascular system, where the acute or chronic dysfunction in one organ might induce acute or chronic dysfunction of the other. This study investigated whether GD could improve cardio-renal mutual in CRS type 4 model animals, two-kidney one-clip (2K1C) renal hypertensive rats. The experiments were performed on the following six experimental groups: control rats (CONT); 2K1C rats (negative control); OMT (Olmetec, 10 mg/kg/day)-treated 2K1C rats (positive control); and 2K1C rats treated with GD extracts in three different doses (50, 100, and 200 mg/kg/day) for three weeks by oral intake. Each group consisted of 10 rats. We measured the systolic blood pressure weekly using the tail-cuff method. Urine was also individually collected from the metabolic cage to investigate the effect of GD on the kidney function, monitoring urine volume, electrolyte, osmotic pressure, and creatinine levels from the collected urine. We observed that kidney weight and urine volume, which would both display typically increased values in non-treated 2K1C animals, significantly decreased following the GD treatment (###p < 0.001 vs. 2K1C). Osmolality and electrolytes were measured in the urine to determine how renal excretory function, which is reduced in 2K1C rats, could be affected. We found that the GD treatment improved renal excretory function. Moreover, using periodic acid-Schiff staining, we confirmed that the GD treatment significantly reduced fibrosis, which is typically increased in 2K1C rats. Thus, we confirmed that the GD treatment improved kidney function in 2K1C rats. Meanwhile, we conducted blood pressure and vascular relaxation studies to determine if the GD treatment could improve cardiovascular function in 2K1C rats. The heart weight percentages of the left atrium and ventricle were significantly lower in GD-treated 2K1C rats than in non-treated 2K1C rats. These results showed that GD treatment reduced cardiac hypertrophy in 2K1C rats. Furthermore, the acetylcholine-, sodium nitroprusside-, and atrial natriuretic peptide-mediated reduction of vasodilation in 2K1C rat aortic rings was also ameliorated by GD treatment (GD 200 mg/kg/day; p < 0.01, p < 0.05, and p < 0.05 vs. 2K1C for vasodilation percentage in case of each compound). The mRNA expression in the 2K1C rat heart tissue showed that the GD treatment reduced brain-type natriuretic peptide and troponin T levels (p < 0.001 and p < 0.001 vs. 2K1C). In conclusion, this study showed that GD improved the cardiovascular and renal dysfunction observed in an innovative hypertension model, highlighting the potential of GD as a therapeutic agent for hypertension. These findings indicate that GD shows beneficial effects against high blood pressure by modulating the RAAS in the cardio-renal syndrome. Thus, it should be considered an effective traditional medicine in hypertension treatment.
Collapse
Affiliation(s)
- Mi Hyeon Hong
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (M.H.H.); (X.J.J.); (J.J.Y.); (Y.J.L.); (H.S.L.)
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea
| | - Xian Jun Jin
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (M.H.H.); (X.J.J.); (J.J.Y.); (Y.J.L.); (H.S.L.)
| | - Jung Joo Yoon
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (M.H.H.); (X.J.J.); (J.J.Y.); (Y.J.L.); (H.S.L.)
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea
| | - Yun Jung Lee
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (M.H.H.); (X.J.J.); (J.J.Y.); (Y.J.L.); (H.S.L.)
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea
| | - Hyun Cheol Oh
- College of Pharmacy, Wonkwang University, Iksan 54538, Korea;
| | - Ho Sub Lee
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (M.H.H.); (X.J.J.); (J.J.Y.); (Y.J.L.); (H.S.L.)
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea
| | - Hye Yoom Kim
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (M.H.H.); (X.J.J.); (J.J.Y.); (Y.J.L.); (H.S.L.)
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea
| | - Dae Gill Kang
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (M.H.H.); (X.J.J.); (J.J.Y.); (Y.J.L.); (H.S.L.)
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea
| |
Collapse
|
12
|
Morphological and Functional Characteristics of Animal Models of Myocardial Fibrosis Induced by Pressure Overload. Int J Hypertens 2020; 2020:3014693. [PMID: 32099670 PMCID: PMC7013318 DOI: 10.1155/2020/3014693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/07/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Myocardial fibrosis is characterized by excessive deposition of myocardial interstitial collagen, abnormal distribution, and excessive proliferation of fibroblasts. According to the researches in recent years, myocardial fibrosis, as the pathological basis of various cardiovascular diseases, has been proven to be a core determinant in ventricular remodeling. Pressure load is one of the causes of myocardial fibrosis. In experimental models of pressure-overload-induced myocardial fibrosis, significant increase in left ventricular parameters such as interventricular septal thickness and left ventricular posterior wall thickness and the decrease of ejection fraction are some of the manifestations of cardiac damage. These morphological and functional changes have a serious impact on the maintenance of physiological functions. Therefore, establishing a suitable myocardial fibrosis model is the basis of its pathogenesis research. This paper will discuss the methods of establishing myocardial fibrosis model and compare the advantages and disadvantages of the models in order to provide a strong basis for establishing a myocardial fibrosis model.
Collapse
|
13
|
Samiei N, Hosseini S, Maleki M, Moradi L, Joghataei MT, Arabian M. Modulatory Role of SIRT1 and Resistin as Therapeutic Targets in Patients with Aortic Valve Stenosis. Arch Med Res 2019; 50:333-341. [PMID: 31677538 DOI: 10.1016/j.arcmed.2019.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/23/2019] [Accepted: 10/14/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Inflammatory is one of the main cause of aortic valve stenosis (AS), so discovering novel biomarkers for the targeted therapy of inflammation could be an attractive strategy in AS prevention. The objectives of our study were to clarify the modulatory role of resistin and silent information regulator 1 (SIRT1) before and after surgery and also to evaluate the therapeutic effects of resveratrol. METHODS Nineteen AS patients and 15 healthy subjects were studied as the case and control groups, respectively. Peripheral blood mononuclear cells (PBMCs) were isolated and cultured to determine the levels of resistin and SIRT1 and the effects of resveratrol on them. RESULTS Significant increase in resistin expression was observed in the patients compare to the control (p ≤0.01), and this upregulation was augmented 72 h following surgery (p ≤0.01). The SIRT1 expression decreased in the AS group compare to the control but this reduction was not significant. Aortic valve replacement caused a higher decrease in the protein (p ≤0.01) and mRNA level (p ≤0.05) of SIRT1. Resveratrol in the AS group significantly diminished the resistin level (p ≤0.05) but increased the SIRT1 level (p ≤0.001). CONCLUSIONS In our patients with AS, the resistin level was increased, whereas the expression of SIRT1 was reduced and surgery augmented these alterations. Resveratrol improved inflammation in the PBMCs of the patients through the SIRT1/resistin pathway. These findings suggest that pharmacological therapy with resveratrol might be a novel approach to alleviating inflammation in patients with AS.
Collapse
Affiliation(s)
- Niloufar Samiei
- Heart Valve Disease Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeid Hosseini
- Heart Valve Disease Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Rajaie Cardiovascular, Medical, and Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Lida Moradi
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maedeh Arabian
- Rajaie Cardiovascular, Medical, and Research Centre, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Bunbupha S, Wunpathe C, Maneesai P, Berkban T, Kukongviriyapan U, Kukongviriyapan V, Prachaney P, Pakdeechote P. Carthamus tinctorius L. extract improves hemodynamic and vascular alterations in a rat model of renovascular hypertension through Ang II-AT 1R-NADPH oxidase pathway. Ann Anat 2018; 216:82-89. [PMID: 29274384 DOI: 10.1016/j.aanat.2017.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 02/09/2023]
Abstract
Carthamus tinctorius L. (CT) is widely used in Asian countries as a beverage and in folk medicine. The effects of CT extract on hemodynamics, vascular remodeling, the renin-angiotensin system (RAS) and oxidative stress in the two-kidney, one clip (2K-1C) hypertensive rat model were investigated. Renovascular hypertension was induced in male Sprague-Dawley rats and were treated with CT extract (500mg/kg/day) or captopril (5mg/kg/day) or vehicle for four weeks. CT extract or captopril reduced blood pressure, hindlimb vascular resistance, and increased hindlimb blood flow in 2K-1C hypertensive rats (p<0.05). Increases in aortic wall thickness, cross-sectional area and collagen deposition in 2K-1C rats were alleviated with CT extract or captopril treatment (p<0.05). CT extract or captopril suppressed RAS activation, including elevated serum ACE activity, and plasma Ang II level and up-regulated aortic AT1R protein expression in 2K-1C rats (p<0.05). Furthermore, CT extract or captopril reduced vascular superoxide production, aortic NADPH oxidase subunit gp91phox expression and increased plasma nitric oxide metabolite levels in 2K-1C rats (p<0.05). These findings suggest that CT extract ameliorated hemodynamic alteration and vascular remodeling in 2K-1C hypertensive rats. Possible mechanisms may involve RAS inhibitor effects and potent antioxidant activity.
Collapse
Affiliation(s)
- Sarawoot Bunbupha
- Department of Physiology, Faculty of Medicine, Khon Kaen University, 40002, Khon Kaen, Thailand; Faculty of Medicine, Mahasarakham University, 44000, Maha Sarakham, Thailand
| | - Chutamas Wunpathe
- Department of Physiology, Faculty of Medicine, Khon Kaen University, 40002, Khon Kaen, Thailand
| | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, 40002, Khon Kaen, Thailand; Cardiovascular Research Group, Khon Kaen University, 40002, Khon Kaen, Thailand
| | - Thewarid Berkban
- Faculty of Medicine, Mahasarakham University, 44000, Maha Sarakham, Thailand
| | - Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, 40002, Khon Kaen, Thailand; Cardiovascular Research Group, Khon Kaen University, 40002, Khon Kaen, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Khon Kaen, Thailand
| | - Parichat Prachaney
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, 40002, Khon Kaen, Thailand; Cardiovascular Research Group, Khon Kaen University, 40002, Khon Kaen, Thailand
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, 40002, Khon Kaen, Thailand; Cardiovascular Research Group, Khon Kaen University, 40002, Khon Kaen, Thailand.
| |
Collapse
|
15
|
Kim EN, Kim MY, Lim JH, Kim Y, Shin SJ, Park CW, Kim YS, Chang YS, Yoon HE, Choi BS. The protective effect of resveratrol on vascular aging by modulation of the renin-angiotensin system. Atherosclerosis 2018; 270:123-131. [PMID: 29407880 DOI: 10.1016/j.atherosclerosis.2018.01.043] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/18/2017] [Accepted: 01/24/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS This study evaluated the effects of resveratrol on arterial aging and the renin-angiotensin system (RAS) in mice and vascular smooth muscle cells (VSMCs). METHODS Aging mice were divided into control and resveratrol groups. Histological changes, inflammation, oxidative stress, RAS components, and the expression of AMP-activated protein kinase (AMPK), silent information regulator T1 (SIRT1), peroxisome proliferator-activated receptor-γ co-activator 1α (PGC-1α), and anti-oxidative enzymes was measured in thoracic aortas of 24-month-old mice. The effect of resveratrol on fibrosis, cell senescence, and RAS components was also investigated in VSMCs stimulated by angiotensin (Ang) II. RESULTS Aorta media thickness, inflammation, fibrosis, and oxidative stress were significantly lower in the resveratrol group than in the control group. Resveratrol treatment decreased serum Ang II level and the aortic expression of prorenin receptor (PRR) and angiotensin converting enzyme (ACE), and increased serum Ang-(1-7) level and the expression of ACE2, Ang II type 2 receptor (AT2R), and Mas receptor (MasR). Resveratrol increased the expression of phosphorylated AMPK, SIRT1, PGC-1α, phosphorylated endothelial nitric oxide synthase and superoxide dismutase 1 and 2, and decreased that of NADPH oxidase 2 and 4. In Ang II-stimulated VSMCs, resveratrol treatment markedly decreased the number of senescence associated β-galactosidase stained cells and pro-fibrotic protein expression and increased the expression of AT2R and MasR. CONCLUSIONS Resveratrol protects against arterial aging and this effect is associated with reduced activity of the PRR-ACE-Ang II axis and stimulation of the ACE2-Ang-(1-7)-ATR2-MasR axis.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Age Factors
- Aging
- Animals
- Anti-Inflammatory Agents/pharmacology
- Antioxidants/pharmacology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Cells, Cultured
- Cellular Senescence/drug effects
- Fibrosis
- Gene Expression Regulation
- Male
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Oxidative Stress/drug effects
- PPAR alpha/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Renin-Angiotensin System/drug effects
- Renin-Angiotensin System/genetics
- Resveratrol/pharmacology
- Signal Transduction/drug effects
- Sirtuin 1/metabolism
Collapse
Affiliation(s)
- Eun Nim Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Min Young Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Ji Hee Lim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Yaeni Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Republic of Korea; Department of Internal Medicine, Incheon St. Mary's Hospital, Incheon, Republic of Korea
| | - Seok Joon Shin
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Republic of Korea; Department of Internal Medicine, Incheon St. Mary's Hospital, Incheon, Republic of Korea
| | - Cheol Whee Park
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Republic of Korea; Department of Internal Medicine, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - Yong-Soo Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Republic of Korea; Department of Internal Medicine, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - Yoon Sik Chang
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Republic of Korea; Department of Internal Medicine, Yeouido St. Mary's Hospital, Seoul, Republic of Korea
| | - Hye Eun Yoon
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Republic of Korea; Department of Internal Medicine, Incheon St. Mary's Hospital, Incheon, Republic of Korea.
| | - Bum Soon Choi
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Republic of Korea; Department of Internal Medicine, Seoul St. Mary's Hospital, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Li YR, Li S, Lin CC. Effect of resveratrol and pterostilbene on aging and longevity. Biofactors 2018; 44:69-82. [PMID: 29210129 DOI: 10.1002/biof.1400] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 10/26/2017] [Indexed: 12/17/2022]
Abstract
Over the past years, several studies have found that foods rich in polyphenols protect against age-related disease, such as atherosclerosis, cardiovascular disease, cancer, arthritis, cataracts, osteoporosis, type 2 diabetes (T2D), hypertension and Alzheimer's disease. Resveratrol and pterostilbene, the polyphenol found in grape and blueberries, have beneficial effects as anti-aging compounds through modulating the hallmarks of aging, including oxidative damage, inflammation, telomere attrition and cell senescence. In this review, we discuss the relationship between resveratrol and pterostilbene and possible aging biomarker, including oxidative stress, inflammation, and high-calorie diets. Moreover, we also discuss the positive effect of resveratrol and pterostilbene on lifespan, aged-related disease, and health maintenance. Furthermore, we summarize a variety of important mechanisms modulated by resveratrol and pterostilbene possibly involved in attenuating age-associated disorders. Overall, we describe resveratrol and pterostilbene potential for prevention or treatment of several age-related diseases by modulating age-related mechanisms. © 2017 BioFactors, 44(1):69-82, 2018.
Collapse
Affiliation(s)
- Yi-Rong Li
- Changhua Christian Hospital, Thoracic Medicine Research center, Changhua 50006, Taiwan, Republic of China
- Institute of Biomedical Science, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Shiming Li
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, Hubei, China
| | - Chi-Chien Lin
- Institute of Biomedical Science, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
- Department of Health and Nutrition, Asia University, Taichung 41354, Taiwan, Republic of China
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan, Republic of China
| |
Collapse
|
17
|
Zhu XD, Lei XP, Dong WB. Resveratrol as a potential therapeutic drug for respiratory system diseases. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:3591-3598. [PMID: 29290681 PMCID: PMC5736354 DOI: 10.2147/dddt.s148868] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Respiratory system diseases are common and major ailments that seriously endanger human health. Resveratrol, a polyphenolic phytoalexin, is considered an anti-inflammatory, antioxidant, and anticancer agent. Thanks to its wide range of biological activities, resveratrol has become a hotspot in many fields, including respiratory system diseases. Indeed, research has demonstrated that resveratrol is helpful to relieve pulmonary function in the general population. Meanwhile, growing evidence indicates that resveratrol plays a protective role in respiratory system diseases. This review aimed to summarize the main protective effects of resveratrol in respiratory system diseases, including its anti-inflammatory, antiapoptotic, antioxidant, antifibrotic, antihypertensive, and anticancer activities. We found that resveratrol plays a protective role in the respiratory system through a variety of mechanisms, and so it may become a new drug for the treatment of respiratory system diseases.
Collapse
Affiliation(s)
- Xiao-Dan Zhu
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xiao-Ping Lei
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Wen-Bin Dong
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
18
|
The Effects of Aqueous Extract from Nardostachys chinensis Batalin on Blood Pressure and Cardiac Hypertrophy in Two-Kidney One-Clip Hypertensive Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4031950. [PMID: 29234388 PMCID: PMC5660807 DOI: 10.1155/2017/4031950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/06/2017] [Accepted: 08/24/2017] [Indexed: 02/07/2023]
Abstract
Aims The aim of this study was to investigate the effects of the aqueous extract of Nardostachys chinensis Batalin (NCBAE) on blood pressure and cardiac hypertrophy using two-kidney one-clip (2K1C) hypertensive rats. Methods 2K1C rat models were set up by clipping the left renal artery. Sham-operated rats underwent the same surgical procedure except for renal arterial clipping. 2K1C hypertensive rats were orally given NCBAE at doses of 210, 420, and 630 mg·kg−1·d−1 for 6 weeks. Twelve weeks after surgery, rat SBP and echocardiographic parameters were measured, cardiac histopathology was assessed, serum NO and LDH were detected, and the expression of Bcl-2 and caspase-3 of left ventricular tissue was assessed by western blot. Results Treatment with NCBAE resulted in a decrease of SBP, LVPWd, LVPWs, IVSd, IVSs, LVW/BW ratio, and cardiomyocyte CSA, an increase of LVEF, and inhibition of 2K1C-induced reduction in serum NO and elevation of LDH compared with 2K1C group. NCBAE intervention also showed a significant increase of Bcl-2 expression and reduction of cleaved caspase-3 level dose-dependently in left ventricular tissue. Conclusion Our data demonstrate that NCBAE has an antihypertensive property and protective effect on 2K1C-induced cardiac hypertrophy especially at the dose of 630 mg·kg−1·d−1.
Collapse
|
19
|
Chin YT, Cheng GY, Shih YJ, Lin CY, Lin SJ, Lai HY, Whang-Peng J, Chiu HC, Lee SY, Fu E, Tang HY, Lin HY, Liu LF. Therapeutic applications of resveratrol and its derivatives on periodontitis. Ann N Y Acad Sci 2017; 1403:101-108. [DOI: 10.1111/nyas.13433] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Yu-Tang Chin
- Taipei Cancer Center; Taipei Medical University; Taipei Taiwan
- Department of Dentistry, Wan-Fang Medical Center; Taipei Medical University; Taipei Taiwan
| | - Guei-Yun Cheng
- Graduate Institute of Immunology, College of Medicine; National Taiwan University; Taipei Taiwan
| | - Ya-Jung Shih
- Taipei Cancer Center; Taipei Medical University; Taipei Taiwan
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
| | - Chi-Yu Lin
- School of Dentistry, College of Oral Medicine; Taipei Medical University; Taipei Taiwan
| | - Shan-Jen Lin
- Department of Dentistry; Hsinchu MacKay Memorial Hospital; Hsinchu City Taiwan
| | - Hsuan-Yu Lai
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
| | | | - Hsien-Chung Chiu
- Department of Periodontology, School of Dentistry; National Defense Medical Center and Tri-Service General Hospital; Taipei Taiwan
| | - Sheng-Yang Lee
- Department of Dentistry, Wan-Fang Medical Center; Taipei Medical University; Taipei Taiwan
- School of Dentistry, College of Oral Medicine; Taipei Medical University; Taipei Taiwan
| | - Earl Fu
- Department of Dentistry; Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation; New Taipei City Taiwan
| | - Heng-Yuan Tang
- Pharmaceutical Research Institute; Albany College of Pharmacy and Health Sciences; Albany New York
| | - Hung-Yun Lin
- Taipei Cancer Center; Taipei Medical University; Taipei Taiwan
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
| | - Leroy F Liu
- Taipei Cancer Center; Taipei Medical University; Taipei Taiwan
| |
Collapse
|
20
|
Kim YJ, Chung SO, Kim JK, Park SU. Recent studies on resveratrol and its biological and pharmacological activity. EXCLI JOURNAL 2017; 16:602-608. [PMID: 28694761 PMCID: PMC5491918 DOI: 10.17179/excli2017-253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/11/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Yong Joo Kim
- Department of Biosystems Machinery Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Sun Ok Chung
- Department of Biosystems Machinery Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Jae Kwang Kim
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Sang Un Park
- Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Korea
| |
Collapse
|
21
|
Choi SY, Piao ZH, Jin L, Kim JH, Kim GR, Ryu Y, Lin MQ, Kim HS, Kee HJ, Jeong MH. Piceatannol Attenuates Renal Fibrosis Induced by Unilateral Ureteral Obstruction via Downregulation of Histone Deacetylase 4/5 or p38-MAPK Signaling. PLoS One 2016; 11:e0167340. [PMID: 27902771 PMCID: PMC5130266 DOI: 10.1371/journal.pone.0167340] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/11/2016] [Indexed: 02/05/2023] Open
Abstract
Piceatannol, a resveratrol metabolite, is a phenolic compound found in red wine and grapes. We investigated the effect of piceatannol on renal fibrosis and histone deacetylase (HDAC) expression in a mouse model of unilateral ureteral obstruction (UUO). Fibrosis was established by UUO and piceatannol was intraperitoneally injected for 2 weeks. Piceatannol suppressed extracellular matrix (ECM) protein deposition including collagen type I and fibronectin as well as connective tissue growth factor (CTGF) and α-smooth muscle actin (α-SMA) in UUO kidneys. However, the expressions of epithelial-mesenchymal transition (EMT) marker genes, such as N-cadherin and E-cadherin, were not changed in the kidneys after UUO. Masson’s trichrome staining and fluorescence immunostaining showed that piceatannol administration attenuated collagen deposition in UUO kidneys. HDAC1, HDAC4, HDAC5, HDAC6, and HDAC10 protein expression was upregulated in UUO kidneys, whereas that of HDAC8 was downregulated. Piceatannol treatment significantly reduced HDAC4 and HDAC5 protein expression. Further, piceatannol attenuated phosphorylation of p38 mitogen-activated protein kinase (p38-MAPK) in UUO kidneys, but not that of transforming growth factor beta1-Smad2/3. These results suggest that class I HDACs and class IIa/b HDACs are involved in renal fibrosis development. Piceatannol may be a beneficial therapeutic agent for treating renal fibrosis via reduction of HDAC4 and HDAC5 protein expression or suppression of the p38-MAPK signaling pathway.
Collapse
Affiliation(s)
- Sin Young Choi
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Zhe Hao Piao
- The Second Hospital of Jilin University, Changchun, China
| | - Li Jin
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Jilin Hospital Affiliated with Jilin University, Jilin, China
| | - Jung Ha Kim
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Gwi Ran Kim
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Yuhee Ryu
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Ming Quan Lin
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Yanbian University Hospital, Jilin Yanbian, China
| | - Hyung-Seok Kim
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hae Jin Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- * E-mail: (HJK); (MHJ)
| | - Myung Ho Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- * E-mail: (HJK); (MHJ)
| |
Collapse
|
22
|
2,3,5,4'-Tetrahydroxystilbene-2-O-β-glucoside Isolated from Polygoni Multiflori Ameliorates the Development of Periodontitis. Mediators Inflamm 2016; 2016:6953459. [PMID: 27504055 PMCID: PMC4967694 DOI: 10.1155/2016/6953459] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/14/2016] [Indexed: 11/18/2022] Open
Abstract
Periodontitis, a chronic infection by periodontopathic bacteria, induces uncontrolled inflammation, which leads to periodontal tissue destruction. 2,3,5,4'-Tetrahydroxystilbene-2-O-beta-glucoside (THSG), a polyphenol extracted from Polygoni Multiflori, reportedly has anti-inflammatory properties. In this study, we investigated the mechanisms of THSG on the Porphyromonas gingivalis-induced inflammatory responses in human gingival fibroblasts and animal modeling of ligature-induced periodontitis. Human gingival fibroblast cells were treated with lipopolysaccharide (LPS) extracted from P. gingivalis in the presence of resveratrol or THSG to analyze the expression of TNF-α, IL-1β, and IL-6 genes. Increased AMP-activated protein kinase (AMPK) activation and SirT1 expression were induced by THSG. Treatment of THSG decreased the expression of LPS-induced inflammatory cytokines, enhanced AMPK activation, and increased the expression of SirT1. In addition, it suppressed the activation of NF-κB when cells were stimulated with P. gingivalis LPS. The anti-inflammatory effect of THSG and P. Multiflori crude extracts was reproduced in ligature-induced periodontitis animal modeling. In conclusion, THSG inhibited the inflammatory responses of P. gingivalis-stimulated human gingival fibroblasts and ameliorated ligature-induced periodontitis in animal model.
Collapse
|
23
|
Maneesai P, Prasarttong P, Bunbupha S, Kukongviriyapan U, Kukongviriyapan V, Tangsucharit P, Prachaney P, Pakdeechote P. Synergistic Antihypertensive Effect of Carthamus tinctorius L. Extract and Captopril in L-NAME-Induced Hypertensive Rats via Restoration of eNOS and AT₁R Expression. Nutrients 2016; 8:122. [PMID: 26938552 PMCID: PMC4808852 DOI: 10.3390/nu8030122] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 12/11/2022] Open
Abstract
This study examined the effect of Carthamus tinctorius (CT) extract plus captopril treatment on blood pressure, vascular function, nitric oxide (NO) bioavailability, oxidative stress and renin-angiotensin system (RAS) in N(ω)-Nitro-l-arginine methyl ester (l-NAME)-induced hypertension. Rats were treated with l-NAME (40 mg/kg/day) for five weeks and given CT extract (75 or 150 or 300 or 500 mg/kg/day): captopril (5 mg/kg/day) or CT extract (300 mg/kg/day) plus captopril (5 mg/kg/day) for two consecutive weeks. CT extract reduced blood pressure dose-dependently, and the most effective dose was 300 mg/kg/day. l-NAME-induced hypertensive rats showed abnormalities including high blood pressure, high vascular resistance, impairment of acetylcholine-induced vasorelaxation in isolated aortic rings and mesenteric vascular beds, increased vascular superoxide production and plasma malondialdehyde levels, downregulation of eNOS, low level of plasma nitric oxide metabolites, upregulation of angiotensin II type 1 receptor and increased plasma angiotensin II. These abnormalities were alleviated by treatment with either CT extract or captopril. Combination treatment of CT extract and captopril normalized all the abnormalities found in hypertensive rats except endothelial dysfunction. These data indicate that there are synergistic antihypertensive effects of CT extract and captopril. These effects are likely mediated by their anti-oxidative properties and their inhibition of RAS.
Collapse
Affiliation(s)
- Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Patoomporn Prasarttong
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Sarawoot Bunbupha
- Faculty of Medical Sciences, Nakhonratchasima College, Nakhonratchasima 30000, Thailand.
| | - Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Panot Tangsucharit
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Parichat Prachaney
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|