1
|
Iusupova AO, Pakhtusov NN, Slepova OA, Privalova EV, Belenkov YN. WNT Signaling Cascade Proteins and Structural and Functional State of The Vascular Bed in Patients With Various Phenotypes of Stable Ischemic Heart Disease. KARDIOLOGIIA 2025; 65:3-9. [PMID: 40195773 DOI: 10.18087/cardio.2025.3.n2853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/24/2025] [Indexed: 04/09/2025]
Abstract
Aim To evaluate the concentration of the WNT signaling cascade proteins (WNT1, -3a, -4, -5a) and the state of the vasculature by photoplethysmography (PPG) in patients with different phenotypes of stable ischemic heart disease (IHD), with obstructive and non-obstructive coronary artery disease (CAD).Material and methods This cross-sectional observational study included 80 patients (45-75 years old) with a verified diagnosis of stable IHD. Based on the results of coronary angiography or multislice spiral computed tomography coronary angiography, the patients were divided into two equal groups (n=40), with obstructive IHD (oIHD), and ischemia with no obstructive CAD or angina with no obstructive CAD (INOCA/ANOCA). In the oIHD group, men prevailed (67.5%) while in the INOCA/ANOCA group, women prevailed (57.5%). Noninvasive PPG evaluation of the vasculature was performed, and WNT1, -3a, -4, and -5a concentrations were measured by ELISA in all patients.Results Higher concentrations of the WNT1 and WNT3a proteins were found in patients with oIHD (p<0.001) while the INOCA/ANOCA group had a significantly higher concentration of WNT5a (p=0.001). According to the PPG data, the arterial stiffness index (aSI) significantly differed between the INOCA/ANOCA (7.6 m/s [6.6; 9.35]) and oIHD (9.25 m/s [7.88; 10.33]) groups, p=0.048). The correlation analysis revealed a relationship between WNT1 and the reflectance index RI (ρ=0.359; p=0.014) in IHD patients (oIHD+INOCA/ANOCA). According to the ROC analysis, the curve for WNT3a turned out to be diagnostically significant (sensitivity and specificity of the model were 85.7 and 87.0%, respectively). The cut-off value of WNT3a was 0.183 pg/ml.Conclusion The results of the study showed that the activation of the canonical WNT cascade (WNT1 and WNT3a) was observed in patients with oIHD, while the non-canonical cascade (WNT5a) was activated in patients with INOCA/ANOCA. The obstructive IHD phenotype can be predicted with a WNT3a value ≥0.183 pg/ml.
Collapse
Affiliation(s)
- A O Iusupova
- Sechenov First Moscow State Medical University, Moscow
| | - N N Pakhtusov
- Sechenov First Moscow State Medical University, Moscow
| | - O A Slepova
- Sechenov First Moscow State Medical University, Moscow
| | - E V Privalova
- Sechenov First Moscow State Medical University, Moscow
| | - Yu N Belenkov
- Sechenov First Moscow State Medical University, Moscow
| |
Collapse
|
2
|
Lunar P, Meglič H, Vehar M, Ugovšek S, Rehberger Likozar A, Šebeštjen M, Zupan J. Effect of PCSK9 Inhibitors on Regulators of Lipoprotein Homeostasis, Inflammation and Coagulation. Biomedicines 2025; 13:294. [PMID: 40002707 PMCID: PMC11852752 DOI: 10.3390/biomedicines13020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND PCSK9 inhibitors (PCSK9i) represent a newer form of atherosclerosis treatment. Inflammation and haemostasis are key processes in the development of atherosclerosis. In this study, we investigated the influence of therapy with PCSK9i in patients with coronary artery disease (CAD) on regulators for lipoprotein homeostasis, inflammation and coagulation. METHODS Using quantitative polymerase chain reaction (qPCR), we measured the expression of the genes involved in lipoprotein homeostasis, namely for sterol regulatory element-binding protein 1 (SREBP1), SREBP2, low-density lipoprotein receptor (LDLR), hepatic lipase type C (LIPC), LDLR-related protein 8 (LRP8), and the genes associated with inflammation and coagulation, such as cluster of differentiation (CD) 36 (CD36), CD63, and CD14 in 96 patients with CAD and 25 healthy subjects. RESULTS Significant differences in the expression of the investigated genes between patients and healthy controls were found. Treatment with PCSK9i also resulted in significant changes in the expression of all studied genes. CONCLUSIONS We established that PCSK9i may have a significant effect on the gene expression of lipid regulators, inflammatory markers, and coagulation parameters, independent of their lipolytic effect.
Collapse
Affiliation(s)
- Patricija Lunar
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (P.L.); (H.M.); (S.U.); (M.Š.)
| | - Hana Meglič
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (P.L.); (H.M.); (S.U.); (M.Š.)
| | - Mateja Vehar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia;
| | - Sabina Ugovšek
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (P.L.); (H.M.); (S.U.); (M.Š.)
- Department of Cardiology, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
| | - Andreja Rehberger Likozar
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia;
| | - Miran Šebeštjen
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (P.L.); (H.M.); (S.U.); (M.Š.)
- Department of Cardiology, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia;
| | - Janja Zupan
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia;
| |
Collapse
|
3
|
Queiroz M, Sena CM. Perivascular adipose tissue: a central player in the triad of diabetes, obesity, and cardiovascular health. Cardiovasc Diabetol 2024; 23:455. [PMID: 39732729 PMCID: PMC11682657 DOI: 10.1186/s12933-024-02549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024] Open
Abstract
Perivascular adipose tissue (PVAT) is a dynamic tissue that affects vascular function and cardiovascular health. The connection between PVAT, the immune system, obesity, and vascular disease is complex and plays a pivotal role in the pathogenesis of vascular diseases such as atherosclerosis, hypertension, and vascular inflammation. In cardiometabolic diseases, PVAT becomes a significant source of proflammatory adipokines, leading to increased infiltration of immune cells, in cardiometabolic diseases, PVAT becomes a significant source of proinflammatory adipokines, leading to increased infiltration of immune cells, promoting vascular smooth muscle cell proliferation and migrationpromoting vascular smooth muscle cell proliferation and migration. This exacerbates vascular dysfunction by impairing endothelial cell function and promoting endothelial activation. Dysregulated PVAT also contributes to hemodynamic alterations and hypertension through enhanced sympathetic nervous system activity and impaired vasodilatory capacity of PVAT-derived factors. Therapeutic interventions targeting key components of this interaction, such as modulating PVAT inflammation, restoring adipokine balance, and attenuating immune cell activation, hold promise for mitigating obesity-related vascular complications. Lifestyle interventions, pharmacological agents targeting inflammatory pathways, and surgical approaches aimed at reducing PVAT mass or improving adipose tissue function are potential therapeutic avenues for managing vascular diseases associated with obesity and PVAT dysfunction.
Collapse
Affiliation(s)
- Marcelo Queiroz
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal
| | - Cristina M Sena
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.
| |
Collapse
|
4
|
Alotaiq N, Khalifa AS, Youssef A, El-Nagar EG, Elwali NE, Habib HM, AlZaim I, Eid AH, Bakkar NMZ, El-Yazbi AF. Targeting GSK-3β for adipose dysfunction and cardiovascular complications of metabolic disease: An entangled WNT/β-catenin question. FASEB J 2024; 38:e70273. [PMID: 39726401 DOI: 10.1096/fj.202402470r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Individuals with metabolic syndrome have a high risk of developing cardiovascular disorders that is closely tied to visceral adipose tissue dysfunction, as well as an altered interaction between adipose tissue and the cardiovascular system. In metabolic syndrome, adipose tissue dysfunction is associated with increased hypertrophy, reduced vascularization, and hypoxia of adipocytes, leading to a pro-oxidative and pro-inflammatory environment. Among the pathways regulating adipose tissue homeostasis is the wingless-type mammary tumor virus integration site family (Wnt) signaling pathway, with both its canonical and non-canonical arms. Various modulators of the Wnt signaling have been identified to contribute to the development of metabolic diseases and their cardiovascular complications, with a particularly significant role played by Glycogen Synthase Kinase-3β (GSK-3β). GSK-3β levels and activities have various and often contrasting roles in obesity and related metabolic disorders, as well as their cardiovascular sequelae. Here, we explore the possibility that altered Wnt signaling and GSK-3β activities could serve as a connection between adipose tissue dysfunction and the development of cardiovascular disease in individuals with metabolic syndrome. We attempt to define a context-specific approach for intervention, which could possibly serve as a novel disease modifying therapy for the mitigation of such complications.
Collapse
Affiliation(s)
- Nasser Alotaiq
- Health Sciences Research Center, Imam Muhammad Ibn Saud Islamic University (IMISIU), Riyadh, Kingdom of Saudi Arabia
| | - Ahmed S Khalifa
- Faculty of Pharmacy, Alamein International University, Alamein, Egypt
| | - Amr Youssef
- Faculty of Pharmacy, Alamein International University, Alamein, Egypt
| | - Esraa G El-Nagar
- Faculty of Pharmacy, Alamein International University, Alamein, Egypt
| | - Nasr Eldin Elwali
- Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Kingdom of Saudi Arabia
| | - Hosam M Habib
- Research & Innovation Hub, Alamein International University, Alamein, Egypt
| | - Ibrahim AlZaim
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Ahmed F El-Yazbi
- Faculty of Pharmacy, Alamein International University, Alamein, Egypt
- Research & Innovation Hub, Alamein International University, Alamein, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
El Zouka Y, Sheta E, Abdelrazek Salama M, Selima E, Refaat R, Salaheldin Abdelhamid Ibrahim S. Tetrandrine ameliorated atherosclerosis in vitamin D3/high cholesterol diet-challenged rats via modulation of miR-34a and Wnt5a/Ror2/ABCA1/NF-kB trajectory. Sci Rep 2024; 14:21371. [PMID: 39266573 PMCID: PMC11393063 DOI: 10.1038/s41598-024-70872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/22/2024] [Indexed: 09/14/2024] Open
Abstract
Atherosclerosis (AS) is a major cause of cardiovascular diseases that may lead to mortality. This study aimed to evaluate the therapeutic potential of tetrandrine in high cholesterol diet (HCD)-induced atherosclerosis, in rats, via modulation of miR-34a, as well as, Wnt5a/Ror2/ABCA1/NF-κB pathway and to compare its efficacy with atorvastatin. Induction of AS, in male rats, was done via IP administration of vitamin D3 (70 U/Kg for 3 days) together with HCD. At the end of the 9th week, rats were treated with atorvastatin at a dose of 20 mg/kg, and tetrandrine at different doses of (18.75, and 31.25 mg/kg) for 22 days. Serum inflammatory cytokines and lipid profile, liver oxidative stress parameters, and aortic tissue Wnt5a, Ror2, ABCA1, NF-κB, miR-34a levels were assessed in all experimental groups. Histopathological and Immunohistochemical assessments of aortic tissue sections were done. Results showed that tetrandrine treatment reverted the inflammatory and oxidative stress state together with reducing the serum lipids via modulating miR-34a, and Wnt5a/Ror2/ABCA1/NF-κB pathway. Moreover, it reverted the histopathological abnormalities observed in AS rats. Tetrandrine beneficial effects, in both doses, were comparable to that of atorvastatin, in most of the discussed parameters. These findings praise tetrandrine as a promising agent for management of atherosclerosis.
Collapse
Affiliation(s)
- Yasmin El Zouka
- Department of Pharmacology, Faculty of Pharmacy, Arab Academy for Science and Technology and Maritime Transport, Alexandria, Egypt.
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mona Abdelrazek Salama
- Department of Pharmacology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Eman Selima
- Department of Pharmacology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Rowaida Refaat
- Department of Pharmacology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
6
|
He M, Shi J, Xu YJ, Liu Y. Cannabidiol (CBD) Inhibits Foam Cell Formation via Regulating Cholesterol Homeostasis and Lipid Metabolism. Mol Nutr Food Res 2024; 68:e2400154. [PMID: 38932553 DOI: 10.1002/mnfr.202400154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/22/2024] [Indexed: 06/28/2024]
Abstract
SCOPE The cannabidiol (CBD) in hemp oil has important pharmacological activities. Accumulating evidence suggests that CBD is beneficial in the cardiovascular system and has been applied as a health supplement for atherosclerosis. However, the mechanism remains unclear. METHODS AND RESULTS This study investigates the impact of CBD on foam cell formation, cholesterol homeostasis, and lipid metabolism in macrophages. CBD elevates the levels of peroxisome proliferator-activated receptor gamma (PPARγ) and its associated targets, such as ATP binding transporter A1/G1 (ABCA1/ABCG1), thus reducing foam cell formation, and increasing cholesterol efflux within macrophages. Notably, the upregulation of ABCA1 and ABCG1 expression induced by CBD is found to be attenuated by both a PPARγ inhibitor and PPARγ small interfering RNA (siRNA). Moreover, transfection of PPARγ siRNA results in a decrease in the inhibitory effect of CBD on foam cell formation and promotion of cholesterol efflux. Through lipidomics analysis, the study finds that CBD significantly reverses the enhancement of ceramide (Cer). Correlation analysis indicates a negative association between Cer level and the expression of ABCA1/ABCG1. CONCLUSION This study confirms that CBD can be an effective therapeutic candidate for atherosclerosis treatment by activating PPARγ, up-regulating ABCA1/ABCG1 expression, and down-regulating Cer level.
Collapse
Affiliation(s)
- Mengxue He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
7
|
Khan K, Yu B, Tardif JC, Rhéaume E, Al-Kindi H, Filimon S, Pop C, Genest J, Cecere R, Schwertani A. Significance of the Wnt signaling pathway in coronary artery atherosclerosis. Front Cardiovasc Med 2024; 11:1360380. [PMID: 38586172 PMCID: PMC10995361 DOI: 10.3389/fcvm.2024.1360380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction The progression of coronary atherosclerosis is an active and regulated process. The Wnt signaling pathway is thought to play an active role in the pathogenesis of several cardiovascular diseases; however, a better understanding of this system in atherosclerosis is yet to be unraveled. Methods In this study, real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting were used to quantify the expression of Wnt3a, Wnt5a, and Wnt5b in the human coronary plaque, and immunohistochemistry was used to identify sites of local expression. To determine the pathologic significance of increased Wnt, human vascular smooth muscle cells (vSMCs) were treated with Wnt3a, Wnt5a, and Wnt5b recombinant proteins and assessed for changes in cell differentiation and function. Results RT-PCR and Western blotting showed a significant increase in the expression of Wnt3a, Wnt5a, Wnt5b, and their receptors in diseased coronary arteries compared with that in non-diseased coronary arteries. Immunohistochemistry revealed an abundant expression of Wnt3a and Wnt5b in diseased coronary arteries, which contrasted with little or no signals in normal coronary arteries. Immunostaining of Wnt3a and Wnt5b was found largely in inflammatory cells and myointimal cells. The treatment of vSMCs with Wnt3a, Wnt5a, and Wnt5b resulted in increased vSMC differentiation, migration, calcification, oxidative stress, and impaired cholesterol handling. Conclusions This study demonstrates the upregulation of three important members of canonical and non-canonical Wnt signaling pathways and their receptors in coronary atherosclerosis and shows an important role for these molecules in plaque development through increased cellular remodeling and impaired cholesterol handling.
Collapse
Affiliation(s)
- Kashif Khan
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Bin Yu
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | | | - Eric Rhéaume
- Department of Medicine, Montreal Heart Institute, Montreal, QC, Canada
| | - Hamood Al-Kindi
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Sabin Filimon
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Cristina Pop
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Jacques Genest
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Renzo Cecere
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Adel Schwertani
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
8
|
Yang C, Mu Y, Li S, Zhang Y, Liu X, Li J. Tanshinone IIA: a Chinese herbal ingredient for the treatment of atherosclerosis. Front Pharmacol 2023; 14:1321880. [PMID: 38108067 PMCID: PMC10722201 DOI: 10.3389/fphar.2023.1321880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Tanshinone IIA (Tan IIA) is a fat-soluble compound extracted from Salvia miltiorrhiza, which has a protective effect against atherosclerosis (AS). Tan IIA can inhibit oxidative stress and inflammatory damage of vascular endothelial cells (VECs) and improve endothelial cell dysfunction. Tan IIA also has a good protective effect on vascular smooth muscle cells (VSMCs). It can reduce vascular stenosis by inhibiting the proliferation and migration of vascular smooth muscle cells (VSMCs), and improve the stability of the fibrous cap of atherosclerotic plaque by inhibiting apoptosis and inflammation of VSMCs. In addition, Tan IIA inhibits the inflammatory response of macrophages and the formation of foam cells in atherosclerotic plaques. In summary, Tan IIA improves AS through a complex pathway. We propose to further study the specific molecular targets of Tan IIA using systems biology methods, so as to fundamentally elucidate the mechanism of Tan IIA. It is worth mentioning that there is a lack of high-quality evidence-based medical data on Tan IIA treatment of AS. We recommend that a randomized controlled clinical trial be conducted to evaluate the exact efficacy of Tan IIA in improving AS. Finally, sodium tanshinone IIA sulfonate (STS) can cause adverse drug reactions in some patients, which needs our attention.
Collapse
Affiliation(s)
- Chunkun Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Shuanghong Li
- Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Yang Zhang
- Weifang People’s Hospital, Weifang, China
| | - Xiaoyuan Liu
- Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Jun Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Dai Z, Zhu R, Sheng Z, Qin G, Luo X, Qin Q, Song C, Li L, Jin P, Yang G, Cheng Y, Peng D, Zou C, Wang L, Shentu J, Zhang Q, Zhang Z, Yan X, Fang P, Yan Q, Yang L, Fan X, Liu W, Wu B, Cui R, Wu X, Xie Y, Shu C, Shen K, Wei W, Lu W, Chen H, Zhou Z. Multiple doses of SHR-1222, a sclerostin monoclonal antibody, in postmenopausal women with osteoporosis: A randomized, double-blind, placebo-controlled, dose-escalation phase 1 trial. Front Endocrinol (Lausanne) 2023; 14:1168757. [PMID: 37091850 PMCID: PMC10116854 DOI: 10.3389/fendo.2023.1168757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
SHR-1222, a novel humanized monoclonal antibody targeting sclerostin, has been shown to induce bone formation and decrease bone resorption at a single dose ranging 50-400 mg in our previous phase 1 trial. This study was a randomized, double-blind, placebo-controlled, dose-escalation phase 1 trial, which further investigated the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and immunogenicity of multiple ascending doses of SHR-1222 in women with postmenopausal osteoporosis (POP). A total of 105 women with POP were enrolled and randomly assigned. Twenty-one received placebo and eighty-four received SHR-1222 sequentially (100 mg QM, n=4; 200 or 300 mg QM, n=20; and 400 or 600 mg Q2M, n=20). The most common adverse events included increased blood parathyroid hormone, increased low-density lipoprotein, increased blood alkaline phosphatase, increased blood cholesterol, back pain, and arthralgia, the majority of which were mild in severity without noticeable safety concerns. Serum SHR-1222 exposure (Cmax,ss and AUC0-tau,ss) increased in a greater than dose-proportional manner. Following multiple doses of SHR-1222, the bone formation markers (terminal propeptide of type I procollagen, bone-specific alkaline phosphatase, and osteocalcin) increased in a dose-dependent manner, whereas the bone resorption marker (β-C-telopeptide) was downregulated. Accordingly, BMD gains in the lumbar spine, total hip, and femoral neck were observed. The maximum BMD increase from baseline at the lumbar spine was detected in the 300 mg QM cohort (14.6% vs. 0.6% in the placebo group on day 169). Six (6/83; 7.2%) subjects developed anti-SHR-1222 antibodies with no discernible effects on PKs, PDs, and safety. Thus, multiple doses of SHR-1222 showed an acceptable safety profile and dose-dependent plasma exposure in women with POP, and could improve their BMD rapidly and prominently by promoting bone formation and inhibiting bone resorption. These findings further support SHR-1222 as a potential alternative agent for the treatment of POP.
Collapse
Affiliation(s)
- Zhijie Dai
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ronghua Zhu
- Phase I Clinical Trial Center and Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhifeng Sheng
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, and Health Management Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Guijun Qin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianghang Luo
- Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, China
| | - Qun Qin
- National Agency for Clinical Trial of Medicines, Xiangya Hospital of Central South University, Changsha, China
| | - Chunli Song
- Orthopedics Department, Peking University Third Hospital, Beijing, China
| | - Liping Li
- Endocrine Department, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Ping Jin
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Guoping Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yanxiang Cheng
- Department of Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danhong Peng
- Department of Gynaecology and Obstetrics, Zhongda Hospital Southeast University, Nanjing, China
| | - Chong Zou
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Lijuan Wang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Jianzhong Shentu
- Clinical Pharmacy, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Zhang
- Department of Geriatrics, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhe Zhang
- Endocrinology and Metabolism, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Yan
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Pingfei Fang
- Phase I Clinical Trial Center and Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiangyong Yan
- Phase I Clinical Trial Center and Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lingfeng Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiao Fan
- Phase I Clinical Trial Center and Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bo Wu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Rongrong Cui
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiyu Wu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuting Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chang Shu
- Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| | - Kai Shen
- Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| | - Wenhua Wei
- Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| | - Wei Lu
- Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| | - Hong Chen
- Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Zhiguang Zhou,
| |
Collapse
|
10
|
Akoumianakis I, Polkinghorne M, Antoniades C. Non-canonical WNT signalling in cardiovascular disease: mechanisms and therapeutic implications. Nat Rev Cardiol 2022; 19:783-797. [PMID: 35697779 PMCID: PMC9191761 DOI: 10.1038/s41569-022-00718-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 12/15/2022]
Abstract
WNT signalling comprises a diverse spectrum of receptor-mediated pathways activated by a large family of WNT ligands and influencing fundamental biological processes. WNT signalling includes the β-catenin canonical pathway and the non-canonical pathways, namely the planar cell polarity and the calcium-dependent pathways. Advances over the past decade have linked non-canonical WNT signalling with key mechanisms of atherosclerosis, including oxidative stress, endothelial dysfunction, macrophage activation and vascular smooth muscle cell phenotype regulation. In addition, non-canonical WNT signalling is involved in crucial aspects of myocardial biology, from fibrosis to hypertrophy and oxidative stress. Importantly, non-canonical WNT signalling activation has complex effects in adipose tissue in the context of obesity, thereby potentially linking metabolic and vascular diseases. Tissue-specific targeting of non-canonical WNT signalling might be associated with substantial risks of off-target tumorigenesis, challenging its therapeutic potential. However, novel technologies, such as monoclonal antibodies, recombinant decoy receptors, tissue-specific gene silencing with small interfering RNAs and gene editing with CRISPR-Cas9, might enable more efficient therapeutic targeting of WNT signalling in the cardiovascular system. In this Review, we summarize the components of non-canonical WNT signalling, their links with the main mechanisms of atherosclerosis, heart failure and arrhythmias, and the rationale for targeting individual components of non-canonical WNT signalling for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Ioannis Akoumianakis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Murray Polkinghorne
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Fatty acid translocase: a culprit of lipid metabolism dysfunction in disease. IMMUNOMETABOLISM 2022; 4:e00001. [PMID: 35991116 PMCID: PMC9380421 DOI: 10.1097/in9.0000000000000001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022]
Abstract
Dysregulation of lipid deposition into and mobilization from white adipose tissue (WAT) underlies various diseases. Long-chain fatty acids (LCFA) and cholesterol trafficking in and out of adipocytes is a process relying on transporters shuttling lipids from the plasma membrane (PM) to lipid droplets (LD). CD36 is the fatty acid translocase (FAT) that transports LCFA and cholesterol across the PM. Interactions of CD36 with proteins PHB1, ANX2, and CAV1 mediate intercellular lipid transport between adipocytes, hematopoietic, epithelial, and endothelial cells. Intracellularly, the FAT complex has been found to regulate LCFA trafficking between the PM and LD. This process is regulated by CD36 glycosylation and S-acylation, as well as by post-translational modifications of PHB1 and ANX2, which determine both protein–protein interactions and the cellular localization of the complex. Changes in extracellular and intracellular LCFA levels have been found to induce the post-translational modifications and the function of the FAT complex in lipid uptake and mobilization. The role of the CD36/PHB1/ANX2 complex may span beyond lipid trafficking. The requirement of PHB1 for mitochondrial oxidative metabolism in brown adipocytes has been revealed. Cancer cells which take advantage of lipids mobilized by adipocytes and oxidized in leukocytes are indirectly affected by the function of FAT complex in other tissues. The direct importance of CD36 interaction with PHB1/and ANX2 in cancer cells remains to be established. This review highlights the multifaceted roles of the FAT complex in systemic lipid trafficking and discuss it as a potential target in metabolic disease and cancer.
Collapse
|
12
|
Yahsi B, Gunaydin G. Immunometabolism - The Role of Branched-Chain Amino Acids. Front Immunol 2022; 13:886822. [PMID: 35812393 PMCID: PMC9259854 DOI: 10.3389/fimmu.2022.886822] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Immunometabolism has been the focus of extensive research over the last years, especially in terms of augmenting anti-tumor immune responses. Regulatory T cells (Tregs) are a subset of CD4+ T cells, which have been known for their immunosuppressive roles in various conditions including anti-tumor immune responses. Even though several studies aimed to target Tregs in the tumor microenvironment (TME), such approaches generally result in the inhibition of the Tregs non-specifically, which may cause immunopathologies such as autoimmunity. Therefore, specifically targeting the Tregs in the TME would be vital in terms of achieving a successful and specific treatment. Recently, an association between Tregs and isoleucine, which represents one type of branched-chain amino acids (BCAAs), has been demonstrated. The presence of isoleucine seems to affect majorly Tregs, rather than conventional T cells. Considering the fact that Tregs bear several distinct metabolic features in the TME, targeting their immunometabolic pathways may be a rational approach. In this Review, we provide a general overview on the potential distinct metabolic features of T cells, especially focusing on BCAAs in Tregs as well as in their subtypes.
Collapse
Affiliation(s)
- Berkay Yahsi
- School of Medicine, Hacettepe University, Ankara, Turkey
| | - Gurcan Gunaydin
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Turkey
| |
Collapse
|
13
|
Endo M, Kamizaki K, Minami Y. The Ror-Family Receptors in Development, Tissue Regeneration and Age-Related Disease. Front Cell Dev Biol 2022; 10:891763. [PMID: 35493090 PMCID: PMC9043558 DOI: 10.3389/fcell.2022.891763] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022] Open
Abstract
The Ror-family proteins, Ror1 and Ror2, act as receptors or co-receptors for Wnt5a and its related Wnt proteins to activate non-canonical Wnt signaling. Ror1 and/or Ror2-mediated signaling plays essential roles in regulating cell polarity, migration, proliferation and differentiation during developmental morphogenesis, tissue-/organo-genesis and regeneration of adult tissues following injury. Ror1 and Ror2 are expressed abundantly in developing tissues in an overlapping, yet distinct manner, and their expression in adult tissues is restricted to specific cell types such as tissue stem/progenitor cells. Expression levels of Ror1 and/or Ror2 in the adult tissues are increased following injury, thereby promoting regeneration or repair of these injured tissues. On the other hand, disruption of Wnt5a-Ror2 signaling is implicated in senescence of tissue stem/progenitor cells that is related to the impaired regeneration capacity of aged tissues. In fact, Ror1 and Ror2 are implicated in age-related diseases, including tissue fibrosis, atherosclerosis (or arteriosclerosis), neurodegenerative diseases, and cancers. In these diseases, enhanced and/or sustained (chronic) expression of Ror1 and/or Ror2 is observed, and they might contribute to the progression of these diseases through Wnt5a-dependent and -independent manners. In this article, we overview recent advances in our understanding of the roles of Ror1 and Ror2-mediated signaling in the development, tissue regeneration and age-related diseases, and discuss their potential to be therapeutic targets for chronic inflammatory diseases and cancers.
Collapse
|
14
|
Shi J, Zhou B, Tian Z. DOCK9 antisense RNA2 interacts with LIN28B to stabilize Wnt5a and boosts proliferation and migration of oxidized low densitylipoprotein-induced vascular smooth muscle cells. Bioengineered 2022; 13:7564-7578. [PMID: 35282771 PMCID: PMC9278968 DOI: 10.1080/21655979.2022.2033401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Study has suggested that long non-coding RNA DOCK9 antisense RNA2 (LncRNA DOCK9-AS2) may play an important role in atherosclerosis, but the specific role is unclear. In this article, we aim to explore the role and mechanism of DOCK9-AS2 in the proliferation and migration of vascular smooth muscle cells (VSMCs) in atherosclerosis. VSMCs were treated with oxidized low densitylipoprotein (ox-LDL) for 24 h to establish the model of atherosclerosis in vitro. Gain- and loss-of function experiments were conducted. Cell Counting Kit-8 (CCK-8) assay and Ki67 staining were used to evaluate the ability cell proliferation. Transwell assay and immunofluorescence staining of N-Cadherin and E-cadherin were carried out to detect cell migration. RNA immunoprecipitation (RIP) experiment, pull down assay and mRNA stability analysis were used to assess the relationship of DOCK9-AS2, Wnt5a and LIN28B. Western blot analysis was used to measure the protein expression levels. The results showed that DOCK9-AS2 knockdown inhibited the proliferation and migration of ox-LDL-induced VSMCs. Further study on the interaction between DOCK9-AS2, Wnt5a and LIN28B revealed that LIN28B could both directly interact with DOCK9-AS2 and Wnt5a, and DOCK9-AS2 regulated Wnt5a by targeting LIN28B. In addition, Overexpression of Wnt5a partly abolished the inhibitory effects of LIN28B knockdown or DOCK9-AS2 knockdown on cell proliferation and migration induced by in ox-LDL-induced proliferation and migration. In conclusion, the results showed that DOCK9-AS2 promoted the proliferation and migration of vascular smooth muscle cells in atherosclerosis through regulating Wnt5a by targeting LIN28B.
Collapse
Affiliation(s)
- Jiachong Shi
- Department of Cardiovascular Medicine, Qianjiang Central Hospital of Hubei Province, Qianjiang City, Hubei, China
| | - Bo Zhou
- Department of Endocrinology, Qianjiang Central Hospital of Hubei Province, Qianjiang City, Hubei, China
| | - Zhi Tian
- Department of Cardiology, Chongqing General Hospital, Chongqing City, China
| |
Collapse
|
15
|
Lisco G, Giagulli VA, De Pergola G, Guastamacchia E, Jirillo E, Triggiani V. The Pathogenic Role of Foam Cells in Atherogenesis: Do They Represent Novel Therapeutic Targets? Endocr Metab Immune Disord Drug Targets 2022; 22:765-777. [PMID: 34994321 DOI: 10.2174/1871530322666220107114313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Foam cells, mainly derived from monocytes-macrophages, contain lipid droplets essentially composed of cholesterol in their cytoplasm. They infiltrate the intima of arteries, contributing to the formation of atherosclerotic plaques. PATHOGENESIS Foam cells damage the arterial cell wall via the release of proinflammatory cytokines, free radicals, and matrix metalloproteinases, enhancing the plaque size up to its rupture. THERAPY A correct dietary regimen seems to be the most appropriate therapeutic approach to minimize obesity, which is associated with the formation of foam cells. At the same time, different types of antioxidants have been evaluated to arrest the formation of foam cells, even if the results are still contradictory. In any case, a combination of antioxidants seems to be more efficient in the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giovanni De Pergola
- Unit of Geriatrics and Internal Medicine, National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Science, Neuroscience and Sensory Organs, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
16
|
Wan Q, Ding T, Xu Y, Zheng C, Tu M, Zhao T. Urban fine particulate air pollution exposure promotes atherosclerosis in apolipoprotein E-deficient mice by activating perivascular adipose tissue inflammation via the Wnt5a/Ror2 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112912. [PMID: 34673409 DOI: 10.1016/j.ecoenv.2021.112912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Urban fine particulate matter (PM2.5) is a deleterious risk factor in the ambient air and is recognized to exacerbate atherosclerosis. Perivascular adipose tissue (PVAT) secretes a large number of inflammatory cytokines and plays a crucial role in the pathogenic microenvironment of atherogenesis. However, there is a lack of knowledge about the role of PVAT inflammation in the genesis of PM2.5-related atherosclerosis. The aim of this research was to probe the latent links between PM2.5 exposure and PVAT inflammation and further discovered the underlying mechanisms of PM2.5-triggered atherosclerosis pathogenesis. Apolipoprotein E-deficient (ApoE-/-) mice were exposed to real-world atmospheric PM2.5 or filtered clean air for three months, the Wnt5a inhibitor Box5 and the Ror2 inhibitor β-Arrestin2 were applied to verify the possible mechanisms. We noticed that the average daily PM2.5 mass concentration was 84.27 ± 28.84 μg/m3. PM2.5 inhalation might significantly expedite the deterioration of atherosclerosis, increase the protein and mRNA expressions of MCP-1, IL-6, TNF-α, Wnt5a, and Ror2 in PVAT tissues, upregulate the distributions of IL-6, TNF-α, MCP-1, and leptin in the histological sections of PVAT, promote lipid deposition in the aorta, elevate the plasma levels of leptin, MCP-1, IL-6, TNF-α, LDL-C, TC, and TG, however, decrease the plasma levels of adiponectin and HDL-C, downregulate the distribution of adiponectin. Nevertheless, these effects caused by PM2.5 exposure were dramatically diminished after the administration of Box5 or β-Arrestin2. This research illuminated that PVAT inflammation was involved in the PM2.5-induced atherosclerosis process, as well as lipid deposition, which was closely associated with the activation of the Wnt5a/Ror2 signaling pathway.
Collapse
Affiliation(s)
- Qiang Wan
- The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China; Clinical Medical College, Jiangxi University of Chinese Medicine, Nanchang 330006, China.
| | - Tao Ding
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yulin Xu
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Cuicui Zheng
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Mengting Tu
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Tong Zhao
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
17
|
Li J, Meng Q, Fu Y, Yu X, Ji T, Chao Y, Chen Q, Li Y, Bian H. Novel insights: Dynamic foam cells derived from the macrophage in atherosclerosis. J Cell Physiol 2021; 236:6154-6167. [PMID: 33507545 DOI: 10.1002/jcp.30300] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/22/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Atherosclerosis can be regarded as a chronic disease derived from the interaction between disordered lipoproteins and an unsuitable immune response. The evolution of foam cells is not only a significant pathological change in the early stage of atherosclerosis but also a key stage in the occurrence and development of atherosclerosis. The formation of foam cells is mainly caused by the imbalance among lipids uptake, lipids treatment, and reverse cholesterol transport. Although a large number of studies have summarized the source of foam cells and the mechanism of foam cells formation, we propose a new idea about foam cells in atherosclerosis. Rather than an isolated microenvironment, the macrophage multiple lipid uptake pathways, lipid internalization, lysosome, mitochondria, endoplasmic reticulum, neutral cholesterol ester hydrolase (NCEH), acyl-coenzyme A-cholesterol acyltransferase (ACAT), and reverse cholesterol transport are mutually influential, and form a dynamic process under multi-factor regulation. The macrophage takes on different uptake lipid statuses depending on multiple uptake pathways and intracellular lipids, lipid metabolites versus pro-inflammatory factors. Except for NCEH and ACAT, the lipid internalization of macrophages also depends on multicellular organelles including the lysosome, mitochondria, and endoplasmic reticulum, which are associated with each other. A dynamic balance between esterification and hydrolysis of cholesterol for macrophages is essential for physiology and pathology. Therefore, we propose that the foam cell in the process of atherosclerosis may be dynamic under multi-factor regulation, and collate this study to provide a holistic and dynamic idea of the foam cell.
Collapse
Affiliation(s)
- Jun Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinghai Meng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Fu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xichao Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Ji
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Chao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huimin Bian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
18
|
Ackers I, Szymanski C, Silver MJ, Malgor R. Oxidized Low-Density Lipoprotein Induces WNT5A Signaling Activation in THP-1 Derived Macrophages and a Human Aortic Vascular Smooth Muscle Cell Line. Front Cardiovasc Med 2020; 7:567837. [PMID: 33330641 PMCID: PMC7710548 DOI: 10.3389/fcvm.2020.567837] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis of atherosclerosis is complex, evolves, and involves many cell types. Macrophages and vascular smooth muscle cells (VSMCs) are critically involved in atherosclerosis development and progression. Several studies have shown that WNT5A protein is abundantly expressed in human atherosclerotic lesions; however, the mechanism and role of WNT signaling pathway activation is not clearly known. Using THP-1 derived macrophages, and human aortic VSMC cells, we evaluated in vitro how oxidized low-density lipoprotein (oxLDL) and WNT5A signaling interact in these two cell lines. We used western blot, scratch assay, metabolic proliferation assay, as well as immunostaining to analyze the effect of Wnt signaling activation. The results demonstrated that oxLDL, as well as WNT5A (control), induced Disheveled-2 (DVL2) activation and Kif26b degradation, indicating activation of non-canonical Wnt signaling. We found that oxLDL and WNT5A induced FZD5-ROR2 co-localization at the cellular membrane in vitro in THP-1 derived macrophages. Box5 (FZD5 receptor antagonist) inhibited oxLDL-induced DVL2/JNK activation secondary to newly secreted WNT protein from THP-1 derived macrophages. We found that WNT3A (canonical Wnt) and WNT5A showed different roles in this VSMC cell line. These findings indicate that WNT5A is upregulated by oxLDL, promotes foam cell formation, and affects VSMC phenotype and migration in these two cell lines. Also, in these cell lines FZD5 signaling seems to be necessary for lipid accumulation and, through this mechanism, WNT5A could modulate foam cell formation. Thus, our results suggest that WNT5A may contribute to the pathogenesis of vascular disease through modulating macrophage and VSMC behavior.
Collapse
Affiliation(s)
- Ian Ackers
- Osteopathic Heritage Foundation, Translational Biomedical Sciences Program, Ohio University, Athens, OH, United States
| | - Candice Szymanski
- Department of Biomedical Sciences, Ohio University, Athens, OH, United States
| | | | - Ramiro Malgor
- Department of Biomedical Sciences, Ohio University, Athens, OH, United States
- The Diabetes Institute, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Graduate Program, Ohio University, Athens, OH, United States
| |
Collapse
|
19
|
Shu H, Peng Y, Hang W, Nie J, Zhou N, Wang DW. The role of CD36 in cardiovascular disease. Cardiovasc Res 2020; 118:115-129. [PMID: 33210138 PMCID: PMC8752351 DOI: 10.1093/cvr/cvaa319] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
CD36, also known as the scavenger receptor B2, is a multifunctional receptor widely expressed in various organs. CD36 plays a crucial role in the uptake of long-chain fatty acids, the main metabolic substrate in myocardial tissue. The maturation and transportation of CD36 is regulated by post-translational modifications, including phosphorylation, ubiquitination, glycosylation, and palmitoylation. CD36 is decreased in pathological cardiac hypertrophy caused by ischaemia-reperfusion and pressure overload, and increased in diabetic cardiomyopathy and atherosclerosis. Deficiency of CD36 alleviates diabetic cardiomyopathy and atherosclerosis, while overexpression of CD36 eliminates ischaemia-reperfusion damage, together suggesting that CD36 is closely associated with the progression of cardiovascular diseases and may be a new therapeutic target. This review summarizes the regulation and post-translational modifications of CD36 and evaluates its role in cardiovascular diseases and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yizhong Peng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Weijian Hang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Atherosclerosis is a chronic disease characterized by lipid retention and inflammation in the artery wall. The retention and oxidation of low-density lipoprotein (LDL) in sub-endothelial space play a critical role in atherosclerotic plaque formation and destabilization. Oxidized LDL (ox-LDL) and other modified LDL particles are avidly taken up by endothelial cells, smooth muscle cells, and macrophages mainly through several scavenger receptors, including CD36 which is a class B scavenger receptor and membrane glycoprotein. RECENT FINDINGS Animal studies performed on CD36-deficient mice suggest that deficiency of CD36 prevents the development of atherosclerosis, though with some debate. CD36 serves as a signaling hub protein at the crossroad of inflammation, lipid metabolism, and fatty acid metabolism. In addition, the level of soluble CD36 (unattached to cells) in the circulating blood was elevated in patients with atherosclerosis and other metabolic disorders. We performed a state-of-the-art review on the structure, ligands, functions, and regulation of CD36 in the context of atherosclerosis by focusing on the pathological role of CD36 in the dysfunction of endothelial cells, smooth muscle cells, monocytes/macrophages, and platelets. Finally, we highlight therapeutic possibilities to target CD36 expression/activity in atherosclerosis.
Collapse
|
21
|
Wang W, Ma F, Zhang H. MicroRNA-374 is a potential diagnostic biomarker for atherosclerosis and regulates the proliferation and migration of vascular smooth muscle cells. Cardiovasc Diagn Ther 2020; 10:687-694. [PMID: 32968625 DOI: 10.21037/cdt-20-444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background The occurrence and development of atherosclerosis (AS) are closely related to the abnormality of vascular smooth muscle cells (VSMCs), and multiple microRNAs (miRNAs) have been reported to participate in the pathogenesis of AS. This study explored the expression and clinical value of miR-374 in the serum of AS patients, and analyzed its effect on the proliferation and migration of VSMCs. Methods The expression levels of miR-374 in the serum of 102 asymptomatic patients with AS and 89 healthy patients were detected by fluorescence quantitative PCR. The diagnostic value of miR-374 was evaluated through the receiver operating characteristic (ROC) curve. What's more, CCK-8 and Transwell assays were used to analyze the effects of miR-374 on the proliferation and migration of VSMCs. Results The expression level of miR-374 in the serum of AS patients was significantly higher than that of the control group. At the same time, the expression of miR-374 in AS patients was positively correlated with carotid intima-media thickness (CIMT). The area under the ROC curve is 0.824. Furthermore, overexpression of miR-374 significantly promoted the proliferation and migration of VSMCs, whereas reducing miR-374 inhibited the proliferation and migration of VSMCs. Conclusions The high expression of miR-374 may be a potential diagnostic marker for AS, and overexpression of miR-374 may play a role in AS by promoting the proliferation and migration of VSMCs.
Collapse
Affiliation(s)
- Weihong Wang
- Department of Healthcare, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fenghua Ma
- Department of Healthcare, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongyan Zhang
- Department of Thoracic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
22
|
Banesh S, Trivedi V. Therapeutic Potentials of Scavenger Receptor CD36 Mediated Innate Immune Responses Against Infectious and Non-Infectious Diseases. Curr Drug Discov Technol 2020; 17:299-317. [PMID: 31376823 DOI: 10.2174/1570163816666190802153319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/18/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
CD36 is a multifunctional glycoprotein, expressed in different types of cells and known to play a significant role in the pathophysiology of the host. The structural studies revealed that the scavenger receptor consists of short cytosolic domains, two transmembrane domains, and a large ectodomain. The ectodomain serves as a receptor for a diverse number of endogenous and exogenous ligands. The CD36-specific ligands are involved in regulating the immune response during infectious and non-infectious diseases in the host. The role of CD36 in regulating the innate immune response during Pneumonia, Tuberculosis, Malaria, Leishmaniasis, HIV, and Sepsis in a ligand- mediated fashion. Apart from infectious diseases, it is also considered to be involved in metabolic disorders such as Atherosclerosis, Alzheimer's, cancer, and Diabetes. The ligand binding to scavenger receptor modulates the CD36 down-stream innate immune response, and it can be exploited to design suitable immuno-modulators. Hence, the current review focused on the role of the CD36 in innate immune response and therapeutic potentials of novel heterocyclic compounds as CD36 ligands during infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Sooram Banesh
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
23
|
Long Noncoding RNA TUG1 Promotes the Function in ox-LDL-Treated HA-VSMCs via miR-141-3p/ROR2 Axis. Cardiovasc Ther 2020; 2020:6758934. [PMID: 32565910 PMCID: PMC7285414 DOI: 10.1155/2020/6758934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background Atherosclerosis (AS) is a common severe disease around the world. The merging paper reported that long noncoding RNAs (lncRNAs) took part in diversified pathological processes of AS, although the mechanism remains unknown. This study is aimed at uncovering the profile of lncRNA taurine-upregulated gene 1 (TUG1), which has biological function, and potential mechanism in AS progression in vitro. Methods Oxidized low-density lipoprotein (ox-LDL) was used for AS model construction in vitro. Levels of lncRNA TUG1, miR-141-3p, and receptor tyrosine kinase-like orphan receptor 2 (ROR2) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) in AS tissues or in ox-LDL-treated vascular smooth muscle cells (HA-VSMCs). The biofunctional effects were examined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and transwell assays. The expression of proliferation-related proteins (CyclinD1, Ki-67) and metastasis-associated proteins (β-catenin, Vimentin) and ROR2 in cells was determined by western blot analysis. The potential binding sites were predicted by starBase software online and confirmed by dual-luciferase reporter analysis. Results The expression of TUG1 and ROR2 was promoted in AS tissues and ox-LDL-treated HA-VSMCs. While the low expression of miR-141-3p negatively correlated with that of TUG1 or ROR2 in AS tissues. Silencing of TUG1 inhibited the proliferation, migration, invasion, and metastasis in ox-LDL-treated HA-VSMCs. Moreover, the putative binding sites between miR-141-3p and TUG1 or ROR2 were predicted by starBase software online. Also, miR-141-3p deletion reversed the positive effects of TUG1 knockdown on cells. Besides, downregulation of miR-141-3p disrupted the biofunctional results from ROR2 silencing. Conclusion TUG1 enhanced the progression of AS in vitro by regulating the miR-141-3p/ROR2 axis.
Collapse
|
24
|
Signaling Pathways and Key Genes Involved in Regulation of foam Cell Formation in Atherosclerosis. Cells 2020; 9:cells9030584. [PMID: 32121535 PMCID: PMC7140394 DOI: 10.3390/cells9030584] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is associated with acute cardiovascular conditions, such as ischemic heart disease, myocardial infarction, and stroke, and is the leading cause of morbidity and mortality worldwide. Our understanding of atherosclerosis and the processes triggering its initiation is constantly improving, and, during the last few decades, many pathological processes related to this disease have been investigated in detail. For example, atherosclerosis has been considered to be a chronic inflammation triggered by the injury of the arterial wall. However, recent works showed that atherogenesis is a more complex process involving not only the immune system, but also resident cells of the vessel wall, genetic factors, altered hemodynamics, and changes in lipid metabolism. In this review, we focus on foam cells that are crucial for atherosclerosis lesion formation. It has been demonstrated that the formation of foam cells is induced by modified low-density lipoprotein (LDL). The beneficial effects of the majority of therapeutic strategies with generalized action, such as the use of anti-inflammatory drugs or antioxidants, were not confirmed by clinical studies. However, the experimental therapies targeting certain stages of atherosclerosis, among which are lipid accumulation, were shown to be more effective. This emphasizes the relevance of future detailed investigation of atherogenesis and the importance of new therapies development.
Collapse
|
25
|
Zhou H, Mehta S, Srivastava SP, Grabinska K, Zhang X, Wong C, Hedayat A, Perrotta P, Fernández-Hernando C, Sessa WC, Goodwin JE. Endothelial cell-glucocorticoid receptor interactions and regulation of Wnt signaling. JCI Insight 2020; 5:131384. [PMID: 32051336 DOI: 10.1172/jci.insight.131384] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
Vascular inflammation is present in many cardiovascular diseases, and exogenous glucocorticoids have traditionally been used as a therapy to suppress inflammation. However, recent data have shown that endogenous glucocorticoids, acting through the endothelial glucocorticoid receptor, act as negative regulators of inflammation. Here, we performed ChIP for the glucocorticoid receptor, followed by next-generation sequencing in mouse endothelial cells to investigate how the endothelial glucocorticoid receptor regulates vascular inflammation. We identified a role of the Wnt signaling pathway in this setting and show that loss of the endothelial glucocorticoid receptor results in upregulation of Wnt signaling both in vitro and in vivo using our validated mouse model. Furthermore, we demonstrate glucocorticoid receptor regulation of a key gene in the Wnt pathway, Frzb, via a glucocorticoid response element gleaned from our genomic data. These results suggest a role for endothelial Wnt signaling modulation in states of vascular inflammation.
Collapse
Affiliation(s)
- Han Zhou
- Department of Pediatrics.,Vascular Biology and Therapeutics Program
| | | | | | - Kariona Grabinska
- Vascular Biology and Therapeutics Program.,Department of Pharmacology
| | - Xinbo Zhang
- Vascular Biology and Therapeutics Program.,Integrative Cell Signaling and Neurobiology of Metabolism Program.,Department of Comparative Medicine, and
| | | | - Ahmad Hedayat
- Department of Pediatrics.,Vascular Biology and Therapeutics Program
| | - Paola Perrotta
- Vascular Biology and Therapeutics Program.,Department of Pharmacology
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program.,Integrative Cell Signaling and Neurobiology of Metabolism Program.,Department of Comparative Medicine, and.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - William C Sessa
- Vascular Biology and Therapeutics Program.,Department of Pharmacology
| | - Julie E Goodwin
- Department of Pediatrics.,Vascular Biology and Therapeutics Program
| |
Collapse
|
26
|
Korbecki J, Gutowska I, Wiercioch M, Łukomska A, Tarnowski M, Drozd A, Barczak K, Chlubek D, Baranowska-Bosiacka I. Sodium Orthovanadate Changes Fatty Acid Composition and Increased Expression of Stearoyl-Coenzyme A Desaturase in THP-1 Macrophages. Biol Trace Elem Res 2020; 193:152-161. [PMID: 30927246 PMCID: PMC6914714 DOI: 10.1007/s12011-019-01699-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/18/2019] [Indexed: 11/29/2022]
Abstract
Vanadium compounds are promising antidiabetic agents. In addition to regulating glucose metabolism, they also alter lipid metabolism. Due to the clear association between diabetes and atherosclerosis, the purpose of the present study was to assess the effect of sodium orthovanadate on the amount of individual fatty acids and the expression of stearoyl-coenzyme A desaturase (SCD or Δ9-desaturase), Δ5-desaturase, and Δ6-desaturase in macrophages. THP-1 macrophages differentiated with phorbol 12-myristate 13-acetate (PMA) were incubated in vitro for 48 h with 1 μM or 10 μM sodium orthovanadate (Na3VO4). The estimation of fatty acid composition was performed by gas chromatography. Expressions of the genes SCD, fatty acid desaturase 1 (FADS1), and fatty acid desaturase 2 (FADS2) were tested by qRT-PCR. Sodium orthovanadate in THP-1 macrophages increased the amount of saturated fatty acids (SFA) such as palmitic acid and stearic acid, as well as monounsaturated fatty acids (MUFA)-oleic acid and palmitoleic acid. Sodium orthovanadate caused an upregulation of SCD expression. Sodium orthovanadate at the given concentrations did not affect the amount of polyunsaturated fatty acids (PUFA) such as linoleic acid, arachidonic acid, eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA). In conclusion, sodium orthovanadate changed SFA and MUFA composition in THP-1 macrophages and increased expression of SCD. Sodium orthovanadate did not affect the amount of any PUFA. This was associated with a lack of influence on the expression of FADS1 and FADS2.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., 71-460, Szczecin, Poland
| | - Marta Wiercioch
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., 71-460, Szczecin, Poland
| | - Agnieszka Łukomska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., 71-460, Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Arleta Drozd
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., 71-460, Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland.
| |
Collapse
|
27
|
Wang Q, Yan SP, Chu DX, Xie Y, Wang CF, Zhang JY, Li WC, Guo RX. Silencing of Long Non-coding RNA RP1-93H18.6 Acts as a Tumor Suppressor in Cervical Cancer through the Blockade of the PI3K/Akt Axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:304-317. [PMID: 31877407 PMCID: PMC6938856 DOI: 10.1016/j.omtn.2019.10.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 10/31/2019] [Indexed: 11/29/2022]
Abstract
Cervical cancer (CC) remains a distinct public health stumbling block worldwide. Increasing evidence has highlighted long non-coding RNAs (lncRNAs) as tumor-associated biological molecules. In this study, by means of altering the expression of lncRNA RP1-93H18.6 in CC cells, its ability to influence the biological activities of CC cells was evaluated. Differentially expressed lncRNAs were initially screened from the GEO database. A series of RP1-93H18.6 vectors, small interfering RNA (siRNA) against RP1-93H18.6, and LY294002 (an inhibitor for the phosphatidylinositol 3-kinase [PI3K]/Akt [serine/threonine kinase] axis) were introduced in a respective manner to treat the HeLa cells in order to analyze their effects on cellular activities in vitro. Nude mice with xenograft tumors were utilized in order to assess CC tumor growth and metastasis in vivo. lncRNA RP1-93H18.6 was highly expressed in CC, which could activate the P13K/Akt axis. RP1-93H18.6 vectors exposure increased cell viability, adhesion, migration, and invasion, which resulted in more cells arrested at the S stage and reduced apoptosis, while acting to promote tumor growth and metastasis. The siRNA against RP1-93H18.6 or LY294002 exposure was observed to attenuate the effects induced by RP1-93H18.6 vectors. This study suggests that suppression of lncRNA RP1-93H18.6 exerts potent inhibitory effects on the development and progression of CC via blockade of the PI3K/Akt axis.
Collapse
Affiliation(s)
- Qian Wang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Shu-Ping Yan
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Dan-Xia Chu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Ya Xie
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Chun-Fang Wang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Jian-Ying Zhang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Wen-Cai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Rui-Xia Guo
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China.
| |
Collapse
|
28
|
Akoumianakis I, Sanna F, Margaritis M, Badi I, Akawi N, Herdman L, Coutinho P, Fagan H, Antonopoulos AS, Oikonomou EK, Thomas S, Chiu AP, Chuaiphichai S, Kotanidis CP, Christodoulides C, Petrou M, Krasopoulos G, Sayeed R, Lv L, Hale A, Naeimi Kararoudi M, McNeill E, Douglas G, George S, Tousoulis D, Channon KM, Antoniades C. Adipose tissue-derived WNT5A regulates vascular redox signaling in obesity via USP17/RAC1-mediated activation of NADPH oxidases. Sci Transl Med 2019; 11:eaav5055. [PMID: 31534019 PMCID: PMC7212031 DOI: 10.1126/scitranslmed.aav5055] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 08/09/2019] [Indexed: 12/19/2022]
Abstract
Obesity is associated with changes in the secretome of adipose tissue (AT), which affects the vasculature through endocrine and paracrine mechanisms. Wingless-related integration site 5A (WNT5A) and secreted frizzled-related protein 5 (SFRP5), adipokines that regulate noncanonical Wnt signaling, are dysregulated in obesity. We hypothesized that WNT5A released from AT exerts endocrine and paracrine effects on the arterial wall through noncanonical RAC1-mediated Wnt signaling. In a cohort of 1004 humans with atherosclerosis, obesity was associated with increased WNT5A bioavailability in the circulation and the AT, higher expression of WNT5A receptors Frizzled 2 and Frizzled 5 in the human arterial wall, and increased vascular oxidative stress due to activation of NADPH oxidases. Plasma concentration of WNT5A was elevated in patients with coronary artery disease compared to matched controls and was independently associated with calcified coronary plaque progression. We further demonstrated that WNT5A induces arterial oxidative stress and redox-sensitive migration of vascular smooth muscle cells via Frizzled 2-mediated activation of a previously uncharacterized pathway involving the deubiquitinating enzyme ubiquitin-specific protease 17 (USP17) and the GTPase RAC1. Our study identifies WNT5A and its downstream vascular signaling as a link between obesity and vascular disease pathogenesis, with translational implications in humans.
Collapse
Affiliation(s)
- Ioannis Akoumianakis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Fabio Sanna
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Marios Margaritis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Ileana Badi
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Nadia Akawi
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Laura Herdman
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Patricia Coutinho
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Harry Fagan
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Alexios S Antonopoulos
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Evangelos K Oikonomou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Sheena Thomas
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Amy P Chiu
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Surawee Chuaiphichai
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Christos P Kotanidis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | | | - Mario Petrou
- Department of Cardiothoracic Surgery, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK
| | - George Krasopoulos
- Department of Cardiothoracic Surgery, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK
| | - Rana Sayeed
- Department of Cardiothoracic Surgery, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK
| | - Lei Lv
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Ashley Hale
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Meisam Naeimi Kararoudi
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Eileen McNeill
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Gillian Douglas
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Sarah George
- Bristol Medical School, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Dimitris Tousoulis
- Cardiology Department, Athens University Medical School, Athens 115 27, Greece
| | - Keith M Channon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| |
Collapse
|
29
|
Yuan L, Li Q, Zhang Z, Liu Q, Wang X, Fan L. Tanshinone IIA inhibits the adipogenesis and inflammatory response in ox‐LDL‐challenged human monocyte‐derived macrophages via regulating miR‐130b/WNT5A. J Cell Biochem 2019; 121:1400-1408. [PMID: 31512787 DOI: 10.1002/jcb.29375] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/28/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Limei Yuan
- Henan University of Traditional Chinese Medicine Zhengzhou Henan China
- Department of Cardiovascular The Third Affiliated Hospital of Henan University of Chinese Medicine Zhengzhou Henan China
| | - Qinghai Li
- Henan University of Traditional Chinese Medicine Zhengzhou Henan China
| | - Zhiguo Zhang
- Department of Cardiovascular The Third Affiliated Hospital of Henan University of Chinese Medicine Zhengzhou Henan China
| | - Qingle Liu
- Department of Cardiovascular The Third Affiliated Hospital of Henan University of Chinese Medicine Zhengzhou Henan China
| | - Xuechen Wang
- Department of Cardiovascular The Third Affiliated Hospital of Henan University of Chinese Medicine Zhengzhou Henan China
| | - Lihua Fan
- Department of Cardiovascular The Third Affiliated Hospital of Henan University of Chinese Medicine Zhengzhou Henan China
| |
Collapse
|
30
|
Li X, Zhang T, Geng J, Wu Z, Xu L, Liu J, Tian J, Zhou Z, Nie J, Bai X. Advanced Oxidation Protein Products Promote Lipotoxicity and Tubulointerstitial Fibrosis via CD36/β-Catenin Pathway in Diabetic Nephropathy. Antioxid Redox Signal 2019; 31:521-538. [PMID: 31084358 DOI: 10.1089/ars.2018.7634] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Aims: Diabetic nephropathy (DN) is the principal cause of mortality and morbidity in diabetic patients, the progression of which correlates best with tubulointerstitial fibrosis (TIF). Advanced oxidation protein products (AOPPs) have been detected in patients with chronic renal failure, causing injuries to proximal tubular epithelial cells. CD36, a known receptor for AOPP, is an important modulator of lipid homeostasis, predisposing to renal tubular damage. However, whether AOPPs induce lipotoxicity via the CD36 receptor pathway remains unknown. Herein, we tested the hypothesis that AOPPs accumulation in diabetes incurs lipotoxicity, causing renal TIF via the CD36 signaling pathway. Results: In DN patients and diabetic mice in vivo, AOPPs overload induces lipogenesis (upregulation of CD36 and sterol regulatory element-binding protein 1), fibrosis (upregulation of Fibronectin), and renal function decline (increased serum creatinine and N-acetyl-β-d-glucosaminidase, decreased estimated glomerular filtration rate). In HK-2 cells in vitro, high glucose stimulated AOPPs-induced lipotoxicity, apoptosis, and fibrosis via the CD36 receptor pathway. In addition, apocynin abrogated AOPPs-induced lipid accumulation and CD36 inhibition significantly mitigated AOPPs-induced mitochondrial injuries, lipotoxicity, and renal fibrosis. Further, we provide mechanistic evidence that AOPPs overload induces the enrichment of β-catenin binding the CD36 promoter region. Innovation and Conclusion: Our data reveal a major role of AOPPs in triggering lipotoxicity and fibrosis via CD36-dependent Wnt/β-catenin activation, providing new evidence for understanding the role of lipid accumulation in DN.
Collapse
Affiliation(s)
- Xiao Li
- 1Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Ting Zhang
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jian Geng
- 3Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhuguo Wu
- 4Department of Internal Medicine, the Second Clinical Medical College, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Liting Xu
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jixing Liu
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jianwei Tian
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhanmei Zhou
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jing Nie
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaoyan Bai
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
31
|
Asadipooya K, Weinstock A. Cardiovascular Outcomes of Romosozumab and Protective Role of Alendronate. Arterioscler Thromb Vasc Biol 2019; 39:1343-1350. [PMID: 31242037 DOI: 10.1161/atvbaha.119.312371] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Osteoporosis and cardiovascular diseases are major public health issues. Bone and cardiovascular remodeling share multiple biological markers and pathways. Medical intervention, such as using romosozumab, an antisclerostin antibody, improves the clinical outcome of osteoporosis. However, blocking sclerostin leads to Wnt (wingless/integrated) activation and participation in the cardiovascular remodeling process, which could potentially lead to adverse events. Based on the opposing roles of bisphosphonates and the Wnt pathway on endothelial dysfunction, lipid accumulation and calcification of the vessel walls, the combination of romosozumab and bisphosphonates could be a new therapeutic approach to reducing the risks of adverse cardiovascular events in romosozumab receivers. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Kamyar Asadipooya
- From the Division of Endocrinology and Molecular Medicine, Department of Medicine, University of Kentucky, Lexington (K.A.)
| | - Ada Weinstock
- Departments of Medicine (Cardiology) and Cell Biology, and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York (A.W.)
| |
Collapse
|
32
|
Volobueva A, Zhang D, Grechko AV, Orekhov AN. Foam cell formation and cholesterol trafficking and metabolism disturbances in atherosclerosis. COR ET VASA 2019. [DOI: 10.1016/j.crvasa.2018.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Andrographolide Ameliorates Atherosclerosis by Suppressing Pro-Inflammation and ROS Generation-Mediated Foam Cell Formation. Inflammation 2018; 41:1681-1689. [DOI: 10.1007/s10753-018-0812-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|