1
|
Husain I, Abdulrahman B, Dale OR, Katragunta K, Idrisi M, Gurley BJ, Ali Z, Avula B, Chittiboyina AG, Khan IA, Ujah FO, Khan SI. Interaction of Phyllanthus amarus extract and its lignans with human xenobiotic receptors, drug metabolizing enzymes and drug transporters. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119142. [PMID: 39571700 DOI: 10.1016/j.jep.2024.119142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyllanthus amarus is ethnomedicinally used to treat gallbladder stones, kidney stones and chronic liver diseases. P. amarus is gaining popularity as an ingredient in many botanical dietary supplements. AIM OF THE STUDY To evaluate the interaction of P. amarus extract and its lignans with human xenobiotic sensing receptors (PXR and AhR) and their downstream genes. MATERIALS AND METHODS Activation of PXR and AhR was measured by reporter gene assays. Gene expression analysis was performed in hepatic (HepG2) and intestinal (LS174T) cells by RT-PCR. CYP inhibition assays were carried out in baculosomes. The inhibitory effect on the ABC transporters (P-gp and BCRP) was investigated via rhodamine-123 and Hoechst 33342 uptake assays in Caco-2 and MDR-MDCK cells. Effect on CYP3A4 and CYP1A2 enzyme activity was measured in primary human hepatocytes. RESULTS P. amarus extract and its lignans activated AhR and PXR in respective reporter cells. Tested extract and lignans significantly increased CYP3A4 mRNA but inhibited CYP3A4 enzyme activity when tested in primary human hepatocytes and CYP3A4-specific baculosomes. In contrast, increased CYP1A2 mRNA was associated with increased CYP1A2 enzyme activity in hepatocytes. No inhibition of CYP1A2 activity was detected in baculosomes. A weak inhibitory effect on ABC-transporters was observed. CONCLUSIONS Results suggest that overconsumption of P. amarus or P. amarus-containing botanical supplements may change CYP homeostasis which could alter the pharmacokinetics of substrate drugs, thereby elevating the risk of herb-drug interactions (HDIs) when taken concomitantly with conventional medications. Further studies are warranted to strengthen the clinical relevance of these findings.
Collapse
Affiliation(s)
- Islam Husain
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Balkisu Abdulrahman
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States; Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Federal University Dutsin-Ma, Dutsin-Ma, Katsina State, 821101, Nigeria
| | - Olivia R Dale
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Kumar Katragunta
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Mantasha Idrisi
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Bill J Gurley
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Amar G Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States; Department of Bio-Molecular Sciences, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Frederick Oduh Ujah
- Department of Biochemistry, Faculty of Basic Medical Sciences, Bayero University, Kano, Kano State, 700241, Nigeria
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States; Department of Bio-Molecular Sciences, School of Pharmacy, The University of Mississippi, MS, 38677, United States.
| |
Collapse
|
2
|
Gamba D, van Eijk N, Lányi K, Monostory K, Steinmetzer T, Marosi A, Rácz A, Bajusz D, Kruhl D, Böttcher-Friebertshäuser E, Pászti-Gere E. PK/PD investigation of antiviral host matriptase/TMPRSS2 inhibitors in cell models. Sci Rep 2024; 14:16621. [PMID: 39025978 PMCID: PMC11258351 DOI: 10.1038/s41598-024-67633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
Certain corona- and influenza viruses utilize type II transmembrane serine proteases for cell entry, making these enzymes potential drug targets for the treatment of viral respiratory infections. In this study, the cytotoxicity and inhibitory effects of seven matriptase/TMPRSS2 inhibitors (MI-21, MI-463, MI-472, MI-485, MI-1900, MI-1903, and MI-1904) on cytochrome P450 enzymes were evaluated using fluorometric assays. Additionally, their antiviral activity against influenza A virus subtypes H1N1 and H9N2 was assessed. The metabolic depletion rates of these inhibitors in human primary hepatocytes were determined over a 120-min period by LC-MS/MS, and PK parameters were calculated. The tested compounds, with the exception of MI-21, displayed potent inhibition of CYP3A4, while all compounds lacked inhibitory effects on CYP1A2, CYP2C9, CYP2C19, and CYP2D6. The differences between the CYP3A4 activity within the series were rationalized by ligand docking. Elucidation of PK parameters showed that inhibitors MI-463, MI-472, MI-485, MI-1900 and MI-1904 were more stable compounds than MI-21 and MI-1903. Anti-H1N1 properties of inhibitors MI-463 and MI-1900 and anti-H9N2 effects of MI-463 were shown at 20 and 50 µM after 24 h incubation with the inhibitors, suggesting that these inhibitors can be applied to block entry of these viruses by suppressing host matriptase/TMPRSS2-mediated cleavage.
Collapse
Affiliation(s)
- Dávid Gamba
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Utca 2, 1078, Budapest, Hungary
| | - Nicholas van Eijk
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Utca 2, 1078, Budapest, Hungary
| | - Katalin Lányi
- Department of Food Hygiene, University of Veterinary Medicine, István Utca 2, 1078, Budapest, Hungary
| | - Katalin Monostory
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
| | - Torsten Steinmetzer
- Faculty of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - András Marosi
- Virology Research Group, Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária krt 23, 1143, Budapest, Hungary
| | - Anita Rácz
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
| | - Dávid Bajusz
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
| | - Diana Kruhl
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Str. 2, 35043, Marburg, Germany
| | | | - Erzsébet Pászti-Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Utca 2, 1078, Budapest, Hungary.
| |
Collapse
|
3
|
Tang LWT, DaSilva E, Lapham K, Obach RS. Evaluation of Icotinib as a Potent and Selective Inhibitor of Aldehyde Oxidase for Reaction Phenotyping in Human Hepatocytes. Drug Metab Dispos 2024; 52:565-573. [PMID: 38565303 DOI: 10.1124/dmd.124.001693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Aldehyde oxidase (AO) is a molybdenum cofactor-containing cytosolic enzyme that has gained prominence due to its involvement in the developmental failure of several drug candidates in first-in-human trials. Unlike cytochrome P450s (P450) and glucuronosyltransferase, AO substrates have been plagued by poor in vitro to in vivo extrapolation, leading to low systemic exposures and underprediction of human dose. However, apart from measuring a drug's AO clearance rates, it is also important to determine the relative contribution to metabolism by this enzyme (fm,AO). Although hydralazine is the most well-studied time-dependent inhibitor (TDI) of AO and is frequently employed for AO reaction phenotyping in human hepatocytes to derive fm,AO, multiple studies have expressed concerns pertaining to its utility in providing accurate estimates of fm,AO values due to its propensity to significantly inhibit P450s at the concentrations typically used for reaction phenotyping. In this study, we characterized icotinib, a cyclized analog of erlotinib, as a potent TDI of AO-inactivating human liver cytosolic zoniporide 2-oxidation equipotently with erlotinib with a maximal inactivate rate/inactivator concentration at half maximal inactivation rate (K I) ratio of 463 and 501 minute-1mM-1 , respectively. Moreover, icotinib also exhibits selectivity against P450 and elicits significantly weaker inhibition against human liver microsomal UGT1A1/3 as compared with erlotinib. Finally, we evaluated icotinib as an inhibitor of AO for reaction phenotyping in cryopreserved human hepatocytes and demonstrated that it can yield more accurate prediction of fm,AO compared with hydralazine and induce sustained suppression of AO activity at higher cell densities, which will be important for reaction phenotyping endeavors of low clearance drugs SIGNIFICANCE STATEMENT: In this study, we characterized icotinib as a potent time-dependent inhibitor of AO with ample selectivity margins against the P450s and UGT1A1/3 and demonstrated its utility for reaction phenotyping in human hepatocytes to obtain accurate estimates of fm,AO for victim DDI risk predictions. We envisage the adoption of icotinib in place of hydralazine in AO reaction phenotyping.
Collapse
Affiliation(s)
- Lloyd Wei Tat Tang
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut
| | - Ethan DaSilva
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut
| | - Kimberly Lapham
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut
| | - R Scott Obach
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut
| |
Collapse
|
4
|
Kowal-Chwast A, Gabor-Worwa E, Gaud N, Gogola D, Piątek A, Zarębski A, Littlewood P, Smoluch M, Brzózka K, Kuś K. Novel method of measurement of in vitro drug uptake in OATP1B3 overexpressing cells in the presence of dextran. Pharmacol Rep 2024; 76:400-415. [PMID: 38530582 DOI: 10.1007/s43440-024-00583-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND In predictions about hepatic clearance (CLH), a number of studies explored the role of albumin and transporters in drug uptake by liver cells, challenging the traditional free-drug theory. It was proposed that liver uptake can occur for transporter substrate compounds not only from the drug's unbound form but also directly from the drug-albumin complex, a phenomenon known as uptake facilitated by albumin. In contrast to albumin, dextran does not exhibit binding properties for compounds. However, as a result of its inherent capacity for stabilization, it is widely used to mimic conditions within cells. METHODS The uptake of eight known substrates of the organic anion-transporting polypeptide 1B3 (OATP1B3) was assessed using a human embryonic kidney cell line (HEK293), which stably overexpresses this transporter. An inert polymer, dextran, was used to simulate cellular conditions, and the results were compared with experiments involving human plasma and human serum albumin (HSA). RESULTS This study is the first to demonstrate that dextran increases compound uptake in cells with overexpression of the OATP1B3 transporter. Contrary to the common theory that highly protein-bound ligands interact with hepatocytes to increase drug uptake, the results indicate that dextran's interaction with test compounds does not significantly increase concentrations near the cell membrane surface. CONCLUSIONS We evaluated the effect of dextran on the uptake of known substrates using OATP1B3 overexpressed in the HEK293 cell line, and we suggest that its impact on drug concentrations in liver cells may differ from the traditional role of plasma proteins and albumin.
Collapse
Affiliation(s)
- Anna Kowal-Chwast
- Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland.
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059, Kraków, Poland.
| | - Ewelina Gabor-Worwa
- Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059, Kraków, Poland
| | - Nilesh Gaud
- Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
| | - Dawid Gogola
- Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
| | - Agnieszka Piątek
- Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
| | - Adrian Zarębski
- Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
| | - Peter Littlewood
- Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
| | - Marek Smoluch
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059, Kraków, Poland
| | - Krzysztof Brzózka
- Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
| | - Kamil Kuś
- Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
| |
Collapse
|
5
|
Alshehri MM, Kumar N, Kuthi NA, Olaide Z, Alshammari MK, Bello RO, Alghazwni MK, Alshehri AM, Alshlali OM, Ashimiyu-Abdusalam Z, Umar HI. Computer-aided drug discovery of c-Abl kinase inhibitors from plant compounds against chronic myeloid leukemia. J Biomol Struct Dyn 2024:1-21. [PMID: 38517058 DOI: 10.1080/07391102.2024.2329297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
Chronic myeloid leukemia (CML) is a hematological malignancy characterized by the neoplastic transformation of hematopoietic stem cells, driven by the Philadelphia (Ph) chromosome resulting from a translocation between chromosomes 9 and 22. This Ph chromosome harbors the breakpoint cluster region (BCR) and the Abelson (ABL) oncogene (BCR-ABL1) which have a constitutive tyrosine kinase activity. However, the tyrosine kinase activity of BCR-ABL1 have been identified as a key player in CML initiation and maintenance through c-Abl kinase. Despite advancements in tyrosine kinase inhibitors, challenges such as efficacy, safety concerns, and recurring drug resistance persist. This study aims to discover potential c-Abl kinase inhibitors from plant compounds with anti-leukemic properties, employing drug-likeness assessment, molecular docking, in silico pharmacokinetics (ADMET) screening, density function theory (DFT), and molecular dynamics simulations (MDS). Out of 58 screened compounds for drug-likeness, 44 were docked against c-Abl kinase. The top hit compound (isovitexin) and nilotinib (control drug) were subjected to rigorous analyses, including ADMET profiling, DFT evaluation, and MDS for 100 ns. Isovitexin demonstrated a notable binding affinity (-15.492 kcal/mol), closely comparable to nilotinib (-16.826 kcal/mol), showcasing a similar binding pose and superior structural stability and reactivity. While these findings suggest isovitexin as a potential c-Abl kinase inhibitor, further validation through urgent in vitro and in vivo experiments is imperative. This research holds promise for providing an alternative avenue to address existing CML treatment and management challenges.
Collapse
Affiliation(s)
- Mohammed M Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Neeraj Kumar
- Department of Pharmaceutical Chemistry, Bhupal Nobles' College of Pharmacy, Udaipur, India
| | - Najwa Ahmad Kuthi
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor, Malaysia
| | - Zainab Olaide
- Department of Biochemistry, Ibrahim Badamasi Babangida University, Lapai, Nigeria
| | | | - Ridwan Opeyemi Bello
- Computer-Aided Therapeutic Discovery and Design Platform, Federal University of Technology, Akure, Nigeria
| | | | | | | | - Zainab Ashimiyu-Abdusalam
- Computer-Aided Therapeutic Discovery and Design Platform, Federal University of Technology, Akure, Nigeria
- Department of Biochemistry and Nutrition, Nigerian Institute of Medical Research, Yaba, Nigeria
| | - Haruna Isiyaku Umar
- Computer-Aided Therapeutic Discovery and Design Platform, Federal University of Technology, Akure, Nigeria
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
6
|
Yin M, Balhara A, Marie S, Tournier N, Gáborik Z, Unadkat JD. Successful Prediction of Human Hepatic Concentrations of Transported Drugs Using the Proteomics-Informed Relative Expression Factor Approach. Clin Pharmacol Ther 2024; 115:595-605. [PMID: 38037845 DOI: 10.1002/cpt.3123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023]
Abstract
Tissue drug concentrations determine the efficacy and toxicity of drugs. When a drug is the substrate of transporters that are present at the blood:tissue barrier, the steady-state unbound tissue drug concentrations cannot be predicted from their corresponding plasma concentrations. To accurately predict transporter-modulated tissue drug concentrations, all clearances (CLs) mediating the drug's entry and exit (including metabolism) from the tissue must be accurately predicted. Because primary cells of most tissues are not available, we have proposed an alternative approach to predict such CLs, that is the use of transporter-expressing cells/vesicles (TECs/TEVs) and relative expression factor (REF). The REF represents the abundance of the relevant transporters in the tissue vs. in the TECs/TEVs. Here, we determined the transporter-based intrinsic CL of glyburide (GLB) and pitavastatin (PTV) in OATP1B1, OATP1B3, OATP2B1, and NTCP-expressing cells and MRP3-, BCRP-, P-gp-, and MRP2-expressing vesicles and scaled these CLs to in vivo using REF. These predictions fell within a priori set twofold range of the hepatobiliary CLs of GLB and PTV, estimated from their hepatic positron emission tomography imaging data: 272.3 and 607.8 mL/min for in vivo hepatic sinusoidal uptake CL, 47.8 and 17.4 mL/min for sinusoidal efflux CL, and 0 and 4.20 mL/min for biliary efflux CL, respectively. Moreover, their predicted hepatic concentrations (area under the hepatic concentration-time curve (AUC) and maximum plasma concentration (Cmax )), fell within twofold of their mean observed data. These data, together with our previous findings, confirm that the REF approach can successfully predict transporter-based drug CLs and tissue concentrations to enhance success in drug development.
Collapse
Affiliation(s)
- Mengyue Yin
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Ankit Balhara
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Solène Marie
- Université Paris-Saclay, CEA, Inserm, CNRS, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Nicolas Tournier
- Université Paris-Saclay, CEA, Inserm, CNRS, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Zsuzsanna Gáborik
- SOLVO Biotechnology, Charles River Laboratories Hungary, Budapest, Hungary
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Yumoto Y, Endo T, Harada H, Kobayashi K, Nakabayashi T, Abe Y. High-throughput assay to simultaneously evaluate activation of CYP3A and the direct and time-dependent inhibition of CYP3A, CYP2C9, and CYP2D6 using liquid chromatography-tandem mass spectrometry. Xenobiotica 2024; 54:45-56. [PMID: 38265764 DOI: 10.1080/00498254.2024.2308818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/18/2024] [Indexed: 01/25/2024]
Abstract
In the early stages of drug discovery, adequate evaluation of the potential drug-drug interactions (DDIs) of drug candidates is important. Several CYP3A activators are known to lead to underestimation of DDIs. These compounds affect midazolam 1'-hydroxylation but not midazolam 4-hydroxylation.We used both metabolic reactions of midazolam to evaluate the activation and inhibition of CYP3A activators simultaneously. For our CYP inhibition assay using cocktail probe substrates, simultaneous liquid chromatography-tandem mass spectrometry monitoring of 1'-hydroxymidazolam and 4-hydroxymidazolam for CYP3A was established in addition to monitoring of 4-hydroxydiclofenac and 1'-hydroxybufuralol for CYP2C9 and CYP2D6.The results of our cocktail inhibition assay were well correlated with those of a single inhibition assay, as were the estimated inhibition parameters for typical CYP3A inhibitors. In our assay, a proprietary compound that activated midazolam 1'-hydroxylation and tended to inhibit 4-hydroxylation was evaluated along with known CYP3A activators. All compounds were well characterised by comparison of the results of midazolam 1'- and 4-hydroxylation.In conclusion, our CYP cocktail inhibition assay can detect CYP3A activation and assess the direct and time-dependent inhibition potentials for CYP3A, CYP2C9, and CYP2D6. This method is expected to be very efficient in the early stages of drug discovery.
Collapse
Affiliation(s)
- Yu Yumoto
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| | - Takuro Endo
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| | - Hiroshi Harada
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| | - Kaoru Kobayashi
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| | - Takeshi Nakabayashi
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| | - Yoshikazu Abe
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| |
Collapse
|
8
|
Lv Y, Rao Z, Liu L, Jia J, Wu C, Xu J, Du Y, Liu Y, Liu B, Shi J, Li G, Zhao D, Deng H. The efficient generation of functional human hepatocytes from chemically induced pluripotent stem cells. Cell Prolif 2024; 57:e13540. [PMID: 37814474 PMCID: PMC10849784 DOI: 10.1111/cpr.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 10/11/2023] Open
Abstract
Derivation of human hepatocytes from pluripotent stem cells in vitro has important applications including cell therapy and drug discovery. However, the differentiation of pluripotent stem cells into hepatocytes in vitro was not well recapitulated the development of liver. Here, we developed a differentiation protocol by mimicking the two-stage development of hepatoblasts, which permits the efficient generation of hepatic progenitor cells from chemically induced pluripotent stem cells (hCiPSCs). Single-cell RNA sequencing (scRNA-seq) indicates the similarity between hepatoblasts differentiated in vitro and in vivo. Moreover, hCiPSC-derived hepatic progenitor cells can further differentiate into hepatocytes that are similar to primary human hepatocytes with respect to gene expression and key hepatic functions. Our results demonstrate the feasibility of generating hepatic progenitor cells and hepatocytes from hCiPSCs with high efficiency and set the foundation for broad translational applications of hCiPSC-derived hepatocytes.
Collapse
Affiliation(s)
- Yun Lv
- School of Basic Medical Sciences, MOE Engineering Research Center of Regenerative Medicine, State Key Laboratory of Natural and Biomimetic DrugsPeking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking‐Tsinghua Center for Life Sciences, Peking UniversityBeijingChina
| | - Ziyan Rao
- Department of Biomedical Informatics, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| | - Lulu Liu
- Peking University‐Tsinghua University‐National Institute of Biological Science Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Jun Jia
- Changping LaboratoryBeijingChina
| | - Chenyang Wu
- Department of Biomedical Informatics, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| | - Jun Xu
- Department of Cell Biology, School of Basic Medical SciencesPeking University Stem Cell Research Center, Peking University Health Science Center, Peking UniversityBeijingChina
| | - Yuanyuan Du
- School of Basic Medical Sciences, MOE Engineering Research Center of Regenerative Medicine, State Key Laboratory of Natural and Biomimetic DrugsPeking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking‐Tsinghua Center for Life Sciences, Peking UniversityBeijingChina
| | - Yinan Liu
- Department of Cell Biology, School of Basic Medical SciencesPeking University Stem Cell Research Center, Peking University Health Science Center, Peking UniversityBeijingChina
| | - Bei Liu
- School of Basic Medical Sciences, MOE Engineering Research Center of Regenerative Medicine, State Key Laboratory of Natural and Biomimetic DrugsPeking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking‐Tsinghua Center for Life Sciences, Peking UniversityBeijingChina
| | - Jihang Shi
- Department of Hepatobiliary Surgery, First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Guangya Li
- Ministry of Education (MOE) Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Dongyu Zhao
- Department of Biomedical Informatics, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| | - Hongkui Deng
- School of Basic Medical Sciences, MOE Engineering Research Center of Regenerative Medicine, State Key Laboratory of Natural and Biomimetic DrugsPeking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking‐Tsinghua Center for Life Sciences, Peking UniversityBeijingChina
- Changping LaboratoryBeijingChina
| |
Collapse
|
9
|
Vink MA, Alarcan J, Martens J, Buma WJ, Braeuning A, Berden G, Oomens J. Structural Elucidation of Agrochemical Metabolic Transformation Products Based on Infrared Ion Spectroscopy to Improve In Silico Toxicity Assessment. Chem Res Toxicol 2024; 37:81-97. [PMID: 38118149 PMCID: PMC10792670 DOI: 10.1021/acs.chemrestox.3c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023]
Abstract
Toxicological assessments of newly developed agrochemical agents consider chemical modifications and their metabolic and biotransformation products. To carry out an in silico hazard assessment, understanding the type of chemical modification and its location on the original compound can greatly enhance the reliability of the evaluation. Here, we present and apply a method based on liquid chromatography-mass spectrometry (LC-MS) enhanced with infrared ion spectroscopy (IRIS) to better delineate the molecular structures of transformation products before in silico toxicology evaluation. IRIS facilitates the recording of IR spectra directly in the mass spectrometer for features selected by retention time and mass-to-charge ratio. By utilizing quantum-chemically predicted IR spectra for candidate molecular structures, one can either derive the actual structure or significantly reduce the number of (isomeric) candidate structures. This approach can assist in making informed decisions. We apply this method to a plant growth stimulant, digeraniol sinapoyl malate (DGSM), that is currently under development. Incubation of the compound in Caco-2 and HepaRG cell lines in multiwell plates and analysis by LC-MS reveals oxidation, glucuronidation, and sulfonation metabolic products, whose structures were elucidated by IRIS and used as input for an in silico toxicology assessment. The toxicity of isomeric metabolites predicted by in silico tools was also assessed, which revealed that assigning the right metabolite structure is an important step in the overall toxicity assessment of the agrochemical. We believe this identification approach can be advantageous when specific isomers are significantly more hazardous than others and can help better understand metabolic pathways.
Collapse
Affiliation(s)
- Matthias
J. A. Vink
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jimmy Alarcan
- Department
of Food Safety, German Federal Institute
for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Jonathan Martens
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Wybren Jan Buma
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
- van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science
Park 904, 1098 XH Amsterdam, The Netherlands
| | - Albert Braeuning
- Department
of Food Safety, German Federal Institute
for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Giel Berden
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jos Oomens
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
- van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science
Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
10
|
Yin M, Ishida K, Liang X, Lai Y, Unadkat JD. Interpretation of Protein-Mediated Uptake of Statins by Hepatocytes Is Confounded by the Residual Statin-Protein Complex. Drug Metab Dispos 2023; 51:1381-1390. [PMID: 37429727 DOI: 10.1124/dmd.123.001386] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023] Open
Abstract
Inclusion of plasma (or plasma proteins) in human hepatocyte uptake studies narrows, but does not close, the gap in in vitro to in vivo extrapolation (IVIVE) of organic anion transporting polypeptide (OATP)-mediated hepatic clearance (CLh) of statins. We have previously shown that this "apparent" protein-mediated uptake effect (PMUE) of statins by OATP1B1-expressing cells, in the presence of 5% human serum albumin (HSA), is mostly an artifact caused by residual statin-HSA complex remaining in the uptake assay. We determined if the same was true with plated human hepatocytes (PHH) and if this artifact can be reduced using suspended human hepatocytes (SHH) and the oil-spin method. We quantified the uptake of a cocktail of five statins by PHH and SHH in the absence and presence of 5% HSA. After terminating the uptake assay, the amount of residual HSA was quantified by quantitative targeted proteomics. For both PHH and SHH, except for atorvastatin and cerivastatin, the increase in total, active, and passive uptake of the statins, in the presence of 5% HSA, was explained by the estimated residual stain-HSA complex. In addition, the increase in active statin uptake by SHH, where present, was marginal (<50%), much smaller than that observed with PHH. Such a marginal increase cannot bridge the gap in IVIVE of CLh of statins. These data disprove the prevailing hypotheses for the in vitro PMUE. A true PMUE should be evaluated using the uptake data corrected for the residual drug-protein complex. SIGNIFICANCE STATEMENT: We show that the apparent protein-mediated uptake (PMUE) of statins by human hepatocytes is largely confounded by residual statin when plated or suspended human hepatocytes are used. Therefore, mechanisms other than PMUE need to be explored to explain the underprediction of the in vivo human hepatic clearance of statins by human hepatocyte uptake assays.
Collapse
Affiliation(s)
- Mengyue Yin
- Department of Pharmaceutics, University of Washington, Seattle, Washington (M.Y., J.D.U.); and Drug Metabolism, Gilead Sciences, Inc., Foster City, California (K.I., X.L., Y.L.)
| | - Kazuya Ishida
- Department of Pharmaceutics, University of Washington, Seattle, Washington (M.Y., J.D.U.); and Drug Metabolism, Gilead Sciences, Inc., Foster City, California (K.I., X.L., Y.L.)
| | - Xiaomin Liang
- Department of Pharmaceutics, University of Washington, Seattle, Washington (M.Y., J.D.U.); and Drug Metabolism, Gilead Sciences, Inc., Foster City, California (K.I., X.L., Y.L.)
| | - Yurong Lai
- Department of Pharmaceutics, University of Washington, Seattle, Washington (M.Y., J.D.U.); and Drug Metabolism, Gilead Sciences, Inc., Foster City, California (K.I., X.L., Y.L.)
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington (M.Y., J.D.U.); and Drug Metabolism, Gilead Sciences, Inc., Foster City, California (K.I., X.L., Y.L.)
| |
Collapse
|
11
|
Huang YL, De Gregorio C, Silva V, Elorza ÁA, Léniz P, Aliaga-Tobar V, Maracaja-Coutinho V, Budini M, Ezquer F, Ezquer M. Administration of Secretome Derived from Human Mesenchymal Stem Cells Induces Hepatoprotective Effects in Models of Idiosyncratic Drug-Induced Liver Injury Caused by Amiodarone or Tamoxifen. Cells 2023; 12:cells12040636. [PMID: 36831304 PMCID: PMC9954258 DOI: 10.3390/cells12040636] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Drug-induced liver injury (DILI) is one of the leading causes of acute liver injury. While many factors may contribute to the susceptibility to DILI, obese patients with hepatic steatosis are particularly prone to suffer DILI. The secretome derived from mesenchymal stem cell has been shown to have hepatoprotective effects in diverse in vitro and in vivo models. In this study, we evaluate whether MSC secretome could improve DILI mediated by amiodarone (AMI) or tamoxifen (TMX). Hepatic HepG2 and HepaRG cells were incubated with AMI or TMX, alone or with the secretome of MSCs obtained from human adipose tissue. These studies demonstrate that coincubation of AMI or TMX with MSC secretome increases cell viability, prevents the activation of apoptosis pathways, and stimulates the expression of priming phase genes, leading to higher proliferation rates. As proof of concept, in a C57BL/6 mouse model of hepatic steatosis and chronic exposure to AMI, the MSC secretome was administered endovenously. In this study, liver injury was significantly attenuated, with a decrease in cell infiltration and stimulation of the regenerative response. The present results indicate that MSC secretome administration has the potential to be an adjunctive cell-free therapy to prevent liver failure derived from DILI caused by TMX or AMI.
Collapse
Affiliation(s)
- Ya-Lin Huang
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Cristian De Gregorio
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Verónica Silva
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Álvaro A. Elorza
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Ciencias de la Vida, Universidad Andres Bello, Santiago 7610658, Chile
| | - Patricio Léniz
- Unidad de Cirugía Plástica, Reparadora y Estética, Clínica Alemana, Santiago 7610658, Chile
| | - Víctor Aliaga-Tobar
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua 7610658, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
| | - Mauricio Budini
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago 7610658, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
- Correspondence: (F.E.); (M.E.); Tel.: +56-990-699-272 (F.E.); +56-976-629-880 (M.E.)
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
- Correspondence: (F.E.); (M.E.); Tel.: +56-990-699-272 (F.E.); +56-976-629-880 (M.E.)
| |
Collapse
|
12
|
Qiu L, Kong B, Kong T, Wang H. Recent advances in liver-on-chips: Design, fabrication, and applications. SMART MEDICINE 2023; 2:e20220010. [PMID: 39188562 PMCID: PMC11235950 DOI: 10.1002/smmd.20220010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/20/2022] [Indexed: 08/28/2024]
Abstract
The liver is a multifunctional organ and the metabolic center of the human body. Most drugs and toxins are metabolized in the liver, resulting in varying degrees of hepatotoxicity. The damage of liver will seriously affect human health, so it is very important to study the prevention and treatment of liver diseases. At present, there are many research studies in this field. However, most of them are based on animal models, which are limited by the time-consuming processes and species difference between human and animals. In recent years, liver-on-chips have emerged and developed rapidly and are expected to replace animal models. Liver-on-chips refer to the use of a small number of liver cells on the chips to simulate the liver microenvironment and ultrastructure in vivo. They hold extensive applications in multiple fields by reproducing the unique physiological functions of the liver in vitro. In this review, we first introduced the physiology and pathology of liver and then described the cell system of liver-on-chips, the chip-based liver models, and the applications of liver-on-chips in liver transplantation, drug screening, and metabolic evaluation. Finally, we discussed the currently encountered challenges and future trends in liver-on-chips.
Collapse
Affiliation(s)
- Linjie Qiu
- The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
- School of MedicineSun Yat‐Sen UniversityShenzhenChina
| | - Bin Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenChina
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenChina
| | - Huan Wang
- The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| |
Collapse
|
13
|
The next frontier in ADME science: Predicting transporter-based drug disposition, tissue concentrations and drug-drug interactions in humans. Pharmacol Ther 2022; 238:108271. [DOI: 10.1016/j.pharmthera.2022.108271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 12/25/2022]
|
14
|
Yin M, Storelli F, Unadkat JD. Is the Protein-Mediated Uptake of Drugs by Organic Anion Transporting Polypeptides a Real Phenomenon or an Artifact? Drug Metab Dispos 2022; 50:1132-1141. [PMID: 35351775 DOI: 10.1124/dmd.122.000849] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022] Open
Abstract
Plasma proteins or human serum albumin (HSA) have been reported to increase the in vitro intrinsic uptake clearance (CLint,uptake) of drugs by hepatocytes or organic anion transporting polypeptide (OATP)-transfected cell lines. This so-called protein-mediated uptake effect (PMUE) is thought to be due to an interaction between the drug-protein complex and the cell membrane causing an increase in the unbound drug concentration at the cell surface, resulting in an increase in the apparent CLint,uptake of the drug. To determine if the PMUE on OATP-mediated drug uptake is an artifact or a real phenomenon, we determined the effect of 1%, 2%, and 5% HSA on OATP1B1-mediated [human embryonic kidney (HEK)293 transfected cells] and passive CLint,uptake (mock HEK293 cells) on a cocktail of five statins. In addition, we determined the non-specific binding (NSB) of the statin-HSA complex to the cells/labware. The increase in uptake of atorvastatin, fluvastatin, and rosuvastatin in the presence of HSA was completely explained by the extent of NSB of the statin-HSA complex, indicating that the PMUE for these statins is an artifact. In contrast, this was not the case for OATP1B1-mediated uptake of pitavastatin and passive uptake of cerivastatin, suggesting that the PMUE is a real phenomenon for these drugs. Additionally, the PMUE on OATP1B1-mediated uptake of pitavastatin was confirmed by a decrease in its unbound IC50 in the presence of 5% HSA versus Hank's balanced salt solution buffer (HBSS). These data question the utility of routinely including plasma proteins or HSA in uptake experiments and the previous findings on PMUE on OATP-mediated drug uptake. SIGNIFICANCE STATEMENT: Here we report, for the first time, that the protein-mediated uptake effect (PMUE) on organic anion transporting polypeptide (OATP)-transported drugs could be an artifact of the non-specific binding (NSB) of the drug-albumin complex to cells/labware. Future experiments on PMUE must take into consideration such NSB. In addition, mechanisms other than PMUE need to be explored to explain the underprediction of in vivo OATP-mediated hepatic drug clearance from in vitro uptake studies.
Collapse
Affiliation(s)
- Mengyue Yin
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Flavia Storelli
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| |
Collapse
|
15
|
Amano Y, Yamane M, Honda H. RAID: Regression Analysis–Based Inductive DNA Microarray for Precise Read-Across. Front Pharmacol 2022; 13:879907. [PMID: 35935858 PMCID: PMC9354856 DOI: 10.3389/fphar.2022.879907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
Chemical structure-based read-across represents a promising method for chemical toxicity evaluation without the need for animal testing; however, a chemical structure is not necessarily related to toxicity. Therefore, in vitro studies were often used for read-across reliability refinement; however, their external validity has been hindered by the gap between in vitro and in vivo conditions. Thus, we developed a virtual DNA microarray, regression analysis–based inductive DNA microarray (RAID), which quantitatively predicts in vivo gene expression profiles based on the chemical structure and/or in vitro transcriptome data. For each gene, elastic-net models were constructed using chemical descriptors and in vitro transcriptome data to predict in vivo data from in vitro data (in vitro to in vivo extrapolation; IVIVE). In feature selection, useful genes for assessing the quantitative structure–activity relationship (QSAR) and IVIVE were identified. Predicted transcriptome data derived from the RAID system reflected the in vivo gene expression profiles of characteristic hepatotoxic substances. Moreover, gene ontology and pathway analysis indicated that nuclear receptor-mediated xenobiotic response and metabolic activation are related to these gene expressions. The identified IVIVE-related genes were associated with fatty acid, xenobiotic, and drug metabolisms, indicating that in vitro studies were effective in evaluating these key events. Furthermore, validation studies revealed that chemical substances associated with these key events could be detected as hepatotoxic biosimilar substances. These results indicated that the RAID system could represent an alternative screening test for a repeated-dose toxicity test and toxicogenomics analyses. Our technology provides a critical solution for IVIVE-based read-across by considering the mode of action and chemical structures.
Collapse
|
16
|
Three-dimensional (3D) liver cell models - a tool for bridging the gap between animal studies and clinical trials when screening liver accumulation and toxicity of nanobiomaterials. Drug Deliv Transl Res 2022; 12:2048-2074. [PMID: 35507131 PMCID: PMC9066991 DOI: 10.1007/s13346-022-01147-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 12/13/2022]
Abstract
Despite the exciting properties and wide-reaching applications of nanobiomaterials (NBMs) in human health and medicine, their translation from bench to bedside is slow, with a predominant issue being liver accumulation and toxicity following systemic administration. In vitro 2D cell-based assays and in vivo testing are the most popular and widely used methods for assessing liver toxicity at pre-clinical stages; however, these fall short in predicting toxicity for NBMs. Focusing on in vitro and in vivo assessment, the accurate prediction of human-specific hepatotoxicity is still a significant challenge to researchers. This review describes the relationship between NBMs and the liver, and the methods for assessing toxicity, focusing on the limitations they bring in the assessment of NBM hepatotoxicity as one of the reasons defining the poor translation for NBMs. We will then present some of the most recent advances towards the development of more biologically relevant in vitro liver methods based on tissue-mimetic 3D cell models and how these could facilitate the translation of NBMs going forward. Finally, we also discuss the low public acceptance and limited uptake of tissue-mimetic 3D models in pre-clinical assessment, despite the demonstrated technical and ethical advantages associated with them.
Collapse
|
17
|
Kameyama T, Sodhi JK, Benet LZ. Does Addition of Protein to Hepatocyte or Microsomal In Vitro Incubations Provide a Useful Improvement in In Vitro-In Vivo Extrapolation Predictability? Drug Metab Dispos 2022; 50:401-412. [PMID: 35086847 PMCID: PMC11022888 DOI: 10.1124/dmd.121.000677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/21/2022] [Indexed: 11/22/2022] Open
Abstract
Accurate prediction of in vivo hepatic clearance is an essential part of successful and efficient drug development; however, many investigators have recognized that there are significant limitations in the predictability of clearance with a tendency for underprediction for primarily metabolized drugs. Here, we examine the impact of adding serum or albumin into hepatocyte and microsomal incubations on the predictability of in vivo hepatic clearance. The addition of protein into hepatocyte incubations has been reported to improve the predictability for high clearance (extraction ratio) drugs and highly protein-bound drugs. Analyzing published data for 60 different drugs and 97 experimental comparisons (with 17 drugs being investigated from two to seven) we confirmed the marked underprediction of clearance. However, we could not validate any relevant improved predictability within twofold by the addition of serum to hepatocyte incubations or albumin to microsomal incubations. This was the case when investigating all measurements, or when subdividing analyses by extraction ratio, degree of protein binding, Biopharmaceutics Drug Disposition Classification System class, examining Extended Clearance Classification System class 1B drugs only, or drug charge. Manipulating characteristics of small data sets of like compounds and adding scaling factors can appear to yield good predictability, but the carryover of these methods to alternate drug classes and different laboratories is not evident. Improvement in predictability of poorly soluble compounds is greater than that for soluble compounds, but not to a meaningful extent. Overall, we cannot confirm that protein addition improves in vitro-in vivo extrapolation predictability to any clinically meaningful degree when considering all drugs and different subsets. SIGNIFICANCE STATEMENT: The addition of protein into microsomal or hepatocyte incubations has been widely proposed to improve hepatic clearance predictions. To date, studies examining this phenomenon have not included appropriate negative controls where predictability is achieved without protein addition and have been conducted with small data sets of similar compounds that don't apply to alternate drug classes. Here, an extensive analysis of published data for 60 drugs and 97 experimental comparisons couldn't validate any relevant clinically improved clearance predictability with protein addition.
Collapse
Affiliation(s)
- Tsubasa Kameyama
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California
| | - Jasleen K Sodhi
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California
| | - Leslie Z Benet
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
18
|
Advancements in practical and scientific bioanalytical approaches to metabolism studies in drug development. Bioanalysis 2021; 13:913-930. [PMID: 33961500 DOI: 10.4155/bio-2021-0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Advancement in metabolism profiling approaches and bioanalytical techniques has been revolutionized over the last two decades. Different in vitro and in vivo approaches along with advanced bioanalytical techniques are enabling the accurate qualitative and quantitative analysis of metabolites. This review summarizes various modern in vitro and in vivo approaches for executing metabolism studies with special emphasis on the recent advancement in the field. Advanced bioanalytical techniques, which can be employed in metabolism studies, have been discussed suggesting their particular application based on specific study objectives. This article can efficiently guide the researchers to scientifically plan metabolism studies and their bioanalysis during drug development programs taking advantage of a detailed understanding of instances of failure in the past.
Collapse
|
19
|
Li H, Wang YG, Ma ZC, Yun-Hang G, Ling S, Teng-Fei C, Guang-Ping Z, Gao Y. A high-throughput cell-based gaussia luciferase reporter assay for measurement of CYP1A1, CYP2B6, and CYP3A4 induction. Xenobiotica 2021; 51:752-763. [PMID: 33896369 DOI: 10.1080/00498254.2021.1918800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The induction of cytochrome P450s can result in reduced drug efficacy and lead to potential drug-drug interactions. The xenoreceptors-aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), and pregnane X receptor (PXR)-play key roles in CYP induction by xenobiotics. In order to be able to rapidly screen for the induction of three enzymes (CYP1A1, CYP2B6, and CYP3A4), we generated a stable AhR-responsive HepG2 cell line, a stable CAR-responsive HepG2 cell line, and a stable PXR-responsive HepG2 cell line.To validate these stable xenoreceptor-responsive HepG2 cell lines, we evaluated the induction of the different Gaussia reporter activities, as well as the mRNA and protein expression levels of endogenous CYPs in response to different inducers.The induction of luciferase activity in the stable xenoreceptor-responsive HepG2 cell lines by specific inducers occurred in a concentration dependent manner. There was a positive correlation between the induction of luciferase activities and the induction endogenous CYP mRNA expression levels. These xenoreceptor-responsive HepG2 cell lines were further validated with known CYP1A1, CYP2B6, and CYP3A4 inducers.These stable xenoreceptor-responsive HepG2 cell lines may be used in preclinical research for the rapid and sensitive detection of AhR, CAR, and PXR ligands that induce CYP450 isoforms.
Collapse
Affiliation(s)
- Han Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Guang Wang
- Institute of Radiation Medicine Academy of Military Medical Sciences, Beijing, China
| | - Zeng-Chun Ma
- Institute of Radiation Medicine Academy of Military Medical Sciences, Beijing, China
| | - Gao Yun-Hang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Song Ling
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen Teng-Fei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhang Guang-Ping
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Gao
- Institute of Radiation Medicine Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Sachar M, Kumar V, Gormsen LC, Munk OL, Unadkat JD. Successful Prediction of Positron Emission Tomography-Imaged Metformin Hepatic Uptake Clearance in Humans Using the Quantitative Proteomics-Informed Relative Expression Factor Approach. Drug Metab Dispos 2020; 48:1210-1216. [PMID: 32843330 DOI: 10.1124/dmd.120.000156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
Predicting transporter-mediated in vivo hepatic drug clearance (CL) from in vitro data (IVIVE) is important in drug development to estimate first-in-human dose and the impact of drug interactions and pharmacogenetics on hepatic drug CL. For IVIVE, one can use human hepatocytes and the traditional milligrams of protein content per gram of liver tissue (MGPGL) approach. However, this approach has been found to consistently underpredict the observed in vivo hepatic drug CL. Therefore, we hypothesized that using transporter-expressing cells and the relative expression factor (REF), determined using targeted quantitative proteomics, will accurately predict in vivo hepatic CL of drugs. We have successfully tested this hypothesis in rats with rosuvastatin, which is transported by hepatic Organic anion transporting polypeptides (OATPs). Here, we tested this hypothesis for another drug and another transporter; namely, organic cation transporter (OCT)1-mediated hepatic distributional CL of metformin. First, we estimated the in vivo metformin hepatic sinusoidal uptake CL (CLh,s,in) of metformin by reanalysis of previously published human positron emission tomography imaging data. Next, using the REF approach, we predicted the in vivo metformin CLh,s,in using OCT1-transporter-expressing HEK293 cells or plated human hepatocytes. Finally, we compared this REF-based prediction with that using the MGPGL approach. The REF approach accurately predicted the in vivo metformin hepatic CLh,s,in, whereas the MGPGL approach considerably underpredicted the in vivo metformin CLh,s,in Based on these and previously published data, the REF approach appears to be superior to the MGPGL approach for a diverse set of drugs transported by different transporters. SIGNIFICANCE STATEMENT: This study is the first to use organic cation transporter 1-expressing cells and plated hepatocytes to compare proteomics-informed REF approach with the traditional MGPGL approach to predict hepatic uptake CL of metformin in humans. The proteomics-informed REF approach, which corrected for plasma membrane abundance, accurately predicted the positron emission tomography-imaged metformin hepatic uptake CL, whereas the MGPGL approach consistently underpredicted this CL.
Collapse
Affiliation(s)
- Madhav Sachar
- Department of Pharmaceutics, University of Washington, Seattle, Washington (M.S., V.K., J.D.U.) and Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus N, Denmark (L.C.G., O.L.M.)
| | - Vineet Kumar
- Department of Pharmaceutics, University of Washington, Seattle, Washington (M.S., V.K., J.D.U.) and Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus N, Denmark (L.C.G., O.L.M.)
| | - Lars C Gormsen
- Department of Pharmaceutics, University of Washington, Seattle, Washington (M.S., V.K., J.D.U.) and Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus N, Denmark (L.C.G., O.L.M.)
| | - Ole Lajord Munk
- Department of Pharmaceutics, University of Washington, Seattle, Washington (M.S., V.K., J.D.U.) and Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus N, Denmark (L.C.G., O.L.M.)
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington (M.S., V.K., J.D.U.) and Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus N, Denmark (L.C.G., O.L.M.)
| |
Collapse
|
21
|
Yamasaki C, Ishida Y, Yanagi A, Yoshizane Y, Kojima Y, Ogawa Y, Kageyama Y, Iwasaki Y, Ishida S, Chayama K, Tateno C. Culture density contributes to hepatic functions of fresh human hepatocytes isolated from chimeric mice with humanized livers: Novel, long-term, functional two-dimensional in vitro tool for developing new drugs. PLoS One 2020; 15:e0237809. [PMID: 32915792 PMCID: PMC7485858 DOI: 10.1371/journal.pone.0237809] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/03/2020] [Indexed: 01/25/2023] Open
Abstract
Chimeric mice with humanized livers are considered a useful animal model for predicting human (h-) drug metabolism and toxicity. In this study, the characteristics of fresh h-hepatocytes (cFHHs, PXB-cells®) isolated from chimeric mice (PXB-mice®) were evaluated in vitro to confirm their utility for drug development. cFHHs cultured at high density (2.13 × 105 cells/cm2) displayed stable production of h-albumin and cytochrome P450 (CYP) 3A activities for at least 21 days. The mRNA expression levels of 10 of 13 CYP, UDP-glucuronosyltransferase (UGT), and transporters were maintained at >10% of the levels of freshly isolated cFHHs after 21 days. From 1 week, many bile canaliculi were observed between cFHHs, and the accumulation of the multidrug resistance-associated protein and bile salt export pump substrates in these bile canaliculi was clearly inhibited by cyclosporin A. Microarray analysis of cFHHs cultured at high density and at low density (0.53 × 105 cells/cm2) revealed that high density culture maintained high expressions of some transcription factors (HNF4α, PXR, and FXR) perhaps involved in the high CYP, UGT and transporter gene expressions of cFHHs. These results strongly suggest that cFHHs could be a novel in vitro tool for drug development studies.
Collapse
Affiliation(s)
| | - Yuji Ishida
- PhoenixBio Co., Ltd., Higashi-Hiroshima, Hiroshima, Japan
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Ami Yanagi
- PhoenixBio Co., Ltd., Higashi-Hiroshima, Hiroshima, Japan
| | | | - Yuha Kojima
- PhoenixBio Co., Ltd., Higashi-Hiroshima, Hiroshima, Japan
| | - Yuko Ogawa
- PhoenixBio Co., Ltd., Higashi-Hiroshima, Hiroshima, Japan
| | | | - Yumiko Iwasaki
- PhoenixBio Co., Ltd., Higashi-Hiroshima, Hiroshima, Japan
| | - Seiichi Ishida
- Department of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | - Chise Tateno
- PhoenixBio Co., Ltd., Higashi-Hiroshima, Hiroshima, Japan
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
22
|
Chanteux H, Rosa M, Delatour C, Nicolaï J, Gillent E, Dell'Aiera S, Ungell AL. Application of Azamulin to Determine the Contribution of CYP3A4/5 to Drug Metabolic Clearance Using Human Hepatocytes. Drug Metab Dispos 2020; 48:778-787. [PMID: 32532738 DOI: 10.1124/dmd.120.000017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/01/2020] [Indexed: 11/22/2022] Open
Abstract
Early determination of CYP3A4/5 contribution to the clearance of new chemical entities is critical to inform on the risk of drug-drug interactions with CYP3A inhibitors and inducers. Several in vitro approaches (recombinant P450 enzymes, correlation analysis, chemical and antibody inhibition in human liver microsomes) are available, but they are usually labor-intensive and/or suffer from specific limitations. In the present study, we have validated the use of azamulin as a specific CYP3A inhibitor in human hepatocytes. Azamulin (3 µM) was found to significantly inhibit CYP3A4/5 (>90%), whereas other P450 enzymes were not affected (less than 20% inhibition). Because human hepatocytes were used as a test system, the effect of azamulin on other key drug-metabolizing enzymes (aldehyde oxidase, carboxylesterase, UGT, flavin monooxygenase, and sulfotransferase) was also investigated. Apart from some UGTs showing minor inhibition (∼20%-30%), none of these non-P450 enzymes were inhibited by azamulin. Use of CYP3A5-genotyped human hepatocyte batches in combination with CYP3cide demonstrated that azamulin (at 3 µM) inhibits both CYP3A4 and CYP3A5 enzymes. Finally, 11 compounds with known in vivo CYP3A4/5 contribution have been evaluated in this human hepatocyte assay. Results showed that the effect of azamulin on the in vitro intrinsic clearance of these known CYP3A4/5 substrates was predictive of the in vivo CYP3A4/5 contribution. Overall, the study showed that human hepatocytes treated with azamulin provide a fast and accurate estimation of CYP3A4/5 contribution in metabolic clearance of new chemical entities. SIGNIFICANCE STATEMENT: Accurate estimation of CYP3A4/5 contribution in drug clearance is essential to anticipate risk of drug-drug interactions and select the appropriate candidate for clinical development. The present study validated the use of azamulin as selective CYP3A4/5 inhibitor in suspended human hepatocytes and demonstrated that this novel approach provides a direct and accurate determination of the contribution of CYP3A4/5 (fraction metabolized by CYP3A4/5) in the metabolic clearance of new chemical entities.
Collapse
Affiliation(s)
| | - Maria Rosa
- UCB Biopharma SRL, Braine-l'Alleud, Belgium
| | | | | | | | | | | |
Collapse
|
23
|
Wang W, Teresa M, Cai J, Zhang C, Wong S, Yan Z, Khojasteh SC, Zhang D. Comparative assessment for rat strain differences in metabolic profiles of 14 drugs in Wistar Han and Sprague Dawley hepatocytes. Xenobiotica 2020; 51:15-23. [PMID: 32713280 DOI: 10.1080/00498254.2020.1795949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Knowledge of inter-strain and inter-gender differences in drug metabolism studies is important for animal selection in pharmacokinetic and toxicological studies. The effects of rat strain and gender in in vitro metabolism were investigated in Sprague Dawley (SD) and Wister Han (WH) rats based on the hepatocyte metabolic profiles of 14 small molecule drugs. Similarities were found between the hepatocyte metabolic clearances of SD and WH strains, suggesting that only one strain can be confidently used for the evaluation of hepatic clearance. Neither strain of rat was preferable over the other to cover human metabolites. Higher similarities in metabolic pathways were found between the same gender than the same strain. Differences in metabolite identities, metabolite formation rates and potential biotransformation pathways were observed between SD and WH rat strains. Eleven metabolites from six drugs were "disproportionally" formed between SD and WH rats. The use of a specific rat strain model and gender for ADME and toxicity testing should, therefore, be carefully considered as metabolic profiles may differ, even though metabolic clearance was similar between SD and WH rats.
Collapse
Affiliation(s)
- Wei Wang
- Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Mulder Teresa
- Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Jingwei Cai
- Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Chenghong Zhang
- Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Susan Wong
- Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Zhengyin Yan
- Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - S Cyrus Khojasteh
- Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Donglu Zhang
- Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
24
|
Weeks J, Li AP, Doshi U, Johanning K, Guiney PD. In vitro evaluation of the metabolic stability of nine fragrance chemicals in trout and human hepatocytes. J Appl Toxicol 2020; 40:1421-1434. [PMID: 32488907 DOI: 10.1002/jat.3995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
In vitro metabolic stability of nine fragrance chemicals: p-tolyl acetate, cashmeran, ethylene brassylate, celestolide, galaxolide, traseolide, ambretone, tonalide and pentadecanolide, was evaluated in trout and human hepatocytes. The compounds were incubated with trout hepatocytes at 12°C and human hepatocytes at 37°C. Quantification of compound disappearance with time was performed using gas chromatography/mass spectrometry. in vivo hepatic intrinsic clearance values were calculated from the in vitro data. Significant metabolism was observed with trout hepatocytes for five of the nine fragrance chemicals, while all nine were metabolized significantly with human hepatocytes. Previously published models were used to examine expected bioaccumulation and persistence in whole organisms. Calculated half-lives due to metabolism of the nine chemicals are significantly shorter for humans than trout: <1 hour and <1 day, respectively. For all chemicals with demonstrated hepatic metabolism, the models indicate a lack of accumulation. For those where metabolism was demonstrated in trout, calculated bioconcentration factors would not be classified as bioaccumulative under prevailing regulatory systems.
Collapse
Affiliation(s)
- John Weeks
- S.C. Johnson and Son, Inc., Racine, Wisconsin, US
| | - Albert P Li
- In Vitro ADMET Laboratories LLC, Columbia, Maryland, US
| | - Utkarsh Doshi
- In Vitro ADMET Laboratories LLC, Columbia, Maryland, US.,Altria Client Services LLC, Richmond, Virginia, US
| | | | | |
Collapse
|
25
|
Kumar AR, Prasad B, Bhatt DK, Mathialagan S, Varma MVS, Unadkat JD. In Vivo-to-In Vitro Extrapolation of Transporter-Mediated Renal Clearance: Relative Expression Factor Versus Relative Activity Factor Approach. Drug Metab Dispos 2020; 49:470-478. [PMID: 33824168 PMCID: PMC8232064 DOI: 10.1124/dmd.121.000367] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
About 30% of approved drugs are cleared predominantly by renal clearance (CLr). Of these, many are secreted by transporters. For these drugs, in vitro-to-in vivo extrapolation of transporter-mediated renal secretory clearance (CLsec,plasma) is important to prospectively predict their renal clearance and to assess the impact of drug-drug interactions and pharmacogenetics on their pharmacokinetics. Here we compared the ability of the relative expression factor (REF) and the relative activity factor (RAF) approaches to quantitatively predict the in vivo CLsec,plasma of 26 organic anion transporter (OAT) substrates assuming that OAT-mediated uptake is the rate-determining step in the CLsec,plasma of the drugs. The REF approach requires protein quantification of each transporter in the tissue (e.g., kidney) and transporter-expressing cells, whereas the RAF approach requires the use of a transporter-selective probe substrate (both in vitro and in vivo) for each transporter of interest. For the REF approach, 50% and 69% of the CLsec,plasma predictions were within 2- and 3-fold of the observed values, respectively; the corresponding values for the RAF approach were 65% and 81%. We found no significant difference between the two approaches in their predictive capability (as measured by accuracy and bias) of the CLsec,plasma or CLr of OAT drugs. We recommend that the REF and RAF approaches can be used interchangeably to predict OAT-mediated CLsec,plasma Further research is warranted to evaluate the ability of the REF or RAF approach to predict CLsec,plasma of drugs when uptake is not the rate-determining step. SIGNIFICANCE STATEMENT: This is the first direct comparison of the relative expression factor (REF) and relative activity factor (RAF) approaches to predict transporter-mediated renal clearance (CLr). The RAF, but not REF, approach requires transporter-selective probes and that the basolateral uptake is the rate-determining step in the CLr of drugs. Given that there is no difference in predictive capability of the REF and RAF approach for organic anion transporter-mediated CLr, the REF approach should be explored further to assess its ability to predict CLr when basolateral uptake is not the sole rate-determining step.
Collapse
Affiliation(s)
- Aditya R Kumar
- Department of Pharmaceutics, University of Washington, Seattle, Washington (A.R.K., B.P., D.K.B., J.D.U.); and Pharmacokinetics, Pharmacodynamics, and Metabolism, Medicine Design, Pfizer Inc., Groton, Connecticut (S.M., M.V.S.V.)
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, Washington (A.R.K., B.P., D.K.B., J.D.U.); and Pharmacokinetics, Pharmacodynamics, and Metabolism, Medicine Design, Pfizer Inc., Groton, Connecticut (S.M., M.V.S.V.)
| | - Deepak Kumar Bhatt
- Department of Pharmaceutics, University of Washington, Seattle, Washington (A.R.K., B.P., D.K.B., J.D.U.); and Pharmacokinetics, Pharmacodynamics, and Metabolism, Medicine Design, Pfizer Inc., Groton, Connecticut (S.M., M.V.S.V.)
| | - Sumathy Mathialagan
- Department of Pharmaceutics, University of Washington, Seattle, Washington (A.R.K., B.P., D.K.B., J.D.U.); and Pharmacokinetics, Pharmacodynamics, and Metabolism, Medicine Design, Pfizer Inc., Groton, Connecticut (S.M., M.V.S.V.)
| | - Manthena V S Varma
- Department of Pharmaceutics, University of Washington, Seattle, Washington (A.R.K., B.P., D.K.B., J.D.U.); and Pharmacokinetics, Pharmacodynamics, and Metabolism, Medicine Design, Pfizer Inc., Groton, Connecticut (S.M., M.V.S.V.)
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington (A.R.K., B.P., D.K.B., J.D.U.); and Pharmacokinetics, Pharmacodynamics, and Metabolism, Medicine Design, Pfizer Inc., Groton, Connecticut (S.M., M.V.S.V.)
| |
Collapse
|
26
|
Bowman CM, Chen E, Chen L, Chen YC, Liang X, Wright M, Chen Y, Mao J. Changes in Organic Anion Transporting Polypeptide Uptake in HEK293 Overexpressing Cells in the Presence and Absence of Human Plasma. Drug Metab Dispos 2020; 48:18-24. [PMID: 31699807 DOI: 10.1124/dmd.119.088948] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/28/2019] [Indexed: 02/13/2025] Open
Abstract
Generating accurate in vitro data is crucial for in vitro to in vivo extrapolation and pharmacokinetic predictions. The use of human embryonic kidney (HEK) 293 cells overexpressing organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 in protein-free buffer and 100% human plasma incubations was explored for the uptake of four OATP substrates: pravastatin, rosuvastatin, repaglinide, and pitavastatin. Differences were observed for each parameter [unbound Michaelis constant (K m,u), V max, intrinsic clearance (CLint), and unbound passive diffusion Pdif,u] obtained from the buffer and plasma incubations in both cells, and the fold differences were greatest for the highly protein bound compounds. The fold change in K m,u values ranged from 1.91 to 619, and the fold change in V max values ranged from 1.22 to 97.4. As a result, in both cells, the CLint values generated in the plasma incubations were higher by 0.762- to 31.7-fold than the values generated in the protein-free buffer. The passive diffusion was also higher in the plasma incubations for all four compounds, with a fold difference range of 1.73-23.4. These shifts in the presence and absence of human plasma suggest that plasma proteins may play a role in both the active uptake and passive diffusion processes. The results also support the idea of a transporter-induced protein-binding shift, where high protein binding may not limit the uptake of compounds that have high affinity for transporters. The addition of plasma to incubations leading to higher CLint values for transporter substrates helps mitigate the underprediction commonly noted with in vitro to in vivo extrapolation. SIGNIFICANCE STATEMENT: The current investigation brings a new perspective on how to mitigate the underprediction commonly noted with in vitro to in vivo extrapolation for OATP substrates by using HEK293 cells overexpressing OATP1B1 and OATP1B3. It also supports the idea of a transporter-induced protein-binding shift, where high protein binding may not limit the uptake of compounds that have high affinity for transporters.
Collapse
Affiliation(s)
- Christine M Bowman
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| | - Eugene Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| | - Liuxi Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| | - Yi-Chen Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| | - Xiaorong Liang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| | - Matthew Wright
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| | - Yuan Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| | - Jialin Mao
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| |
Collapse
|
27
|
Rodgers JT, Jones JP. Numerical Analysis of Time-Dependent Inhibition by MDMA. Drug Metab Dispos 2020; 48:1-7. [PMID: 31641009 PMCID: PMC6904883 DOI: 10.1124/dmd.119.089268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/12/2019] [Indexed: 01/08/2023] Open
Abstract
Methylenedioxymethamphetamine (MDMA) is a known drug of abuse and schedule 1 narcotic under the Controlled Substances Act. Previous pharmacokinetic work on MDMA used classic linearization techniques to conclude irreversible mechanism-based inhibition of CYP2D6. The current work challenges this outcome by assessing the possibility of two alternative reversible kinetic inhibition mechanisms known as the quasi-irreversible (QI) model and equilibrium model (EM). In addition, progress curve experiments were used to investigate the residual metabolism of MDMA by liver microsomes and CYP2D6 baculosomes over incubation periods up to 30 minutes. These experiments revealed activity in a terminal linear phase at the fractional rates with respect to initial turnover of 0.0354 ± 0.0089 in human liver microsomes and 0.0114 ± 0.0025 in baculosomes. Numerical model fits to percentage of remaining activity (PRA) data were consistent with progress curve modeling results, wherein an irreversible inhibition pathway was found unnecessary for good fit scoring. Both QI and EM kinetic mechanisms fit the PRA data well, although in CYP2D6 baculosomes the inclusion of an irreversible inactivation pathway did not allow for convergence to a reasonable fit. The kinetic complexity accessible to numerical modeling has been used to determine that MDMA is not an irreversible inactivator of CYP2D6, and instead follows what can be generally referred to as slowly reversible inhibition. SIGNIFICANCE STATEMENT: The work herein describes the usage of computational models to delineate between irreversible and slowly reversible time-dependent inhibition. Such models are used in the paper to analyze MDMA and classify it as a reversible time-dependent inhibitor.
Collapse
Affiliation(s)
- John T Rodgers
- Department of Chemistry, Washington State University, Pullman, Washington
| | - Jeffrey P Jones
- Department of Chemistry, Washington State University, Pullman, Washington
| |
Collapse
|
28
|
Patel M, Eberl HC, Wolf A, Pierre E, Polli JW, Zamek-Gliszczynski MJ. Mechanistic Basis of Cabotegravir-Glucuronide Disposition in Humans. J Pharmacol Exp Ther 2019; 370:269-277. [PMID: 31175220 DOI: 10.1124/jpet.119.258384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Cabotegravir, a novel integrase inhibitor under development for treatment and prevention of HIV, is primarily metabolized by UDP-glucuronosyltransferase (UGT)1A1 and UGT1A9 to a direct ether glucuronide metabolite. The aim of these studies was to elucidate the mechanistic basis of cabotegravir-glucuronide disposition in humans. Cabotegravir glucuronidation was predominantly hepatic (>95%) with minimal intestinal and renal contribution. Rat liver perfusions demonstrated that cabotegravir-glucuronide formed in the liver undergoes comparable biliary and sinusoidal excretion, consistent with high concentrations of the glucuronide in human bile and urine. Cabotegravir-glucuronide biliary excretion was mediated by multidrug resistance-associated protein (MRP)2 (not transported by breast cancer resistance protein or P-glycoprotein), whereas hepatic basolateral excretion into sinusoidal blood was via both MRP3 [fraction transport (Ft) = 0.81] and MRP4 (Ft = 0.19). Surprisingly, despite high urinary recovery of hepatically-formed cabotegravir-glucuronide, metabolite levels in circulation were negligible, a phenomenon consistent with rapid metabolite clearance. Cabotegravir-glucuronide was transported by hepatic uptake transporters organic anion-transporting (OAT) polypeptide (OATP)1B1 and OATP1B3; however, metabolite clearance by hepatic uptake from circulation was low (2.7% of hepatic blood flow) and unable to explain the minimal systemic exposure. Instead, circulating cabotegravir-glucuronide undergoes efficient renal clearance, where uptake into the proximal tubule would be mediated by OAT3 (not transported by OAT1), and subsequent secretion into urine by MRP2 (Ft = 0.66) and MRP4 (Ft = 0.34). These studies provide mechanistic insight into the disposition of cabotegravir-glucuronide, a hepatically-formed metabolite with appreciable urinary recovery and minimal systemic exposure, including fractional contribution of redundant transporters to any given process based on quantitative proteomics. SIGNIFICANCE STATEMENT: The role of membrane transporters in metabolite disposition, especially glucuronides, and as sites of unexpected drug-drug interactions, which alter drug efficacy and safety, has been established. Cabotegravir-glucuronide, formed predominantly by direct glucuronidation of parent drug in liver, was the major metabolite recovered in human urine (27% of oral dose) but was surprisingly not detected in systemic circulation. To our knowledge, this is the first mechanistic description of this phenomenon for a major hepatically-formed metabolite to be excreted in the urine to a large extent, but not circulate at detectable levels. The present study elucidates the mechanistic basis of cabotegravir-glucuronide disposition in humans. Specific hepatic and renal transporters involved in the disposition of cabotegravir-glucuronide, with their fractional contribution, have been provided.
Collapse
Affiliation(s)
- Mitesh Patel
- Mechanistic Safety and Disposition (M.P., J.W.P., M.J.Z.-G.) and Bioanalysis, Immunogenicity, and Biomarkers (E.P.), GlaxoSmithKline, King of Prussia, Pennsylvania; and Cellzome, a GlaxoSmithKline Company, Heidelberg, Germany (H.C.E., A.W.)
| | - H Christian Eberl
- Mechanistic Safety and Disposition (M.P., J.W.P., M.J.Z.-G.) and Bioanalysis, Immunogenicity, and Biomarkers (E.P.), GlaxoSmithKline, King of Prussia, Pennsylvania; and Cellzome, a GlaxoSmithKline Company, Heidelberg, Germany (H.C.E., A.W.)
| | - Andrea Wolf
- Mechanistic Safety and Disposition (M.P., J.W.P., M.J.Z.-G.) and Bioanalysis, Immunogenicity, and Biomarkers (E.P.), GlaxoSmithKline, King of Prussia, Pennsylvania; and Cellzome, a GlaxoSmithKline Company, Heidelberg, Germany (H.C.E., A.W.)
| | - Esaie Pierre
- Mechanistic Safety and Disposition (M.P., J.W.P., M.J.Z.-G.) and Bioanalysis, Immunogenicity, and Biomarkers (E.P.), GlaxoSmithKline, King of Prussia, Pennsylvania; and Cellzome, a GlaxoSmithKline Company, Heidelberg, Germany (H.C.E., A.W.)
| | - Joseph W Polli
- Mechanistic Safety and Disposition (M.P., J.W.P., M.J.Z.-G.) and Bioanalysis, Immunogenicity, and Biomarkers (E.P.), GlaxoSmithKline, King of Prussia, Pennsylvania; and Cellzome, a GlaxoSmithKline Company, Heidelberg, Germany (H.C.E., A.W.)
| | - Maciej J Zamek-Gliszczynski
- Mechanistic Safety and Disposition (M.P., J.W.P., M.J.Z.-G.) and Bioanalysis, Immunogenicity, and Biomarkers (E.P.), GlaxoSmithKline, King of Prussia, Pennsylvania; and Cellzome, a GlaxoSmithKline Company, Heidelberg, Germany (H.C.E., A.W.)
| |
Collapse
|
29
|
Bowman CM, Benet LZ. Interlaboratory Variability in Human Hepatocyte Intrinsic Clearance Values and Trends with Physicochemical Properties. Pharm Res 2019; 36:113. [PMID: 31152241 DOI: 10.1007/s11095-019-2645-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/10/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE To examine the interlaboratory variability in CLint values generated with human hepatocytes and determine trends in variability and clearance prediction accuracy using physicochemical and pharmacokinetic parameters. METHODS Data for 50 compounds from 14 papers were compiled with physicochemical and pharmacokinetic parameter values taken from various sources. RESULTS Coefficients of variation were as high as 99.8% for individual compounds and variation was not dependent on the number of prediction values included in the analysis. When examining median values, it appeared that compounds with a lower number of rotatable bonds had more variability. When examining prediction uniformity, those compounds with uniform in vivo underpredictions had higher CLint, in vivo values, while those with non-uniform predictions typically had lower CLint, in vivo values. Of the compounds with uniform predictions, only a small number were uniformly predicted accurately. Based on this limited dataset, less lipophilic, lower intrinsic clearance, and lower protein binding compounds yield more accurate clearance predictions. CONCLUSIONS Caution should be taken when compiling in vitro CLint values from different laboratories as variations in experimental procedures (such as extent of shaking during incubation) may yield different predictions for the same compound. The majority of compounds with uniform in vitro values had predictions that were inaccurate, emphasizing the need for a better mechanistic understanding of IVIVE. The non-uniform predictions, often with low turnover compounds, reaffirmed the experimental challenges for drugs in this clearance range. Separating new chemical entities by lipophilicity, intrinsic clearance, and protein binding may help instill more confidence in IVIVE predictions.
Collapse
Affiliation(s)
- Christine M Bowman
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California, 94143-0912, USA
| | - Leslie Z Benet
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California, 94143-0912, USA.
| |
Collapse
|
30
|
Bowman CM, Okochi H, Benet LZ. The Presence of a Transporter-Induced Protein Binding Shift: A New Explanation for Protein-Facilitated Uptake and Improvement for In Vitro-In Vivo Extrapolation. Drug Metab Dispos 2019; 47:358-363. [PMID: 30674616 PMCID: PMC6413769 DOI: 10.1124/dmd.118.085779] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/18/2019] [Indexed: 12/18/2022] Open
Abstract
Accurately predicting hepatic clearance is an integral part of the drug-development process, and yet current in vitro to in vivo (IVIVE) extrapolation methods yield poor predictions, particularly for highly protein-bound transporter substrates. Explanations for error include inaccuracies in protein-binding measurements and the lack of recognition of protein-facilitated uptake, where both unbound and bound drug may be cleared, violating the principles of the widely accepted free drug theory. A new explanation for protein-facilitated uptake is proposed here, called a transporter-induced protein binding shift High-affinity binding to cell-membrane proteins may change the equilibrium of the nonspecific binding between drugs and plasma proteins, leading to greater cellular uptake and clearance than currently predicted. The uptake of two lower protein-binding organic anion transporting polypeptide substrates (pravastatin and rosuvastatin) and two higher binding substrates (atorvastatin and pitavastatin) were measured in rat hepatocytes in incubations with protein-free buffer versus 100% plasma. Decreased unbound K m values and increased intrinsic clearance values were seen in the plasma incubations for the highly bound compounds, supporting the new hypothesis and mitigating the IVIVE underprediction previously seen for highly bound transporter substrates.
Collapse
Affiliation(s)
- Christine M Bowman
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| | - Hideaki Okochi
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| | - Leslie Z Benet
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| |
Collapse
|
31
|
Kumar V, Salphati L, Hop CECA, Xiao G, Lai Y, Mathias A, Chu X, Humphreys WG, Liao M, Heyward S, Unadkat JD. A Comparison of Total and Plasma Membrane Abundance of Transporters in Suspended, Plated, Sandwich-Cultured Human Hepatocytes Versus Human Liver Tissue Using Quantitative Targeted Proteomics and Cell Surface Biotinylation. Drug Metab Dispos 2019; 47:350-357. [PMID: 30622164 DOI: 10.1124/dmd.118.084988] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/07/2019] [Indexed: 02/13/2025] Open
Abstract
Suspended (SH), plated (PH), and sandwich-cultured hepatocytes (SCH) are commonly used models to predict in vivo transporter-mediated hepatic uptake (SH or PH) or biliary (SCH) clearance of drugs. When doing so, the total and the plasma membrane abundance (PMA) of transporter are assumed not to differ between hepatocytes and liver tissue (LT). This assumption has never been tested. In this study, we tested this assumption by measuring the total and PMA of the transporters in human hepatocyte models versus LT (total only) from which they were isolated. Total abundance of OATP1B1/2B1/1B3, OCT1, and OAT2 was not significantly different between the hepatocytes and LT. The same was true for the PMA of these transporters across the hepatocyte models. In contrast, total abundance of the sinusoidal efflux transporter, MRP3, and the canalicular efflux transporters, MRP2 and P-gp, was significantly greater (P < 0.05) in SCH versus LT. Of the transporters tested, only the percentage of PMA of OATP1B1, P-gp, and MRP3, in SCH (82.8% ± 7.3%, 57.5% ± 10.9%, 69.3% ± 5.7%) was significantly greater (P < 0.05) than in SH (73.3% ± 6.4%, 27.4% ± 6.4%, 53.6% ± 4.1%). If the transporters measured in the plasma membrane are functional and the PMA in SH is representative of that in LT, these data suggest that SH, PH, and SCH will result in equal prediction of hepatic uptake clearance of drugs mediated by the transporters tested above. However, SCH will predict higher sinusoidal efflux and biliary clearance of drugs if the change in PMA of these transporters is not taken into consideration.
Collapse
Affiliation(s)
- Vineet Kumar
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Drug Metabolism and Pharmacokinetics, Biogen Idec, Cambridge, Massachusetts (G.X.); Departments of Clinical Research, Clinical Pharmacology, and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Foster City, California (Y.L., A.M.); Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (X.C.); Bristol-Myers Squibb, Princeton, New Jersey (W.G.H.); Takeda Pharmaceuticals International, Cambridge, Massachusetts (M.L.); and BioIVT, Baltimore, Maryland (S.H.)
| | - Laurent Salphati
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Drug Metabolism and Pharmacokinetics, Biogen Idec, Cambridge, Massachusetts (G.X.); Departments of Clinical Research, Clinical Pharmacology, and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Foster City, California (Y.L., A.M.); Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (X.C.); Bristol-Myers Squibb, Princeton, New Jersey (W.G.H.); Takeda Pharmaceuticals International, Cambridge, Massachusetts (M.L.); and BioIVT, Baltimore, Maryland (S.H.)
| | - Cornelis E C A Hop
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Drug Metabolism and Pharmacokinetics, Biogen Idec, Cambridge, Massachusetts (G.X.); Departments of Clinical Research, Clinical Pharmacology, and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Foster City, California (Y.L., A.M.); Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (X.C.); Bristol-Myers Squibb, Princeton, New Jersey (W.G.H.); Takeda Pharmaceuticals International, Cambridge, Massachusetts (M.L.); and BioIVT, Baltimore, Maryland (S.H.)
| | - Guangqing Xiao
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Drug Metabolism and Pharmacokinetics, Biogen Idec, Cambridge, Massachusetts (G.X.); Departments of Clinical Research, Clinical Pharmacology, and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Foster City, California (Y.L., A.M.); Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (X.C.); Bristol-Myers Squibb, Princeton, New Jersey (W.G.H.); Takeda Pharmaceuticals International, Cambridge, Massachusetts (M.L.); and BioIVT, Baltimore, Maryland (S.H.)
| | - Yurong Lai
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Drug Metabolism and Pharmacokinetics, Biogen Idec, Cambridge, Massachusetts (G.X.); Departments of Clinical Research, Clinical Pharmacology, and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Foster City, California (Y.L., A.M.); Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (X.C.); Bristol-Myers Squibb, Princeton, New Jersey (W.G.H.); Takeda Pharmaceuticals International, Cambridge, Massachusetts (M.L.); and BioIVT, Baltimore, Maryland (S.H.)
| | - Anita Mathias
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Drug Metabolism and Pharmacokinetics, Biogen Idec, Cambridge, Massachusetts (G.X.); Departments of Clinical Research, Clinical Pharmacology, and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Foster City, California (Y.L., A.M.); Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (X.C.); Bristol-Myers Squibb, Princeton, New Jersey (W.G.H.); Takeda Pharmaceuticals International, Cambridge, Massachusetts (M.L.); and BioIVT, Baltimore, Maryland (S.H.)
| | - Xiaoyan Chu
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Drug Metabolism and Pharmacokinetics, Biogen Idec, Cambridge, Massachusetts (G.X.); Departments of Clinical Research, Clinical Pharmacology, and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Foster City, California (Y.L., A.M.); Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (X.C.); Bristol-Myers Squibb, Princeton, New Jersey (W.G.H.); Takeda Pharmaceuticals International, Cambridge, Massachusetts (M.L.); and BioIVT, Baltimore, Maryland (S.H.)
| | - W Griffith Humphreys
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Drug Metabolism and Pharmacokinetics, Biogen Idec, Cambridge, Massachusetts (G.X.); Departments of Clinical Research, Clinical Pharmacology, and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Foster City, California (Y.L., A.M.); Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (X.C.); Bristol-Myers Squibb, Princeton, New Jersey (W.G.H.); Takeda Pharmaceuticals International, Cambridge, Massachusetts (M.L.); and BioIVT, Baltimore, Maryland (S.H.)
| | - Mingxiang Liao
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Drug Metabolism and Pharmacokinetics, Biogen Idec, Cambridge, Massachusetts (G.X.); Departments of Clinical Research, Clinical Pharmacology, and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Foster City, California (Y.L., A.M.); Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (X.C.); Bristol-Myers Squibb, Princeton, New Jersey (W.G.H.); Takeda Pharmaceuticals International, Cambridge, Massachusetts (M.L.); and BioIVT, Baltimore, Maryland (S.H.)
| | - Scott Heyward
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Drug Metabolism and Pharmacokinetics, Biogen Idec, Cambridge, Massachusetts (G.X.); Departments of Clinical Research, Clinical Pharmacology, and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Foster City, California (Y.L., A.M.); Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (X.C.); Bristol-Myers Squibb, Princeton, New Jersey (W.G.H.); Takeda Pharmaceuticals International, Cambridge, Massachusetts (M.L.); and BioIVT, Baltimore, Maryland (S.H.)
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Drug Metabolism and Pharmacokinetics, Biogen Idec, Cambridge, Massachusetts (G.X.); Departments of Clinical Research, Clinical Pharmacology, and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Foster City, California (Y.L., A.M.); Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (X.C.); Bristol-Myers Squibb, Princeton, New Jersey (W.G.H.); Takeda Pharmaceuticals International, Cambridge, Massachusetts (M.L.); and BioIVT, Baltimore, Maryland (S.H.)
| |
Collapse
|
32
|
Effect of Plasma Protein Binding on the Anti-Hepatitis B Virus Activity and Pharmacokinetic Properties of NVR 3-778. Antimicrob Agents Chemother 2018; 62:AAC.01497-18. [PMID: 30181376 DOI: 10.1128/aac.01497-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023] Open
Abstract
High plasma protein binding (PPB) levels not only affect drug-target engagement but can also impact exposure of hepatocytes to antivirals and thereby affect antiviral activity. In this study, we assessed the effect of PPB on the antiviral activity of NVR 3-778, a sulfamoylbenzamide capsid assembly modulator (CAM). To this end, primary human hepatocyte (PHH) medium was spiked with plasma proteins. First, the effect of plasma proteins on the hepatitis B virus (HBV) infection assay was evaluated. The addition of plasma proteins neither decreased cell viability nor affected HBV DNA secretion or intracellular HBV RNA accumulation. In contrast, the secretion and intracellular amount of HBV proteins were induced with increasing amounts of plasma proteins. Next, the antiviral activity of NVR 3-778 was demonstrated by multiple assays while PPB and the time-dependent disappearance of the parent drug were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Plasma proteins strongly decreased the free fraction of NVR 3-778, resulting in a physiologically relevant in vitro hepatocyte exposure. NVR 3-778 displayed a high PPB level, while the antiviral activity was reduced approximately only 4-fold. The disconnect between the high PPB level and the only moderate shift of the antiviral activity was explained by the rapid hepatic clearance of NVR 3-778 in the absence of plasma proteins. This study highlights the use of PHHs as a model to accurately determine the antiviral activity by capturing PPB, clearance, and liver distribution. It is advantageous to consider both pharmacokinetics and pharmacodynamics for selection of HBV antiviral drug candidates and for successful extrapolation of in vitro data to clinical studies.
Collapse
|
33
|
Bowman CM, Benet LZ. An examination of protein binding and protein-facilitated uptake relating to in vitro-in vivo extrapolation. Eur J Pharm Sci 2018; 123:502-514. [PMID: 30098391 DOI: 10.1016/j.ejps.2018.08.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 01/09/2023]
Abstract
As explained by the free drug theory, the unbound fraction of drug has long been thought to drive the efficacy of a molecule. Thus, the fraction unbound term, or fu, appears in equations for fundamental pharmacokinetic parameters such as clearance, and is used when attempting in vitro to in vivo extrapolation (IVIVE). In recent years though, it has been noted that IVIVE does not always yield accurate predictions, and that some highly protein bound ligands have more efficient uptake than can be explained by their unbound fractions. This review explores the evolution of fu terms included when implementing IVIVE, the concept of protein-facilitated uptake, and the mechanisms that have been proposed to account for facilitated uptake.
Collapse
Affiliation(s)
- C M Bowman
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA
| | - L Z Benet
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
34
|
Brown JH, Das P, DiVito MD, Ivancic D, Tan LP, Wertheim JA. Nanofibrous PLGA electrospun scaffolds modified with type I collagen influence hepatocyte function and support viability in vitro. Acta Biomater 2018; 73:217-227. [PMID: 29454157 PMCID: PMC5985221 DOI: 10.1016/j.actbio.2018.02.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/23/2018] [Accepted: 02/08/2018] [Indexed: 02/06/2023]
Abstract
A major challenge of maintaining primary hepatocytes in vitro is progressive loss of hepatocyte-specific functions, such as protein synthesis and cytochrome P450 (CYP450) catalytic activity. We developed a three-dimensional (3D) nanofibrous scaffold made from poly(l-lactide-co-glycolide) (PLGA) polymer using a newly optimized wet electrospinning technique that resulted in a highly porous structure that accommodated inclusion of primary human hepatocytes. Extracellular matrix (ECM) proteins (type I collagen or fibronectin) at varying concentrations were chemically linked to electrospun PLGA using amine coupling to develop an in vitro culture system containing the minimal essential ECM components of the liver micro-environment that preserve hepatocyte function in vitro. Cell-laden nanofiber scaffolds were tested in vitro to maintain hepatocyte function over a two-week period. Incorporation of type I collagen onto PLGA scaffolds (PLGA-Chigh: 100 µg/mL) led to 10-fold greater albumin secretion, 4-fold higher urea synthesis, and elevated transcription of hepatocyte-specific CYP450 genes (CYP3A4, 3.5-fold increase and CYP2C9, 3-fold increase) in primary human hepatocytes compared to the same cells grown within unmodified PLGA scaffolds over two weeks. These indices, measured using collagen-bonded scaffolds, were also higher than scaffolds coupled to fibronectin or an ECM control sandwich culture composed of type I collagen and Matrigel. Induction of CYP2C9 activity was also higher in these same type I collagen PLGA scaffolds compared to other ECM-modified or unmodified PLGA constructs and was equivalent to the ECM control at 7 days. Together, we demonstrate a minimalist ECM-based 3D synthetic scaffold that accommodates primary human hepatocyte inclusion into the matrix, maintains long-term in vitro survival and stimulates function, which can be attributed to coupling of type I collagen. STATEMENT OF SIGNIFICANCE Culturing primary hepatocytes within a three-dimensional (3D) structure that mimics the natural liver environment is a promising strategy for extending the function and viability of hepatocytes in vitro. In the present study we generate porous PLGA nanofibers, that are chemically modified with extracellular matrix proteins, to serve as 3D scaffolds for the in vitro culture of primary human hepatocytes. Our findings demonstrate that the use of ECM proteins, especially type I collagen, in a porous 3D environment helps to improve the synthetic function of primary hepatocytes over time. We believe the work presented within will provide insights to readers for drug toxicity and tissue engineering applications.
Collapse
Affiliation(s)
- Jessica H Brown
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Prativa Das
- Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Michael D DiVito
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - David Ivancic
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Lay Poh Tan
- Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 Singapore..
| | - Jason A Wertheim
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, United States; Department of Surgery, Jesse Brown VA Medical Center, Chicago, IL 60612, United States; Simpson Querrey Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL 60611, United States; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
35
|
Wood FL, Houston JB, Hallifax D. Importance of the Unstirred Water Layer and Hepatocyte Membrane Integrity In Vitro for Quantification of Intrinsic Metabolic Clearance. Drug Metab Dispos 2018; 46:268-278. [PMID: 29233818 DOI: 10.1124/dmd.117.078949] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/11/2017] [Indexed: 11/22/2022] Open
Abstract
Prediction of clearance-a vital component of drug discovery-remains in need of improvement and, in particular, requires more incisive assessment of mechanistic methodology in vitro, according to a number of recent reports. Although isolated hepatocytes have become an irreplaceable standard system for the measurement of intrinsic hepatic clearance mediated by active uptake transport and metabolism, the lack of prediction reliability appears to reflect a lack of methodological validation, especially for highly cleared drugs, as we have previously shown. Here, novel approaches were employed to explore fundamental experimental processes and associated potential limitations of in vitro predictions of clearance. Rat hepatocytes deemed nonviable by trypan blue staining showed undiminished metabolic activity for probe cytochrome P450 (P450) substrates midazolam and propranolol; supplementation with NADPH enhanced these activities. Extensive permeabilization of the plasma membrane using saponin showed either full or minimal P450 activity, depending on the presence or absence of 1 mM NADPH, respectively. The shaking of incubations facilitated P450 metabolic rates up to 5-fold greater than static incubation, depending on intrinsic clearance, indicating the critical influence of the unstirred water layer (UWL). Permeabilization allowed static incubation metabolic rates to approach those of shaking for intact cells, indicating an artificially induced breakdown of the UWL. Permeabilization combined with shaking allowed an increased metabolic rate for saquinavir, resolving the membrane permeability limitation for this drug. These findings advance the interpretation of the rate-limiting processes involved in intrinsic clearance measurements and could be critical for successful in vitro prediction.
Collapse
Affiliation(s)
- Francesca L Wood
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - David Hallifax
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
36
|
Ishida K, Ullah M, Tóth B, Juhasz V, Unadkat JD. Successful Prediction of In Vivo Hepatobiliary Clearances and Hepatic Concentrations of Rosuvastatin Using Sandwich-Cultured Rat Hepatocytes, Transporter-Expressing Cell Lines, and Quantitative Proteomics. Drug Metab Dispos 2018; 46:66-74. [PMID: 29084782 DOI: 10.1124/dmd.117.076539] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/25/2017] [Indexed: 01/13/2023] Open
Abstract
We determined whether in vivo transporter-mediated hepatobiliary clearance (CL) and hepatic concentrations of rosuvastatin (RSV) in the rat could be predicted by transport activity in sandwich-cultured rat hepatocytes (SCRHs) and/or transporter-expressing cell lines scaled by differences in transporter protein expression between SCRHs, cell lines, and rat liver. The predicted hepatobiliary CLs and hepatic concentrations of RSV were compared with our previously published positron emission tomography imaging data. Sinusoidal uptake CL ([Formula: see text]) and efflux (canalicular and sinusoidal) CLs of [3H]-RSV in SCRHs were evaluated in the presence and absence of Ca2+ and in the absence and presence of 1 mM unlabeled RSV (to estimate passive diffusion CL). [Formula: see text] of RSV into cells expressing organic anion transporting polypeptide (Oatp) 1a1, 1a4, and 1b2 was also determined. Protein expression of Oatps in SCRHs and Oatp-expressing cells was quantified by liquid chromatography tandem mass spectrometry. SCRHs well predicted the in vivo RSV sinusoidal and canalicular efflux CLs but significantly underestimated in vivo [Formula: see text]. Oatp expression in SCRHs was significantly lower than that in the rat liver. [Formula: see text], based on RSV [Formula: see text] into Oatp-expressing cells (active transport) plus passive diffusion CL in SCRHs, scaled by the difference in protein expression in Oatp cells versus SCRH versus rat liver, was within 2-fold of that observed in SCRHs or in vivo. In vivo hepatic RSV concentrations were well predicted by Oatp-expressing cells after correcting [Formula: see text] for Oatp protein expression. This is the first demonstration of the successful prediction of in vivo hepatobiliary CLs and hepatic concentrations of RSV using transporter-expressing cells and SCRHs.
Collapse
Affiliation(s)
- Kazuya Ishida
- Department of Pharmaceutics, University of Washington, Seattle, Washington (K.I., J.D.U.); Cellular Transport Group, Pharmaceutical Sciences, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland (M.U.); and SOLVO Biotechnology, Budaörs, Hungary (B.T., V.J.)
| | - Mohammed Ullah
- Department of Pharmaceutics, University of Washington, Seattle, Washington (K.I., J.D.U.); Cellular Transport Group, Pharmaceutical Sciences, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland (M.U.); and SOLVO Biotechnology, Budaörs, Hungary (B.T., V.J.)
| | - Beáta Tóth
- Department of Pharmaceutics, University of Washington, Seattle, Washington (K.I., J.D.U.); Cellular Transport Group, Pharmaceutical Sciences, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland (M.U.); and SOLVO Biotechnology, Budaörs, Hungary (B.T., V.J.)
| | - Viktoria Juhasz
- Department of Pharmaceutics, University of Washington, Seattle, Washington (K.I., J.D.U.); Cellular Transport Group, Pharmaceutical Sciences, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland (M.U.); and SOLVO Biotechnology, Budaörs, Hungary (B.T., V.J.)
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington (K.I., J.D.U.); Cellular Transport Group, Pharmaceutical Sciences, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland (M.U.); and SOLVO Biotechnology, Budaörs, Hungary (B.T., V.J.)
| |
Collapse
|
37
|
Li J, Liu C, Li T, Hua Z. UPLC-HR-MS/MS-based determination study on the metabolism of four synthetic cannabinoids, ADB-FUBICA, AB-FUBICA, AB-BICA and ADB-BICA, by human liver microsomes. Biomed Chromatogr 2017; 32. [PMID: 28992356 DOI: 10.1002/bmc.4113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 01/29/2023]
Abstract
Since 2012, several cannabimimetic indazole and indole derivatives with valine amino acid amide residue have emerged in the illicit drug market, and have gradually replaced the old generations of synthetic cannabinoids (SCs) with naphthyl or adamantine groups. Among them, ADB-FUBICA [N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indole-3-carboxamide], AB-FUBICA [N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indole-3-carboxamide], AB-BICA [N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-benzyl-1H-indole-3-carboxamide] and ADB-BICA [N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-benzyl-1H-indole-3-carboxamide] were detected in China recently, but unfortunately no information about their in vitro human metabolism is available. Therefore, biomonitoring studies to screen their consumption lack any information about the potential biomarkers (e.g. metabolites) to target. To bridge this gap, we investigated their phase I metabolism by incubating with human liver microsomes, and the metabolites were identified by ultra-performance liquid chromatography-high resolution-tandem mass spectrometry. Metabolites generated by N-dealkylation and hydroxylation on the 1-amino-alkyl moiety were found to be predominant for all these four substances, and others which underwent hydroxylation, amide hydrolysis and dehydrogenation were also observed in our investigation. Based on our research, we recommend that the N-dealkylation and hydroxylation metabolites are suitable and appropriate analytical markers for monitoring their intake.
Collapse
Affiliation(s)
- Jing Li
- National Narcotic Laboratory, Drug Intelligence and Forensic Center of Minister of Public Security, Beijing, China
| | - Cuimei Liu
- National Narcotic Laboratory, Drug Intelligence and Forensic Center of Minister of Public Security, Beijing, China
| | - Tao Li
- National Narcotic Laboratory, Drug Intelligence and Forensic Center of Minister of Public Security, Beijing, China
| | - Zhendong Hua
- National Narcotic Laboratory, Drug Intelligence and Forensic Center of Minister of Public Security, Beijing, China
| |
Collapse
|
38
|
Wood FL, Houston JB, Hallifax D. Clearance Prediction Methodology Needs Fundamental Improvement: Trends Common to Rat and Human Hepatocytes/Microsomes and Implications for Experimental Methodology. Drug Metab Dispos 2017; 45:1178-1188. [PMID: 28887366 DOI: 10.1124/dmd.117.077040] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/06/2017] [Indexed: 02/13/2025] Open
Abstract
Although prediction of clearance using hepatocytes and liver microsomes has long played a decisive role in drug discovery, it is widely acknowledged that reliably accurate prediction is not yet achievable despite the predominance of hepatically cleared drugs. Physiologically mechanistic methodology tends to underpredict clearance by several fold, and empirical correction of this bias is confounded by imprecision across drugs. Understanding the causes of prediction uncertainty has been slow, possibly reflecting poor resolution of variables associated with donor source and experimental methods, particularly for the human situation. It has been reported that among published human hepatocyte predictions there was a tendency for underprediction to increase with increasing in vivo intrinsic clearance, suggesting an inherent limitation using this particular system. This implied an artifactual rate limitation in vitro, although preparative effects on cell stability and performance were not yet resolved from assay design limitations. Here, to resolve these issues further, we present an up-to-date and comprehensive examination of predictions from published rat as well as human studies (where n = 128 and 101 hepatocytes and n = 71 and 83 microsomes, respectively) to assess system performance more independently. We report a clear trend of increasing underprediction with increasing in vivo intrinsic clearance, which is similar both between species and between in vitro systems. Hence, prior concerns arising specifically from human in vitro systems may be unfounded and the focus of investigation in the future should be to minimize the potential in vitro assay limitations common to whole cells and subcellular fractions.
Collapse
Affiliation(s)
- F L Wood
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - J B Houston
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - D Hallifax
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
39
|
Rowe C, Shaeri M, Large E, Cornforth T, Robinson A, Kostrzewski T, Sison-Young R, Goldring C, Park K, Hughes D. Perfused human hepatocyte microtissues identify reactive metabolite-forming and mitochondria-perturbing hepatotoxins. Toxicol In Vitro 2017; 46:29-38. [PMID: 28919358 DOI: 10.1016/j.tiv.2017.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/03/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022]
Abstract
Hepatotoxins cause liver damage via many mechanisms but the formation of reactive metabolites and/or damage to liver mitochondria are commonly implicated. We assess 3D human primary hepatocyte microtissues as a platform for hepatotoxicity studies with reactive metabolite-forming and mitochondria-perturbing compounds. We show that microtissues formed from cryopreserved human hepatocytes had bile canaliculi, transcribed mRNA from genes associated with xenobiotic metabolism and expressed functional cytochrome P450 enzymes. Hierarchical clustering was used to distinguish dose-dependent hepatotoxicity elicited by clozapine, fialuridine and acetaminophen (APAP) from control cultures and less liver-damaging compounds, olanzapine and entecavir. The regio-isomer of acetaminophen, N-acetyl-meta-aminophenol (AMAP) clustered with the hepatotoxic compounds. The principal metabolites of APAP were formed and dose-dependent changes in metabolite profile similar to those seen in patient overdose was observed. The toxicological profile of APAP was indistinguishable from that of AMAP, confirming AMAP as a human hepatotoxin. Tissue oxygen consumption rate was significantly decreased within 2h of exposure to APAP or AMAP, concomitant with glutathione depletion. These data highlight the potential utility of perfused metabolically functional human liver microtissues in drug development and mechanistic toxicology.
Collapse
Affiliation(s)
- Cliff Rowe
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK
| | - Mohsen Shaeri
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK
| | - Emma Large
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK
| | - Terri Cornforth
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK
| | - Angela Robinson
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK
| | - Tomasz Kostrzewski
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK
| | - Rowena Sison-Young
- MRC Centre for Drug Safety Science, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - Christopher Goldring
- MRC Centre for Drug Safety Science, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - Kevin Park
- MRC Centre for Drug Safety Science, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - David Hughes
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK.
| |
Collapse
|
40
|
Sudo M, Nishihara M, Takahashi J, Asahi S. Long-Term Stability of Cryopreserved Human Hepatocytes: Evaluation of Phase I and II Drug-Metabolizing Enzyme Activities and CYP3A4/5 Induction for More than a Decade. Drug Metab Dispos 2017; 45:734-736. [PMID: 28411281 DOI: 10.1124/dmd.117.075234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/10/2017] [Indexed: 11/22/2022] Open
Abstract
We evaluated the long-term stability of hepatocytes stored in the vapor phase of liquid nitrogen for their viability, cytochrome P450 (CYP) 1A2 activity, CYP3A4/5 activity, uridine diphosphate-glucuronosyl transferase (UGT) activity, sulfotransferase (SULT) activity, and CYP3A4/5 induction during 14 years of preservation. No substantial degradation of viability, CYP1A2 activity, UGT activity, or CYP3A4/5 induction was observed. CYP3A4/5 activity showed a slight decrease after 7 years of storage, and SULT activity gradually decreased during storage, although substantial activities remained even after 14 years. These results indicate that cryopreserved human hepatocytes can be stored stably for more than a decade with little or no change in viability, activity of drug-metabolizing enzymes, or CYP3A4/5 induction, and can be widely applicable to qualitative research in drug metabolism.
Collapse
Affiliation(s)
- Miyako Sudo
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Mitsuhiro Nishihara
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Junzo Takahashi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Satoru Asahi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| |
Collapse
|
41
|
Fattah S, Shinde AB, Matic M, Baes M, van Schaik RHN, Allegaert K, Parmentier C, Richert L, Augustijns P, Annaert P. Inter-Subject Variability in OCT1 Activity in 27 Batches of Cryopreserved Human Hepatocytes and Association with OCT1 mRNA Expression and Genotype. Pharm Res 2017; 34:1309-1319. [PMID: 28364304 DOI: 10.1007/s11095-017-2148-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/17/2017] [Indexed: 01/11/2023]
Abstract
PURPOSE OCT1/3 (Organic Cation Transporter-1 and -3; SLC22A1/3) are transmembrane proteins localized at the basolateral membrane of hepatocytes. They mediate the uptake of cationic endogenous compounds and/or xenobiotics. The present study was set up to verify whether the previously observed variability in OCT activity in hepatocytes may be explained by inter-individual differences in OCT1/3 mRNA levels or OCT1 genotype. METHODS Twenty-seven batches of cryopreserved human hepatocytes (male and female, age 24-88 y) were characterized for OCT activity, normalized OCT1/3 mRNA expression, and OCT1 genetic mutation. ASP+ (4-[4-(dimethylamino)styryl]-N-methylpyridinium iodide) was used as probe substrate. RESULTS ASP+ uptake ranged between 75 ± 61 and 2531 ± 202 pmol/(min × million cells). The relative OCT1 and OCT3 mRNA expression ranged between 0.007-0.46 and 0.0002-0.005, respectively. The presence of one or two nonfunctional SLC22A1 alleles was observed in 13 batches and these exhibited significant (p = 0.04) association with OCT1 and OCT3 mRNA expression. However, direct association between genotype and OCT activity could not be established. CONCLUSION mRNA levels and genotype of OCT only partially explain inter-individual variability in OCT-mediated transport. Our findings illustrate the necessity of in vitro transporter activity profiling for better understanding of inter-individual drug disposition behavior.
Collapse
Affiliation(s)
- Sarinj Fattah
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg O&N II Herestraat 49 Box 921, 3000, Leuven, Belgium
| | - Abhijit Babaji Shinde
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Maja Matic
- Department Clinical Chemistry, Erasmus University Medical Centre, Rotterdam, Netherlands.,Intensive Care and Department of Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Ron H N van Schaik
- Department Clinical Chemistry, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Karel Allegaert
- Intensive Care and Department of Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | - Lysiane Richert
- KaLy-Cell, Plobsheim, France.,Université de Franche-Comté, 4267, Besançon, EA, France
| | - Patrick Augustijns
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg O&N II Herestraat 49 Box 921, 3000, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg O&N II Herestraat 49 Box 921, 3000, Leuven, Belgium.
| |
Collapse
|
42
|
Whalley PM, Bartels M, Bentley KS, Corvaro M, Funk D, Himmelstein MW, Neumann B, Strupp C, Zhang F, Mehta J. An in vitro approach for comparative interspecies metabolism of agrochemicals. Regul Toxicol Pharmacol 2017; 88:322-327. [PMID: 28347762 DOI: 10.1016/j.yrtph.2017.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022]
Abstract
The metabolism and elimination of a xenobiotic has a direct bearing on its potential to cause toxicity in an organism. The confidence with which data from safety studies can be extrapolated to humans depends, among other factors, upon knowing whether humans are systemically exposed to the same chemical entities (i.e. a parent compound and its metabolites) as the laboratory animals used to study toxicity. Ideally, to understand a metabolite in terms of safety, both the chemical structure and the systemic exposure would need to be determined. However, as systemic exposure data (i.e. blood concentration/time data of test material or metabolites) in humans will not be available for agrochemicals, an in vitro approach must be taken. This paper outlines an in vitro experimental approach for evaluating interspecies metabolic comparisons between humans and animal species used in safety studies. The aim is to ensure, where possible, that all potential human metabolites are also present in the species used in the safety studies. If a metabolite is only observed in human in vitro samples and is not present in a metabolic pathway defined in the toxicological species already, the toxicological relevance of this metabolite must be evaluated.
Collapse
Affiliation(s)
- Paul M Whalley
- Syngenta, Jealott's Hill International Research Centre, Bracknell, RG42 6EY, UK.
| | | | - Karin S Bentley
- DuPont Crop Protection, Stine-Haskell Research Center, Newark DE 19711, USA.
| | - Marco Corvaro
- Dow AgroSciences, 3B Park Square, Milton, Milton Park, Abingdon, Oxfordshire, OX14 4RN, UK.
| | - Dorothee Funk
- BASF SE Crop Protection, Global Consumer Safety, 67117 Limburgerhof, Germany.
| | | | | | - Christian Strupp
- ADAMA MAH BV Amsterdam NL Schaffhausen Branch, 8200 Schaffhausen, Switzerland.
| | - Fagen Zhang
- The Dow Chemical Company, Toxicology & Environmental Research and Consulting, Midland, MI 48674, USA.
| | - Jyotigna Mehta
- Dow AgroSciences, 3B Park Square, Milton, Milton Park, Abingdon, Oxfordshire, OX14 4RN, UK.
| |
Collapse
|
43
|
Diao X, Carlier J, Zhu M, Pang S, Kronstrand R, Scheidweiler KB, Huestis MA. In vitro and in vivo human metabolism of a new synthetic cannabinoid NM-2201 (CBL-2201). Forensic Toxicol 2017; 35:20-32. [PMID: 28286577 PMCID: PMC5342258 DOI: 10.1007/s11419-016-0326-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
In 2014, NM-2201 (CBL-2201), a novel synthetic cannabinoid (SC), was detected by Russian and United States laboratories. It was already added to the scheduled drugs list in Japan, Sweden and Germany. Unfortunately, no human metabolism data are currently available, making it challenging to confirm its intake because all previous investigated SCs were extensively metabolized. The present study aims to recommend appropriate marker metabolites by investigating NM-2201 metabolism in human hepatocytes and confirm the results in authentic human urine specimens. For the metabolic stability assay, 1 μM NM-2201 was incubated in human liver microsomes (HLMs) for up to 1 h; for metabolite profiling, 10 μM of NM-2201 was incubated in human hepatocytes for 3 h. Two authentic urine specimens from NM-2201 positive cases were analyzed after β-glucuronidase hydrolysis. Metabolite identification in hepatocyte samples and urine specimens was achieved with high-resolution mass spectrometry via information-dependent acquisition. NM-2201 was quickly metabolized in HLMs with an 8.0 min half-life. In human hepatocyte incubation samples, a total of thirteen NM-2201 metabolites were identified, generated mainly from ester hydrolysis and further hydroxylation, oxidative defluorination and subsequent glucuronidation. M13 (5-fluoro PB-22 3-carboxyindole) was the major metabolite. In the urine specimens, the parent drug NM-2201 was not detected; M13 was the predominant metabolite after β-glucuronidase hydrolysis. Therefore, based on our study, we recommend the M13 as a suitable urinary marker metabolite for confirming NM-2201 and/or 5F-PB-22 intake.
Collapse
Affiliation(s)
- Xingxing Diao
- Chemistry and Drug Metabolism Section, Clinical Pharmacology and Therapeutics Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd, Suite 200 Room 05A727, Baltimore, MD 21224, USA
| | - Jeremy Carlier
- Chemistry and Drug Metabolism Section, Clinical Pharmacology and Therapeutics Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd, Suite 200 Room 05A727, Baltimore, MD 21224, USA
| | - Mingshe Zhu
- Department of Biotransformation, Bristol-Myers Squibb, Research and Development, Princeton, NJ 08543, USA
| | | | - Robert Kronstrand
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 58758 Linköping, Sweden
- Department of Drug Research, University of Linköping, 58185 Linköping, Sweden
| | - Karl B. Scheidweiler
- Chemistry and Drug Metabolism Section, Clinical Pharmacology and Therapeutics Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd, Suite 200 Room 05A727, Baltimore, MD 21224, USA
| | - Marilyn A. Huestis
- Chemistry and Drug Metabolism Section, Clinical Pharmacology and Therapeutics Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd, Suite 200 Room 05A727, Baltimore, MD 21224, USA
- University of Maryland School of Medicine, Baltimore, MD 21224, USA
| |
Collapse
|
44
|
Bowman CM, Benet LZ. Hepatic Clearance Predictions from In Vitro-In Vivo Extrapolation and the Biopharmaceutics Drug Disposition Classification System. Drug Metab Dispos 2016; 44:1731-1735. [PMID: 27519549 PMCID: PMC11024986 DOI: 10.1124/dmd.116.071514] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/11/2016] [Indexed: 04/20/2024] Open
Abstract
Predicting in vivo pharmacokinetic parameters such as clearance from in vitro data is a crucial part of the drug-development process. There is a commonly cited trend that drugs that are highly protein-bound and are substrates for hepatic uptake transporters often yield the worst predictions. Given this information, 11 different data sets using human microsomes and hepatocytes were evaluated to search for trends in accuracy, extent of protein binding, and drug classification based on the Biopharmaceutics Drug Disposition Classification System (BDDCS), which makes predictions about transporter effects. As previously reported, both in vitro systems (microsomes and hepatocytes) gave a large number of inaccurate results, defined as predictions falling more than 2-fold outside of in vivo values. The weighted average of the percentage of inaccuracy was 66.5%. BDDCS class 2 drugs, which are subject to transporter effects in vivo unlike class 1 compounds, had a higher percentage of inaccurate predictions and often had slightly larger bias. However, since the weighted average of the percentage of inaccuracy was still high in both classes (81.9% for class 2 and 62.3% for class 1), it may be currently hard to use BDDCS class to predict potential accuracy. The results of this study emphasize the need for improved in vitro to in vivo extrapolation experimental methods, as using physiologically based scaling is still not accurate, and BDDCS cannot currently help predict accurate results.
Collapse
Affiliation(s)
- Christine M Bowman
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| | - Leslie Z Benet
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| |
Collapse
|
45
|
Wagner AD, Elkin L, Mosure K, Gallagher L, Stavola LK, Soars MG, Shou W. Development of a high-throughput mass spectrometry based analytical method to support an in vitro OATP1B1 inhibition screening assay. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1787-1796. [PMID: 27426455 DOI: 10.1002/rcm.7655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/12/2016] [Accepted: 05/23/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE It is well known that the organic anion transporting polypeptide 1B1 (OATP1B1) plays a major role in the hepatic uptake of a range of drugs. To this end, it is pivotal that the potential for new molecular entities (NMEs) to inhibit OATP1B1 activity be assessed during early drug discovery. The work reported herein describes the development of a high-throughput analytical method to measure the clinically relevant probe substrate, pitavastatin, for the in vitro assessment of OATP1B1 inhibition. METHODS Development of an analytical method capable of very fast throughput was crucial for the success of this assay and was accomplished using a system which combines direct, on-line solid-phase extraction (SPE) with highly sensitive, label-free tandem mass spectrometry (MS/MS)-based detection. Mass spectrometry analysis of pitavastatin, along with the stable isotopically labeled internal standard d5-pitavastatin, was conducted using positive electrospray ionization (ESI) in selected reaction monitoring (SRM) mode. RESULTS The on-line SPE-MS/MS platform demonstrated similar sensitivity, selectivity, reproducibility, linearity and robustness to existing methodologies while achieving analytical cycle times of 10.4 seconds per well. Sensitivity exceeded what was necessary for our assay conditions, with a determined lower limit of quantification (LLOQ) for pitavastatin of 10 pM (picomolar) in assay matrix. Furthermore, the potency of multiple reference compounds was shown to be within 2-fold of IC50 values generated from liquid chromatography (LC)/MS/MS-based literature values. CONCLUSIONS A very fast and robust analytical method was successfully developed for the measurement of the clinically relevant OATP1B1 substrate, pitavastatin. The successful development and implementation of this very important early liability screen has helped to facilitate judicious lead candidate progression and will ultimately help build a greater understanding of OATP1B1-NME interactions, in general. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Andrew D Wagner
- Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT, 06492, USA
| | - Lisa Elkin
- Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT, 06492, USA
| | - Kathy Mosure
- Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT, 06492, USA
| | - Lizbeth Gallagher
- Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT, 06492, USA
| | - Lindsey K Stavola
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Matthew G Soars
- Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT, 06492, USA
| | - Wilson Shou
- Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT, 06492, USA
| |
Collapse
|
46
|
Andersson M, Diao X, Wohlfarth A, Scheidweiler KB, Huestis MA. Metabolic profiling of new synthetic cannabinoids AMB and 5F-AMB by human hepatocyte and liver microsome incubations and high-resolution mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1067-1078. [PMID: 27003044 DOI: 10.1002/rcm.7538] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/12/2016] [Accepted: 02/13/2016] [Indexed: 06/05/2023]
Abstract
RATIONALE AMB (methyl (1-pentyl-1H-indazole-3-carbonyl)-L-valinate)) and its fluoro analog 5F-AMB (methyl (1-(5-fluoropentyl)-1H-indazole-3-carbonyl)-L-valinate) are two new synthetic cannabinoids that are structural analogs of AB-PINACA and 5F-AB-PINACA, respectively. 5F-AMB is scheduled as an illicit drug in China, Germany, Singapore and Japan, and no metabolism data are currently available for either drug. The aim of the present work was to investigate the metabolism of AMB and 5F-AMB and propose appropriate markers to identify their intake in clinical or forensic cases. METHODS AMB and 5F-AMB were incubated in human hepatocytes (10 μmol/L) to generate phase I and II metabolites, which were identified with a TripleTOF 5600(+) high-resolution mass spectrometer. AMB and 5F-AMB metabolic stability studies also were performed with human liver microsomes (HLM) to evaluate metabolic clearances, and to adequately design the human hepatocyte experiment. RESULTS AMB and 5F-AMB were quickly metabolized in HLM with a 1.1 ± 0.1 and 1.0 ± 0.2 min T1/2, respectively. The predominant metabolic pathway for AMB and 5F-AMB in hepatocytes was ester hydrolysis, and further oxidation and/or glucuronidation. In total, 19 metabolites were identified for AMB and 17 for 5F-AMB. We describe metabolites to differentiate AMB from 5F-AMB, and metabolites that are common to both analytes due to oxidative defluorination of 5F-AMB. CONCLUSIONS For the first time, AMB and 5F-AMB metabolism profiles were characterized, providing valuable data for identifying these two novel psychoactive substances. The difficulties of differentiating AMB and 5F-AMB from AB-PINACA/5F-AB-PINACA metabolites also were examined. These data improve the interpretation of urinary markers after AMB and 5F-AMB intake. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Maria Andersson
- Chemistry and Drug Metabolism, IRP, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Xingxing Diao
- Chemistry and Drug Metabolism, IRP, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ariane Wohlfarth
- Chemistry and Drug Metabolism, IRP, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 58758, Linköping, Sweden
- Department of Drug Research, University of Linköping, 58185, Linköping, Sweden
| | - Karl B Scheidweiler
- Chemistry and Drug Metabolism, IRP, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Marilyn A Huestis
- Chemistry and Drug Metabolism, IRP, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| |
Collapse
|
47
|
Bonn B, Svanberg P, Janefeldt A, Hultman I, Grime K. Determination of Human Hepatocyte Intrinsic Clearance for Slowly Metabolized Compounds: Comparison of a Primary Hepatocyte/Stromal Cell Co-culture with Plated Primary Hepatocytes and HepaRG. Drug Metab Dispos 2016; 44:527-33. [PMID: 26851239 DOI: 10.1124/dmd.115.067769] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 02/04/2016] [Indexed: 12/31/2022] Open
Abstract
A key requirement in drug discovery is to accurately define intrinsic clearance (CL(int)) values of less than 1 µl/min/10(6) hepatocytes, which requires assays that allow for longer incubation time as a complement to suspended hepatocytes. This study assessed the effectiveness of plated HepaRG cells, plated primary human hepatocytes (PHHs), and the HµREL human hepatocyte/stromal cell co-cultures for determination of low CL(int) values. The investigation demonstrated that the systems were capable of providing statistically significant CL(int) estimations down to 0.2 µl/min/10(6) cells. The HµREL assay provided a higher level of reproducibility, with repeat significant CL(int) values being defined in a minimum of triplicate consecutive assays for six of seven of the low CL(int) compounds compared with four of seven for PHHs and two of seven for HepaRG. The assays were also compared with a suspension assay using drugs with higher CL(int) values and diverse enzymology. The CL(int) values from the PHH and HµREL assays were similar to those defined by a hepatocyte suspension assay, indicating that they can be used interchangeably alongside a standard assay. Finally, data from these two assays could also predict in vivo hepatic metabolic CL(int) to within 3-fold for greater than 70% of the compounds tested, with average fold errors (AFE) of 1.6 and 2.3, respectively, whereas the HepaRG data were predictive to within 3-fold for only 50% of compounds (AFE 2.9). In summary, all systems have utility for low CL(int) determination, but the HµREL co-culture appears slightly superior regarding overall assay performance.
Collapse
Affiliation(s)
- Britta Bonn
- RIA iMED DMPK (B.B., P.S., K.G.), CVMD iMED DMPK (A.J.), Drug Safety and Metabolism (I.H.), AstraZeneca R&D, Gothenburg, Sweden
| | - Petter Svanberg
- RIA iMED DMPK (B.B., P.S., K.G.), CVMD iMED DMPK (A.J.), Drug Safety and Metabolism (I.H.), AstraZeneca R&D, Gothenburg, Sweden
| | - Annika Janefeldt
- RIA iMED DMPK (B.B., P.S., K.G.), CVMD iMED DMPK (A.J.), Drug Safety and Metabolism (I.H.), AstraZeneca R&D, Gothenburg, Sweden
| | - Ia Hultman
- RIA iMED DMPK (B.B., P.S., K.G.), CVMD iMED DMPK (A.J.), Drug Safety and Metabolism (I.H.), AstraZeneca R&D, Gothenburg, Sweden
| | - Ken Grime
- RIA iMED DMPK (B.B., P.S., K.G.), CVMD iMED DMPK (A.J.), Drug Safety and Metabolism (I.H.), AstraZeneca R&D, Gothenburg, Sweden
| |
Collapse
|
48
|
Diao X, Scheidweiler KB, Wohlfarth A, Zhu M, Pang S, Huestis MA. Strategies to distinguish new synthetic cannabinoid FUBIMINA (BIM-2201) intake from its isomer THJ-2201: metabolism of FUBIMINA in human hepatocytes. Forensic Toxicol 2016; 34:256-267. [PMID: 27547265 PMCID: PMC4971051 DOI: 10.1007/s11419-016-0312-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/09/2016] [Indexed: 12/26/2022]
Abstract
Since 2013, a new drugs-of-abuse trend attempts to bypass drug legislation by marketing isomers of scheduled synthetic cannabinoids (SCs), e.g., FUBIMINA (BIM-2201) and THJ-2201. It is much more challenging to confirm a specific isomer’s intake and distinguish it from its structural analog because the isomers and their major metabolites usually have identical molecular weights and display the same product ions. Here, we investigated isomers FUBIMINA and THJ-2201 and propose strategies to distinguish their consumption. THJ-2201 was scheduled in the US, Japan, and Europe; however, FUBIMINA is easily available on the Internet. We previously investigated THJ-2201 metabolism in human hepatocytes, but human FUBIMINA metabolism is unknown. We aim to characterize FUBIMINA metabolism in human hepatocytes, recommend optimal metabolites to confirm its consumption, and propose strategies to distinguish between intakes of FUBIMINA and THJ-2201. FUBIMINA (10 μM) was incubated in human hepatocytes for 3 h, and metabolites were characterized with high-resolution mass spectrometry (HR-MS). We identified 35 metabolites generated by oxidative defluorination, further carboxylation, hydroxylation, dihydrodiol formation, glucuronidation, and their combinations. We recommend 5′-OH-BIM-018 (M34), BIM-018 pentanoic acid (M33), and BIM-018 pentanoic acid dihydrodiol (M7) as FUBIMINA specific metabolites. THJ-2201 produced specific metabolite markers 5′-OH-THJ-018 (F26), THJ-018 pentanoic acid (F25), and hydroxylated THJ-2201 (F13). Optimized chromatographic conditions to achieve different retention times and careful selection of specific product ion spectra enabled differentiation of isomeric metabolites, in this case FUBIMINA from THJ-2201. Our HR-MS approach should be applicable for differentiating future isomeric SCs, which is especially important when different isomers have different legal status.
Collapse
Affiliation(s)
- Xingxing Diao
- Chemistry and Drug Metabolism, IRP, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd, Suite 200 Room 05A721, Baltimore, MD 21224 USA
| | - Karl B. Scheidweiler
- Chemistry and Drug Metabolism, IRP, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd, Suite 200 Room 05A721, Baltimore, MD 21224 USA
| | - Ariane Wohlfarth
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 58758 Linköping, Sweden
- Department of Drug Research, University of Linköping, 58185 Linköping, Sweden
| | - Mingshe Zhu
- Department of Biotransformation, Bristol-Myers Squibb, Research and Development, Princeton, NJ 08543 USA
| | | | - Marilyn A. Huestis
- Chemistry and Drug Metabolism, IRP, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd, Suite 200 Room 05A721, Baltimore, MD 21224 USA
| |
Collapse
|
49
|
Diao X, Scheidweiler KB, Wohlfarth A, Pang S, Kronstrand R, Huestis MA. In Vitro and In Vivo Human Metabolism of Synthetic Cannabinoids FDU-PB-22 and FUB-PB-22. AAPS JOURNAL 2016; 18:455-64. [PMID: 26810398 DOI: 10.1208/s12248-016-9867-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/21/2015] [Indexed: 11/30/2022]
Abstract
In 2014, FDU-PB-22 and FUB-PB-22, two novel synthetic cannabinoids, were detected in herbal blends in Japan, Russia, and Germany and were quickly added to their scheduled drugs list. Unfortunately, no human metabolism data are currently available, making it challenging to confirm their intake. The present study aims to identify appropriate analytical markers by investigating FDU-PB-22 and FUB-PB-22 metabolism in human hepatocytes and confirm the results in authentic urine specimens. For metabolic stability, 1 μM FDU-PB-22 and FUB-PB-22 was incubated with human liver microsomes for up to 1 h; for metabolite profiling, 10 μM was incubated with human hepatocytes for 3 h. Two authentic urine specimens from FDU-PB-22 and FUB-PB-22 positive cases were analyzed after β-glucuronidase hydrolysis. Metabolite identification in hepatocyte samples and urine specimens was accomplished by high-resolution mass spectrometry using information-dependent acquisition. Both FDU-PB-22 and FUB-PB-22 were rapidly metabolized in HLM with half-lives of 12.4 and 11.5 min, respectively. In human hepatocyte samples, we identified seven metabolites for both compounds, generated by ester hydrolysis and further hydroxylation and/or glucuronidation. After ester hydrolysis, FDU-PB-22 and FUB-PB-22 yielded the same metabolite M7, fluorobenzylindole-3-carboxylic acid (FBI-COOH). M7 and M6 (hydroxylated FBI-COOH) were the major metabolites. In authentic urine specimens after β-glucuronidase hydrolysis, M6 and M7 also were the predominant metabolites. Based on our study, we recommend M6 (hydroxylated FBI-COOH) and M7 (FBI-COOH) as suitable urinary markers for documenting FDU-PB-22 and/or FUB-PB-22 intake.
Collapse
Affiliation(s)
- Xingxing Diao
- Chemistry and Drug Metabolism, IRP, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd, Suite 200 Room 05A721, Baltimore, Maryland, 21224, USA
| | - Karl B Scheidweiler
- Chemistry and Drug Metabolism, IRP, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd, Suite 200 Room 05A721, Baltimore, Maryland, 21224, USA
| | - Ariane Wohlfarth
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 58758, Linköping, Sweden.,Department of Drug Research, University of Linköping, 58185, Linköping, Sweden
| | | | - Robert Kronstrand
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 58758, Linköping, Sweden.,Department of Drug Research, University of Linköping, 58185, Linköping, Sweden
| | - Marilyn A Huestis
- Chemistry and Drug Metabolism, IRP, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd, Suite 200 Room 05A721, Baltimore, Maryland, 21224, USA.
| |
Collapse
|
50
|
Page KM. Validation of Early Human Dose Prediction: A Key Metric for Compound Progression in Drug Discovery. Mol Pharm 2016; 13:609-20. [PMID: 26696327 DOI: 10.1021/acs.molpharmaceut.5b00840] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human dose prediction is increasingly recognized as an important parameter in Drug Discovery. Validation of a method using only in vitro and predicted parameters incorporated into a PK model was undertaken by predicting human dose and free Cmax for a number of marketed drugs and AZ Development compounds. Doses were compared to those most relevant to marketed drugs or to clinically administered doses of AZ compounds normalized either to predicted Cmin or Cmax values. Average (AFE) and absolute average (AAFE) fold-error analysis showed that best predictions were obtained using a QSAR model as the source of Vss, with Fabs set to 1 for acids and 0.5 for all other ion classes; for clearance prediction no binding correction to the well stirred model (WSM) was used for bases, while it was set to Fup/Fup(0.5) for all other ion classes. Using this combination of methods, predicted doses for 45 to 68% of the Cmin- and Cmax-normalized and marketed drug data sets were within 3-fold of the observed values, while 82 to 92% of these data sets were within 10-fold. This method for early human dose prediction is able to rank, identify, and flag risks or optimization opportunities for future development compounds within 10 days of first synthesis.
Collapse
Affiliation(s)
- Ken M Page
- Drug Safety and Metabolism, AstraZeneca, Mereside , Alderley Park, Macclesfield, Cheshire SK10 4TG, U.K
| |
Collapse
|