1
|
Xu MZ, Li YT, Cao CQ. Physiological and gene expression responses of Protohermes xanthodes (Megaloptera: Corydalidae) larvae to imidacloprid. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:46. [PMID: 39249498 DOI: 10.1007/s00114-024-01932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Megaloptera larvae are important bioindicator species and potential resource insects. To further cultivate their economic role, their living environment must be examined in more detail. In this study, we analyzed the physiological and biochemical effects of a sublethal dose of imidacloprid, a widely used neonicotinoid insecticide, on the larvae of Protohermes xanthodes. After treatment with imidacloprid, P. xanthodes larvae exhibited clear symptoms of poisoning, including the head curling up toward the ventral surface. Additionally, the activity of acetylcholinesterase was significantly inhibited following exposure. The activities of glutathione S-transferases initially continuously increased but showed a slight decrease after 8 days. Catalase activity initially increased and then decreased following imidacloprid treatment; superoxide dismutase activity fluctuated over time, and peroxidase activity continuously increased. The expression levels of HSP70s genes were evaluated using qRT-PCR. These results indicate that P. xanthodes larvae exhibit a toxic response to imidacloprid exposure, manifested as oxidative stress, as observed through behavioral and physiological indicators.
Collapse
Affiliation(s)
- Mao-Zhou Xu
- College of Fisher and Life Science, Dalian Ocean University, Dalian, China
| | - Yu-Tong Li
- College of Fisher and Life Science, Dalian Ocean University, Dalian, China
| | - Cheng-Quan Cao
- College of Fisher and Life Science, Dalian Ocean University, Dalian, China.
| |
Collapse
|
2
|
Singh D, Khan MA, Akhtar K, Rehman S, Parveen S, Amin KMY, Siddique HR. Protective effects of a polyherbal medicine, Majoon Suranjan against bisphenol-A induced genetic, oxidative and tissue damages. Drug Chem Toxicol 2023; 46:1057-1069. [PMID: 36120934 DOI: 10.1080/01480545.2022.2124519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/03/2022]
Abstract
Bisphenol-A (BPA) is a toxic chemical largely produced and used in polycarbonate plastics worldwide. Majoon Suranjan (MS), a polyherbal formulation, is used as an anti-inflammatory medicine against rheumatoid arthritis. The present study aimed to evaluate BPA-induced toxicity and its possible amelioration by MS. To test our hypothesis, we performed gas chromatography-mass spectrometry (GC-MS) analysis, DNA interaction studies, genotoxicity tests, oxidative stress parameters, and histopathological examinations. GC-MS profiling of MS revealed the presence of various anti-oxidant compounds. DNA interaction studies showed that both chemicals intercalate between DNA base pairs. Next, we observed BPA-induced genotoxicity and oxidative damage. The observed effects might be due to BPA-induced reactive oxygen species production. Further, BPA changed the anti-oxidant enzyme activities, increased the malondialdehyde, alanine aminotransferase, alkaline phosphatase, and total bilirubin levels, and caused gross damage to the liver and kidney. Interestingly, these effects were significantly reversed by MS. In conclusion, MS shows protective effects against BPA-induced toxicity and could be a potential alternative medicine against BPA toxicity, especially in third-world countries where BPA uses are not strictly regulated.Highlights:Bisphenol-A (BPA) induces multiple toxic effects.BPA induces genotoxicity, oxidative and tissue damage.Majoon Suranjan (MS) ameliorates the BPA induced toxic effects.GC-MS profiling show various active anti-oxidant compounds in MS.MS is anti-genotoxic, anti-oxidant, and hepato-renal protective.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Kafil Akhtar
- Department of Pathology, JN Medical College, Aligarh Muslim University, Aligarh, India
| | - Sumbul Rehman
- Department of Ilmul Advia, AK Tibbiya College, Aligarh Muslim University, Aligarh, India
| | - Sabiha Parveen
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - K M Yusuf Amin
- Department of Ilmul Advia, AK Tibbiya College, Aligarh Muslim University, Aligarh, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
3
|
Saroha B, Kumar A, Bhan V, Singh S, Tumba K, Singh P, Bahadur I. Interaction of heavy metals in Drosophila melanogaster larvae: Fourier transform infrared spectroscopy and single-cell electrophoresis study. J Biomol Struct Dyn 2023; 41:8810-8823. [PMID: 36411739 DOI: 10.1080/07391102.2022.2137587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022]
Abstract
The present study evaluates the Murraya Koenigii (CuLE) and Tinospora Crispa (TiSE) antimutagenic effect and the impact of industrial soil and solid waste leachate on Drosophila larvae. Larvae were exposed to leachate prepared at different pH (7, 4.93, 2.88) and treated with TiSE and CuLE at different concentration (4 g/L and 6 g/L) mixed with standard Drosophila medium. Emphasis was given to the binding interaction of heavy metals with proteins in Drosophila. The change in structure and molecular composition in Drosophila by leachate containing heavy metals induced toxicity has been studied by using Fourier transform infrared (FTIR) spectroscopy. Results from the study demonstrated that CuLE/TiSE administration restored the level of oxidative stress as evidenced by an enhanced antioxidant system and a decrease in lipid peroxidation and protein oxidation. The amide I and amide II bands spectral shifting revealed the binding interaction. The shift in the peak of PO2- asymmetric stretching might be due to compositional changes in nucleic acids. Single-cell electrophoresis was performed to detect the DNA damage which also proved to be ameliorated by administration of CuLE/TiSE. The result concludes that CuLE/TiSE may have great potential in the protection of Drosophila larvae from leachate induced oxidative stress through antioxidant and antimutagenic mechanisms this might help to cope with environmental toxicants.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- B Saroha
- Department of Biotechnology, University Institute of Engineering and Technology, MDU, Rohtak, India
| | - A Kumar
- Department of Chemistry, SGRR (PG) College, Dehradun, India
| | - V Bhan
- Department of Biotechnology, University Institute of Engineering and Technology, MDU, Rohtak, India
| | - S Singh
- Thermodynamics-Materials-Separations Research Group, Department of Chemical Engineering, Mangosuthu University of Technology, Durban, uMlazi, South Africa
| | - K Tumba
- Thermodynamics-Materials-Separations Research Group, Department of Chemical Engineering, Mangosuthu University of Technology, Durban, uMlazi, South Africa
| | - P Singh
- Department of Chemistry, Atma Ram Sanatan Dharma (ARSD) College, University of Delhi, New Delhi, India
| | - I Bahadur
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Mmabatho, South Africa
| |
Collapse
|
4
|
Rand MD, Tennessen JM, Mackay TFC, Anholt RRH. Perspectives on the Drosophila melanogaster Model for Advances in Toxicological Science. Curr Protoc 2023; 3:e870. [PMID: 37639638 PMCID: PMC10463236 DOI: 10.1002/cpz1.870] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The use of Drosophila melanogaster for studies of toxicology has grown considerably in the last decade. The Drosophila model has long been appreciated as a versatile and powerful model for developmental biology and genetics because of its ease of handling, short life cycle, low cost of maintenance, molecular genetic accessibility, and availability of a wide range of publicly available strains and data resources. These features, together with recent unique developments in genomics and metabolomics, make the fly model especially relevant and timely for the development of new approach methodologies and movements toward precision toxicology. Here, we offer a perspective on how flies can be leveraged to identify risk factors relevant to environmental exposures and human health. First, we review and discuss fundamental toxicologic principles for experimental design with Drosophila. Next, we describe quantitative and systems genetics approaches to resolve the genetic architecture and candidate pathways controlling susceptibility to toxicants. Finally, we summarize the current state and future promise of the emerging field of Drosophila metabolomics for elaborating toxic mechanisms. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Matthew D. Rand
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | - Trudy F. C. Mackay
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, South Carolina 29646, USA
| | - Robert R. H. Anholt
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, South Carolina 29646, USA
| |
Collapse
|
5
|
Diwan P, Nirwan M, Bahuguna M, Kumari SP, Wahlang J, Gupta RK. Evaluating Alterations of the Oral Microbiome and Its Link to Oral Cancer among Betel Quid Chewers: Prospecting Reversal through Probiotic Intervention. Pathogens 2023; 12:996. [PMID: 37623956 PMCID: PMC10459687 DOI: 10.3390/pathogens12080996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Areca nut and slaked lime, with or without tobacco wrapped in Piper betle leaf, prepared as betel quid, is extensively consumed as a masticatory product in many countries across the world. Betel Quid can promote the malignant transformation of oral lesions as well as trigger benign cellular and molecular changes. In the oral cavity, it causes changes at the compositional level in oral microbiota called dysbiosis. This dysbiosis may play an important role in Oral Cancer in betel quid chewers. The abnormal presence and increase of bacteria Fusobacterium nucleatum, Capnocytophaga gingivalis, Prevotella melaninogenica, Peptostreptococcus sp., Porphyromonas gingivalis, and Streptococcus mitis in saliva and/or other oral sites of the cancer patients has attracted frequent attention for its association with oral cancer development. In the present review, the authors have analysed the literature reports to revisit the oncogenic potential of betel quid and oral microbiome alterations, evaluating the potential of oral microbiota both as a driver and biomarker of oral cancer. The authors have also shared a perspective that the restoration of local microbiota can become a potentially therapeutic or prophylactic strategy for the delay or reversal of lip and oral cavity cancers, especially in high-risk population groups.
Collapse
Affiliation(s)
- Prerna Diwan
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - Mohit Nirwan
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - Mayank Bahuguna
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - Shashi Prabha Kumari
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - James Wahlang
- Department of Biochemistry, St. Edmund’s College, Shillong 793003, India;
| | - Rakesh Kumar Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| |
Collapse
|
6
|
Jameel M, Alam MF, Fatma H, Singh D, Khan MA, Qureshi MA, Javed S, Younus H, Jamal K, Siddique HR. Flubendiamide induced genetic and cellular damages directly influence the life cycle of the oriental leaf worm, Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105448. [PMID: 37248017 DOI: 10.1016/j.pestbp.2023.105448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/11/2023] [Accepted: 04/29/2023] [Indexed: 05/31/2023]
Abstract
Indiscriminate uses of insecticide greatly damage the environment as well as non-target organisms. Thus, multiple levels of bioassays can help better management of our environment. Flubendiamide is a phthalic acid diamide insecticide that ceases the function of insect muscle leading to paralysis and death. Here, we aimed to explore the effects of Flubendiamide on the life cycle of Spodoptera litura vis-a-vis the mode of action. Fourth instar larvae of the same age (120 ± 2 h) and size were fed with different concentrations (20-80 μg/mL) of Flubendiamide for 12-72 h. We performed a pharmacokinetics study, different biochemical assays, p450, Ecdysone receptor (EcR) and other genes expression analyses by Real-Time PCR and gross damages by Dye exclusion assay and histopathology. Our results demonstrate that the mean concentration of Flubendiamide after 48 h is 9.907 μg/mL and (i) altered the molting, metamorphosis, and reproduction at 80 μg/mL (24 h) (ii) increases all oxidative stress parameters (ROS/RNS, MDA, 8OHdG), decreases oxidative defense mechanisms (SOD, CAT, GST) at 80 μg/mL (48 h) and p450 in a time and concentration-dependent manner, (iii) activates CncC/Maf apoptotic pathways at 80 μg/mL concentration at 24 h while the expression declined from 48 h onwards, (iii) downregulates the EcR expression in a time and concentration-dependent manner, which might be responsible for disturbed molting, metamorphosis, and reproduction, and (iv) increase the expression of apoptotic genes (Caspase 1, -3, and - 5), in time and concentration-dependent manner causing gross morphological and histological damages. In conclusion, indiscriminate use of this insecticide can affect the ecosystem and have the capacity to cause multiple hazardous effects on experimental organisms. Thus, it warrants further investigations to improve and optimize the integrated pest management packages, including Flubendiamide for better management.
Collapse
Affiliation(s)
- Mohd Jameel
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Md Fazle Alam
- Institute of Biomedical Science, Fudan University, Shanghai 200437, China; Department of Biomedical Sciences, College of Rockford, University of Illinois, Chicago, United States of America
| | - Homa Fatma
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Deepti Singh
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | | | - Mohd Aamir Qureshi
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Saleem Javed
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Khowaja Jamal
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| | - Hifzur R Siddique
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
7
|
Purdel C, Ungurianu A, Adam-Dima I, Margină D. Exploring the potential impact of probiotic use on drug metabolism and efficacy. Biomed Pharmacother 2023; 161:114468. [PMID: 36868015 DOI: 10.1016/j.biopha.2023.114468] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Probiotics are frequently consumed as functional food and widely used as dietary supplements, but are also recommended in treating or preventing various gastrointestinal diseases. Therefore, their co-administration with other drugs is sometimes unavoidable or even compulsory. Recent technological developments in the pharmaceutical industry permitted the development of novel drug-delivery systems for probiotics, allowing their addition to the therapy of severely ill patients. Literature data regarding the changes that probiotics could impose on the efficacy or safety of chronic medication is scarce. In this context, the present paper aims to review probiotics currently recommended by the international medical community, to evaluate the relationship between gut microbiota and various pathologies with high impact worldwide and, most importantly, to assess the literature reports concerning the ability of probiotics to influence the pharmacokinetics/pharmacodynamics of some widely used drugs, especially for those with narrow therapeutic indexes. A better understanding of the potential influence of probiotics on drug metabolism, efficacy and safety could contribute to improving therapy management, facilitating individualized therapy and updating treatment guidelines.
Collapse
Affiliation(s)
- Carmen Purdel
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Toxicology, Traian Vuia 6, Bucharest 020956, Romania
| | - Anca Ungurianu
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Traian Vuia 6, Bucharest 020956, Romania.
| | - Ines Adam-Dima
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Toxicology, Traian Vuia 6, Bucharest 020956, Romania
| | - Denisa Margină
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Traian Vuia 6, Bucharest 020956, Romania
| |
Collapse
|
8
|
Jameel M, Rauf MA, Khan MT, Farooqi MK, Alam MA, Mashkoor F, Shoeb M, Jeong C. Ingestion and effects of green synthesized cadmium sulphide nanoparticle on Spodoptera Litura as an insecticidal and their antimicrobial and anticancer activities. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 190:105332. [PMID: 36740336 DOI: 10.1016/j.pestbp.2022.105332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
The current study investigated the multifunctional properties of Cadmium Sulphide Nanoparticles synthesized using a green synthesis method (CdS NPs) using a green feedstock, Nopal Cactus fruit extract. The biological activities of the CdS NPs were thoroughly investigated, including their insecticidal, antibacterial, and anticancer activities. The different concentrations (0.005-0.04%) of CdS NPs were fed to the larvae of Spodoptera litura, and their ingestion effects were observed on the different biological, biochemical, and oxidative stress markers. There are significant dose-dependent changes in the biochemical parameters like superoxide dismutase (SOD), Catalase (CAT), Glutathione-S-transferase (GST), and MDA level as a marker of lipid peroxidation in the treated larvae were studied. In the highest concentration (0.04%), significant larval mortality (46.66%), malformation (pupae and adult) (27.78%), inhibition of adult emergence (43.87%), as well as reduced fecundity (25.28%), and fertility (22.74%) as compared to control was observed. CdS NPs have been investigated for antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus bacterial strains. In vitro anticancer activities were carried out to decrease the viability of the Pancreatic cancer cell line. The cells showed 18% and 12% viability at a 200 μg/ml concentration when incubated with CdS NPs for 24 and 48 h, respectively, confirming its potent anticancer property. The lack of cytotoxicity against the (RBC) endorses the biocompatible nature of synthesized CdS NPs. It was observed that green synthesized CdS NPs could be used as a promising insecticidal, antibacterial, and anticancer agent.
Collapse
Affiliation(s)
- Mohd Jameel
- Department of Zoology, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Mohd Ahmar Rauf
- Department of surgery, Miller School of Medicine, University of Miami, Florida, USA
| | - Mohd Talib Khan
- Department of Zoology, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | | | - Mohd Ashraf Alam
- Department of Pharmacology, LNCT Medical College& Sewa Kunj Hospital, Indore 452001, India
| | - Fouzia Mashkoor
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea, Republic of Korea
| | - Mohd Shoeb
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea, Republic of Korea.
| | - Changyoon Jeong
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea, Republic of Korea.
| |
Collapse
|
9
|
Alimba CG, Sivanesan S, Krishnamurthi K. Mitochondrial dysfunctions elicited by solid waste leachates provide insights into mechanisms of leachates induced cell death and pathophysiological disorders. CHEMOSPHERE 2022; 307:136085. [PMID: 36007733 DOI: 10.1016/j.chemosphere.2022.136085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Emissions (mainly leachates and landfill gases) from solid waste facilities are laden with mixtures of dangerous xenobiotics implicated with significant increase in various pathophysiological disorders including cancer, and eventual mortality of exposed wildlife and humans. However, the molecular mechanisms of solid waste leachates induce pathophysiological disorders and cell death are still largely unknown. Although, evolving evidence implicated generation of reactive oxygen species and oxidative stress as the possible mechanism. Recent scientific reports are linking reactive oxygen species and mitochondrial dysfunctions as the player mechanism in pathophysiological disorder and apoptosis induced by xenobiotics in solid waste leachates. This systematic review presents an explicit discussion of recent scientific findings on the structural and functional alterations in mitochondria induced by solid waste leachates as the molecular mechanisms plausibly responsible for the pathophysiological disorders, cancer and cell death reported in landfill toxicology and epidemiological studies. This review aims to increase scientific understanding on solid waste leachate induced mitochondria dysfunctions as the key player in molecular mechanisms of solid waste induced toxicity. The findings in this review were mainly from using primary cells, cell lines, Drosophila and fish. Whether the findings will similarly be observed in mammalian test systems in vivo and particularly in exposed humans, remained to be investigated. Improvement in technological advancements, enforcement of legislation and regulations, and creation of sophisticated health surveillance against exposure to solid waste leachates, will expectedly mitigate human exposure to solid waste emissions and contamination of the environment.
Collapse
Affiliation(s)
- Chibuisi Gideon Alimba
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria; Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, 44139, Dortmund, Germany.
| | - Saravanadevi Sivanesan
- Health and Toxicity Cell (HTC), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India; Academy of Scientific, Innovative Research (AcSIR), Ghaziabad, U.P, India
| | - Kannan Krishnamurthi
- Health and Toxicity Cell (HTC), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India; Academy of Scientific, Innovative Research (AcSIR), Ghaziabad, U.P, India.
| |
Collapse
|
10
|
Khan MA, Singh D, Arif A, Sodhi KK, Singh DK, Islam SN, Ahmad A, Akhtar K, Siddique HR. Protective effect of green synthesized Selenium Nanoparticles against Doxorubicin induced multiple adverse effects in Swiss albino mice. Life Sci 2022; 305:120792. [PMID: 35817167 DOI: 10.1016/j.lfs.2022.120792] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 01/13/2023]
Abstract
AIMS Doxorubicin (DOX) is a widely used drug against multiple cancers. However, its clinical Use is often restricted due to multiple adverse effects. Recently, Selenium Nanoparticles (SeNPs) are gaining attention due to their low toxicity and higher biocompatibility, making them attractive nanoparticles (NPs) in medical and pharmaceutical sciences. Therefore, the current study aimed to assess if our biosynthesized SeNP from the endophytic fungus Fusarium oxysporum conjugated with DOX could alleviate the DOX-induced adverse effects. MAIN METHODS For this purpose, we investigated various genotoxic, biochemical, histopathological, and immunohistochemical parameters and finally analyzed the metabolite profile by LC-MS/MS. KEY FINDINGS We observed that DOX causes an increase in reactive oxygen and nitrogen species (ROS, RNS), 8-OHdG, and malondialdehyde (MDA), decreases antioxidant defense systems and reduces BCL-2 expression in cardiac tissue. In addition, a significant increase in DNA damage and alteration in the cytoarchitecture of the liver, kidney, and heart tissues was observed by Comet Tail Length and histopathological studies, respectively. Interestingly, the DOX-SeNP conjugate reduced ROS/RNS, 8-OHdG, and MDA levels in the liver, kidney, and heart tissues. It also restored the antioxidant enzymes and cytoarchitectures of the examined tissues, reduced genotoxicity, and increased the BCL-2 levels. Finally, metabolic profiling showed that DOX reduced the number of cardioprotective metabolites, which DOX-SeNP restored. SIGNIFICANCE Collectively, the present results describe the protective effect of DOX-conjugated SeNP against DOX-induced toxicities. In conclusion, DOX-SeNP conjugate might be better for treating patients receiving DOX alone. However, it warrants further thorough investigation.
Collapse
Affiliation(s)
- Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Amin Arif
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Kushneet Kaur Sodhi
- Soil Microbial Ecology and Environmental Toxicology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India; Hansraj College, University of Delhi, Delhi 110007, India
| | | | - Sk Najrul Islam
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh 202002, India
| | - Absar Ahmad
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh 202002, India
| | - Kafil Akhtar
- Department of Pathology, JNMC, Aligarh 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
11
|
Wang YZ, Cao CQ, Wang D. Physiological Responses of the Firefly Pyrocoelia analis (Coleoptera: Lampyridae) to an Environmental Residue From Chemical Pesticide Imidacloprid. Front Physiol 2022; 13:879216. [PMID: 35784886 PMCID: PMC9240607 DOI: 10.3389/fphys.2022.879216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Imidacloprid, a neonicotinoid insecticide, is widely applied to control insect pests across a broad spectrum. Though the impact of residues from this chemical pesticide on non-target organisms in the field has been reported, it was not well characterized across a wide range of ecosystems, especially for some species considered as environmental indicators that live in forests. The effects of sublethal dose of imidacloprid on firefly, Pyrocoelia analis, were analyzed physiologically and biochemically in this study to better understand the impact of chemical pesticide application on environmental indicators such as fireflies. After imidacloprid treatment, the midgut tissues of the larva presented an abnormal morphology featured as atrophy of fat body cells, shrinking cells, and the destruction of a midgut structure. The activities of antioxidant enzymes, superoxide dismutase, catalase, and peroxidase were noticeably increased during early exposure to sublethal imidacloprid and then decreased at later stages. The malondialdehyde content significantly increased after 12 h of exposure to imidacloprid compared with the control. Similarly, the enzyme activities of polyphenol oxidase and acetylcholinesterase were increased after the imidacloprid treatment and then decreased at the later stage. In summary, a sublethal dose of imidacloprid caused destructive change in the tissue structure, and this damage was followed by an excessive reactive oxygen species that could not be eliminated by antioxidant enzymes. Our results indicated that the residues of imidacloprid might cause severe toxicity to non-target insects in the environment even far away from the agro-ecosystem where the chemicals were applied.
Collapse
Affiliation(s)
- Yi-zhe Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Cheng-quan Cao
- College of Life Science, Leshan Normal University, Leshan, China
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- *Correspondence: Dun Wang, ,
| |
Collapse
|
12
|
Singh D, Khan MA, Siddique HR. Therapeutic implications of probiotics in microbiota dysbiosis: A special reference to the liver and oral cancers. Life Sci 2021; 285:120008. [PMID: 34606851 DOI: 10.1016/j.lfs.2021.120008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
The microbiota plays an important role in maintaining the body's homeostasis. Imbalance in the microbiota is referred to as microbiota dysbiosis. Microbiota dysbiosis leads to pro-inflammatory immune response and progression of cancer- one of the leading causes of mortality globally. Accumulating evidence suggest the role of microbiota-dysbiosis in the liver and oral carcinogenesis and the therapeutic role of probiotic strains against these diseases. Probiotics are active microbial strains that have recently gained clinical importance due to their beneficial effects on the human body associated with the prevention and treatment of different diseases, including cancer. Multiple researchers have reported the use of probiotic strains in the modulation of microbiota and immune responses for cancer prevention and management. Clinical trials have also highlighted the efficacy of probiotic strains in reducing the side effects of microbiota dysbiosis related to cancer. In this context, the probiotic-mediated modulation to reverse microbiota dysbiosis is now considered one of the possible novel strategies for cancer prevention and management. In this article, we review the association between microbiota dysbiosis and liver/oral cancer. This review highlights the research advances on the anti-cancer activity of probiotic strains and their metabolites in the management of liver and oral cancers.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
13
|
Jameel M, Jamal K, Alam MF, Ameen F, Younus H, Siddique HR. Interaction of thiamethoxam with DNA: Hazardous effect on biochemical and biological parameters of the exposed organism. CHEMOSPHERE 2020; 254:126875. [PMID: 32361544 DOI: 10.1016/j.chemosphere.2020.126875] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
In the present scenario, insecticides/pesticides are used intensively to control the various insect pests. Indiscriminate use of these insecticides/pesticides affects the structure and function of the ecosystem. In this context, a thorough toxicological study of each insecticide/pesticide is a must to understand the hazardous effect of these chemicals on the target and non-target organisms. The present study was aimed to understand the hazardous effect of thiamethoxam against the Spodoptera litura. Different concentrations (20-80 μg/mL) of thiamethoxam were prepared, and fourth instar larvae of S. litura were allowed to feed for 12-72 h. We first examined the interaction of thiamethoxam with DNA. Next, treated and non-treated larvae were assessed for different biological parameters such as mortality, emergence, fecundity, fertility, longevities, and biochemical parameters. Our result showed that thiamethoxam directly interacts with the DNA and significantly influenced the different biological and biochemical parameters of exposed the organisms. We observed a significant change in stress enzymes such as SOD, CAT, and GST. A similar observation was also made with the oxidative marker for lipid damage, MDA and DNA damage, 8-OHdG, respectively. In conclusion, our results suggest that improper use of synthetic chemical insecticides influenced both biological and biochemical parameters through oxidative stress and probably damage the genetic material.
Collapse
Affiliation(s)
- Mohd Jameel
- Department of Zoology, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Khowaja Jamal
- Department of Zoology, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| | - Md Fazle Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Faisal Ameen
- Department of Biochemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Hifzur R Siddique
- Department of Zoology, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| |
Collapse
|
14
|
Jameel M, Alam MF, Younus H, Jamal K, Siddique HR. Hazardous sub-cellular effects of Fipronil directly influence the organismal parameters of Spodoptera litura. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:216-224. [PMID: 30710772 DOI: 10.1016/j.ecoenv.2019.01.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
Indiscriminate use of insecticides/pesticides affects the structure and function of the ecosystems. The present study was aimed to investigate the toxic potential of Fipronil (a second generation phenylpyrazole) using Spodoptera litura larvae (Lepidoptera: Noctuidae) as an experimental model. Commercial grade of Fipronil, an insecticide was fed (20-80 mg/L) to the 4th instar larvae of S. litura for 12-72 h and examined different molecular, biochemical and organismal parameters. We observed a significant dose- and time-dependent changes in the biochemical parameters such as Superoxide dismutase (SOD), Glutathione-S-transferase (GST), Catalase (CAT), level of 8-hydroxy 2'-deoxyguanosine (8-OHdG) and Thiobarbituric Acid Reactive Substances (TBARS) [Malondialdehyde (MDA) equivalent] in the exposed larvae. We also observed that Fipronil interacts with DNA. Next, we examined the influence of sub-cellular damages at the organismal level. The alterations in the parameter such as the delayed emergence of larvae, reduced fecundity, fertility and increased rate of malformation in pupae and adults indicate the sub-organismal damages influence at the organismal level. The findings of the present study suggest that discriminatory non-scientific use of insecticide/pesticide might influence the population dynamics of insects and in large ecosystem too and needs further thorough investigations.
Collapse
Affiliation(s)
- Mohd Jameel
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Md Fazle Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Khowaja Jamal
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| | - Hifzur R Siddique
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
15
|
Yildirim N, Yildirim NC, Tatar S, Alp H. Phanerochaete chrysosporium as a model organism to assess the toxicity of municipal landfill leachate from Elazığ, Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:12807-12812. [PMID: 30887451 DOI: 10.1007/s11356-019-04813-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
In order to evaluate the potential ecological risk and the toxic effect of landfill leachate (LL), Phanerochaete chrysosporium was exposed to LL and their biochemical response was observed by using antioxidant parameters. Phanerochaete chrysosporium, ME 446, was kept at 4 °C after being sub-cultured at 28 °C on Sabouraud Dextrose Agar (SDA). Superoxide dismutase (SOD), catalase (CAT) activities, and malaondialdehyde (MDA) and glutathione (GSH) levels of P. chrysosporium exposed to different dilution rates of leachate (1/10 and 1/20) for 24 and 96 h were analyzed by using the ELISA method. The physiochemical parameters such as pH, conductivity, total dissolved solids (TDS), dissolved oxygen (DO), chemical oxygen demand (COD) of leachate, and reference water were analyzed by using the YSI Professional Plus handheld multiparameter meter. In this study, SOD activities were decreased in the application groups compared with the Control Group at the 24th and 96th hours. CAT activities and GSH levels increased in the application groups compared with the Control Group at the 24th hour but decreased at the 96th hours. MDA levels increased in all of the application groups when compared with the Control Group for both 24 and 96 h. Different concentration of LL induces oxidative stress in P. chrysosporium, increased CAT activity and MDA levels, and decreased SOD activity and GSH levels.
Collapse
Affiliation(s)
- Numan Yildirim
- Department of Environmental Engineering, Faculty of Engineering, Munzur University, TR62000, Tunceli, Turkey.
| | - Nuran Cikcikoglu Yildirim
- Department of Environmental Engineering, Faculty of Engineering, Munzur University, TR62000, Tunceli, Turkey
| | - Sule Tatar
- Department of Environmental Engineering, Faculty of Engineering, Munzur University, TR62000, Tunceli, Turkey
| | - Hevidar Alp
- Department of Food Process, Vocational School, Munzur University, Tunceli, Turkey
| |
Collapse
|
16
|
Lin WY, Ng WC, Wong BSE, Teo SLM, Sivananthan GD, Baeg GH, Ok YS, Wang CH. Evaluation of sewage sludge incineration ash as a potential land reclamation material. JOURNAL OF HAZARDOUS MATERIALS 2018; 357:63-72. [PMID: 29864689 DOI: 10.1016/j.jhazmat.2018.05.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
This study evaluated the potential of utilising sewage sludge incineration ash as a land reclamation material. Toxicity assessment of the leachate of the ash was carried out for both terrestrial and marine organisms. Both the fruit fly Drosophila melanogaster and barnacle Amphibalanus amphitrite showed that both bottom and fly ash leached at liquid-to-solid (L/S) ratio 5 did not substantially affect viabilities. The leachate carried out at L/S 10 was compared to the European Waste Acceptance Criteria and the sewage sludge ashes could be classified as non-hazardous waste. The geotechnical properties of the sewage sludge ash were studied and compared to sand, a conventional land reclamation material, for further evaluation of its potential as a land reclamation material. It was found from direct shear test that both bottom and fly ashes displayed similar and comparable shear strength to that of typical compacted sandy soil based on the range of internal friction angle obtained. However, the consolidation profile of bottom ash was significantly different from sand, while that of fly ash was more similar to sand. Our study showed that the sewage sludge ash has the potential to be used as a land reclamation material.
Collapse
Affiliation(s)
- Wenlin Yvonne Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Wei Cheng Ng
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore
| | - Belinda Shu Ee Wong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, 117594, Singapore
| | - Serena Lay-Ming Teo
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, 119227, Singapore
| | - Gayathiri D/O Sivananthan
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, 119227, Singapore
| | - Gyeong Hun Baeg
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, 117594, Singapore
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
17
|
Subramanian P, Prasanna V, Jayapalan JJ, Abdul Rahman PS, Hashim OH. Role of Bacopa monnieri in the temporal regulation of oxidative stress in clock mutant (cryb) of Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2014; 65:37-44. [PMID: 24780191 DOI: 10.1016/j.jinsphys.2014.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 04/17/2014] [Accepted: 04/19/2014] [Indexed: 06/03/2023]
Abstract
Accruing evidences imply that circadian organization of biochemical, endocrinological, cellular and physiological processes contribute to wellness of organisms and in the development of pathologies such as malignancy, sleep and endocrine disorders. Oxidative stress is known to mediate a number of diseases and it is notable to comprehend the orchestration of circadian clock of a model organism of circadian biology, Drosophila melanogaster, under oxidative stress. We investigated the nexus between circadian clock and oxidative stress susceptibility by exposing D. melanogaster to hydrogen peroxide (H2O2) or rotenone; the reversibility of rhythms following exposure to Bacopa monnieri extract (ayurvedic medicine rich in antioxidants) was also investigated. Abolishment of 24h rhythms in physiological response (negative geotaxis), oxidative stress markers (protein carbonyl and thiobarbituric acid reactive substances) and antioxidants (superoxide dismutase, catalase, glutathione-S-transferase and reduced glutathione) were observed under oxidative stress. Furthermore, abolishment of per mRNA rhythm in H2O2 treated wild type flies and augmented susceptibility to oxidative stress in clock mutant (cry(b)) flies connotes the role of circadian clock in reactive oxygen species (ROS) homeostasis. Significant reversibility of rhythms was noted following B. monnieri treatment in wild type flies than cry(b) flies. Our experimental approach revealed a relationship involving oxidative stress and circadian clock in fruit fly and the utility of Drosophila model in screening putative antioxidative phytomedicines prior to their use in mammalian systems.
Collapse
Affiliation(s)
- Perumal Subramanian
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram 608 002, Tamil Nadu, India.
| | - Vinoth Prasanna
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram 608 002, Tamil Nadu, India
| | - Jaime Jacqueline Jayapalan
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Puteri Shafinaz Abdul Rahman
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Onn Haji Hashim
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Siddique YH, Fatima A, Jyoti S, Naz F, Rahul, Khan W, Singh BR, Naqvi AH. Evaluation of the toxic potential of graphene copper nanocomposite (GCNC) in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg(9.). PLoS One 2013; 8:e80944. [PMID: 24339891 PMCID: PMC3855226 DOI: 10.1371/journal.pone.0080944] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/08/2013] [Indexed: 11/18/2022] Open
Abstract
Graphene, a two-dimensional carbon sheet with single-atom thickness, have attracted the scientific world for its potential applications in various field including the biomedical areas. In the present study the graphene copper nanocomposite (GCNC) was synthesized, characterized and evaluated for its toxic potential on third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg(9) . The synthesized GCNC was analyzed by X-ray diffraction (XRD), scanning/transmission electron microscopy (SEM/TEM), atomic force microscopy (AFM), and fourier transform infrared spectroscopy (FTIR). The GCNC in 0.1% DMSO was sonicated for 10 min and the final concentration of 0.033, 0.099, 0.199 and 3.996 µg/µl of diet were established. The third instar larvae were allowed to feed on it separately for 24 and 48 hrs. The hsp70 expression was measured by O-nitrophenyl-β-D-galactopyranoside assay, tissue damage by trypan blue exclusion test and β-galactosidase activity was monitored by in situ histochemical β-galactosidase staining. Oxidative stress was monitored by performing lipid peroxidation assay and total protein estimation. Ethidium bromide/acridine orange staining was performed on midgut cells for apoptotic index and the comet assay was performed for the DNA damage. The results of the present study showed that the exposure of 0.199 and 3.996 µg/µl of GCNC were toxic for 24 hr of exposure and for 48 hr of exposure: 0.099, 0.199 and 3.996 µg/µl of GCNC was toxic. The dose of 0.033 µg/µl of GCNC showed no toxic effects on its exposure to the third instar larvae for 24 hr as well as 48 hrs. This dose can be considered as No Observed Adverse Effect Level (NOAEL).
Collapse
Affiliation(s)
- Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Ambreen Fatima
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Smita Jyoti
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Falaq Naz
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Wasi Khan
- Centre of Excellence in Materials Sciences (Nano materials), Department of Applied Physics, Z.H. College of Engineering & Technology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Braj Raj Singh
- Centre of Excellence in Materials Sciences (Nano materials), Department of Applied Physics, Z.H. College of Engineering & Technology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Alim Hussain Naqvi
- Centre of Excellence in Materials Sciences (Nano materials), Department of Applied Physics, Z.H. College of Engineering & Technology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
19
|
Wu B, Zhang D, Wang D, Qi C, Li Z. The potential toxic effects of cerium on organism: cerium prolonged the developmental time and induced the expression of Hsp70 and apoptosis in Drosophila melanogaster. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:2068-2077. [PMID: 22707041 DOI: 10.1007/s10646-012-0960-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/05/2012] [Indexed: 06/01/2023]
Abstract
Due to the widespread application of cerium, a rare earth element, the risk of exposure to cerium has increased. Therefore, understanding the physiological effects of cerium is of great importance. Our previous work showed that cerium caused significant lifespan shortening accompanied by oxidative damage in Drosophila melanogaster, however, little is known about the detailed mechanism of cerium-induced cytotoxicity. Thus, we examined the developmental time during metamorphosis, and assessed the toxic effects of cerium by evaluating heat shock protein 70 (Hsp70), DNA damage markers and apoptosis in D. melanogaster. We found that cerium extended the developmental time of D. melanogaster and up-regulated the expression of Hsp70 when the concentration of cerium was increased (especially concentrations over 26.3 μg/g). Up-regulation of the cell cycle checkpoint p53 and cell signaling protein p38 were also observed when the concentration of cerium was over 104 μg/g. In addition, the activities of caspase-3 and caspase-9, markers of apoptosis, were significantly higher when the larvae were exposed to ceric sulfate. These results suggest that high concentrations of cerium may result in DNA damage and ultimately apoptosis in D. melanogaster, and strongly indicate that cerium should be applied with caution and the potential toxic effects in humans should also be taken into consideration.
Collapse
Affiliation(s)
- Bin Wu
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, No. 101 Shanghai Road, Xuzhou, 221116, Jiangsu, China.
| | | | | | | | | |
Collapse
|
20
|
Yang XS, He GL, Hao YT, Xiao Y, Chen CH, Zhang GB, Yu ZP. Exposure to 2.45GHz electromagnetic fields elicits an HSP-related stress response in rat hippocampus. Brain Res Bull 2012; 88:371-8. [DOI: 10.1016/j.brainresbull.2012.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 03/08/2012] [Accepted: 04/02/2012] [Indexed: 11/28/2022]
|
21
|
Carmona ER, Guecheva TN, Creus A, Marcos R. Proposal of an in vivo comet assay using haemocytes of Drosophila melanogaster. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:165-169. [PMID: 20740640 DOI: 10.1002/em.20604] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 05/05/2010] [Indexed: 05/29/2023]
Abstract
This study presents the first application of an in vivo alkaline comet assay using haemocytes of Drosophila melanogaster larvae. These cells, which play a role similar to that of mammalian blood, can be easily obtained and represent an overall exposure of the treated larvae. To validate the assay, we evaluated the response of these cells to three well-known mutagenic agents: ethyl methanesulfonate (EMS), potassium dichromate (PD), and gamma radiation (γ-irradiation). Third-instar Drosophila larvae were exposed to different concentrations of EMS (1, 2, and 4 mM) and PD (0.5, 1, and 2.5 mM) and to different doses of γ-irradiation (2, 4, and 8 Gγ). Subsequently, haemolymph was extracted from the larvae, and haemocytes were isolated by centrifugation and used in the comet assay. Haemocytes exhibited a significant dose-related increase in DNA damage, indicating that these cells are clearly sensitive to the treatments. These results suggest that the proposed in vivo comet test, using larvae haemocytes of D. melanogaster, may be a useful in vivo assay for genotoxicity assessment.
Collapse
Affiliation(s)
- Erico R Carmona
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Edifici C, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | | | | |
Collapse
|
22
|
Gupta SC, Mishra M, Sharma A, Deepak Balaji TGR, Kumar R, Mishra RK, Chowdhuri DK. Chlorpyrifos induces apoptosis and DNA damage in Drosophila through generation of reactive oxygen species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:1415-23. [PMID: 20627310 DOI: 10.1016/j.ecoenv.2010.05.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Revised: 12/20/2009] [Accepted: 05/18/2010] [Indexed: 05/25/2023]
Abstract
The present study investigated the apoptosis and DNA damage inducing potential of chlorpyrifos (CP) in Drosophila melanogaster. Third instar larvae of Drosophila were treated with different concentrations of CP (0.015-15.0 microg/L) for 2-48 h. Reactive oxygen species (ROS) generation, oxidative stress markers, DNA damage and apoptotic cell death end points were measured in them. A significant increase in DNA damage was concomitant with apoptotic mode of cell death in 15.0 microg/L CP-treated organisms for 24 and 48 h. Depolarization in mitochondrial membrane potential and increased casapase-3 and caspase-9 activities in these organisms indicated both as potential targets of CP. A significant positive correlation was observed among ROS generation, apoptosis and DNA damage. The study suggests that (i) ROS may be involved in inducing apoptosis and DNA damage in the CP-exposed larvae of Drosophila and (ii) D. melanogaster may be used as an alternative in vivo animal model for xenobiotics hazard assessment.
Collapse
Affiliation(s)
- Subash C Gupta
- Embryotoxicology Section, Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
23
|
Gupta SC, Sharma A, Mishra M, Mishra RK, Chowdhuri DK. Heat shock proteins in toxicology: How close and how far? Life Sci 2010; 86:377-84. [DOI: 10.1016/j.lfs.2009.12.015] [Citation(s) in RCA: 286] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 12/22/2009] [Accepted: 12/31/2009] [Indexed: 01/03/2023]
|
24
|
Siddique HR, Mitra K, Bajpai VK, Ravi Ram K, Saxena DK, Chowdhuri DK. Hazardous effect of tannery solid waste leachates on development and reproduction in Drosophila melanogaster: 70kDa heat shock protein as a marker of cellular damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:1652-1662. [PMID: 19576632 DOI: 10.1016/j.ecoenv.2009.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 06/03/2009] [Accepted: 06/07/2009] [Indexed: 05/28/2023]
Abstract
Rapid industrialization has increased the burden of chemicals in the environment. These chemicals may be harmful to development and reproduction of any organism. We therefore analyzed the adverse effects of leachates from a tannery solid waste on development and reproduction using Drosophila. We show a significant delay in mean emergence of flies observed at the higher concentrations of the leachates, indicating their effect on the organism's development. Significant leachate-induced effect on reproduction of the organism was also observed. Sub-organismal analyses revealed Hsp70 expression and tissue damage in a sex-specific manner. Refractoriness of Hsp70 expression in accessory glands of male flies and ovaries of females was concurrent with tissue damage. Genes encoding certain seminal proteins (Acp70A and Acp36DE) from accessory glands were significantly down-regulated at higher concentrations of the leachates. The study suggests that (i) sub-organismal adverse responses are reflected at organismal level, (ii) tannery waste leachates cause adverse effects on the expression of genes encoding seminal proteins that facilitate normal reproduction and (iii) Hsp70 may be used as a marker of cellular damage for reproductive organs.
Collapse
Affiliation(s)
- Hifzur R Siddique
- Embryotoxicology Section, Indian Institute of Toxicology Research, Council of Scientific and Industrial Research, P.O. Box No. 80, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India
| | | | | | | | | | | |
Collapse
|
25
|
Induction of hsp70, hsp60, hsp83 and hsp26 and oxidative stress markers in benzene, toluene and xylene exposed Drosophila melanogaster: Role of ROS generation. Toxicol Appl Pharmacol 2009; 235:226-43. [DOI: 10.1016/j.taap.2008.12.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 11/14/2008] [Accepted: 12/02/2008] [Indexed: 11/24/2022]
|
26
|
Adverse effect of tannery waste leachates in transgenicDrosophila melanogaster: role of ROS in modulation of Hsp70, oxidative stress and apoptosis. J Appl Toxicol 2008; 28:734-48. [DOI: 10.1002/jat.1332] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Siddique HR, Sharma A, Gupta SC, Murthy RC, Dhawan A, Saxena DK, Chowdhuri DK. DNA damage induced by industrial solid waste leachates in Drosophila melanogaster: a mechanistic approach. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:206-216. [PMID: 18240159 DOI: 10.1002/em.20373] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Genomic stability requires that error-free genetic information be transmitted from generation to generation, a process that is dependent upon efficient DNA repair. Industrial leachates which contain mixtures of diverse chemicals are a major environmental concern. The interaction between these chemicals may have synergistic, antagonistic, or simply additive effects on biological systems. In the present study, the Comet assay was used to measure the DNA damage produced by leachates of solid wastes from flashlight battery, pigment, and tanning factories in the midgut cells and brain ganglia of Drosophila melanogaster mutants deficient in DNA repair proteins. Larvae were allowed to feed for 48 or 72 hr on diets containing 0.1, 0.5, and 2.0% (v/v) of the leachates. Physicochemical analysis run on the solid wastes, leachates, and treated larvae detected elevated levels of heavy metals. Leachates produced significantly greater levels of DNA damage in mutant strains mei41 (deficient in cell cycle check point protein), mus201 (deficient in excision repair protein), mus308 (deficient in postreplication repair protein), and rad54 (deficient in double strand break repair protein) than in the OregonR(+) wild-type strain. Larvae of the ligaseIV mutant (deficient in double strand break repair protein) were hypersensitive only to the pigment plant waste leachate. Conversely, the dnase2 mutant (deficient in protein responsible for degrading fragmented DNA) was more sensitive to DNA damage induction from the flashlight battery and tannery waste leachates. Our data demonstrate that repair of DNA damage in organisms exposed to leachates is dependent upon several DNA repair proteins, indicative of the involvement of multiple overlapping repair pathways. The study further suggests the usefulness of the Comet assay for studying the mechanisms of DNA repair in Drosophila.
Collapse
Affiliation(s)
- Hifzur R Siddique
- Embryotoxicology Section, Industrial Toxicology Research Centre, Lucknow, Uttar Pradesh, India
| | | | | | | | | | | | | |
Collapse
|