1
|
Ginseng volatile oil prolongs the lifespan and healthspan of Caenorhabditis elegans. Biogerontology 2022; 23:485-497. [PMID: 35939242 PMCID: PMC9358063 DOI: 10.1007/s10522-022-09956-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/03/2022] [Indexed: 11/02/2022]
Abstract
Ginseng volatile oil (GVO) is one of the main components of ginseng and has antibacterial and anti-inflammatory properties. In this study, gas chromatography-mass spectrometry (GC-MS) was applied to characterize GVO chemical composition, and 73 volatile components were detected from GVO. Caenorhabditis elegans was used as animal model to further elucidate the antioxidant and anti-aging effects of GVO in vivo. The results suggested that GVO significantly prolonged the lifespan of C. elegans and promoted its health without damaging its reproductive capacity. In addition, GVO increased the antioxidant capacity and survival rate of nematodes after heat shock. Transcriptional sequencing showed that autophagy-related genes atg-4.2, atg-7, lgg-2, and cyd-1 were up-regulated, and superoxide dismutase 1 (sod-1) expression was increased after GVO pretreatment. Considering the role of autophagy and antioxidant in aging, the expression of autophagy substrate P62 protein in BC12921 strain was analyzed and found to decrease by more than 50.00% after treatment with GVO. In addition, the lifespan of SOD-1 mutant nematodes was not significantly different from that of the control group. SOD activity and autophagy were activated, which is a clear expression of hormesis. All these results suggest that GVO prolongs the lifespan and healthspan of C. elegans, and its biological functions may be related to hormesis.
Collapse
|
2
|
Perrault R, Molnar P, Poole J, Zahradka P. PDGF-BB-mediated activation of CREB in vascular smooth muscle cells alters cell cycling via Rb, FoxO1 and p27 kip1. Exp Cell Res 2021; 404:112612. [PMID: 33895117 DOI: 10.1016/j.yexcr.2021.112612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION & AIM The vascular response to injury leads to the secretion of several factors, including platelet-derived growth factor (PDGF-BB). PDGF-BB stimulates smooth muscle cell (SMC) conversion to the synthetic phenotype, thereby enhancing proliferation and migration, and contributing to neointimal hyperplasia. Likewise, the cAMP response element binding protein (CREB) transcription factor has been shown to mediate SMC proliferation in response to various mitogens. We therefore investigated the contribution of CREB to PDGF-BB-dependent proliferation of SMCs with the intention of identifying signaling pathways involved both up and downstream of CREB activation. METHODS & RESULTS Treatments were performed on vascular SMCs from a porcine coronary artery explant model. The role of CREB was examined via adenoviral expression of a dominant-negative CREB mutant (kCREB) as well as inhibition of CREB binding protein (CBP). Involvement of the p27kip1 pathway was determined using a constitutively expressing p27kip1 adenoviral vector. PDGF-BB stimulated transient CREB phosphorylation on Ser-133 via ERK1/2-, PI3-kinase- and Src-dependent pathways. Expression of kCREB decreased PDGF-BB-dependent cell proliferation. PCNA expression and Rb phosphorylation were also inhibited by kCREB. These cell cycle proteins are controlled via p27kip1 expression in response to CREB-dependent post-translational modification of FoxO1. kCREB had no effect on Cyclin D1 expression, but did prevent PDGF-BB-induced Cyclin D1 nuclear translocation. An interaction inhibitor of CBP confirmed that Cyclin D1 is downstream of PDGF-BB and CREB. CONCLUSION CREB phosphorylation is required for SMC proliferation in response to PDGF-BB. This phenotypic change requires CBP and is mediated by Cyclin D1 and p27kip as a result of changes in FoxO1 activity.
Collapse
Affiliation(s)
- Raissa Perrault
- Department of Physiology and Pathophysiology, University of Manitoba, Canada; Molecular Physiology Laboratory, St. Boniface Albrechtsen Research Centre, Canada; Department of Experimental Sciences, Université de Saint Boniface, Winnipeg, Manitoba, Canada
| | - Peter Molnar
- Department of Physiology and Pathophysiology, University of Manitoba, Canada; Molecular Physiology Laboratory, St. Boniface Albrechtsen Research Centre, Canada
| | - Jenna Poole
- Molecular Physiology Laboratory, St. Boniface Albrechtsen Research Centre, Canada
| | - Peter Zahradka
- Department of Physiology and Pathophysiology, University of Manitoba, Canada; Molecular Physiology Laboratory, St. Boniface Albrechtsen Research Centre, Canada.
| |
Collapse
|
3
|
Stefanson AL, Bakovic M. Falcarinol Is a Potent Inducer of Heme Oxygenase-1 and Was More Effective than Sulforaphane in Attenuating Intestinal Inflammation at Diet-Achievable Doses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3153527. [PMID: 30420908 PMCID: PMC6215554 DOI: 10.1155/2018/3153527] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/20/2018] [Accepted: 09/02/2018] [Indexed: 02/08/2023]
Abstract
Nuclear factor- (erythroid-derived 2) like 2 (Nrf2) is a transcription factor that regulates the expression of a battery of antioxidant, anti-inflammatory, and cytoprotective enzymes including heme oxygenase-1 (Hmox1, Ho-1) and NADPH:quinone oxidoreductase-1 (Nqo1). The isothiocyanate sulforaphane (SF) is widely understood to be the most effective natural activator of the Nrf2 pathway. Falcarinol (FA) is a lesser studied natural compound abundant in medicinal plants as well as dietary plants from the Apiaceae family such as carrot. We evaluated the protective effects of FA and SF (5 mg/kg twice per day in CB57BL/6 mice) pretreatment for one week against acute intestinal and systemic inflammation. The phytochemical pretreatment effectively reduced the magnitude of intestinal proinflammatory gene expression (IL-6, Tnfα/Tnfαr, Infγ, STAT3, and IL-10/IL-10r) with FA showing more potency than SF. FA was also more effective in upregulating Ho-1 at mRNA and protein levels in both the mouse liver and the intestine. FA but not SF attenuated plasma chemokine eotaxin and white blood cell growth factor GM-CSF, which are involved in the recruitment and stabilization of first-responder immune cells. Phytochemicals generally did not attenuate plasma proinflammatory cytokines. Plasma and intestinal lipid peroxidation was also not significantly changed 4 h after LPS injection; however, FA did reduce basal lipid peroxidation in the mesentery. Both phytochemical pretreatments protected against LPS-induced reduction in intestinal barrier integrity, but FA additionally reduced inflammatory cell infiltration even below negative control.
Collapse
Affiliation(s)
- Amanda L. Stefanson
- Department of Human Health and Nutritional Sciences, 50 Stone Rd E, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, 50 Stone Rd E, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
4
|
Liu J, Li HL, Guo XR, Zhou L, Wang Y, Duan YN, Wang MZ, Na RS, Yu B. A general strategy toward the total synthesis of C17 polyacetylenes virols A and C. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.08.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Liu W, Kong H, Zeng X, Wang J, Wang Z, Yan X, Wang Y, Xie W, Wang H. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration. Exp Cell Res 2015; 336:204-10. [PMID: 26160451 DOI: 10.1016/j.yexcr.2015.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 06/11/2015] [Accepted: 06/28/2015] [Indexed: 11/19/2022]
Abstract
Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (KATP) channels have been identified in ASMCs. Mount evidence has suggested that KATP channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K(+) channels triggers K(+) efflux, which leading to membrane hyperpolarization, preventing Ca(2+)entry through closing voltage-operated Ca(2+) channels. Intracellular Ca(2+) is the most important regulator of muscle contraction, cell proliferation and migration. K(+) efflux decreases Ca(2+) influx, which consequently influences ASMCs proliferation and migration. As a KATP channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2'-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca(2+)/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective KATP channel antagonist. These findings provide a strong evidence to support that Ipt antagonize the proliferating and migrating effects of PDGF-BB on human ASMCs through opening KATP channels. Altogether, our results highlighted a novel profile of Ipt as a potent option against the airway remodeling in chronic airway diseases.
Collapse
Affiliation(s)
- Wenrui Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Hui Kong
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xiaoning Zeng
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Jingjing Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Zailiang Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xiaopei Yan
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yanli Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Weiping Xie
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Hong Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
6
|
Sun L, Zhao R, Lan X, Chen R, Wang S, Du G. Goniolactone C, a styryl lactone derivative, inhibits PDGF-BB-induced vascular smooth muscle cell migration and proliferation via PDGFR/ERK signaling. Molecules 2014; 19:19501-15. [PMID: 25432005 PMCID: PMC6271974 DOI: 10.3390/molecules191219501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 10/24/2014] [Accepted: 10/24/2014] [Indexed: 11/28/2022] Open
Abstract
Platelet-derived growth factor-BB (PDGF-BB) and its downstream effector, extracellular signal-regulated kinase 1/2 (ERK1/2) MAP kinase, initiate a multitude of biological effects, including vascular smooth muscle cell (VSMC) proliferation and migration, which are critical events in the initiation and development of restenosis following percutaneous transluminal coronary angioplasty (PTCA). Styryl lactones are natural products that have been demonstrated to possess anti-proliferative activities. Goniolactone C is a styryl lactone derivative that was first extracted from Goniothalamus cheliensis Hu. In the present study, we investigated the effects of goniolactone C on VSMC migration and proliferation. We found that goniolactone C preferentially interacted with cellular systems that rely on PDGF signaling but not those that rely on epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) signaling. Goniolactone C strongly inhibited PDGF-BB-induced VSMC migration and proliferation. goniolactone C-mediated inhibition of VSMC proliferation was associated with cell cycle arrest, while goniolactone C-mediated inhibition of VSMC migration was associated with the suppression of adhesion molecule expression. In addition, goniolactone C directly inhibited PDGFR-β kinase activity, thereby blocking the downstream effector of PDGF-BB. Thus, the results of the present study suggest a novel adjunctive pharmacological strategy that may be used to prevent angioplasty-related restenosis.
Collapse
Affiliation(s)
- Lan Sun
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Rui Zhao
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Xi Lan
- Department of Anesthesiology and Critical Care medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ruoyun Chen
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Si Wang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Guanhua Du
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China.
| |
Collapse
|
7
|
Radenković M, Kitić D, Kostić M, Mrkaić A, Pavlović D, Miladinović B, Branković S. Effects of Extracts of Ginkgo, Onion, and Celery on the Contractility of Isolated Rat Atria. Clin Exp Hypertens 2013; 35:595-600. [DOI: 10.3109/10641963.2013.776566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Hong M, Wang XZ, Wang L, Hua YQ, Wen HM, Duan JA. Screening of immunomodulatory components in Yu-ping-feng-san using splenocyte binding and HPLC. J Pharm Biomed Anal 2011; 54:87-93. [DOI: 10.1016/j.jpba.2010.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/27/2010] [Accepted: 08/15/2010] [Indexed: 01/30/2023]
|
9
|
Liu Y, Li W, Ye C, Lin Y, Cheang TY, Wang M, Zhang H, Wang S, Zhang L, Wang S. Gambogic Acid Induces G0/G1 Cell Cycle Arrest and Cell Migration Inhibition Via Suppressing PDGF Receptor β Tyrosine Phosphorylation and Rac1 Activity in Rat Aortic Smooth Muscle Cells. J Atheroscler Thromb 2010; 17:901-13. [DOI: 10.5551/jat.3491] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Yong Liu
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - Wen Li
- Laboratory of Department of Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - CaiSheng Ye
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - Ying Lin
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - Tuck-Yun Cheang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - Mian Wang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - Hui Zhang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - SanMing Wang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - LongJuan Zhang
- Laboratory of Department of Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - ShenMing Wang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| |
Collapse
|
10
|
Venkatachalam K, Venkatesan B, Valente AJ, Melby PC, Nandish S, Reusch JEB, Clark RA, Chandrasekar B. WISP1, a pro-mitogenic, pro-survival factor, mediates tumor necrosis factor-alpha (TNF-alpha)-stimulated cardiac fibroblast proliferation but inhibits TNF-alpha-induced cardiomyocyte death. J Biol Chem 2009; 284:14414-27. [PMID: 19339243 DOI: 10.1074/jbc.m809757200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
WNT1-inducible signaling pathway protein-1 (WISP1), a member of the CYR61/CTGF/Nov family of growth factors, can mediate cell growth, transformation, and survival. Previously we demonstrated that WISP1 is up-regulated in post-infarct heart, stimulates cardiac fibroblast proliferation, and is induced by the proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha). Here we investigated (i) the localization of TNF-alpha and WISP1 in post-infarct heart, (ii) the mechanism of TNF-alpha-mediated WISP1 induction in primary human cardiac fibroblasts (CF), (iii) the role of WISP1 in TNF-alpha-mediated CF proliferation and collagen production, and (iv) the effects of WISP1 on TNF-alpha-mediated cardiomyocyte death. TNF-alpha and WISP1 expressions were increased in the border zones and non-ischemic remote regions of the post-ischemic heart. In CF, TNF-alpha potently induced WISP1 expression in cyclic AMP response element-binding protein (CREB)-dependent manner. TNF-alpha induced CREB phosphorylation in vitro and DNA binding and reporter gene activities in vivo. TNF-alpha induced CREB activation via ERK1/2, and inhibition of ERK1/2 and CREB blunted TNF-alpha-mediated WISP1 induction. Most importantly, WISP1 knockdown attenuated TNF-alpha stimulated collagen production and CF proliferation. Furthermore, WISP1 attenuated TNF-alpha-mediated cardiomyocyte death, thus demonstrating pro-mitogenic and pro-survival effects for WISP1 in myocardial constituent cells. Our results suggest that a TNF-alpha/WISP1 signaling pathway may contribute to post-infarct cardiac remodeling, a condition characterized by fibrosis and progressive cardiomyocyte loss.
Collapse
|