1
|
Bajgai J, Jun M, Oh JH, Lee JH. A perspective on the potential use of aptamer-based field-effect transistor sensors as biosensors for ovarian cancer biomarkers CA125 and HE4. Talanta 2025; 292:127954. [PMID: 40120511 DOI: 10.1016/j.talanta.2025.127954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/25/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Ovarian cancer (OC) is one of the most fatal gynaecological malignancies, primarily because of its typically asymptomatic early stages, which complicates early detection. Therefore, developing sensitive and appropriate biomarkers for efficient diagnosis of OC is urgently needed. Aptamers, short sequences of single-stranded DNA or RNA molecules, have become crucial in tumor diagnosis because of their high affinity for specific molecules produced by tumors. This ability allows aptamers to accurately detect OC, thus providing better survival rates and a reduced disease burden. Biosensors that combine recognition molecules and nanomaterials are essential in various fields, including disease diagnosis and health management. Molecular-specific field-effect transistor (FET) biosensors are particularly promising due to their rapid response times, ease of miniaturization, and high sensitivity in detecting OC. Aptamers, which are known for their stability and structural tunability, are increasingly being used as biological recognition units in FET biosensors, offering selective and high-affinity binding to target molecules that are ideal for medical diagnostics. This review explores the recent advancements in biosensors for OC detection, including FET biosensors with aptamer-functionalized nanomaterials for CA125 and HE4. Furthermore, this review provides an overview of the structure and sensing principles of these advanced biosensors, preparation methods and functionalization strategies that enhance their performance. Additionally, notable progress and potential of biosensors, including aptamer-functionalized FET biosensors for OC diagnosis have been summarized, emphasising their role and clinical validation in advancing medical diagnostics and improving patient outcomes through enhanced detection capabilities.
Collapse
Affiliation(s)
- Johny Bajgai
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine Wonju, Gangwon-do 26426, Republic of Korea; Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Minsang Jun
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Republic of Korea
| | - Jong-Han Lee
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine Wonju, Gangwon-do 26426, Republic of Korea; Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea.
| |
Collapse
|
2
|
Hua L, Wang D, Wang K, Wang Y, Gu J, Zhang Q, You Q, Wang L. Design of Tracers in Fluorescence Polarization Assay for Extensive Application in Small Molecule Drug Discovery. J Med Chem 2023; 66:10934-10958. [PMID: 37561645 DOI: 10.1021/acs.jmedchem.3c00881] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Development of fluorescence polarization (FP) assays, especially in a competitive manner, is a potent and mature tool for measuring the binding affinities of small molecules. This approach is suitable for high-throughput screening (HTS) for initial ligands and is also applicable for further study of the structure-activity relationships (SARs) of candidate compounds for drug discovery. Buffer and tracer, especially rational design of the tracer, play a vital role in an FP assay system. In this perspective, we provided different kinds of approaches for tracer design based on successful cases in recent years. We classified these tracers by different types of ligands in tracers, including peptide, nucleic acid, natural product, and small molecule. To make this technology accessible for more targets, we briefly described the basic theory and workflow, followed by highlighting the design and application of typical FP tracers from a perspective of medicinal chemistry.
Collapse
Affiliation(s)
- Liwen Hua
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Danni Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Keran Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxuan Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jinying Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Kar SS, Dhar AK, Palei NN, Bhatt S. Small-molecule oligonucleotides as smart modality for antiviral therapy: a medicinal chemistry perspective. Future Med Chem 2023; 15:1091-1110. [PMID: 37584172 DOI: 10.4155/fmc-2023-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Small-molecule oligonucleotides could be exploited therapeutically to silence the expression of viral infection-causing genes, and a few of them are now in clinical trials for the management of viral infections. The most challenging aspect of these oligonucleotides' therapeutic success involves their delivery. Thus medicinal chemistry strategies are inevitable to avoid degradation by serum nucleases, avoid kidney clearance and improve cellular uptake. Recently small-molecule oligonucleotide design has opened up new avenues to improve the treatment of drug-resistant viral infections, along with the development of COVID-19 medicines. This review is directed toward the recent advances in rational design, mechanism of action, structure-activity relationships and future perspective of the small-molecule oligonucleotides targeting viral infections, including COVID-19.
Collapse
Affiliation(s)
- Sidhartha S Kar
- Institute of Pharmacy & Technology, Salipur, Cuttack, Odisha, 754202, India
| | - Arghya Kusum Dhar
- School of Pharmacy, The Neotia University, Sarisa, D.H. Road, 24 Pgs (South) West Bengal, 743368, India
| | - Narahari N Palei
- Amity Institute of Pharmacy, Amity University Lucknow Campus, Uttar Pradesh, 226010, India
| | - Shvetank Bhatt
- School of Health Sciences and Technology, Dr Vishwanath Karad MIT World Peace University, Pune, Maharashtra, 411038, India
| |
Collapse
|
4
|
Fathi-Karkan S, Mirinejad S, Ulucan-Karnak F, Mukhtar M, Almanghadim HG, Sargazi S, Rahdar A, Díez-Pascual AM. Biomedical applications of aptamer-modified chitosan nanomaterials: An updated review. Int J Biol Macromol 2023; 238:124103. [PMID: 36948344 DOI: 10.1016/j.ijbiomac.2023.124103] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023]
Abstract
Among polysaccharides of environmental and economic interest, chitosan (CS) is receiving much attention, particularly in the food and biotechnology industries to encapsulate active food ingredients and immobilize enzymes. CS nanoparticles (CS NPs) combine the intrinsic beneficial properties of both natural polymers and nanoscale particles such as quantum size effect, biocompatibility, biodegradability, and ease of modification, and have great potential for bioimaging, drug delivery, and biosensing applications. Aptamers are single-stranded oligonucleotides that can fold into predetermined structures and bind to the corresponding biomolecules. They are mainly used as targeting ligands in biosensors, disease diagnostic kits and treatment strategies. They can deliver contrast agents and drugs into cancer cells and tissues, control microorganism growth and precisely target pathogens. Aptamer-conjugated CS NPs can significantly improve the efficacy of conventional therapies, minimize their side effects on normal tissues, and overcome the enhanced permeability retention (EPR) effect. Further, aptamer-conjugated carbohydrate-based nanobiopolymers have shown excellent antibacterial and antiviral properties and can be used to develop novel biosensors for the efficient detection of antibiotics, toxins, and other biomolecules. This updated review aims to provide a comprehensive overview of the bioapplications of aptamer-conjugated CS NPs used as innovative diagnostic and therapeutic platforms, their limitations, and potential future directions.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94531-55166, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Fulden Ulucan-Karnak
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, İzmir 35100, Turkey
| | - Mahwash Mukhtar
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary.
| | | | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P.O. Box 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
5
|
A nucleolin-activated polyvalent aptamer nanoprobe for the detection of cancer cells. Anal Bioanal Chem 2023; 415:2217-2226. [PMID: 36864310 DOI: 10.1007/s00216-023-04629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
Sensitive detection of cancer cells plays a critical role in early cancer diagnosis. Nucleolin, overexpressed on the surface of cancer cells, is regarded as a candidate biomarker for cancer diagnosis. Thus, cancer cells can be detected through the detection of membrane nucleolin. Herein, we designed a nucleolin-activated polyvalent aptamer nanoprobe (PAN) to detect cancer cells. In brief, a long single-stranded DNA with many repeated sequences was synthesized through rolling circle amplification (RCA). Then the RCA product acted as a scaffold chain to combine with multiple AS1411 sequences, which was doubly modified with fluorophore and quenching group, respectively. The fluorescence of PAN was initially quenched. Upon binding to target protein, the conformation of PAN changed, leading to the recovery of fluorescence. The fluorescence signal of cancer cells treated with PAN was much brighter compared with that of monovalent aptamer nanoprobes (MAN) at the same concentration. Furthermore, the binding affinity of PAN to B16 cells was proved to be 30 times higher than that of MAN by calculating the dissociation constants. The results indicated that PAN could specifically detect target cells, and this design concept has potential to become promising in cancer diagnosis.
Collapse
|
6
|
Zhang J, Lu Y, Gao W, Yang P, Cheng N, Jin Y, Chen J. Structure-switching locked hairpin triggered rolling circle amplification for ochratoxin A (OTA) detection by ICP-MS. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Development and classification of RNA aptamers for therapeutic purposes: an updated review with emphasis on cancer. Mol Cell Biochem 2022; 478:1573-1598. [DOI: 10.1007/s11010-022-04614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022]
|
8
|
Khosropour H, Kalambate PK, Kalambate RP, Permpoka K, Zhou X, Chen GY, Laiwattanapaisal W. A comprehensive review on electrochemical and optical aptasensors for organophosphorus pesticides. Mikrochim Acta 2022; 189:362. [PMID: 36044085 DOI: 10.1007/s00604-022-05399-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/01/2022] [Indexed: 12/07/2022]
Abstract
There has been a rise in pesticide use as a result of the growing industrialization of agriculture. Organophosphorus pesticides have been widely applied as agricultural and domestic pest control agents for nearly five decades, and they remain as health and environmental hazards in water supplies, vegetables, fruits, and processed foods causing serious foodborne illness. Thus, the rapid and reliable detection of these harmful organophosphorus toxins with excellent sensitivity and selectivity is of utmost importance. Aptasensors are biosensors based on aptamers, which exhibit exceptional recognition capability for a variety of targets. Aptasensors offer numerous advantages over conventional approaches, including increased sensitivity, selectivity, design flexibility, and cost-effectiveness. As a result, interest in developing aptasensors continues to expand. This paper discusses the historical and modern advancements of aptasensors through the use of nanotechnology to enhance the signal, resulting in high sensitivity and detection accuracy. More importantly, this review summarizes the principles and strategies underlying different organophosphorus aptasensors, including electrochemical, electrochemiluminescent, fluorescent, and colorimetric ones.
Collapse
Affiliation(s)
- Hossein Khosropour
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Pramod K Kalambate
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rupali P Kalambate
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Khageephun Permpoka
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Xiaohong Zhou
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - George Y Chen
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen, 518060, China
| | - Wanida Laiwattanapaisal
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Nosrati M, Roushani M. Three-dimensional modeling of streptomycin binding single-stranded DNA for aptamer-based biosensors, a molecular dynamics simulation approach. J Biomol Struct Dyn 2022; 41:3430-3439. [PMID: 35297324 DOI: 10.1080/07391102.2022.2050945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Streptomycin (STR) an aminoglycoside antibiotic which is used against bacteria in human and animal infection, have serious side effects on different parts of human body. Therefore, there is a crucial need to detect trace amount of it in serum and food products. Aptamers are oligonucleotides or peptides, which bind their targets with high affinity and specificity. These properties make aptamers as suitable candidates for biosensing applications. A 79-mer ss-DNA aptamer was applied for the detection of small amount of STR in various aptasensors. But there is no structural information on the STR-binding aptamer and molecular details underlying the aptamer-STR binding remain unexplored. In this study we provided a 3D-structural model for 79-mer ss-DNA aptamer from the sequence. Using docking program and molecular dynamics (MD) simulation we predicted the binding pocket of ss-DNA aptamer. Our results show STR streptose ring is buried within the groove of DNA model and capped by non Watson-Crick bases. STR interacts with aptamer through forming stable hydrogen bonds. Our computational findings are in fair agreement with experimental results. With the atomic structural details, we gained new insight into the Apt-STR binding interaction that can help to further optimize aptamer efficiency in biosensing applications.Communicated by Ramaswamy H. Sarma.
Collapse
|
10
|
Animesh S, Singh YD. A Comprehensive Study on Aptasensors For Cancer Diagnosis. Curr Pharm Biotechnol 2021; 22:1069-1084. [PMID: 32957883 DOI: 10.2174/1389201021999200918152721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/23/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022]
Abstract
Cancer is the most devastating disease in the present scenario, killing millions of people every year. Early detection, accurate diagnosis, and timely treatment are considered to be the most effective ways to control this disease. Rapid and efficient detection of cancer at their earliest stage is one of the most significant challenges in cancer detection and cure. Numerous diagnostic modules have been developed to detect cancer cells early. As nucleic acid equivalent to antibodies, aptamers emerge as a new class of molecular probes that can identify cancer-related biomarkers or circulating rare cancer/ tumor cells with very high specificity and sensitivity. The amalgamation of aptamers with the biosensing platforms gave birth to "Aptasensors." The advent of highly sensitive aptasensors has opened up many new promising point-of-care diagnostics for cancer. This comprehensive review focuses on the newly developed aptasensors for cancer diagnostics.
Collapse
Affiliation(s)
- Sambhavi Animesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Yengkhom D Singh
- Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| |
Collapse
|
11
|
Aptasensors for mycotoxin detection: A review. Anal Biochem 2021; 644:114156. [PMID: 33716125 DOI: 10.1016/j.ab.2021.114156] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/10/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022]
Abstract
Mycotoxins are toxic compounds produced by fungi, which represent a risk to the food and feed supply chain, having an impact on health and economies. A high percentage of feed samples have been reported to be contaminated with more than one type of mycotoxin. Systematic, cost-effective and simple tools for testing are critical to achieve a rapid and accurate screening of food and feed quality. In this review, we describe the various aptamers that have been selected against mycotoxins and their incorporation into optical and electrochemical aptasensors, outlining the strategies exploited, highlighting the advantages and disadvantages of each approach. The review also discusses the different materials used and the immobilization methods employed, with the aim of achieving the highest sensitivity and selectivity.
Collapse
|
12
|
Dalirirad S, Han D, Steckl AJ. Aptamer-Based Lateral Flow Biosensor for Rapid Detection of Salivary Cortisol. ACS OMEGA 2020; 5:32890-32898. [PMID: 33403250 PMCID: PMC7774066 DOI: 10.1021/acsomega.0c03223] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 12/04/2020] [Indexed: 05/05/2023]
Abstract
We have developed a disposable point-of-care (POC) aptamer-based biosensor for the detection of salivary cortisol. Nonstressful and noninvasive sampling of saliva compared to that of blood makes saliva an attractive biological matrix in developing POC devices for biomarker monitoring. Aptamers are attractive as recognition elements for multiple reasons, including their specific chemical synthesis, high stability, lack of immunogenicity, and cell-free evolution. A duplex aptamer conjugated to the surface of Au nanoparticles (AuNPs) by Au-S bonds is utilized as the sensor probe in a lateral flow assay (LFA) device. The addition of saliva samples containing cortisol makes the cortisol-aptamer undergo conformational changes and dissociate from the capture probe. Increasing cortisol concentration in the dispensed saliva sample results in increased dissociation and leads to increased binding of AuNP conjugate on the test line. Therefore, the color intensity of the test line on the LFA is a direct function of the concentration of cortisol in saliva. This simple and fast method provides detection in the cortisol range of ∼0.5-15 ng/mL, which is in the clinically accepted range for salivary cortisol. The limit of detection was 0.37 ng/mL, and the accuracy was confirmed by enzyme-linked immunosorbent assay (ELISA) testing results. High selectivity was observed for salivary cortisol against other closely related steroids and stress biomarkers present in saliva.
Collapse
Affiliation(s)
- Shima Dalirirad
- Nanoelectronics
Laboratory, Department of Physics, Department of Electrical Engineering
and Computer Science, University of Cincinnati, Cincinnati, Ohio 45255-0030, United States
| | - Daewoo Han
- Nanoelectronics
Laboratory, Department of Physics, Department of Electrical Engineering
and Computer Science, University of Cincinnati, Cincinnati, Ohio 45255-0030, United States
| | - Andrew J. Steckl
- Nanoelectronics
Laboratory, Department of Physics, Department of Electrical Engineering
and Computer Science, University of Cincinnati, Cincinnati, Ohio 45255-0030, United States
| |
Collapse
|
13
|
Nao SC, Wu KJ, Wang W, Leung CH, Ma DL. Recent Progress and Development of G-Quadruplex-Based Luminescent Assays for Ochratoxin A Detection. Front Chem 2020; 8:767. [PMID: 33088800 PMCID: PMC7490745 DOI: 10.3389/fchem.2020.00767] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin that is widespread throughout the world. It contaminates foods such as vegetables, fruits, and rice. It harms human health and has potential carcinogenic effects. The G-quadruplex (G4) is a tetraplexed DNA structure generated from guanine-rich DNA that has found emerging use in aptamer-based sensing systems. This review outlines the status of OTA contamination and conventional detection methods for OTA. Various G4-based methods to detect OTA developed in recent years are summarized along with their advantages and disadvantages compared to existing approaches.
Collapse
Affiliation(s)
- Sang-Cuo Nao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China
| | - Ke-Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, China
| |
Collapse
|
14
|
Perret G, Boschetti E. Aptamer-Based Affinity Chromatography for Protein Extraction and Purification. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 174:93-139. [PMID: 31485702 DOI: 10.1007/10_2019_106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aptamers are oligonucleotide molecules able to recognize very specifically proteins. Among the possible applications, aptamers have been used for affinity chromatography with effective results and advantages over most advanced protein separation technologies. This chapter first discusses the context of the affinity chromatography with aptamer ligands. With the adaptation of SELEX, the chemical modifications of aptamers to comply with the covalent coupling and the separation process are then extensively presented. A focus is then made about the most important applications for protein separation with real-life examples and the comparison with immunoaffinity chromatography. In spite of well-advanced demonstrations and the extraordinary potential developments, a significant optimization work is still due to deserve large-scale applications with all necessary validations. Graphical Abstract Aptamer-protein complexes by X-ray crystallography.
Collapse
|
15
|
Zhang N, Zhang ZK, Yu Y, Zhuo Z, Zhang G, Zhang BT. Pros and Cons of Denosumab Treatment for Osteoporosis and Implication for RANKL Aptamer Therapy. Front Cell Dev Biol 2020; 8:325. [PMID: 32478071 PMCID: PMC7240042 DOI: 10.3389/fcell.2020.00325] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/16/2020] [Indexed: 12/26/2022] Open
Abstract
Osteoporosis is age-related deterioration in bone mass and micro-architecture. Denosumab is a novel human monoclonal antibody for osteoporosis. It is a receptor activator of nuclear factor-κB ligand (RANKL) inhibitor, which binds to and inhibits osteoblast-produced RANKL, in turn reduces the binding between RANKL and osteoclast receptor RANK, therefore decreases osteoclast-mediated bone resorption and turnover. However, adverse events have also been reported after denosumab treatment, including skin eczema, flatulence, cellulitis and osteonecrosis of the jaw (ONJ). Extensive researches on the mechanism of adverse reactions caused by denosumab have been conducted and may provide new insights into developing new RANKL inhibitors that achieve better specificity and safety. Aptamers are single-stranded oligonucleotides that can bind to target molecules with high specificity and affinity. They are screened from large single-stranded synthetic oligonucleotides and enriched by a technology named SELEX (systematic evolution of ligands by exponential enrichment). With extra advantages such as high stability, low immunogenicity and easy production over antibodies, aptamers are hypothesized to be promising candidates for therapeutic drugs targeting RANKL to counteract osteoporosis. In this review, we focus on the pros and cons of denosumab treatment in osteoporosis and the implication for novel aptamer treatment.
Collapse
Affiliation(s)
- Ning Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zong-Kang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhenjian Zhuo
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
16
|
Batista FA, Gyau B, Vilacha JF, Bosch SS, Lunev S, Wrenger C, Groves MR. New directions in antimalarial target validation. Expert Opin Drug Discov 2020; 15:189-202. [PMID: 31959021 DOI: 10.1080/17460441.2020.1691996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: Malaria is one of the most prevalent human infections worldwide with over 40% of the world's population living in malaria-endemic areas. In the absence of an effective vaccine, emergence of drug-resistant strains requires urgent drug development. Current methods applied to drug target validation, a crucial step in drug discovery, possess limitations in malaria. These constraints require the development of techniques capable of simplifying the validation of Plasmodial targets.Areas covered: The authors review the current state of the art in techniques used to validate drug targets in malaria, including our contribution - the protein interference assay (PIA) - as an additional tool in rapid in vivo target validation.Expert opinion: Each technique in this review has advantages and disadvantages, implying that future validation efforts should not focus on a single approach, but integrate multiple approaches. PIA is a significant addition to the current toolset of antimalarial validation. Validation of aspartate metabolism as a druggable pathway provided proof of concept of how oligomeric interfaces can be exploited to control specific activity in vivo. PIA has the potential to be applied not only to other enzymes/pathways of the malaria parasite but could, in principle, be extrapolated to other infectious diseases.
Collapse
Affiliation(s)
- Fernando A Batista
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands.,Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Benjamin Gyau
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Juliana F Vilacha
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Soraya S Bosch
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands.,Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sergey Lunev
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Matthew R Groves
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
17
|
Negahdary M. Aptamers in nanostructure-based electrochemical biosensors for cardiac biomarkers and cancer biomarkers: A review. Biosens Bioelectron 2020; 152:112018. [PMID: 32056737 DOI: 10.1016/j.bios.2020.112018] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 01/01/2023]
Abstract
Heart disease (especially myocardial infarction (MI)) and cancer are major causes of death. Recently, aptasensors with the applying of different nanostructures have been able to provide new windows for the early and inexpensive detection of these deadly diseases. Early, inexpensive, and accurate diagnosis by portable devices, especially aptasensors can increase the likelihood of survival as well as significantly reduce the cost of treatment. In this review, recent studies based on the designed aptasensors for the diagnosis of these diseases were collected, ordered, and reviewed. The biomarkers for the diagnosis of each disease were discussed separately. The primary constituent elements of these aptasensors including, analyte, aptamer sequence, type of nanostructure, diagnostic technique, analyte detection range, and limit of detection (LOD), were evaluated and compared.
Collapse
Affiliation(s)
- Masoud Negahdary
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
18
|
Shan Y, Jin X, Gong M, Lv L, Li L, Jiang M, Wang X, Xu J. A Sandwich‐type Electrochemiluminescence Aptasensor for Thrombin Based on Functional Co‐polymer Electrode Using Ru(bpy)
3
2+
Doped Nanocomposites as Signal‐amplifying Tags. ELECTROANAL 2019. [DOI: 10.1002/elan.201900022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yanqun Shan
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing 210009 China
| | - Xin Jin
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing 210009 China
| | - Miao Gong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing 210009 China
| | - Liangrui Lv
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing 210009 China
| | - Linyu Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing 210009 China
| | - Meng Jiang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing 210009 China
| | - Xiaoying Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing 210009 China
| | - Jun Xu
- Institute of Toxicology and Functional AssessmentJiangsu Provincial Center for Disease Control and Prevention Nanjing 210009 China
| |
Collapse
|
19
|
Huang R, Xiong LL, Chai HH, Fu JJ, Lu Z, Yu L. Sensitive colorimetric detection of ochratoxin A by a dual-functional Au/Fe3O4 nanohybrid-based aptasensor. RSC Adv 2019; 9:38590-38596. [PMID: 35540181 PMCID: PMC9075840 DOI: 10.1039/c9ra07899a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
A novel colorimetric aptasensor based on a Au/Fe3O4 nanohybrid was developed to detect ochratoxin A (OTA). The aptasensor is composed of a free OTA aptamer, a Au/Fe3O4 nanohybrid coated with biotinylated complementary DNA of the OTA aptamer (biotin-cDNA-Au/Fe3O4), and free alkaline-phosphatase-labeled streptavidin (SA-ALP). The Au/Fe3O4 nanohybrid not only immobilizes biotin-cDNA but also magnetically separates SA-ALP from the sample solution. One part of the OTA aptamer sequence hybridizes with biotin-cDNA immobilized on Au/Fe3O4, and the left part of the OTA aptamer sequence covers the biotin and blocks the specific interaction between biotin and SA-ALP. OTA can interrupt the interaction of OTA aptamer binding to biotin-cDNA-Au/Fe3O4 and can inhibit the shielding effect of the OTA aptamer on biotin. The amount of SA-ALP that can be captured by biotin-cDNA-Au/Fe3O4 thus increases with increasing OTA concentration. Through a simple magnetic separation, the collected SA-ALP-linked Au/Fe3O4 can produce a yellow-colored solution in the presence of p-nitrophenyl phosphate (p-NPP). This colorimetric aptasensor can detect OTA as low as 1.15 ng mL−1 with high specificity. A novel colorimetric aptasensor based on a Au/Fe3O4 nanohybrid was developed to detect ochratoxin A (OTA).![]()
Collapse
Affiliation(s)
- Rong Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- Institute for Clean Energy and Advanced Materials
- School of Materials and Energy
- Southwest University
| | - Lu Lu Xiong
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- Institute for Clean Energy and Advanced Materials
- School of Materials and Energy
- Southwest University
| | - Hui Hui Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- Institute for Clean Energy and Advanced Materials
- School of Materials and Energy
- Southwest University
| | - Jing Jing Fu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- Institute for Clean Energy and Advanced Materials
- School of Materials and Energy
- Southwest University
| | - Zhisong Lu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- Institute for Clean Energy and Advanced Materials
- School of Materials and Energy
- Southwest University
| | - Ling Yu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- Institute for Clean Energy and Advanced Materials
- School of Materials and Energy
- Southwest University
| |
Collapse
|
20
|
Majdinasab M, Zareian M, Zhang Q, Li P. Development of a new format of competitive immunochromatographic assay using secondary antibody-europium nanoparticle conjugates for ultrasensitive and quantitative determination of ochratoxin A. Food Chem 2018; 275:721-729. [PMID: 30724255 DOI: 10.1016/j.foodchem.2018.09.112] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/18/2023]
Abstract
In this study, to enhance the sensitivity of conventional immunochromatographic assay (ICA) two strategies including using a high sensitive label and changing the assay format, were simultaneously applied to develop an ultrasensitive format of ICA. In new format, primary monoclonal antibody against ochratoxin A (OTA) was used without any labeling, and a secondary polycolonal antibody was labeled with europium fluorescent nanoparticles (EuNPs). Detection was performed in a single step by inserting the test strip into a microtube containing all reagents. The results were obtained within 12 min and read by a portable fluorescent strip reader. Salient features of the new format of ICA compared with conventional format include: (1) A 100-fold decrease in limit of detection (LOD) due to application of two amplification strategy; (2) Reduction in expensive monoclonal antibody consumption. The established method was evaluated for the quantitative determination of OTA with LOD as low as 0.4 pg mL-1.
Collapse
Affiliation(s)
- Marjan Majdinasab
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Mohsen Zareian
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising 85354, Germany
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, People's Republic of China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, People's Republic of China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, People's Republic of China.
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, People's Republic of China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, People's Republic of China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, People's Republic of China; Laboratory of Risk Assessment for Oilseeds Products, Wuhan, Ministry of Agriculture, Wuhan 430062, People's Republic of China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan 430062, People's Republic of China.
| |
Collapse
|
21
|
Phanchai W, Srikulwong U, Chompoosor A, Sakonsinsiri C, Puangmali T. Insight into the Molecular Mechanisms of AuNP-Based Aptasensor for Colorimetric Detection: A Molecular Dynamics Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6161-6169. [PMID: 29724100 DOI: 10.1021/acs.langmuir.8b00701] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Colorimetric aptasensor based on assembly of salt-induced gold nanoparticles (AuNPs) is a promising biosensor. However, the molecular mechanism of the aptasensor is far from being fully understood. Herein, molecular dynamics (MD) simulation was used to investigate molecular interactions in the detection of ochratoxin A (OTA) including the following: (i) the molecular recognition of the anti-OTA aptamer, (ii) OTA-aptamer interactions in monovalent (Na+) and divalent (Mg2+) electrolytes, (iii) the binding mode of citrate on the AuNP surface, (iv) interactions of the aptamer with citrate-capped AuNPs, and (v) a detailed mechanism of the aptasensor. Our MD simulations revealed a specific binding of the OTA-aptamer complex, compared with OTB and warfarin. Compared with Na+, Mg2+ ions exerted a more effective attractive force between OTA and anti-OTA aptamer. Three different binding modes of citrate on AuNP surfaces were found. The kinetics of the adsorption of unfolded aptamers onto the citrate-capped AuNP was also elucidated. Most importantly, our MD simulation revealed an insightful analysis of the molecular mechanisms in the AuNP-based aptasensor and paved the way for the design of a novel colorimetric aptasensor for other target molecules, which is not limited to OTA detection.
Collapse
Affiliation(s)
- Witthawat Phanchai
- Materials Science and Nanotechnology Program, Department of Physics, Faculty of Science , Khon Kaen University , Khon Kaen 40002 , Thailand
| | - Unnop Srikulwong
- Department of Physics, Faculty of Science , Khon Kaen University , Khon Kaen 40002 , Thailand
| | - Apiwat Chompoosor
- Department of Chemistry, Faculty of Science , Ramkhamhaeng University , Bangkok 10240 , Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine , Khon Kaen University , Khon Kaen 40002 , Thailand
| | - Theerapong Puangmali
- Materials Science and Nanotechnology Program, Department of Physics, Faculty of Science , Khon Kaen University , Khon Kaen 40002 , Thailand
- Department of Physics, Faculty of Science , Khon Kaen University , Khon Kaen 40002 , Thailand
| |
Collapse
|
22
|
Maruyama T, Ishizu N, Eguchi Y, Hosogi T, Goto M. Liquid-liquid extraction of enzymatically synthesized functional RNA oligonucleotides using reverse micelles with a DNA-surfactant. Chem Commun (Camb) 2018; 52:12376-12379. [PMID: 27711339 DOI: 10.1039/c6cc06985a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We successfully implemented solvent extraction of short, single-stranded RNA using reverse micelles (water-in-oil microemulsions) with a DNA-surfactant. A thrombin-binding RNA aptamer was enzymatically synthesized and purified by extraction using the reverse micellar system. The extracted RNA aptamer retained thrombin-binding activity after the extraction procedure.
Collapse
Affiliation(s)
- Tatsuo Maruyama
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan.
| | - Naoki Ishizu
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan.
| | - Yuka Eguchi
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan.
| | - Takuya Hosogi
- Department of Applied Chemistry, Graduate School of Engineering and Center for Future Chemistry, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering and Center for Future Chemistry, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan
| |
Collapse
|
23
|
Avci-Adali M. Selection and Application of Aptamers and Intramers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 917:241-58. [PMID: 27236559 DOI: 10.1007/978-3-319-32805-8_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Aptamers are auspicious nucleic acid ligands for targeting different molecules, such as small molecules, peptides, proteins, or even whole living cells. They are short single-stranded DNA or RNA oligonucleotides, which can fold into complex three-dimensional structures and bind selectively their targets. Using the combinatorial chemistry process SELEX (Systematic Evolution of Ligands by EXponential Enrichment), target specific aptamers can be selected. These aptamers have a variety of application possibilities and can be used as sensors, diagnostic, imaging or therapeutic agents, and in the field of regenerative medicine for tissue engineering.
Collapse
Affiliation(s)
- Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstr. 7/1, 72076, Tuebingen, Germany.
- RiNA GmbH, Berlin, Germany.
| |
Collapse
|
24
|
Wang S, Mao B, Wu M, Liang J, Deng L. Influence of aptamer-targeted antibiofilm agents for treatment of Pseudomonas aeruginosa biofilms. Antonie van Leeuwenhoek 2017; 111:199-208. [PMID: 29098517 DOI: 10.1007/s10482-017-0941-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
Biofilms are bacterial communities consisting of numerous extracellular polymeric substances. Infections caused by biofilm-forming bacteria are considered to be a major threat to health security and so novel approaches to control biofilm are of importance. Aptamers are single-strand nucleic acid molecules that have high selectivity to their targets. Single-walled carbon nanotubes (SWNTs) are common nanomaterials and have been shown to be toxic to bacterial biofilms. The aim of this study was to test whether an aptamer could play a role as targeting agents to enhance the efficiency of anti-biofilm agents. Hence, two complexes (aptamer-SWNTs and aptamer-ciprofloxacin-SWNTs) based on an aptamer which targets Pseudomonas aeruginosa and SWNTs were constructed. Both complexes were assessed against P. aeruginosa biofilms. In vitro tests demonstrated that the aptamer-SWNTs could inhibit ~36% more biofilm formation than SWNTs alone. Similarly, the aptamer-ciprofloxacin-SWNTs had a higher anti-biofilm efficiency than either component or simple mixtures of two components. Our study underscores the potential of aptamers as targeting agents for anti-biofilm compounds, as well as providing a new strategy to control biofilms.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory of Developmental Biology of Freshwater, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,Changsha Institute for Food and Drug Control, Changsha, 410081, Hunan, People's Republic of China
| | - Biyao Mao
- State Key Laboratory of Developmental Biology of Freshwater, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Mingxi Wu
- State Key Laboratory of Developmental Biology of Freshwater, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Jingjing Liang
- State Key Laboratory of Developmental Biology of Freshwater, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Le Deng
- State Key Laboratory of Developmental Biology of Freshwater, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| |
Collapse
|
25
|
Yang X, Dinuka Abeydeera N, Liu FW, Egli M. Origins of the enhanced affinity of RNA-protein interactions triggered by RNA phosphorodithioate backbone modification. Chem Commun (Camb) 2017; 53:10508-10511. [PMID: 28868553 PMCID: PMC5608642 DOI: 10.1039/c7cc05722a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The well-characterized interaction between the MS2 coat protein and its cognate RNA hairpin was used to evaluate changes in affinity as a result of phosphorodithioate (PS2) replacing phosphate by biolayer interferometry (BLI). A structure-based analysis of the data provides insights into the origins of the enhanced affinity of RNA-protein interactions triggered by the PS2 moiety.
Collapse
Affiliation(s)
- Xianbin Yang
- AM Biotechnologies, LLC, 12521 Gulf Freeway, Houston, TX 77034, USA.
| | | | | | | |
Collapse
|
26
|
Yang X. Solid-Phase Synthesis of RNA Analogs Containing Phosphorodithioate Linkages. ACTA ACUST UNITED AC 2017; 70:4.77.1-4.77.13. [PMID: 28921494 DOI: 10.1002/cpnc.40] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The oligoribonucleotide phosphorodithioate (PS2-RNA) modification uses two sulfur atoms to replace two non-bridging oxygen atoms at an internucleotide phosphorodiester backbone linkage. Like a natural phosphodiester RNA backbone linkage, a PS2-modified backbone linkage is achiral at phosphorus. PS2-RNAs are highly stable to nucleases and several in vitro assays have demonstrated their biological activity. For example, PS2-RNAs silenced mRNA in vitro and bound to protein targets in the form of PS2-aptamers (thioaptamers). Thus, the interest in and promise of PS2-RNAs has drawn attention to synthesizing, isolating, and characterizing these compounds. RNA-thiophosphoramidite monomers are commercially available from AM Biotechnologies and this unit describes an effective methodology for solid-phase synthesis, deprotection, and purification of RNAs having PS2 internucleotide linkages. © 2017 by John Wiley & Sons, Inc.
Collapse
|
27
|
Badie Bostan H, Danesh NM, Karimi G, Ramezani M, Mousavi Shaegh SA, Youssefi K, Charbgoo F, Abnous K, Taghdisi SM. Ultrasensitive detection of ochratoxin A using aptasensors. Biosens Bioelectron 2017; 98:168-179. [PMID: 28672192 DOI: 10.1016/j.bios.2017.06.055] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/22/2017] [Accepted: 06/25/2017] [Indexed: 12/28/2022]
Abstract
Regarding teratogenic, carcinogenic, and immunotoxic nature of ochratoxin A (OTA), selective and sensitive monitoring of this molecule in food samples is of great importance. In recent years, various methods have been introduced for detection of OTA. However, they are usually time-consuming, labor-intensive and expensive. Therefore, these parameters limited their usage. The emerging method of detection, aptasensor, has attracted more attention for OTA detection, due to distinctive advantages including high sensitivity, selectivity and simplicity. In this review, the new developed aptasensors for detection of OTA have been investigated. We also highlighted advantages and disadvantages of different types of OTA aptasensors. This review also takes into consideration the goal to find out which designs are the most rational ones for highly sensitive detection of OTA.
Collapse
Affiliation(s)
- Hasan Badie Bostan
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Noor Mohammad Danesh
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Research Institute of Sciences and New Technology, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Kazem Youssefi
- Department of English, Tabaran Institute of Higher Education, Mashhad, Iran
| | - Fahimeh Charbgoo
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
28
|
Babaei M, Jalalian SH, Bakhtiari H, Ramezani M, Abnous K, Taghdisi SM. Aptamer-Based Fluorescent Switch for Sensitive Detection of Oxytetracycline. Aust J Chem 2017. [DOI: 10.1071/ch16562] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxytetracycline (OTC) is one of the most used antibiotics in veterinary medicine. There is a large concern about developing antibiotic resistance in humans as a result of the consumption of products contaminated with OTC, so a fast detection technique for an on-field screening test is highly in demand. Here we introduce a novel aptasensor for fast detection of OTC, based on a triple helix molecular switch (THMS) complex formation. The limit of detection (LOD) of this sensor was 1.67 and 6.44 nM in phosphate buffer and milk samples, respectively. Moreover, the sensor showed a high selectivity towards OTC.
Collapse
|
29
|
Menger M, Yarman A, Erdőssy J, Yildiz HB, Gyurcsányi RE, Scheller FW. MIPs and Aptamers for Recognition of Proteins in Biomimetic Sensing. BIOSENSORS 2016; 6:E35. [PMID: 27438862 PMCID: PMC5039654 DOI: 10.3390/bios6030035] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/04/2016] [Accepted: 07/11/2016] [Indexed: 12/12/2022]
Abstract
Biomimetic binders and catalysts have been generated in order to substitute the biological pendants in separation techniques and bioanalysis. The two major approaches use either "evolution in the test tube" of nucleotides for the preparation of aptamers or total chemical synthesis for molecularly imprinted polymers (MIPs). The reproducible production of aptamers is a clear advantage, whilst the preparation of MIPs typically leads to a population of polymers with different binding sites. The realization of binding sites in the total bulk of the MIPs results in a higher binding capacity, however, on the expense of the accessibility and exchange rate. Furthermore, the readout of the bound analyte is easier for aptamers since the integration of signal generating labels is well established. On the other hand, the overall negative charge of the nucleotides makes aptamers prone to non-specific adsorption of positively charged constituents of the sample and the "biological" degradation of non-modified aptamers and ionic strength-dependent changes of conformation may be challenging in some application.
Collapse
Affiliation(s)
- Marcus Menger
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, Potsdam D-14476, Germany.
| | - Aysu Yarman
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 25-26, Potsdam D-14476, Germany.
- Turkish-German University, Faculty of Science, Molecular Biotechnology, Sahinkaya Cad. No. 86, Bekoz, Istanbul 34820, Turkey.
| | - Júlia Erdőssy
- MTA-BME "Lendület" Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111, Hungary.
| | - Huseyin Bekir Yildiz
- Department of Materials Science and Nanotechnology Engineering, KTO Karatay University, Konya 42020, Turkey.
| | - Róbert E Gyurcsányi
- MTA-BME "Lendület" Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111, Hungary.
| | - Frieder W Scheller
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, Potsdam D-14476, Germany.
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 25-26, Potsdam D-14476, Germany.
| |
Collapse
|
30
|
Nick TA, de Oliveira TE, Pilat DW, Spenkuch F, Butt HJ, Helm M, Netz PA, Berger R. Stability of a Split Streptomycin Binding Aptamer. J Phys Chem B 2016; 120:6479-89. [PMID: 27281393 DOI: 10.1021/acs.jpcb.6b02440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Thomas A Nick
- Max Planck Institute for Polymer Research , 55128 Mainz, Germany
| | - Tiago E de Oliveira
- Instituto de Química, Universidade Federal do Rio Grande do Sul , Avenida Bento Gonçalves, 9500, 91501-970 Porto Alegre-RS, Brazil
| | - Dominik W Pilat
- Max Planck Institute for Polymer Research , 55128 Mainz, Germany
| | - Felix Spenkuch
- Johannes Gutenberg Universität Mainz , Institute of Pharmacy and Biochemistry, 55128 Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research , 55128 Mainz, Germany
| | - Mark Helm
- Johannes Gutenberg Universität Mainz , Institute of Pharmacy and Biochemistry, 55128 Mainz, Germany
| | - Paulo A Netz
- Instituto de Química, Universidade Federal do Rio Grande do Sul , Avenida Bento Gonçalves, 9500, 91501-970 Porto Alegre-RS, Brazil
| | - Rüdiger Berger
- Max Planck Institute for Polymer Research , 55128 Mainz, Germany
| |
Collapse
|
31
|
Patel KA, Sethi R, Dhara AR, Roy I. Challenges with osmolytes as inhibitors of protein aggregation: Can nucleic acid aptamers provide an answer? Int J Biol Macromol 2016; 100:75-88. [PMID: 27156694 DOI: 10.1016/j.ijbiomac.2016.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 02/07/2023]
Abstract
Protein aggregation follows some common motifs. Whether in the formation of inclusion bodies in heterologous overexpression systems or inclusions in protein conformational diseases, or aggregation during storage or transport of protein formulations, aggregates form cross beta-sheet structures and stain with amyloidophilic dyes like Thioflavin T and Congo Red, irrespective of the concerned protein. Traditionally, osmolytes are used to stabilize proteins against stress conditions. They are employed right from protein expression, through production and purification, to formulation and administration. As osmolytes interact with the solvent, the differential effect of the stress condition on the solvent mostly determines the effect of the osmolyte on protein stability. Nucleic acid aptamers, on the other hand, are highly specific for their targets. When selected against monomeric, natively folded proteins, they bind to them with very high affinity. This binding inhibits the unfolding of the protein and/or monomer-monomer interaction which are the initial common steps of protein aggregation. Thus, by changing the approach to a protein-centric model, aptamers are able to function as universal stabilizers of proteins. The review discusses cases where osmolytes were unable to provide stabilization to proteins against different stress conditions, a gap which the aptamers seem to be able to fill.
Collapse
Affiliation(s)
- Kinjal A Patel
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Ratnika Sethi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Anita R Dhara
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India.
| |
Collapse
|
32
|
Kim NH, Le HT, Yang Y, Byun KM, Kim TW. Modified DNA Aptamer Immobilization via Cu(I)-Stabilizing Ligand-assisted Azide-Alkyne Cycloaddition for Surface Plasmon Resonance Measurement. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nak-Hyeon Kim
- Department of Biomedical Engineering; Kyung Hee University; Gyeonggi-do 449-701 Republic of Korea
| | - Hoa Thi Le
- Graduate School of East-West Medical Science; Kyung Hee University; Gyeonggi-do 449-701 Republic of Korea
| | - YongSuk Yang
- Graduate School of East-West Medical Science; Kyung Hee University; Gyeonggi-do 449-701 Republic of Korea
| | - Kyung Min Byun
- Department of Biomedical Engineering; Kyung Hee University; Gyeonggi-do 449-701 Republic of Korea
| | - Tae Woo Kim
- Graduate School of East-West Medical Science; Kyung Hee University; Gyeonggi-do 449-701 Republic of Korea
| |
Collapse
|
33
|
Aptekar S, Arora M, Lawrence CL, Lea RW, Ashton K, Dawson T, Alder JE, Shaw L. Selective Targeting to Glioma with Nucleic Acid Aptamers. PLoS One 2015; 10:e0134957. [PMID: 26252900 PMCID: PMC4529171 DOI: 10.1371/journal.pone.0134957] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/16/2015] [Indexed: 12/11/2022] Open
Abstract
Malignant glioma is characterised by a rapid growth rate and high capacity for invasive infiltration to surrounding brain tissue; hence, diagnosis and treatment is difficult and patient survival is poor. Aptamers contribute a promising and unique technology for the in vitro imaging of live cells and tissues, with a potentially bright future in clinical diagnostics and therapeutics for malignant glioma. The binding selectivity, uptake capacity and binding target of two DNA aptamers, SA43 and SA44, were investigated in glioma cells and patient tissues. The binding assay showed that SA43 and SA44 bound with strong affinity (Kd, 21.56 ± 4.60 nM and Kd, 21.11 ± 3.30 nM respectively) to the target U87MG cells. Quantitative analysis by flow cytometry showed that the aptamers were able to actively internalise in U87MG and 1321N1 glioma cells compared to the non-cancerous and non-glioma cell types. Confocal microscopy confirmed staining in the cytoplasm, and co-localisation studies with endoplasmic reticulum, Golgi apparatus and lysosomal markers suggested internalisation and compartmentalisation within the endomembrane system. Both aptamers selectively bound to Ku 70 and Ku 80 DNA repair proteins as determined by aptoprecipitation (AP) followed by mass spectrometry analysis and confirmation by Western blot. In addition, aptohistochemical (AHC) staining on paraffin embedded, formalin fixed patient tissues revealed that the binding selectivity was significantly higher for SA43 aptamer in glioma tissues (grade I, II, III and IV) compared to the non-cancerous tissues, whereas SA44 did not show selectivity towards glioma tissues. The results indicate that SA43 aptamer can differentiate between glioma and non-cancerous cells and tissues and therefore, shows promise for histological diagnosis of glioma.
Collapse
Affiliation(s)
- Shraddha Aptekar
- School of Pharmacy and Biomedical Sciences, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, United Kingdom
| | - Mohit Arora
- School of Pharmacy and Biomedical Sciences, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, United Kingdom
- Department of Neuropathology, Lancashire Teaching Hospitals (NHS trust), Preston, PR2 9HT, United Kingdom
| | - Clare Louise Lawrence
- School of Pharmacy and Biomedical Sciences, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, United Kingdom
| | - Robert William Lea
- School of Pharmacy and Biomedical Sciences, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, United Kingdom
| | - Katherine Ashton
- Department of Neuropathology, Lancashire Teaching Hospitals (NHS trust), Preston, PR2 9HT, United Kingdom
| | - Tim Dawson
- Department of Neuropathology, Lancashire Teaching Hospitals (NHS trust), Preston, PR2 9HT, United Kingdom
| | - Jane Elizabeth Alder
- School of Pharmacy and Biomedical Sciences, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, United Kingdom
| | - Lisa Shaw
- School of Pharmacy and Biomedical Sciences, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, United Kingdom
| |
Collapse
|
34
|
Chen A, Yang S. Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron 2015; 71:230-242. [PMID: 25912679 DOI: 10.1016/j.bios.2015.04.041] [Citation(s) in RCA: 356] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/12/2015] [Accepted: 04/13/2015] [Indexed: 12/30/2022]
Abstract
Aptamers have been identified against various targets as a type of chemical or nucleic acid ligand by systematic evolution of ligands by exponential enrichment (SELEX) with high sensitivity and specificity. Aptamers show remarkable advantages over antibodies due to the nucleic acid nature and target-induced structure-switching properties and are widely used to design various fluorescent, electrochemical, or colorimetric biosensors. However, the practical applications of aptamer-based sensing and diagnostics are still lagging behind those of antibody-based tests. Lateral flow immunoassay (LFIA) represents a well established and appropriate technology among rapid assays because of its low cost and user-friendliness. The antibody-based platform is utilized to detect numerous targets, but it is always hampered by the antibody preparation time, antibody stability, and effect of modification on the antibody. Seeking alternatives to antibodies is an area of active research and is of tremendous importance. Aptamers are receiving increasing attention in lateral flow applications because of a number of important potential performance advantages. We speculate that aptamer-based LFIA may be one of the first platforms for commercial use of aptamer-based diagnosis. This review first gives an introduction to aptamer including the selection process SELEX with its focus on aptamer advantages over antibodies, and then depicts LFIA with its focus on aptamer opportunities in LFIA over antibodies. Furthermore, we summarize the recent advances in the development of aptamer-based lateral flow biosensing assays with the aim to provide a general guide for the design of aptamer-based lateral flow biosensing assays.
Collapse
Affiliation(s)
- Ailiang Chen
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China.
| | - Shuming Yang
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| |
Collapse
|
35
|
Zeng Z, Tung CH, Zu Y. A cancer cell-activatable aptamer-reporter system for one-step assay of circulating tumor cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2014; 3:e184. [PMID: 25118170 PMCID: PMC4221596 DOI: 10.1038/mtna.2014.36] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/30/2014] [Indexed: 01/22/2023]
Abstract
The current antibody-mediated numeration assays of circulating tumor cells (CTCs) require multiple steps and are time-consuming. To overcome these technical limitations, a cancer cell-activatable aptamer-reporter was formulated by conjugating a biomarker-specific aptamer sequence with paired fluorochrome-quencher molecules. In contrast to the antibody probes, the intact aptamer-reporter was optically silent in the absence of cells of interest. However, when used in an assay, the aptamer selectively targeted cancer cells through interaction with a specific surface biomarker, which triggered internalization of the aptamer-reporter and, subsequently, into cell lysosomes. Rapid lysosomal degradation of the aptamer-reporter resulted in separation of the paired fluorochrome-quencher molecules. The released fluorochrome emitted bright fluorescent signals exclusively within the targeted cancer cells, with no background noise in the assay. Thus, the assays could be completed in a single step within minutes. By using this one-step assay, CTCs in whole blood and marrow aspirate samples of patients with lymphoma tumors were selectively highlighted and rapidly detected with no off-target signals from background blood cells. The development of the cancer cell-activatable aptamer-reporter system allows for the possibility of a simple and robust point-of-care test for CTC detection, which is currently unavailable.
Collapse
Affiliation(s)
- Zihua Zeng
- Department of Pathology and Genomic Medicine and Cancer Pathology Laboratory, Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas, USA
| | - Ching-Hsuan Tung
- Department of Translational Imaging, Houston Methodist Research Institute, Houston, Texas, USA
| | - Youli Zu
- Department of Pathology and Genomic Medicine and Cancer Pathology Laboratory, Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
36
|
Belyaeva TA, Nicol C, Cesur O, Travé G, Blair GE, Stonehouse NJ. An RNA Aptamer Targets the PDZ-Binding Motif of the HPV16 E6 Oncoprotein. Cancers (Basel) 2014; 6:1553-69. [PMID: 25062098 PMCID: PMC4190555 DOI: 10.3390/cancers6031553] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/23/2014] [Accepted: 07/03/2014] [Indexed: 01/01/2023] Open
Abstract
Human papillomavirus 16 (HPV16) is a high-risk DNA tumour virus which is the primary causative agent of cervical cancer. Cell transformation arises from deregulated expression of the E6 and E7 oncogenes. E6 has been shown to bind a number of cellular proteins, including p53 and proteins containing a PDZ domain. This study reports the first RNA aptamers to E6. These have been employed as molecular tools to further investigate E6-p53 and E6-PDZ interactions. This study is focussed on two aptamers (termed F2 and F4) which induced apoptosis in cells derived from an HPV16-transformed cervical carcinoma. The molecules were able to inhibit the interaction between E6 and PDZ1 from Magi1, with F2 being the most effective inhibitor. Neither of the aptamers inhibited E6-p53 interaction or p53 degradation. This study shows the specificity of this approach and highlights the potential benefits of the E6 aptamers as potential therapeutic or diagnostic agents in the future.
Collapse
Affiliation(s)
- Tamara A Belyaeva
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Clare Nicol
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Ozlem Cesur
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Gilles Travé
- UMR 7242 CNRS-Université de Strasbourg, Ecole Supérieure de Biotechnologie, Boulevard Sébastien Brant, Illkirch 67412, France.
| | - George Eric Blair
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Nicola J Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
37
|
Cell-type-specific, Aptamer-functionalized Agents for Targeted Disease Therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e169. [PMID: 24936916 PMCID: PMC4078761 DOI: 10.1038/mtna.2014.21] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/05/2014] [Indexed: 02/07/2023]
Abstract
One hundred years ago, Dr. Paul Ehrlich popularized the "magic bullet" concept for cancer therapy in which an ideal therapeutic agent would only kill the specific tumor cells it targeted. Since then, "targeted therapy" that specifically targets the molecular defects responsible for a patient's condition has become a long-standing goal for treating human disease. However, safe and efficient drug delivery during the treatment of cancer and infectious disease remains a major challenge for clinical translation and the development of new therapies. The advent of SELEX technology has inspired many groundbreaking studies that successfully adapted cell-specific aptamers for targeted delivery of active drug substances in both in vitro and in vivo models. By covalently linking or physically functionalizing the cell-specific aptamers with therapeutic agents, such as siRNA, microRNA, chemotherapeutics or toxins, or delivery vehicles, such as organic or inorganic nanocarriers, the targeted cells and tissues can be specifically recognized and the therapeutic compounds internalized, thereby improving the local concentration of the drug and its therapeutic efficacy. Currently, many cell-type-specific aptamers have been developed that can target distinct diseases or tissues in a cell-type-specific manner. In this review, we discuss recent advances in the use of cell-specific aptamers for targeted disease therapy, as well as conjugation strategies and challenges.
Collapse
|
38
|
Thiviyanathan V, Gorenstein DG. Aptamers and the next generation of diagnostic reagents. Proteomics Clin Appl 2014; 6:563-73. [PMID: 23090891 DOI: 10.1002/prca.201200042] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/17/2012] [Accepted: 09/20/2012] [Indexed: 01/06/2023]
Abstract
Antibodies have been extensively used as capture and detection reagents in diagnostic applications of proteomics-based technologies. Proteomic assays need high sensitivity and specificity, a wide dynamic range for detection, and accurate, reproducible quantification with small confidence values. However, several inherent limitations of monoclonal antibodies in meeting the emerging challenges of proteomics led to the development of a new class of oligonucleotide-based reagents. Natural and derivatized nucleic acid aptamers are emerging as promising alternatives to monoclonal antibodies. Aptamers can be effectively used to simultaneously detect thousands of proteins in multiplex discovery platforms, where antibodies often fail due to cross-reactivity problems. Through chemical modification, vast range of additional functional groups can be added at any desired position in the oligonucleotide sequence, therefore the best features of small molecule drugs, proteins, and antibodies can be brought together into aptamers, making aptamers the most versatile reagent in proteomics. In this review, we discuss the recent developments in aptamer technology, including new selection methods and the aptamers' application in proteomics.
Collapse
Affiliation(s)
- Varatharasa Thiviyanathan
- Centers for Proteomics & Systems Biology, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | | |
Collapse
|
39
|
Kuo TC, Lee PC, Tsai CW, Chen WY. Salt bridge exchange binding mechanism between streptavidin and its DNA aptamer--thermodynamics and spectroscopic evidences. J Mol Recognit 2013; 26:149-59. [PMID: 23345105 DOI: 10.1002/jmr.2260] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/05/2012] [Accepted: 12/04/2012] [Indexed: 12/19/2022]
Abstract
Protein-nucleic acids binding driven by electrostatic interactions typically are characterized by the release of counter ions, and the salt-inhibited binding association constant (K(a)) and the magnitude of exothermic binding enthalpy (ΔH). Here, we report a non-classical thermodynamics of streptavidin (SA)-aptamer binding in NaCl (140-350 mM) solutions near room temperatures (23-27 °C). By using isothermal titration calorimetry (ITC) and circular dichroism (CD)/fluorescence spectroscopy, we found that the binding was enthalpy driven with a large entropy cost (ΔH -20.58 kcal mol(-1), TΔS -10.99 kcal mol(-1), and K(a) 1.08 × 10(7) M(-1) at 140 mM NaCl 25 °C). With the raise of salt concentrations, the ΔH became more exothermic, yet the K(a) was almost unchanged (ΔH -26.29 kcal mol(-1) and K(a) 1.50 × 10(7) M(-1) at 350 mM NaCl 25 °C). The data suggest that no counter Na(+) was released in the binding. Spectroscopy data suggest that the binding, with a stoichiometry of 2, was accompanied with substantial conformational changes on SA, and the changes were insensitive to the variation of salt concentrations. To account for the non-classical results, we propose a salt bridge exchange model. The intramolecular binding-site salt bridge(s) of the free SA and the charged phosphate group of aptamers re-organize to form the binding complex by forming a new intermolecular salt bridge(s). The salt bridge exchange binding process requires minimum amount of counter ions releasing but dehydration of the contacting surface of SA and the aptamer. The energy required for dehydration is reduced in the case of binding solution with higher salt concentration and account for the higher binding exothermic mainly.
Collapse
Affiliation(s)
- Tai-Chih Kuo
- Department of Biochemistry, Taipei Medical University, Taipei, 11031, Taiwan
| | | | | | | |
Collapse
|
40
|
Jalalian SH, Taghdisi SM, Shahidi Hamedani N, Kalat SAM, Lavaee P, Zandkarimi M, Ghows N, Jaafari MR, Naghibi S, Danesh NM, Ramezani M, Abnous K. Epirubicin loaded super paramagnetic iron oxide nanoparticle-aptamer bioconjugate for combined colon cancer therapy and imaging in vivo. Eur J Pharm Sci 2013; 50:191-7. [PMID: 23835028 DOI: 10.1016/j.ejps.2013.06.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/26/2013] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
Abstract
Every year a large number of new cases of colorectal cancer are diagnosed in the world. Application of Epirubicin (Epi) in treatment of cancer has been limited due to its cardiotoxicity. Specific delivery of chemotherapy drugs is an important factor in reducing the side effects of drugs used in chemotherapy. Enhanced permeability, retention effect and magnetic resonance (MR) traceability of super paramagnetic iron oxide nanoparticles (SPION) make them a great candidate in cancer therapy and imaging. In this study, Epirubicin-5TR1 aptamer-SPION tertiary complex was evaluated for the imaging and treatment of murine colon carcinoma cells (C26 cells, target). For cytotoxic studies (MTT assay), C26 and CHO-K1 (Chinese hamster ovary cells, nontarget) cells were treated with either Epi or Epi-Apt-SPION tertiary complex. Internalization was evaluated by flow cytometry. Finally, Apt-SPION bioconjugate was used for imaging of cancer in vivo. Flow cytometric analysis showed that the tertiary complex was internalized effectively to C26 cells, but not to CHO-K1 cells. Cytotoxicity of Epi-Apt-SPION tertiary complex also confirmed internalization data. The complex was less cytotoxic in CHO-K1 cells when compared to Epi alone. No significant change in viability between Epi- and complex-treated C26 cells was observed. Magnetic resonance imaging (MRI) indicated a high level of accumulation of the nano-magnets within the tumor site. In conclusion Epi-Apt-SPION tertiary complex is introduced as an effective system for targeted delivery of Epi to C26 cells. Moreover this complex could efficiently detect tumors when analyzed by MRI and inhibit tumor growth in vivo.
Collapse
Affiliation(s)
- Seyed Hamid Jalalian
- Academic Center For Education, Culture and Research-ACECR-Mashhad Branch, Mashhad, Iran
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Taghdisi SM, Danesh NM, Sarreshtehdar Emrani A, Tabrizian K, Zandkarimi M, Ramezani M, Abnous K. Targeted delivery of Epirubicin to cancer cells by PEGylated A10 aptamer. J Drug Target 2013; 21:739-44. [PMID: 23815443 DOI: 10.3109/1061186x.2013.812095] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Clinical administrations of anthracyclines are limited by cardiotoxicity and myelosuppression. Targeted delivery of anticancer agents is especially important in reducing their side effects. In this work, A10 (Apt), an aptamer for prostate-specific membrane anytigen (PSMA), was applied for targeted delivery of Epirubicin (Epi) to LNCaP cells (PSMA(+)). Flow cytometry analysis showed that PEG-Apt-Epi complex was internalized effectively to LNCaP cells (PSMA(+)), but not to PC3 cells (PSMA(-)). This fact was confirmed by less cytotoxicity of PEG-Apt-Epi complex in PC3 cells in comparison with Epi alone. No significant change in viability between Epi- and complex-treated LNCaP cells was observed. In conclusion, PEG-Apt-Epi complex is an efficient and simple system for specific delivery of drug to PSMA-expressing cell lines.
Collapse
Affiliation(s)
- Seyed Mohammad Taghdisi
- Department of Pharmaceutical Biotechnology, Zabol University of Medical Sciences, Zabol, Iran
| | | | | | | | | | | | | |
Collapse
|
42
|
An RNA aptamer provides a novel approach for the induction of apoptosis by targeting the HPV16 E7 oncoprotein. PLoS One 2013; 8:e64781. [PMID: 23738000 PMCID: PMC3667794 DOI: 10.1371/journal.pone.0064781] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 04/19/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Human papillomavirus 16 (HPV16) is a high-risk DNA tumour virus, which is a major causative agent of cervical cancer. Cellular transformation is associated with deregulated expression of the E6 and E7 oncogenes. E7 has been shown to bind a number of cellular proteins, including the cell cycle control protein pRb. In this study, RNA aptamers (small, single-stranded oligonucleotides selected for high-affinity binding) to HPV16 E7 were employed as molecular tools to further investigate these protein-protein interactions. METHODOLOGY/PRINCIPAL FINDINGS This study is focused on one aptamer (termed A2). Transfection of this molecule into HPV16-transformed cells resulted in inhibition of cell proliferation (shown using real-time cell electronic sensing and MTT assays) due to the induction of apoptosis (as demonstrated by Annexin V/propidium iodide staining). GST-pull down and bead binding assays were used to demonstrate that the binding of A2 required N-terminal residues of E7 known to be involved in interaction with the cell cycle control protein, pRb. Using a similar approach, A2 was shown to disrupt the interaction between E7 and pRb in vitro. Furthermore, transfection of HPV16-transformed cells with A2 appeared to result in the loss of E7 and rise in pRb levels, as observed by immunoblotting. CONCLUSIONS/SIGNIFICANCE This paper includes the first characterisation of the effects of an E7 RNA aptamer in a cell line derived from a cervical carcinoma. Transfection of cells with A2 was correlated with the loss of E7 and the induction of apoptosis. Aptamers specific for a number of cellular and viral proteins have been documented previously; one aptamer (Macugen) is approved for clinical use and several others are in clinical trials. In addition to its role as a molecular tool, A2 could have further applications in the future.
Collapse
|
43
|
Zhang H, Chen C, Hou L, Jin N, Shi J, Wang Z, Liu Y, Feng Q, Zhang Z. Targeting and hyperthermia of doxorubicin by the delivery of single-walled carbon nanotubes to EC-109 cells. J Drug Target 2013; 21:312-319. [DOI: 10.3109/1061186x.2012.749880] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Xu J, Jiang B, Xie J, Xiang Y, Yuan R, Chai Y. Sensitive point-of-care monitoring of HIV related DNA sequences with a personal glucometer. Chem Commun (Camb) 2013; 48:10733-5. [PMID: 23011391 DOI: 10.1039/c2cc35941c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The hybridizations between the HIV target DNA and the capture probes as well as the signal probes conjugated to the multi-invertase/nanoparticle composites lead to the conversion of sucrose to glucose, which is monitored by the personal glucometer and provides quantitative digital readings for point-of-care diagnosis of HIV DNA fragments.
Collapse
Affiliation(s)
- Jin Xu
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | | | | | | | | | | |
Collapse
|
45
|
Ardjomandi N, Niederlaender J, Aicher WK, Reinert S, Schweizer E, Wendel HP, Alexander D. Identification of an aptamer binding to human osteogenic-induced progenitor cells. Nucleic Acid Ther 2013; 23:44-61. [PMID: 23289534 DOI: 10.1089/nat.2012.0349] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to generate a specific aptamer against human jaw periosteal cells (JPCs) for tissue engineering applications in oral and maxillofacial surgery. This aptamer should serve as a capture molecule to enrich or even purify osteogenic progenitor cells from JPCs or from adult stem cells of other sources. Using systematic evolution of ligands by exponential enrichment (SELEX), we generated the first aptamer to specifically bind to human osteogenically induced JPCs. We did not detect any binding of the aptamer to undifferentiated JPCs, adipogenically and chondrogenically induced JPCs, or to any other cell line tested. However, similar binding patterns of the identified aptamer 74 were detected with mesenchymal stromal cells (MSCs) derived from placental tissue and bone marrow. After cell sorting, we analyzed the expression of osteogenic marker genes in the aptamer 74-positive and aptamer 74-negative fractions and detected no significant differences. Additionally, the analysis of the mineralization capacity revealed a slight tendency for the aptamer positive fraction to have a higher osteogenic potential. In terms of proliferation, JPCs growing in aptamer-coated wells showed increased proliferation rates compared with the controls. Herein, we report the development of an innovative approach for tissue engineering applications. Further studies should be conducted to modify and improve the specificity of the generated aptamer.
Collapse
Affiliation(s)
- Nina Ardjomandi
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
46
|
Lönne M, Zhu G, Stahl F, Walter JG. Aptamer-modified nanoparticles as biosensors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 140:121-54. [PMID: 23824145 DOI: 10.1007/10_2013_231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aptamers are short oligonucleotides that are capable of selectively binding to their corresponding target. Therefore, they can be thought of as a nucleic acid-based alternative to antibodies and can substitute for their amino acid-based counterparts in analytical applications, including as receptors in biosensors. Here they offer several advantages because their nucleic acid nature and their binding via an induced fit mechanism enable novel sensing strategies. In this article, the utilization of aptamers as novel bio-receptors in combination with nanoparticles as transducer elements is reviewed. In addition to these analytical applications, the medical relevance of aptamer-modified nanoparticles is described.
Collapse
Affiliation(s)
- Maren Lönne
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstr. 5, 30167, Hannover, Germany
| | | | | | | |
Collapse
|
47
|
Tan Y, Zhang X, Xie Y, Zhao R, Tan C, Jiang Y. Label-free fluorescent assays based on aptamer-target recognition. Analyst 2012; 137:2309-12. [PMID: 22451893 DOI: 10.1039/c2an16092g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Label-free fluorescent assays were developed based on the competition of intramolecular DNA hybridization and aptamer-target binding. Using small molecule adenosine triphosphate (ATP) and biomacro-molecule thrombin as model targets, our design was proved to be a general method with good sensitivity and high selectivity.
Collapse
Affiliation(s)
- Ying Tan
- Guangdong Provincial Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China
| | | | | | | | | | | |
Collapse
|
48
|
Pang Y, Xu Z, Sato Y, Nishizawa S, Teramae N. Base pairing at the abasic site in DNA duplexes and its application in adenosine aptasensors. Chembiochem 2012; 13:436-42. [PMID: 22271570 DOI: 10.1002/cbic.201100666] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Indexed: 12/21/2022]
Abstract
The binding of nucleosides to abasic site (AP site)-containing DNA duplexes (AP-DNAs) carrying complementary nucleosides opposite the AP site was investigated by thermal denaturation and isothermal titration calorimetric (ITC) experiments. Purine nucleosides show high affinities (K(d) =14.1 μM for adenosine and 41.8 μM for guanosine) for binding to the AP-DNAs, and the interactions are driven primarily by the enthalpy change, similarly to the case of DNA intercalators. In contrast, pyrimidine nucleosides do not show noticeable binding to the AP-DNAs, thus suggesting that stacking interaction at the AP site plays a key role in the binding of purine nucleosides to the AP-DNAs, as revealed by ITC measurements. Next, to apply an AP-DNA as an aptasensor for adenosine, a competitive assay between adenosine and AP-site-binding fluorescent ligand was performed. The assay employs a fluorescent ligand, riboflavin, that binds to the AP site in a DNA duplex, thereby causing fluorescence quenching. By adding adenosine to the riboflavin/AP-DNA complex, the binding of adenosine to the AP site causes release of riboflavin from the AP site, thereby resulting in restoration of riboflavin fluorescence. AP-DNAs can serve as a new class of aptasensors-a limit of detection of 0.7 μM was obtained for adenosine. In contrast to conventional aptasensors for adenosine, the present method shows high selectivity for adenosine over the other nucleotides (AMP, ADP and ATP). The method does not require covalent labelling of fluorophores, and thus it is cost-effective; finally, the method was successfully demonstrated to be applicable for the detection of adenosine in horse serum.
Collapse
Affiliation(s)
- Yuanfeng Pang
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | |
Collapse
|
49
|
Zhang WY, Zhang W, Liu Z, Li C, Zhu Z, Yang CJ. Highly parallel single-molecule amplification approach based on agarose droplet polymerase chain reaction for efficient and cost-effective aptamer selection. Anal Chem 2011; 84:350-5. [PMID: 22103644 DOI: 10.1021/ac2026942] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have developed a novel method for efficiently screening affinity ligands (aptamers) from a complex single-stranded DNA (ssDNA) library by employing single-molecule emulsion polymerase chain reaction (PCR) based on the agarose droplet microfluidic technology. In a typical systematic evolution of ligands by exponential enrichment (SELEX) process, the enriched library is sequenced first, and tens to hundreds of aptamer candidates are analyzed via a bioinformatic approach. Possible candidates are then chemically synthesized, and their binding affinities are measured individually. Such a process is time-consuming, labor-intensive, inefficient, and expensive. To address these problems, we have developed a highly efficient single-molecule approach for aptamer screening using our agarose droplet microfluidic technology. Statistically diluted ssDNA of the pre-enriched library evolved through conventional SELEX against cancer biomarker Shp2 protein was encapsulated into individual uniform agarose droplets for droplet PCR to generate clonal agarose beads. The binding capacity of amplified ssDNA from each clonal bead was then screened via high-throughput fluorescence cytometry. DNA clones with high binding capacity and low K(d) were chosen as the aptamer and can be directly used for downstream biomedical applications. We have identified an ssDNA aptamer that selectively recognizes Shp2 with a K(d) of 24.9 nM. Compared to a conventional sequencing-chemical synthesis-screening work flow, our approach avoids large-scale DNA sequencing and expensive, time-consuming DNA synthesis of large populations of DNA candidates. The agarose droplet microfluidic approach is thus highly efficient and cost-effective for molecular evolution approaches and will find wide application in molecular evolution technologies, including mRNA display, phage display, and so on.
Collapse
Affiliation(s)
- Wei Yun Zhang
- Key Laboratory of Analytical Science, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | |
Collapse
|
50
|
Zhu S, Han S, Zhang L, Parveen S, Xu G. A novel fluorescent aptasensor based on single-walled carbon nanohorns. NANOSCALE 2011; 3:4589-4592. [PMID: 22006211 DOI: 10.1039/c1nr10774g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Single-walled carbon nanohorns have been used to construct an aptasensor for the first time. This novel aptasensor was successfully used for the detection of thrombin with high sensitivity and excellent selectivity. This thrombin aptasensor has a detection limit of as low as 100 pM.
Collapse
Affiliation(s)
- Shuyun Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | | | | | | | | |
Collapse
|