1
|
Kehrer J, Pietsch E, Ricken D, Strauss L, Heinze JM, Gilberger T, Frischknecht F. APEX-based proximity labeling in Plasmodium identifies a membrane protein with dual functions during mosquito infection. PLoS Pathog 2024; 20:e1012788. [PMID: 39693377 DOI: 10.1371/journal.ppat.1012788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/02/2025] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Transmission of the malaria parasite Plasmodium to mosquitoes necessitates gamete egress from red blood cells to allow zygote formation and ookinete motility to enable penetration of the midgut epithelium. Both processes are dependent on the secretion of proteins from distinct sets of specialized vesicles. Inhibiting some of these proteins has shown potential for blocking parasite transmission to the mosquito. To identify new transmission blocking vaccine candidates, we aimed to define the microneme content from ookinetes of the rodent model organism Plasmodium berghei using APEX2-mediated rapid proximity-dependent biotinylation. Besides known proteins of ookinete micronemes, this identified over 50 novel candidates and sharpened the list of a previous survey based on subcellular fractionation. Functional analysis of a first candidate uncovered a dual role for this membrane protein in male gametogenesis and ookinete midgut traversal. Mutation of a putative trafficking motif in the C-terminus affected ookinete to oocyst transition but not gamete formation. This suggests the existence of distinct functional and transport requirements for Plasmodium proteins in different parasite stages.
Collapse
Affiliation(s)
- Jessica Kehrer
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF, partner site Heidelberg, Heidelberg, Germany
| | - Emma Pietsch
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
- CSSB Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Dominik Ricken
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
| | - Léanne Strauss
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
| | - Julia M Heinze
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
| | - Tim Gilberger
- CSSB Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Friedrich Frischknecht
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF, partner site Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Cox A, Krishnankutty N, Shave S, Howick VM, Auer M, La Clair JJ, Philip N. Repositioning Brusatol as a Transmission Blocker of Malaria Parasites. ACS Infect Dis 2024; 10:3586-3596. [PMID: 39352879 PMCID: PMC11474950 DOI: 10.1021/acsinfecdis.4c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Currently, primaquine is the only malaria transmission-blocking drug recommended by the WHO. Recent efforts have highlighted the importance of discovering new agents that regulate malarial transmission, with particular interest in agents that can be administered in a single low dose, ideally with a discrete and Plasmodium-selective mechanism of action. Here, our team demonstrates an approach to identify malaria transmission-blocking agents through a combination of in vitro screening and in vivo analyses. Using a panel of natural products, our approach identified potent transmission blockers, as illustrated by the discovery of the transmission-blocking efficacy of brusatol. As a member of a large family of biologically active natural products, this discovery provides a critical next step toward developing methods to rapidly identify quassinoids and related agents with valuable pharmacological therapeutic properties.
Collapse
Affiliation(s)
- Amelia Cox
- School
of Biodiversity, One Health and Veterinary Medicine, College of Medical,
Veterinary and Life Sciences, University
of Glasgow, Garscube
Campus, Bearsden Road, Glasgow G61 1QH, United Kingdom
| | - Neelima Krishnankutty
- Institute
of Immunology and Infection Research, University
of Edinburgh, Ashworth Laboratories 2, Room 3.11, Edinburgh EH9 3FL, United Kingdom
| | - Steven Shave
- School
of Biological Sciences, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Virginia M. Howick
- School
of Biodiversity, One Health and Veterinary Medicine, College of Medical,
Veterinary and Life Sciences, University
of Glasgow, Garscube
Campus, Bearsden Road, Glasgow G61 1QH, United Kingdom
| | - Manfred Auer
- School
of Biological Sciences, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3BF, United Kingdom
- Xenobe
Research Institute, P.O. Box 3052, San Diego, California 92163, United States
| | - James J. La Clair
- Xenobe
Research Institute, P.O. Box 3052, San Diego, California 92163, United States
| | - Nisha Philip
- Institute
of Immunology and Infection Research, University
of Edinburgh, Ashworth Laboratories 2, Room 3.11, Edinburgh EH9 3FL, United Kingdom
| |
Collapse
|
3
|
Min H, Lucky AB, Madsen JJ, Chim-Ong A, Li X, Cui L, Miao J. Onametostat, a PfPRMT5 inhibitor, exhibits antimalarial activity to Plasmodium falciparum. Antimicrob Agents Chemother 2024; 68:e0017624. [PMID: 39194263 PMCID: PMC11459956 DOI: 10.1128/aac.00176-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Protein arginine methyltransferases (PRMTs) play critical roles in Plasmodium falciparum, a protozoan causing the deadliest form of malaria, making them potential targets for novel antimalarial drugs. Here, we screened 11 novel PRMT inhibitors against P. falciparum asexual growth and found that onametostat, an inhibitor for type II PRMTs, exhibited strong antimalarial activity with a half-maximal inhibitory concentration (IC50) value of 1.69 ± 0.04 µM. In vitro methyltransferase activities of purified PfPRMT5 were inhibited by onametostat, and a shift of IC50 to onametostat was found in the PfPRTM5 disruptant parasite line, indicating that PfPRTM5 is the primary target of onametostat. Consistent with the function of PfPRMT5 in mediating symmetric dimethylation of histone H3R2 (H3R2me2s) and in regulating invasion-related genes, onametostat treatment led to the reduction of H3R2me2s level in P. falciparum and caused the defects on the parasite's invasion of red blood cells. This study provides a starting point for identifying specific PRMT inhibitors with the potential to serve as novel antimalarial drugs.
Collapse
Affiliation(s)
- Hui Min
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Amuza Byaruhanga Lucky
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Jesper J. Madsen
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Anongruk Chim-Ong
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Xiaolian Li
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
4
|
Neog S, Vinjamuri SR, Vijayan K, Kumar S, Trivedi V. NDV targets the invasion pathway in malaria parasite through cell surface sialic acid interaction. FASEB J 2024; 38:e23856. [PMID: 39092913 DOI: 10.1096/fj.202400004rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Merozoites utilize sialic acids on the red blood cell (RBC) cell surface to rapidly adhere to and invade the RBCs. Newcastle disease virus (NDV) displays a strong affinity toward membrane-bound sialic acids. Incubation of NDV with the malaria parasites dose-dependently reduces its cellular viability. The antiplasmodial activity of NDV is specific, as incubation with Japanese encephalitis virus, duck enteritis virus, infectious bronchitis virus, and influenza virus did not affect the parasite propagation. Interestingly, NDV is reducing more than 80% invasion when RBCs are pretreated with the virus. Removal of the RBC surface proteins or the NDV coat proteins results in disruption of the virus binding to RBC. It suggests the involvement of specific protein: ligand interaction in virus binding. We established that the virus engages with the parasitized RBCs (PRBCs) through its hemagglutinin neuraminidase (HN) protein by recognizing sialic acid-containing glycoproteins on the cell surface. Blocking of the HN protein with free sialic acid or anti-HN antibodies abolished the virus binding as well as its ability to reduce parasite growth. Interestingly, the purified HN from the virus alone could inhibit the parasite's growth in a dose-dependent manner. NDV binds strongly to knobless murine parasite strain Plasmodium yoelii and restricted the parasite growth in mice. Furthermore, the virus was found to preferentially target the PRBCs compared to normal erythrocytes. Immunolocalization studies reveal that NDV is localized on the plasma membrane as well as weakly inside the PRBC. NDV causes neither any infection nor aggregation of the human RBCs. Our findings suggest that NDV is a potential candidate for developing targeted drug delivery platforms for the Plasmodium-infected RBCs.
Collapse
Affiliation(s)
- Siddharth Neog
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India
| | - Sandeep Reddy Vinjamuri
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Kamalakannan Vijayan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Sachin Kumar
- Viral Immunology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India
| |
Collapse
|
5
|
Appetecchia F, Fabbrizi E, Fiorentino F, Consalvi S, Biava M, Poce G, Rotili D. Transmission-Blocking Strategies for Malaria Eradication: Recent Advances in Small-Molecule Drug Development. Pharmaceuticals (Basel) 2024; 17:962. [PMID: 39065810 PMCID: PMC11279868 DOI: 10.3390/ph17070962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Malaria drug research and development efforts have resurged in the last decade following the decelerating rate of mortality and malaria cases in endemic regions. The inefficiency of malaria interventions is largely driven by the spreading resistance of the Plasmodium falciparum parasite to current drug regimens and that of the malaria vector, the Anopheles mosquito, to insecticides. In response to the new eradication agenda, drugs that act by breaking the malaria transmission cycle (transmission-blocking drugs), which has been recognized as an important and additional target for intervention, are being developed. These drugs take advantage of the susceptibility of Plasmodium during population bottlenecks before transmission (gametocytes) and in the mosquito vector (gametes, zygotes, ookinetes, oocysts, sporozoites). To date, compounds targeting stage V gametocytes predominate in the chemical library of transmission-blocking drugs, and some of them have entered clinical trials. The targeting of Plasmodium mosquito stages has recently renewed interest in the development of innovative malaria control tools, which hold promise for the application of compounds effective at these stages. In this review, we highlight the major achievements and provide an update on the research of transmission-blocking drugs, with a particular focus on their chemical scaffolds, antiplasmodial activity, and transmission-blocking potential.
Collapse
Affiliation(s)
| | | | | | | | | | - Giovanna Poce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (E.F.); (F.F.); (S.C.); (M.B.)
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (E.F.); (F.F.); (S.C.); (M.B.)
| |
Collapse
|
6
|
Wilson C, Gardner JMF, Gray DW, Baragana B, Wyatt PG, Cookson A, Thompson S, Mendoza-Martinez C, Bodkin MJ, Gilbert IH, Tarver GJ. Design of the Global Health chemical diversity library v2 for screening against infectious diseases. PLoS Negl Trop Dis 2023; 17:e0011799. [PMID: 38150490 PMCID: PMC10752525 DOI: 10.1371/journal.pntd.0011799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/16/2023] [Indexed: 12/29/2023] Open
Abstract
There is a need for novel chemical matter for phenotypic and target-based screens to find starting points for drug discovery programmes in neglected infectious diseases and non-hormonal contraceptives that disproportionately affect Low- and Middle-Income Countries (LMICs). In some disease areas multiple screens of corporate and other libraries have been carried out, giving rise to some valuable starting points and leading to preclinical candidates. Whilst in other disease areas, little screening has been carried out. Much screening against pathogens has been conducted phenotypically as there are few robustly validated protein targets. However, many of the active compound series identified share the same molecular targets. To address the need for new chemical material, in this article we describe the design of a new library, designed for screening in drug discovery programmes for neglected infectious diseases. The compounds have been selected from the Enamine REAL (REadily AccessibLe) library, a virtual library which contains approximately 4.5 billion molecules. The molecules theoretically can be synthesized quickly using commercially available intermediates and building blocks. The vast majority of these have not been prepared before, so this is a source of novel compounds. In this paper we describe the design of a diverse library of 30,000 compounds from this collection (graphical abstract). The new library will be made available to laboratories working in neglected infectious diseases, subject to a review process. The project has been supported by the Bill & Melinda Gates Foundation and the Wellcome Trust (Wellcome).
Collapse
Affiliation(s)
- Caroline Wilson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - J. Mark F. Gardner
- AMG Consultants Ltd, Discovery Park House, Ramsgate Road, Sandwich, Kent, United Kingdom
| | - David W. Gray
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Beatriz Baragana
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Paul G. Wyatt
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Alex Cookson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Stephen Thompson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Cesar Mendoza-Martinez
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Michael J. Bodkin
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Ian H. Gilbert
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Gary J. Tarver
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
7
|
Moussaoui D, Robblee JP, Robert-Paganin J, Auguin D, Fisher F, Fagnant PM, Macfarlane JE, Schaletzky J, Wehri E, Mueller-Dieckmann C, Baum J, Trybus KM, Houdusse A. Mechanism of small molecule inhibition of Plasmodium falciparum myosin A informs antimalarial drug design. Nat Commun 2023; 14:3463. [PMID: 37308472 PMCID: PMC10261046 DOI: 10.1038/s41467-023-38976-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
Malaria results in more than 500,000 deaths per year and the causative Plasmodium parasites continue to develop resistance to all known agents, including different antimalarial combinations. The class XIV myosin motor PfMyoA is part of a core macromolecular complex called the glideosome, essential for Plasmodium parasite mobility and therefore an attractive drug target. Here, we characterize the interaction of a small molecule (KNX-002) with PfMyoA. KNX-002 inhibits PfMyoA ATPase activity in vitro and blocks asexual blood stage growth of merozoites, one of three motile Plasmodium life-cycle stages. Combining biochemical assays and X-ray crystallography, we demonstrate that KNX-002 inhibits PfMyoA using a previously undescribed binding mode, sequestering it in a post-rigor state detached from actin. KNX-002 binding prevents efficient ATP hydrolysis and priming of the lever arm, thus inhibiting motor activity. This small-molecule inhibitor of PfMyoA paves the way for the development of alternative antimalarial treatments.
Collapse
Affiliation(s)
- Dihia Moussaoui
- Structural Motility, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75248, Paris, France
- Structural Biology group, European Synchrotron Radiation Facility (ESRF), 71, Avenue des Martyrs, 38000, Grenoble, France
| | - James P Robblee
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA
| | - Julien Robert-Paganin
- Structural Motility, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75248, Paris, France
| | - Daniel Auguin
- Structural Motility, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75248, Paris, France
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, INRAE, USC1328, Orléans, France
| | - Fabio Fisher
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Patricia M Fagnant
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA
| | - Jill E Macfarlane
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA
| | - Julia Schaletzky
- Center for Emerging and Neglected Diseases, Drug Discovery Center, Berkeley, CA, USA
| | - Eddie Wehri
- Center for Emerging and Neglected Diseases, Drug Discovery Center, Berkeley, CA, USA
| | - Christoph Mueller-Dieckmann
- Structural Biology group, European Synchrotron Radiation Facility (ESRF), 71, Avenue des Martyrs, 38000, Grenoble, France
| | - Jake Baum
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK
- School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Kathleen M Trybus
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA.
| | - Anne Houdusse
- Structural Motility, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75248, Paris, France.
| |
Collapse
|
8
|
Muema JM, Mutunga JM, Obonyo MA, Getahun MN, Mwakubambanya RS, Akala HM, Cheruiyot AC, Yeda RA, Juma DW, Andagalu B, Johnson JL, Roth AL, Bargul JL. Isoliensinine from Cissampelos pariera rhizomes exhibits potential gametocytocidal and anti-malarial activities against Plasmodium falciparum clinical isolates. Malar J 2023; 22:161. [PMID: 37208735 DOI: 10.1186/s12936-023-04590-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/15/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND The unmet demand for effective malaria transmission-blocking agents targeting the transmissible stages of Plasmodium necessitates intensive discovery efforts. In this study, a bioactive bisbenzylisoquinoline (BBIQ), isoliensinine, from Cissampelos pariera (Menispermaceae) rhizomes was identified and characterized for its anti-malarial activity. METHODS Malaria SYBR Green I fluorescence assay was performed to evaluate the in vitro antimalarial activity against D6, Dd2, and F32-ART5 clones, and immediate ex vivo (IEV) susceptibility for 10 freshly collected P. falciparum isolates. To determine the speed- and stage-of-action of isoliensinine, an IC50 speed assay and morphological analyses were performed using synchronized Dd2 asexuals. Gametocytocidal activity against two culture-adapted gametocyte-producing clinical isolates was determined using microscopy readouts, with possible molecular targets and their binding affinities deduced in silico. RESULTS Isoliensinine displayed a potent in vitro gametocytocidal activity at mean IC50gam values ranging between 0.41 and 0.69 µM for Plasmodium falciparum clinical isolates. The BBIQ compound also inhibited asexual replication at mean IC50Asexual of 2.17 µM, 2.22 µM, and 2.39 µM for D6, Dd2 and F32-ART5 respectively, targeting the late-trophozoite to schizont transition. Further characterization demonstrated a considerable immediate ex vivo potency against human clinical isolates at a geometric mean IC50IEV = 1.433 µM (95% CI 0.917-2.242). In silico analyses postulated a probable anti-malarial mechanism of action by high binding affinities for four mitotic division protein kinases; Pfnek1, Pfmap2, Pfclk1, and Pfclk4. Additionally, isoliensinine was predicted to possess an optimal pharmacokinetics profile and drug-likeness properties. CONCLUSION These findings highlight considerable grounds for further exploration of isoliensinine as an amenable scaffold for malaria transmission-blocking chemistry and target validation.
Collapse
Affiliation(s)
- Jackson M Muema
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya.
- U.S. Army Medical Research Directorate-Africa (USAMRD-A), Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya.
| | - James M Mutunga
- U.S. Army Medical Research Directorate-Africa (USAMRD-A), Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
- Department of Biological Sciences, School of Pure and Applied Sciences, Mount Kenya University, Thika, Kenya
- School of Engineering Design, Technology and Professional Programs, Pennsylvania State University, University Park, PA, 16802, USA
| | - Meshack A Obonyo
- Department of Biochemistry and Molecular Biology, Egerton University, Egerton, Kenya
| | - Merid N Getahun
- International Centre of Insect Physiology and Ecology (Icipe), Nairobi, Kenya
| | | | - Hoseah M Akala
- U.S. Army Medical Research Directorate-Africa (USAMRD-A), Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Agnes C Cheruiyot
- U.S. Army Medical Research Directorate-Africa (USAMRD-A), Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Redemptah A Yeda
- U.S. Army Medical Research Directorate-Africa (USAMRD-A), Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Dennis W Juma
- U.S. Army Medical Research Directorate-Africa (USAMRD-A), Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Ben Andagalu
- U.S. Army Medical Research Directorate-Africa (USAMRD-A), Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Jaree L Johnson
- U.S. Army Medical Research Directorate-Africa (USAMRD-A), Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Amanda L Roth
- U.S. Army Medical Research Directorate-Africa (USAMRD-A), Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Joel L Bargul
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya.
- International Centre of Insect Physiology and Ecology (Icipe), Nairobi, Kenya.
| |
Collapse
|
9
|
Yahiya S, Saunders CN, Hassan S, Straschil U, Fischer OJ, Rueda-Zubiaurre A, Haase S, Vizcay-Barrena G, Famodimu MT, Jordan S, Delves MJ, Tate EW, Barnard A, Fuchter MJ, Baum J. A novel class of sulphonamides potently block malaria transmission by targeting a Plasmodium vacuole membrane protein. Dis Model Mech 2023; 16:dmm049950. [PMID: 36715290 PMCID: PMC9934914 DOI: 10.1242/dmm.049950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/13/2022] [Indexed: 01/31/2023] Open
Abstract
Phenotypic cell-based screens are critical tools for discovering candidate drugs for development, yet identification of the cellular target and mode of action of a candidate drug is often lacking. Using an imaging-based screen, we recently discovered an N-[(4-hydroxychroman-4-yl)methyl]-sulphonamide (N-4HCS) compound, DDD01035881, that blocks male gamete formation in the malaria parasite life cycle and subsequent transmission of the parasite to the mosquito with nanomolar activity. To identify the target(s) of DDD01035881, and of the N-4HCS class of compounds more broadly, we synthesised a photoactivatable derivative, probe 2. Photoaffinity labelling of probe 2 coupled with mass spectrometry identified the 16 kDa Plasmodium falciparum parasitophorous vacuole membrane protein Pfs16 as a potential parasite target. Complementary methods including cellular thermal shift assays confirmed that the parent molecule DDD01035881 stabilised Pfs16 in lysates from activated mature gametocytes. Combined with high-resolution, fluorescence and electron microscopy data, which demonstrated that parasites inhibited with N-4HCS compounds phenocopy the targeted deletion of Pfs16 in gametocytes, these data implicate Pfs16 as a likely target of DDD01035881. This finding establishes N-4HCS compounds as being flexible and effective starting candidates from which transmission-blocking antimalarials can be developed in the future.
Collapse
Affiliation(s)
- Sabrina Yahiya
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Charlie N. Saunders
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 OBZ, UK
| | - Sarah Hassan
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 OBZ, UK
| | - Ursula Straschil
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Oliver J. Fischer
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 OBZ, UK
| | - Ainoa Rueda-Zubiaurre
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 OBZ, UK
| | - Silvia Haase
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Gema Vizcay-Barrena
- Centre for Ultrastructural Imaging, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Mufuliat Toyin Famodimu
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Sarah Jordan
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Michael J. Delves
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 OBZ, UK
| | - Anna Barnard
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 OBZ, UK
| | - Matthew J. Fuchter
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 OBZ, UK
| | - Jake Baum
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
10
|
Chaves JB, Portugal Tavares de Moraes B, Regina Ferrarini S, Noé da Fonseca F, Silva AR, Gonçalves-de-Albuquerque CF. Potential of nanoformulations in malaria treatment. Front Pharmacol 2022; 13:999300. [PMID: 36386185 PMCID: PMC9645116 DOI: 10.3389/fphar.2022.999300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
Malaria is caused by the protozoan Plasmodium sp and affects millions of people worldwide. Its clinical form ranges from asymptomatic to potentially fatal and severe. Current treatments include single drugs such as chloroquine, lumefantrine, primaquine, or in combination with artemisinin or its derivatives. Resistance to antimalarial drugs has increased; therefore, there is an urgent need to diversify therapeutic approaches. The disease cycle is influenced by biological, social, and anthropological factors. This longevity and complexity contributes to the records of drug resistance, where further studies and proposals for new therapeutic formulations are needed for successful treatment of malaria. Nanotechnology is promising for drug development. Preclinical formulations with antimalarial agents have shown positive results, but only a few have progressed to clinical phase. Therefore, studies focusing on the development and evaluation of antimalarial formulations should be encouraged because of their enormous therapeutic potential.
Collapse
Affiliation(s)
- Janaina Braga Chaves
- Immunopharmacology Laboratory, Department of Biochemistry, Federal University of the State of Rio de Janeiro—UNIRIO, Rio de Janeiro, Brazil
| | - Bianca Portugal Tavares de Moraes
- Immunopharmacology Laboratory, Department of Biochemistry, Federal University of the State of Rio de Janeiro—UNIRIO, Rio de Janeiro, Brazil
| | - Stela Regina Ferrarini
- Pharmaceutical Nanotechnology Laboratory, Federal University of Mato Grosso of Sinop Campus—UFMT, Cuiabá, Brazil
| | - Francisco Noé da Fonseca
- Empresa Brasileira de Pesquisa Agropecuária, Parque Estação Biológica—PqEB, EMBRAPA, Brasília, Brazil
| | - Adriana Ribeiro Silva
- Immunopharmacology Laboratory, Oswaldo Cruz Foundation, FIOCRUZ—UNIRIO, Rio de Janeiro, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Immunopharmacology Laboratory, Department of Biochemistry, Federal University of the State of Rio de Janeiro—UNIRIO, Rio de Janeiro, Brazil
- Immunopharmacology Laboratory, Oswaldo Cruz Foundation, FIOCRUZ—UNIRIO, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Abd-Rahman AN, Zaloumis S, McCarthy JS, Simpson JA, Commons RJ. Scoping Review of Antimalarial Drug Candidates in Phase I and II Drug Development. Antimicrob Agents Chemother 2022; 66:e0165921. [PMID: 34843390 PMCID: PMC8846400 DOI: 10.1128/aac.01659-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence and spread of parasite resistance to currently available antimalarials has highlighted the importance of developing novel antimalarials. This scoping review provides an overview of antimalarial drug candidates undergoing phase I and II studies between 1 January 2016 and 28 April 2021. PubMed, Web of Science, Embase, clinical trial registries, and reference lists were searched for relevant studies. Information regarding antimalarial compound details, clinical trial characteristics, study population, and drug pharmacokinetics and pharmacodynamics (PK-PD) were extracted. A total of 50 studies were included, of which 24 had published their results and 26 were unpublished. New antimalarial compounds were evaluated as monotherapy (28 studies, 14 drug candidates) and combination therapy (9 studies, 10 candidates). Fourteen active compounds were identified in the current antimalarial drug development pipeline together with 11 compounds that are inactive, 6 due to insufficient efficacy. PK-PD data were available from 24 studies published as open-access articles. Four unpublished studies have made their results publicly available on clinical trial registries. The terminal elimination half-life of new antimalarial compounds ranged from 14.7 to 483 h. The log10 parasite reduction ratio over 48 h and parasite clearance half-life for Plasmodium falciparum following a single-dose monotherapy were 1.55 to 4.1 and 3.4 to 9.4 h, respectively. The antimalarial drug development landscape has seen a number of novel compounds, with promising PK-PD properties, evaluated in phase I and II studies over the past 5 years. Timely public disclosure of PK-PD data is crucial for informative decision-making and drug development strategy.
Collapse
Affiliation(s)
| | - Sophie Zaloumis
- Biostatistics Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - James S. McCarthy
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and the Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Julie A. Simpson
- Biostatistics Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Robert J. Commons
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Internal Medical Services, Ballarat Health Services, Ballarat, Victoria, Australia
| |
Collapse
|
12
|
Upadhyay C, Sharma N, Kumar S, Sharma PP, Fontinha D, Chhikara BS, Mukherjee B, Kumar D, Prudencio M, Singh AP, Poonam. Synthesis of the new analogs of morpholine and their antiplasmodial evaluation against the human malaria parasite Plasmodium falciparum. NEW J CHEM 2022. [DOI: 10.1039/d1nj04198c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of morpholine analogs functionalized with hydroxyethylamine (HEA) pharmacophore was synthesized and assayed for the initial screening against Plasmodium falciparum 3D7 in culture, which suggested that analog 6k is a hit molecule with an inhibitory concentration of 5.059 ± 0.2036 μM.
Collapse
Affiliation(s)
- Charu Upadhyay
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
| | - Neha Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi 110007, India
| | - Sumit Kumar
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
| | - Prem Prakash Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi 110007, India
| | - Diana Fontinha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | | | - Budhaditya Mukherjee
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur-721302, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| | - Miguel Prudencio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Agam P. Singh
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
| |
Collapse
|
13
|
Sturm A, Vos MW, Henderson R, Eldering M, Koolen KMJ, Sheshachalam A, Favia G, Samby K, Herreros E, Dechering KJ. Barcoded Asaia bacteria enable mosquito in vivo screens and identify novel systemic insecticides and inhibitors of malaria transmission. PLoS Biol 2021; 19:e3001426. [PMID: 34928952 PMCID: PMC8726507 DOI: 10.1371/journal.pbio.3001426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/04/2022] [Accepted: 12/03/2021] [Indexed: 11/18/2022] Open
Abstract
This work addresses the need for new chemical matter in product development for control of pest insects and vector-borne diseases. We present a barcoding strategy that enables phenotypic screens of blood-feeding insects against small molecules in microtiter plate-based arrays and apply this to discovery of novel systemic insecticides and compounds that block malaria parasite development in the mosquito vector. Encoding of the blood meals was achieved through recombinant DNA-tagged Asaia bacteria that successfully colonised Aedes and Anopheles mosquitoes. An arrayed screen of a collection of pesticides showed that chemical classes of avermectins, phenylpyrazoles, and neonicotinoids were enriched for compounds with systemic adulticide activity against Anopheles. Using a luminescent Plasmodium falciparum reporter strain, barcoded screens identified 48 drug-like transmission-blocking compounds from a 400-compound antimicrobial library. The approach significantly increases the throughput in phenotypic screening campaigns using adult insects and identifies novel candidate small molecules for disease control. This study presents a barcoding strategy that enables high-throughput phenotypic screens of blood-feeding insects against small molecules in microtiter plate-based arrays and applies this to the discovery of novel systemic insecticides and compounds that block malaria parasite development in the mosquito vector.
Collapse
|
14
|
Cook AD, Roberts AJ, Atherton J, Tewari R, Topf M, Moores CA. Cryo-EM structure of a microtubule-bound parasite kinesin motor and implications for its mechanism and inhibition. J Biol Chem 2021; 297:101063. [PMID: 34375637 PMCID: PMC8526983 DOI: 10.1016/j.jbc.2021.101063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022] Open
Abstract
Plasmodium parasites cause malaria and are responsible annually for hundreds of thousands of deaths. Kinesins are a superfamily of microtubule-dependent ATPases that play important roles in the parasite replicative machinery, which is a potential target for antiparasite drugs. Kinesin-5, a molecular motor that cross-links microtubules, is an established antimitotic target in other disease contexts, but its mechanism in Plasmodium falciparum is unclear. Here, we characterized P. falciparum kinesin-5 (PfK5) using cryo-EM to determine the motor's nucleotide-dependent microtubule-bound structure and introduced 3D classification of individual motors into our microtubule image processing pipeline to maximize our structural insights. Despite sequence divergence in PfK5, the motor exhibits classical kinesin mechanochemistry, including ATP-induced subdomain rearrangement and cover neck bundle formation, consistent with its plus-ended directed motility. We also observed that an insertion in loop5 of the PfK5 motor domain creates a different environment in the well-characterized human kinesin-5 drug-binding site. Our data reveal the possibility for selective inhibition of PfK5 and can be used to inform future exploration of Plasmodium kinesins as antiparasite targets.
Collapse
Affiliation(s)
- Alexander D Cook
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Anthony J Roberts
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Joseph Atherton
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Rita Tewari
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom.
| |
Collapse
|
15
|
Blight J, Sala KA, Atcheson E, Kramer H, El-Turabi A, Real E, Dahalan FA, Bettencourt P, Dickinson-Craig E, Alves E, Salman AM, Janse CJ, Ashcroft FM, Hill AV, Reyes-Sandoval A, Blagborough AM, Baum J. Dissection-independent production of Plasmodium sporozoites from whole mosquitoes. Life Sci Alliance 2021; 4:e202101094. [PMID: 34135099 PMCID: PMC8321652 DOI: 10.26508/lsa.202101094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/05/2023] Open
Abstract
Progress towards a protective vaccine against malaria remains slow. To date, only limited protection has been routinely achieved following immunisation with either whole-parasite (sporozoite) or subunit-based vaccines. One major roadblock to vaccine progress, and to pre-erythrocytic parasite biology in general, is the continued reliance on manual salivary gland dissection for sporozoite isolation from infected mosquitoes. Here, we report development of a multi-step method, based on batch processing of homogenised whole mosquitoes, slurry, and density-gradient filtration, which combined with free-flow electrophoresis rapidly produces a pure, infective sporozoite inoculum. Human-infective Plasmodium falciparum and rodent-infective Plasmodium berghei sporozoites produced in this way are two- to threefold more infective than salivary gland dissection sporozoites in in vitro hepatocyte infection assays. In an in vivo rodent malaria model, the same P. berghei sporozoites confer sterile protection from mosquito-bite challenge when immunisation is delivered intravenously or 60-70% protection when delivered intramuscularly. By improving purity, infectivity, and immunogenicity, this method represents a key advancement in capacity to produce research-grade sporozoites, which should impact delivery of a whole-parasite based malaria vaccine at scale in the future.
Collapse
Affiliation(s)
- Joshua Blight
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Katarzyna A Sala
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London, UK
| | - Erwan Atcheson
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Holger Kramer
- Department of Physiology, Anatomy and Genetics, Henry Wellcome Building for Gene Function, University of Oxford, Oxford, UK
- Medical Research Council London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Aadil El-Turabi
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Eliana Real
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London, UK
| | - Farah A Dahalan
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London, UK
| | - Paulo Bettencourt
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Emma Dickinson-Craig
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Eduardo Alves
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Ahmed M Salman
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Chris J Janse
- Department of Parasitology, Leiden Malaria Research Group, Center of Infectious Diseases, Leiden University Medical Center, (LUMC, L4-Q), Leiden, The Netherlands
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, Henry Wellcome Building for Gene Function, University of Oxford, Oxford, UK
| | - Adrian Vs Hill
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Arturo Reyes-Sandoval
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
- Instituto Politécnico Nacional, Mexico City, Mexico
| | - Andrew M Blagborough
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Jake Baum
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London, UK
| |
Collapse
|
16
|
Sharma N, Kashif M, Singh V, Fontinha D, Mukherjee B, Kumar D, Singh S, Prudencio M, Singh AP, Rathi B. Novel Antiplasmodial Compounds Leveraged with Multistage Potency against the Parasite Plasmodium falciparum: In Vitro and In Vivo Evaluations and Pharmacokinetic Studies. J Med Chem 2021; 64:8666-8683. [PMID: 34124905 DOI: 10.1021/acs.jmedchem.1c00659] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydroxyethylamine (HEA)-based novel compounds were synthesized and their activity against Plasmodium falciparum 3D7 was assessed, identifying a few hits without any apparent toxicity. Hits 5c and 5d also exhibited activity against resistant field strains, PfRKL-9 and PfC580Y. A single dose, 50 mg/Kg, of hits administered to the rodent parasite Plasmodium berghei ANKA exhibited up to 70% reduction in the parasite load. Compound 5d tested in combination with artesunate produced an additional antiparasitic effect with a prolonged survival period. Additionally, compound 5d showed 50% inhibition against hepatic P. berghei infection at 1.56 ± 0.56 μM concentration. This compound also considerably delayed the progression of transmission stages, ookinete and oocyst. Furthermore, the toxicity of 5d assessed in mice supported the normal liver and kidney functions. Altogether, HEA analogues (5a-m), particularly 5d, are nontoxic multistage antiplasmodial agents with therapeutic and transmission-blocking efficacy, along with favorable preliminary pharmacokinetic properties.
Collapse
Affiliation(s)
- Neha Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi 110007, India
| | - Mohammad Kashif
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vigyasa Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Diana Fontinha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa 1649-028, Portugal
| | - Budhaditya Mukherjee
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur 721302, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida 201301, Uttar Pradesh, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Miguel Prudencio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa 1649-028, Portugal
| | - Agam P Singh
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi 110007, India
| |
Collapse
|
17
|
Bove G, Mehnert AK, Dao Thi VL. iPSCs for modeling hepatotropic pathogen infections. IPSCS FOR STUDYING INFECTIOUS DISEASES 2021:149-213. [DOI: 10.1016/b978-0-12-823808-0.00013-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
18
|
Sharma N, Gupta Y, Bansal M, Singh S, Pathak P, Shahbaaz M, Mathur R, Singh J, Kashif M, Grishina M, Potemkin V, Rajendran V, Poonam, Kempaiah P, Singh AP, Rathi B. Multistage antiplasmodial activity of hydroxyethylamine compounds, in vitro and in vivo evaluations. RSC Adv 2020; 10:35516-35530. [PMID: 35686031 PMCID: PMC9127639 DOI: 10.1039/d0ra03997g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
Malaria, a global threat to the human population, remains a challenge partly due to the fast-growing drug-resistant strains of Plasmodium species. New therapeutics acting against the pathogenic asexual and sexual stages, including liver-stage malarial infection, have now attained more attention in achieving malaria eradication efforts. In this paper, two previously identified potent antiplasmodial hydroxyethylamine (HEA) compounds were investigated for their activity against the malaria parasite's multiple life stages. The compounds exhibited notable activity against the artemisinin-resistant strain of P. falciparum blood-stage culture with 50% inhibitory concentrations (IC50) in the low micromolar range. The compounds' cytotoxicity on HEK293, HepG2 and Huh-7 cells exhibited selective killing activity with IC50 values > 170 μM. The in vivo efficacy was studied in mice infected with P. berghei NK65, which showed a significant reduction in the blood parasite load. Notably, the compounds were active against liver-stage infection, mainly compound 1 with an IC50 value of 1.89 μM. Mice infected with P. berghei sporozoites treated with compound 1 at 50 mg kg-1 dose had markedly reduced liver stage infection. Moreover, both compounds prevented ookinete maturation and affected the developmental progression of gametocytes. Further, systematic in silico studies suggested both the compounds have a high affinity towards plasmepsin II with favorable pharmacological properties. Overall, the findings demonstrated that HEA and piperidine possessing compounds have immense potential in treating malarial infection by acting as multistage inhibitors.
Collapse
Affiliation(s)
- Neha Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi Delhi 110007 India
| | - Yash Gupta
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago 2160 South 1st Avenue Maywood IL 60153 USA
| | - Meenakshi Bansal
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi Delhi 110007 India
| | - Snigdha Singh
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi Delhi 110007 India
| | - Prateek Pathak
- South Ural State University, Laboratory of Computational Modelling of Drugs 454080 Russia
| | - Mohd Shahbaaz
- South Ural State University, Laboratory of Computational Modelling of Drugs 454080 Russia
- South African National Bioinformatics Institute, University of the Western Cape Private Bag X17 Bellville Cape Town 7535 South Africa
| | - Raman Mathur
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago 2160 South 1st Avenue Maywood IL 60153 USA
| | - Jyoti Singh
- Infectious Diseases Laboratory, National Institute of Immunology Aruna Asaf Ali Marg New Delhi 110067 India
| | - Mohammad Kashif
- Infectious Diseases Laboratory, National Institute of Immunology Aruna Asaf Ali Marg New Delhi 110067 India
| | - Maria Grishina
- South Ural State University, Laboratory of Computational Modelling of Drugs 454080 Russia
| | - Vladimir Potemkin
- South Ural State University, Laboratory of Computational Modelling of Drugs 454080 Russia
| | - Vinoth Rajendran
- Department of Microbiology, School of Life Sciences, Pondicherry University Puducherry 605014 India
| | - Poonam
- South Ural State University, Laboratory of Computational Modelling of Drugs 454080 Russia
- Department of Chemistry, Miranda House, University of Delhi Delhi 110007 India
| | - Prakasha Kempaiah
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago 2160 South 1st Avenue Maywood IL 60153 USA
| | - Agam Prasad Singh
- Infectious Diseases Laboratory, National Institute of Immunology Aruna Asaf Ali Marg New Delhi 110067 India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi Delhi 110007 India
- South Ural State University, Laboratory of Computational Modelling of Drugs 454080 Russia
| |
Collapse
|
19
|
Ashdown GW, Dimon M, Fan M, Sánchez-Román Terán F, Witmer K, Gaboriau DCA, Armstrong Z, Ando DM, Baum J. A machine learning approach to define antimalarial drug action from heterogeneous cell-based screens. SCIENCE ADVANCES 2020; 6:6/39/eaba9338. [PMID: 32978158 PMCID: PMC7518791 DOI: 10.1126/sciadv.aba9338] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Drug resistance threatens the effective prevention and treatment of an ever-increasing range of human infections. This highlights an urgent need for new and improved drugs with novel mechanisms of action to avoid cross-resistance. Current cell-based drug screens are, however, restricted to binary live/dead readouts with no provision for mechanism of action prediction. Machine learning methods are increasingly being used to improve information extraction from imaging data. These methods, however, work poorly with heterogeneous cellular phenotypes and generally require time-consuming human-led training. We have developed a semi-supervised machine learning approach, combining human- and machine-labeled training data from mixed human malaria parasite cultures. Designed for high-throughput and high-resolution screening, our semi-supervised approach is robust to natural parasite morphological heterogeneity and correctly orders parasite developmental stages. Our approach also reproducibly detects and clusters drug-induced morphological outliers by mechanism of action, demonstrating the potential power of machine learning for accelerating cell-based drug discovery.
Collapse
Affiliation(s)
- George W Ashdown
- Department of Life Sciences, Imperial College London, London, UK
| | | | | | | | - Kathrin Witmer
- Department of Life Sciences, Imperial College London, London, UK
| | - David C A Gaboriau
- Facility for Imaging by Light Microscopy, Imperial College London, London, UK
| | | | | | - Jake Baum
- Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
20
|
Carolino K, Winzeler EA. The antimalarial resistome - finding new drug targets and their modes of action. Curr Opin Microbiol 2020; 57:49-55. [PMID: 32682267 PMCID: PMC7763834 DOI: 10.1016/j.mib.2020.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022]
Abstract
To this day, malaria remains a global burden, affecting millions of people, especially those in sub-Saharan Africa and Asia. The rise of drug resistance to current antimalarial treatments, including artemisinin-based combination therapies, has made discovering new small molecule compounds with novel modes of action an urgent matter. The concerted effort to construct enormous compound libraries and develop high-throughput phenotypic screening assays to find compounds effective at specifically clearing malaria-causing Plasmodium parasites at any stage of the life cycle has provided many antimalarial prospects, but does not indicate their target or mode of action. Here, we review recent advances in antimalarial drug discovery efforts, focusing on the following 'omics' approaches in mode of action studies: IVIEWGA, CETSA, metabolomic profiling.
Collapse
Affiliation(s)
- Krypton Carolino
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States.
| |
Collapse
|
21
|
Ebstie YA, Guedoung ART, Habluetzel A. A murine malaria protocol for characterizing transmission blocking benefits of antimalarial drug combinations. MALARIAWORLD JOURNAL 2020; 11:1. [PMID: 34532220 PMCID: PMC8415060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Current efforts towards malaria elimination include the discovery of new transmission blocking (TB) drugs and identification of compounds suitable to replace primaquine, recommended as transmission blocking post treatment after artemisinin combination therapy (ACT). High through put screening of compound libraries has allowed to identify numerous compounds active in vitro against gametocytes and insect early sporogonic stages, but few studies have been performed to characterize TB compounds in vivo. Here we propose a double TB drug Direct Feeding Assay (2TB-DFA), suitable to assess the combined effects of TB compounds. MATERIALS AND METHODS Plasmodium berghei GFPcon (PbGFPcon), BALB/c mice and Anopheles stephensi mosquitoes were used. Artemisinin (ART) and artesunate (AS) served as examples of artemisinins, NeemAzal® (NA), as a known TB-product with sporontocidal activity. DFA experiments were performed to assess the appropriate time point of administration before mosquito feeding and estimate suitable sub-optimal doses of the three compounds that allow combination effects to be appreciated. RESULTS Suboptimal dosages, that reduce about 50% of oocyst development, were recorded with ART in the range of 16-30 mg/ kg, AS 14-28 mg/kg and NA 31-38mg/kg. Ten hours before mosquito feeding (corresponding to 3.5 days after mouse infection) was determined as a suitable time point for mouse treatment with ART and AS and 1 hour for post-treatment with NA. ART given at 35 mg/kg in combination with NA at 40 mg/kg reduced oocyst density by 94% and prevalence of infection by 59%. Similarly, the combination of ART at 25 mg/kg plus NA at 35 mg/kg decreased oocyst density by 95% and prevalence of infection by 34%. In the 2TB-DFA, conducted with AS (20 mg/kg) and NA (35 mg/kg) the combination treatment reduced oocyst density by 71% and did not affect prevalence of infection. Applying 'Highest Single Agent' analysis and considering as readout oocyst density and prevalence of infection, cooperative effects of the combination treatments, compared with the single compound treatments emerged. CONCLUSION This study suggests the 2TB-DFA to be suitable for the profiling of new TB candidates that could substitute primaquine as a post-treatment to ACT courses.
Collapse
Affiliation(s)
| | | | - Annette Habluetzel
- School of Pharmacy, University of Camerino, Camerino, Italy
- Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, University of Milan, Milan, Italy
| |
Collapse
|
22
|
Chali W, Ashine T, Hailemeskel E, Gashaw A, Tafesse T, Lanke K, Esayas E, Kedir S, Shumie G, Behaksra SW, Bradley J, Yewhalaw D, Mamo H, Petros B, Drakeley C, Gadisa E, Bousema T, Tadesse FG. Comparison of infectivity of Plasmodium vivax to wild-caught and laboratory-adapted (colonized) Anopheles arabiensis mosquitoes in Ethiopia. Parasit Vectors 2020; 13:120. [PMID: 32143713 PMCID: PMC7059271 DOI: 10.1186/s13071-020-3998-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mosquito-feeding assays that assess transmission of Plasmodium from man-to-mosquito typically use laboratory mosquito colonies. The microbiome and genetic background of local mosquitoes may be different and influence Plasmodium transmission efficiency. In order to interpret transmission studies to the local epidemiology, it is therefore crucial to understand the relationship between infectivity in laboratory-adapted and local mosquitoes. METHODS We assessed infectivity of Plasmodium vivax-infected patients from Adama, Ethiopia, using laboratory-adapted (colony) and wild-caught (wild) mosquitoes raised from larval collections in paired feeding experiments. Feeding assays used 4-6 day-old female Anopheles arabiensis mosquitoes after starvation for 12 h (colony) and 18 h (wild). Oocyst development was assessed microscopically 7 days post-feeding. Wild mosquitoes were identified morphologically and confirmed by genotyping. Asexual parasites and gametocytes were quantified in donor blood by microscopy. RESULTS In 36 paired experiments (25 P. vivax infections and 11 co-infections with P. falciparum), feeding efficiency was higher in colony (median: 62.5%; interquartile range, IQR: 47.0-79.0%) compared to wild mosquitoes (median: 27.8%; IQR: 17.0-38.0%; Z = 5.02; P < 0.001). Plasmodium vivax from infectious individuals (51.6%, 16/31) infected a median of 55.0% (IQR: 6.7-85.7%; range: 5.5-96.7%; n = 14) of the colony and 52.7% (IQR: 20.0-80.0%; range: 3.2-95.0%; n = 14) of the wild mosquitoes. A strong association (ρ(16) = 0.819; P < 0.001) was observed between the proportion of infected wild and colony mosquitoes. A positive association was detected between microscopically detected gametocytes and the proportion of infected colony (ρ(31) = 0.452; P = 0.011) and wild (ρ(31) = 0.386; P = 0.032) mosquitoes. CONCLUSIONS Infectivity assessments with colony and wild mosquitoes yielded similar infection results. This finding supports the use of colony mosquitoes for assessments of the infectious reservoir for malaria in this setting whilst acknowledging the importance of mosquito factors influencing sporogonic development of Plasmodium parasites.
Collapse
Affiliation(s)
- Wakweya Chali
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
| | - Temesgen Ashine
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
| | - Elifaged Hailemeskel
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
- Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Abrham Gashaw
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
| | - Temesgen Tafesse
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
| | - Kjerstin Lanke
- Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Endashaw Esayas
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
| | - Soriya Kedir
- Oromia Regional Laboratory, Oromia Regional Health Bureau, Adama, Ethiopia
| | - Girma Shumie
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
| | - Sinknesh Wolde Behaksra
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
| | - John Bradley
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, WC1E 7HT London, UK
| | - Delenasaw Yewhalaw
- Tropical and Infectious Diseases Research Center, Jimma University, P.O.Box 5195, Jimma, Ethiopia
| | - Hassen Mamo
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Beyene Petros
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, WC1E 7HT London, UK
| | - Endalamaw Gadisa
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, WC1E 7HT London, UK
| | - Fitsum G. Tadesse
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
- Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Institute of Biotechnology, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
23
|
Singh L, Fontinha D, Francisco D, Mendes AM, Prudêncio M, Singh K. Molecular Design and Synthesis of Ivermectin Hybrids Targeting Hepatic and Erythrocytic Stages of Plasmodium Parasites. J Med Chem 2020; 63:1750-1762. [PMID: 32011136 DOI: 10.1021/acs.jmedchem.0c00033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ivermectin is a powerful endectocide, which reduces the incidence of vector-borne diseases. Besides its strong insecticidal effect on mosquito vectors of the disease, ivermectin inhibits Plasmodium falciparum sporogonic and blood stage development and impairs Plasmodium berghei development inside hepatocytes, both in vitro and in vivo. Herein, we present the first report on structural modification of ivermectin to produce dual-action molecular hybrids with good structure-dependent in vitro activity against both the hepatic and erythrocytic stages of P. berghei and P. falciparum infection, suggesting inclusion of ivermectin antimalarial hybrids in malaria control strategies. The most active hybrid displayed over threefold and 10-fold higher in vitro activity than ivermectin against hepatic and blood stage infections, respectively. Although an overwhelming insecticidal effect against Anopheles stephensi mosquitoes in laboratory conditions was not noticed, in silico docking analysis supports allosteric binding to glutamate-gated chloride channels similar to ivermectin.
Collapse
Affiliation(s)
- Lovepreet Singh
- Department of Chemistry , Guru Nanak Dev University , Amritsar 143 005 , India
| | - Diana Fontinha
- Instituto de Medicina Molecular , Faculdade de Medicina da Universidade de Lisboa , Av. Prof. Egas Moniz , Lisboa 1649-028 , Portugal
| | - Denise Francisco
- Instituto de Medicina Molecular , Faculdade de Medicina da Universidade de Lisboa , Av. Prof. Egas Moniz , Lisboa 1649-028 , Portugal
| | - Antonio M Mendes
- Instituto de Medicina Molecular , Faculdade de Medicina da Universidade de Lisboa , Av. Prof. Egas Moniz , Lisboa 1649-028 , Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular , Faculdade de Medicina da Universidade de Lisboa , Av. Prof. Egas Moniz , Lisboa 1649-028 , Portugal
| | - Kamaljit Singh
- Department of Chemistry , Guru Nanak Dev University , Amritsar 143 005 , India
| |
Collapse
|
24
|
Rueda-Zubiaurre A, Yahiya S, Fischer OJ, Hu X, Saunders CN, Sharma S, Straschil U, Shen J, Tate EW, Delves MJ, Baum J, Barnard A, Fuchter MJ. Structure-Activity Relationship Studies of a Novel Class of Transmission Blocking Antimalarials Targeting Male Gametes. J Med Chem 2019; 63:2240-2262. [PMID: 31490680 DOI: 10.1021/acs.jmedchem.9b00898] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Malaria is still a leading cause of mortality among children in the developing world, and despite the immense progress made in reducing the global burden, further efforts are needed if eradication is to be achieved. In this context, targeting transmission is widely recognized as a necessary intervention toward that goal. After carrying out a screen to discover new transmission-blocking agents, herein we report our medicinal chemistry efforts to study the potential of the most robust hit, DDD01035881, as a male-gamete targeted compound. We reveal key structural features for the activity of this series and identify analogues with greater potency and improved metabolic stability. We believe this study lays the groundwork for further development of this series as a transmission blocking agent.
Collapse
Affiliation(s)
- Ainoa Rueda-Zubiaurre
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, United Kingdom
| | - Sabrina Yahiya
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Oliver J Fischer
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, United Kingdom
| | - Xiaojun Hu
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, United Kingdom
| | - Charlie N Saunders
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, United Kingdom
| | - Sachi Sharma
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, United Kingdom
| | - Ursula Straschil
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Junting Shen
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, United Kingdom
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, United Kingdom
| | - Michael J Delves
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Anna Barnard
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, United Kingdom
| | - Matthew J Fuchter
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, United Kingdom
| |
Collapse
|