1
|
Jelena R, Jelena T, Marija R, Tanja L, Tatjana S, Bojan B, Biljana BN, Pavković-Lučić S. Different Long-Term Nutritional Regimens of Drosophila melanogaster Shape Its Microbiota and Associated Metabolic Activity in a Sex-Specific Manner. INSECTS 2025; 16:141. [PMID: 40003771 PMCID: PMC11856610 DOI: 10.3390/insects16020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025]
Abstract
The dietary habits of fruit flies profoundly influence their fitness, morphology, and physiology yet the mechanisms underlying these effects remain incompletely understood. To address this gap, the relationship between dietary regimens and the composition and function of adult Drosophila melanogaster microbiota was investigated in the present study. The adult fly microbiota communities that were reared for long time on five different diets were characterized by means of 16S rRNA sequencing. Obtained results revealed distinct community structures associated with each dietary regimen, which was additionally corroborated through machine learning-based analysis. In general, sugar-rich diets correlate with microbial ecosystems of higher richness/diversity. Dominance of the phyla Proteobacteria and Firmicutes in the microbiota was confirmed irrespective of diet, with the varying proportions of the most abundant families: Acetobacteraceae, Lactobacillaceae, Moraxellaceae, Bradyrhizobiaceae, and Leucostonocaceae. Bacterial families of lower abundance also emerged as differentially present among the studied fly groups. Additionally, functional prediction provided initial clues into how nutrient availability might modulate the metabolic traits of adult fly microbiota in a sex-specific manner to meet host metabolic needs. Overall, the presented findings highlight the intricate interplay between diet, microbiota composition, and host phenotype in fruit flies, underscoring the importance of diet as a determinant of host-microbiota interactions.
Collapse
Affiliation(s)
- Repac Jelena
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (R.M.); (L.T.); (B.B.); (B.N.B.); (S.P.-L.)
| | - Trajković Jelena
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (R.M.); (L.T.); (B.B.); (B.N.B.); (S.P.-L.)
| | - Rakić Marija
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (R.M.); (L.T.); (B.B.); (B.N.B.); (S.P.-L.)
| | - Lunić Tanja
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (R.M.); (L.T.); (B.B.); (B.N.B.); (S.P.-L.)
| | - Savić Tatjana
- Institute for Biological Research “Siniša Stanković” National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Božić Bojan
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (R.M.); (L.T.); (B.B.); (B.N.B.); (S.P.-L.)
| | - Božić Nedeljković Biljana
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (R.M.); (L.T.); (B.B.); (B.N.B.); (S.P.-L.)
| | - Sofija Pavković-Lučić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (R.M.); (L.T.); (B.B.); (B.N.B.); (S.P.-L.)
| |
Collapse
|
2
|
Richard CMC, Renault D, Wallart V, Denis B, Tarapacki P, Marion-Poll F, Colinet H. Effects of nonionic surfactants on life history traits of Drosophila melanogaster. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3809-3821. [PMID: 39838213 DOI: 10.1007/s11356-025-35932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Surfactants are used for a variety of applications such as emulsifiers, solubilizers, or foaming agents. Their intensive production and use in pharmaceutical, cosmetic and agricultural products have resulted in their continuous discharge in the environment, especially via wastewaters. Surfactants have become a threat to living organisms as they interact with, and disrupt, cell membranes and macromolecules. Their effects have mainly been studied in aquatic species; however, terrestrial organisms are also threatened by these emerging contaminants. This study investigates the effects of two widely used nonionic surfactants, Tween-20 and Triton X-100, on key traits of larvae and adults of the fruit fly Drosophila melanogaster. We assessed the toxicity of the two surfactants on viability, development time, body size and food intake of the flies. The results revealed that both surfactants induced toxic effects on the drosophila flies leading to decreased viability, delayed development and lowered food consumption at the highest tested concentrations. Both surfactants proved to be toxic to flies, and, for all tested traits, Triton X-100 appeared more toxic than Tween-20. Our results might extend to other invertebrates. The widespread use of these substances, which then end up in the environment, should be regulated to mitigate their impacts on biodiversity and ecosystems.
Collapse
Affiliation(s)
- Chloé M C Richard
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, 263 Avenue du Gal Leclerc, CS 74205, 35042, Rennes Cedex, France.
| | - David Renault
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, 263 Avenue du Gal Leclerc, CS 74205, 35042, Rennes Cedex, France
| | - Violette Wallart
- Université Paris-Saclay, CNRS, IRD, UMR Evolution, Génomes, Comportement et Ecologie, 91198, Gif-sur-Yvette, France
| | - Béatrice Denis
- Université Paris-Saclay, CNRS, IRD, UMR Evolution, Génomes, Comportement et Ecologie, 91198, Gif-sur-Yvette, France
| | - Pénélope Tarapacki
- Université Paris-Saclay, CNRS, IRD, UMR Evolution, Génomes, Comportement et Ecologie, 91198, Gif-sur-Yvette, France
| | - Frédéric Marion-Poll
- Université Paris-Saclay, CNRS, IRD, UMR Evolution, Génomes, Comportement et Ecologie, 91198, Gif-sur-Yvette, France
- Université Paris-Saclay, AgroParisTech, 91123, Palaiseau Cedex, France
| | - Hervé Colinet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, 263 Avenue du Gal Leclerc, CS 74205, 35042, Rennes Cedex, France
| |
Collapse
|
3
|
Larges J, Deconninck G, Ulmer R, Foray V, Le Bris N, Chorin M, Colinet H, Chabrerie O, Eslin P, Couty A. Winter fruit contribution to the performance of the invasive fruit fly Drosophila suzukii under different thermal regimes. INSECT SCIENCE 2025. [PMID: 39822047 DOI: 10.1111/1744-7917.13494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/06/2024] [Accepted: 11/27/2024] [Indexed: 01/19/2025]
Abstract
Polyphagous insect species develop using multiple host plants. Often considered beneficial, polyphagy can also be costly as host nutritional quality may vary. Drosophila suzukii (Matsumura) is an invasive species that can develop on numerous fruit species over the annual cycle. Here, we assessed the contribution of winter-available fruit to the development of seasonal populations of D. suzukii, under fluctuating late winter/early spring temperature regimes. We infested an artificial diet and three suitable fruit species available in winter/early spring (Aucuba japonica, Elaeagnus ×submacrophylla, Viscum album) with D. suzukii larvae under three temperature regimes: constant 20 °C, fluctuating controlled regime of 8-15 °C (12 h of light at 8 °C and 12 h of dark at 15 °C), and uncontrolled outdoor regime during spring. As expected, fly performance was impaired by early spring-like environmental conditions, whatever the development diet, and the winter fruit were suboptimal diets compared to the artificial diet, whatever the thermal regime. However, under cold fluctuating temperature regimes, the ranking of fruit supporting the best performance changed, highlighting the occurrence of physiological trade-offs. Winter-acclimated females preferentially oviposited in A. japonica and/or E. ×submacrophylla, whatever the thermal regime, which does not support the preference-performance hypothesis. This finding is also discussed in the context of D. suzukii management strategies.
Collapse
Affiliation(s)
- Jordy Larges
- EDYSAN, Ecologie et Dynamique des Systèmes Anthropisés, UMR 7058 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Gwenaëlle Deconninck
- IRBI, Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours, France
| | - Romain Ulmer
- EDYSAN, Ecologie et Dynamique des Systèmes Anthropisés, UMR 7058 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Vincent Foray
- IRBI, Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours, France
| | - Nathalie Le Bris
- Université de Rennes, CNRS, ECOBIO (Ecosystemes, biodiversité, évolution), Rennes cedex, France
| | - Marion Chorin
- Université de Rennes, CNRS, ECOBIO (Ecosystemes, biodiversité, évolution), Rennes cedex, France
| | - Hervé Colinet
- Université de Rennes, CNRS, ECOBIO (Ecosystemes, biodiversité, évolution), Rennes cedex, France
| | - Olivier Chabrerie
- EDYSAN, Ecologie et Dynamique des Systèmes Anthropisés, UMR 7058 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Patrice Eslin
- EDYSAN, Ecologie et Dynamique des Systèmes Anthropisés, UMR 7058 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Aude Couty
- EDYSAN, Ecologie et Dynamique des Systèmes Anthropisés, UMR 7058 CNRS, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
4
|
Visser B, Scheifler M. Insect Lipid Metabolism in the Presence of Symbiotic and Pathogenic Viruses and Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39548000 DOI: 10.1007/5584_2024_833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Insects, like most animals, have intimate interactions with microorganisms that can influence the insect host's lipid metabolism. In this chapter, we describe what is known so far about the role prokaryotic microorganisms play in insect lipid metabolism. We start exploring microbe-insect lipid interactions focusing on endosymbionts, and more specifically the gut microbiota that has been predominantly studied in Drosophila melanogaster. We then move on to an overview of the work done on the common and well-studied endosymbiont Wolbachia pipientis, also in interaction with other microbes. Taking a slightly different angle, we then look at the effect of human pathogens, including dengue and other viruses, on the lipids of mosquito vectors. We extend the work on human pathogens and include interactions with the endosymbiont Wolbachia that was identified as a natural tool to reduce the spread of mosquito-borne diseases. Research on lipid metabolism of plant disease vectors is up and coming and we end this chapter by highlighting current knowledge in that field.
Collapse
Affiliation(s)
- Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium.
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
5
|
Yakovleva E, Danilova I, Maximova I, Shabaev A, Dmitrieva A, Belov A, Klyukina A, Perfilieva K, Bonch-Osmolovskaya E, Markov A. Salt concentration in substrate modulates the composition of bacterial and yeast microbiomes of Drosophila melanogaster. MICROBIOME RESEARCH REPORTS 2024; 3:19. [PMID: 38846022 PMCID: PMC11153085 DOI: 10.20517/mrr.2023.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 06/09/2024]
Abstract
Aim: Microbiomes influence the physiology and behavior of multicellular organisms and contribute to their adaptation to changing environmental conditions. However, yeast and bacterial microbiota have usually been studied separately; therefore, the interaction between bacterial and yeast communities in the gut of Drosophila melanogaster (D. melanogaster) is often overlooked. In this study, we investigate the correlation between bacterial and yeast communities in the gut of D. melanogaster. Methods: We studied the shifts in the joint microbiome of Drosophila melanogaster, encompassing both yeasts and bacteria, during adaptation to substrate with varying salt concentrations (0%, 2%, 4%, and 7%) using plating for both yeasts and bacteria and NGS-sequencing of variable 16S rRNA gene regions for bacteria. Results: The microbiome of flies and their substrates was gradually altered at moderate NaCl concentrations (2% and 4% compared with the 0% control) and completely transformed at high salt concentrations (7%). The relative abundance of Acetobacter, potentially beneficial to D. melanogaster, decreased as NaCl concentration increased, whereas the relative abundance of the more halotolerant lactobacilli first increased, peaking at 4% NaCl, and then declined dramatically at 7%. At this salinity level, potentially pathogenic bacteria of the genera Leuconostoc and Providencia were dominant. The yeast microbiome of D. melanogaster also undergoes significant changes with an increase in salt concentration in the substrate. The total yeast abundance undergoes nonlinear changes: it is lowest at 0% salt concentration and highest at 2%-4%. At a 7% concentration, the yeast abundance in flies and their substrate is lower than at 2%-4% but significantly higher than at 0%. Conclusions: The abundance and diversity of bacteria that are potentially beneficial to the flies decreased, while the proportion of potential pathogens, Leuconostoc and Providencia, increased with an increase in salt concentration in the substrate. In samples with a relatively high abundance and/or diversity of yeasts, the corresponding indicators for bacteria were often lowered, and vice versa. This may be due to the greater halotolerance of yeasts compared to bacteria and may also indicate antagonism between these groups of microorganisms.
Collapse
Affiliation(s)
- Ekaterina Yakovleva
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Irina Danilova
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Irina Maximova
- Faculty of Soil Science, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Shabaev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Anastasia Dmitrieva
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrey Belov
- Faculty of Soil Science, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexandra Klyukina
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow 117312, Russia
| | - Ksenia Perfilieva
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Elizaveta Bonch-Osmolovskaya
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow 117312, Russia
| | - Alexander Markov
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
- Borisyak Paleontological Institute, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
6
|
Ben-Yosef M, Altman Y, Nemni-Lavi E, Papadopoulos N, Nestel D. Larval nutritional-stress and tolerance to extreme temperatures in the peach fruit fly, Bactrocera zonata (Diptera: Tephritidae). Fly (Austin) 2023; 17:2157161. [PMID: 36576164 PMCID: PMC9809946 DOI: 10.1080/19336934.2022.2157161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Within the factors affecting insect tolerance to extreme environmental conditions, insect nutrition, particularly of immature stages, has received insufficient attention. In the present study, we address this gap by investigating the effects of larval nutrition on heat and cold tolerance of adult Bactrocera zonata - an invasive, polyphagous fruit fly pest. We manipulated the nutritional content in the larval diet by varying the amount of added yeast (2-10% by weight), while maintaining a constant sucrose content. Adults derived from the different larval diets were tested for their tolerance to extreme heat and cold stress. Restricting the amount of yeast reduced the efficacy of the larval diet (i.e. number of pupae produced per g of diet) as well as pupal and adult fresh weight, both being significantly lower for yeast-poor diets. Additionally, yeast restriction during the larval stage (2% yeast diet) significantly reduced the amount of protein but not lipid reserves of newly emerged males and females. Adults maintained after emergence on granulated sugar and water for 10 days were significantly more tolerant to extreme heat (i.e. knock-down time at 42 oC) when reared as larvae on yeast-rich diets (8% and 10% yeast) compared to counterparts developing on a diet containing 2% yeast. Nevertheless, the composition of the larval diet did not significantly affect adult survival following acute cold stress (exposure to -3°C for 2 hrs.). These results are corroborated by previous findings on Drosophilid flies. Possible mechanisms leading to nutrition-based heat-tolerance in flies are discussed.
Collapse
Affiliation(s)
- M. Ben-Yosef
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, Israel
| | - Y. Altman
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, Israel
| | - E. Nemni-Lavi
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, Israel
| | - N.T. Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - D Nestel
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, Israel,CONTACT D Nestel Department of Entomology, Institute of Plant Protection, ARO, the Volcani Center, Rishon Letzion, Israel
| |
Collapse
|
7
|
Fernandez MP, Trannoy S, Certel SJ. Fighting Flies: Quantifying and Analyzing Drosophila Aggression. Cold Spring Harb Protoc 2023; 2023:618-627. [PMID: 37019610 DOI: 10.1101/pdb.top107985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Aggression is an innate behavior that likely evolved in the framework of defending or obtaining resources. This complex social behavior is influenced by genetic, environmental, and internal factors. Drosophila melanogaster remains an effective and exciting model organism with which to unravel the mechanistic basis of aggression due to its small but sophisticated brain, an impressive array of neurogenetic tools, and robust stereotypical behavioral patterns. The investigations of many laboratories have led to the identification of external and internal state factors that promote aggression, sex differences in the patterns and outcome of aggression, and neurotransmitters that regulate aggression.
Collapse
Affiliation(s)
- Maria P Fernandez
- Department of Neuroscience and Behavior, Barnard College, New York City, New York 10027, USA
| | - Severine Trannoy
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Sarah J Certel
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| |
Collapse
|
8
|
Qush A, Al Khatib HA, Rachid H, Al-Tamimi H, Al-Eshaq A, Al-Adwi S, Yassine HM, Kamareddine L. Intake of caffeine containing sugar diet remodels gut microbiota and perturbs Drosophila melanogaster immunity and lifespan. Microbes Infect 2023; 25:105149. [PMID: 37169244 DOI: 10.1016/j.micinf.2023.105149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
The diet-microbiome-immunity axis is one among the many arms that draw up the "we are what we intake" proclamation. As such, studies on the effect of food and beverage intake on the gut environment and microbiome and on modulating immunological responses and the host's susceptibility to pathogens are on the rise. A typical accompaniment in different sustenance we consume on daily basis is the trimethylxanthine alkaloid caffeine. Being a chief component in our regular aliment, a better understanding of the effect of caffeine containing food and beverages on our gut-microbiome-immunity axis and henceforth on our health is much needed. In this study, we shed more light on the effect of oral consumption of caffeine supplemented sugar diet on the gut environment, specifically on the gut microbiota, innate immunity and host susceptibility to pathogens using the Drosophila melanogaster model organism. Our findings reveal that the oral intake of a dose-specific caffeine containing sucrose/agarose sugar diet causes a significant alteration within the fly gut milieu demarcated by microbial dysbiosis and an elevation in the production of reactive oxygen species and expression of immune-deficiency (Imd) pathway-dependent antimicrobial peptide genes. The oral intake of caffeine containing sucrose/agarose sugar diet also renders the flies more susceptible to bacterial infection and shortens their lifespan in both infection and non-infection settings. Our findings set forth additional insight into the potentiality of diet to alter the gut milieu and highlight the importance of dietary control on health.
Collapse
Affiliation(s)
- Abeer Qush
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hebah A Al Khatib
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar
| | - Hajar Rachid
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hend Al-Tamimi
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Alyaa Al-Eshaq
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Shaima Al-Adwi
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hadi M Yassine
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar
| | - Layla Kamareddine
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
9
|
Hayward SA, Colinet H. Metabolomics as a tool to elucidate biochemical cold adaptation in insects. CURRENT OPINION IN INSECT SCIENCE 2023; 58:101061. [PMID: 37244636 DOI: 10.1016/j.cois.2023.101061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
Metabolomics is an incredibly valuable tool in helping understand insect responses to cold. It not only characterizes how low temperature disrupts metabolic homeostasis, but also how it triggers fundamental adaptive responses, for example, homeoviscous adaptation and cryoprotectant accumulation. This review outlines the advantages and disadvantages of different metabolomic technologies (nuclear magnetic resonance- versus mass spectrometry-based) and screening approaches (targeted versus untargeted). We emphasize the importance of time-series and tissue-specific data, as well as the challenges of disentangling insect versus microbiome responses. In addition, we set out the need to move beyond simple correlations between metabolite abundance and tolerance phenotypes by undertaking functional assessments, for example, using dietary supplementation or injections. We highlight studies at the vanguard of employing these approaches, and where key knowledge gaps remain.
Collapse
Affiliation(s)
- Scott Al Hayward
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Hervé Colinet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, Rennes, France.
| |
Collapse
|
10
|
Theys C, Verheyen J, Delnat V, Janssens L, Tüzün N, Stoks R. Thermal and latitudinal patterns in pace-of-life traits are partly mediated by the gut microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158829. [PMID: 36116637 DOI: 10.1016/j.scitotenv.2022.158829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/16/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
The integration of life-history, physiological and behavioural traits into the pace-of-life generates a powerful framework to understand trait variation in nature both along environmental gradients and in response to environmental stressors. While the gut microbiome has been hypothesized as a candidate mechanism to underlie differentiation in the pace-of-life, this has been rarely studied. We investigated the role of the gut microbiome in contributing to the differentiation in pace-of-life and in thermal adaptation between populations of Ischnura elegans damselfly larvae inhabiting warmer low latitudes and colder high latitudes. We carried out a common-garden experiment, whereby we manipulated the exposure of the damselfly larvae to two key global warming factors: 4 °C warming and a 30 °C heat wave. Comparing the bacterial composition of the food source and the bacterioplankton indicated that damselfly larvae differentially take up bacteria from the surrounding environment and have a resident and functionally relevant microbiome. The gut microbiome differed between larvae of both latitudes, and this was associated with the host's latitudinal differentiation in activity, a key pace-of-life trait. Under heat wave exposure, the gut microbial community composition of high-latitude larvae converged towards that of the low-latitude larvae, with an increase in bacteria that likely are important in providing energy to cope with the heat wave. This suggests an adaptive latitude-specific shift in the gut microbiota matching the better ability of low-latitude hosts to deal with heat extremes. In general, our study provides evidence for the gut microbiome contributing to latitudinal differentiation in both the pace-of-life and in heat adaptation in natural populations.
Collapse
Affiliation(s)
- Charlotte Theys
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium.
| | - Julie Verheyen
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Vienna Delnat
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Lizanne Janssens
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Nedim Tüzün
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium; Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| |
Collapse
|
11
|
Wang X, Geng S. Diet-gut microbial interactions influence cancer immunotherapy. Front Oncol 2023; 13:1138362. [PMID: 37035188 PMCID: PMC10081683 DOI: 10.3389/fonc.2023.1138362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/16/2023] [Indexed: 04/11/2023] Open
Abstract
The gut microbiome is involved in the absorption and metabolism of host nutrients and modulates the immune response, affecting the efficacy of immunotherapy for cancer. In patients receiving immunotherapy, appropriate modifications of gut microbiota are thought to improve therapeutic response. Of all the factors that influence the gut microbiota, diet is the most influential and modifiable. Healthy dietary patterns as well as some specific dietary components can help the growth of beneficial microbiota in the gut, thereby protecting against cancers and promoting human health. A growing number of researches have confirmed the positive effects of a diet-gut microbiota approach as an adjuvant therapy for cancer, but controversy remains. Here, we summarize the interactions between diet and gut microbes based on previous studies, and discuss the role of gut microbiota-based dietary strategies in tumor immunotherapy, with the potential mechanisms of actions also intensively discussed.
Collapse
Affiliation(s)
- Xue Wang
- Department of Oncology, First People's Hospital of Guangyuan, Guangyuan, China
| | - Shitao Geng
- Department of Emergency, First Naval Hospital of Southern Theater Command, Zhanjiang, China
| |
Collapse
|
12
|
Medina V, Rosso BE, Soria M, Gutkind GO, Pagano EA, Zavala JA. Feeding on soybean crops changed gut bacteria diversity of the southern green stinkbug (Nezara viridula) and reduced negative effects of some associated bacteria. PEST MANAGEMENT SCIENCE 2022; 78:4608-4617. [PMID: 35837785 DOI: 10.1002/ps.7080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The southern green stinkbug (Nezara viridula) is a mayor pest of soybean. However, the mechanism underlying stinkbug resistance to soybean defenses is yet ignored. Although gut bacteria could play an essential role in tolerating plant defenses, most studies testing questions related to insect-plant-bacteria interactions have been performed in laboratory condition. Here we performed experiments in laboratory and field conditions with N. viridula and its gut bacteria, studying gut lipid peroxidaxion levels and cysteine activity in infected and unifected nymphs, testing the hypothesis that feeding on field-grown soybean decreases bacterial abundance in stinkbugs. RESULTS Gut bacterial abundance and infection ratio were higher in N. viridula adults reared in laboratory than in those collected from soybean crops, suggesting that stinkbugs in field conditions may modulate gut bacterial colonization. Manipulating gut microbiota by infecting stinkbugs with Yokenella sp. showed that these bacteria abundance decreased in field conditions, and negatively affected stinkbugs performance and were more aggressive in laboratory rearing than in field conditions. Infected nymphs that fed on soybean pods had lower mortality, higher mass and shorter development period than those reared in the laboratory, and suggested that field conditions helped nymphs to recover from Yokenella sp. infection, despite of increased lipid peroxidation and decreased cysteine proteases activity in nymphs' guts. CONCLUSIONS Our results demonstrated that feeding on field-grown soybean reduced bacterial abundance and infection in guts of N. viridula and highlighted the importance to test functional activities or pathogenicity of microbes under realistic field conditions prior to establish conclusions on three trophic interactions. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Virginia Medina
- Facultad de Agronomía, Cátedra de Bioquímica - Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Bruno E Rosso
- Facultad de Agronomía, Cátedra de Microbiologia - Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcelo Soria
- Facultad de Agronomía, Cátedra de Microbiologia - Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriel O Gutkind
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Buenos Aires, Argentina
| | - Eduardo A Pagano
- Facultad de Agronomía, Cátedra de Bioquímica - Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge A Zavala
- Facultad de Agronomía, Cátedra de Bioquímica - Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Buenos Aires, Argentina
| |
Collapse
|
13
|
Ye XX, Li KY, Li YF, Lu JN, Guo PT, Liu HY, Zhou LW, Xue SS, Huang CY, Fang SM, Gan QF. The effects of Clostridium butyricum on Ira rabbit growth performance, cecal microbiota and plasma metabolome. Front Microbiol 2022; 13:974337. [PMID: 36246250 PMCID: PMC9563143 DOI: 10.3389/fmicb.2022.974337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Clostridium butyricum (C. butyricum) can provide many benefits for animals’ growth performance and gut health. In this study, we investigated the effects of C. butyricum on the growth performance, cecal microbiota, and plasma metabolome in Ira rabbits. A total of 216 Ira rabbits at 32 days of age were randomly assigned to four treatments supplemented with basal diets containing 0 (CG), 200 (LC), 400 (MC), and 600 mg/kg (HC) C. butyricum for 35 days, respectively. In comparison with the CG group, C. butyricum supplementation significantly improved the average daily gain (ADG) and feed conversion rate (FCR) at 53 and 67 days of age (P < 0.05) and digestibilities of crude protein (CP) and crude fiber (CF) at 67 days of age (P < 0.05). The cellulase activity in the HC group was higher respectively by 50.14 and 90.13% at 53 and 67 days of age, than those in the CG groups (P < 0.05). Moreover, at 67 days of age, the diet supplemented with C. butyricum significantly increased the relative abundance of Verrucomicrobia at the phylum level (P < 0.05). Meanwhile, the concentrations of different metabolites, such as amino acids and purine, were significantly altered by C. butyricum (P < 0.05). In addition, 10 different genera were highly correlated with 52 different metabolites at 53-day-old and 6 different genera were highly correlated with 18 different metabolites at 67-day-old Ira rabbits. These findings indicated that the C. butyricum supplementation could significantly improve the growth performance by modifying the cecal microbiota structure and plasma metabolome of weaned Ira rabbits.
Collapse
|
14
|
Host-Specific larval lepidopteran mortality to pathogenic Serratia mediated by poor diet. J Invertebr Pathol 2022; 194:107818. [PMID: 35973510 DOI: 10.1016/j.jip.2022.107818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/11/2022] [Accepted: 08/10/2022] [Indexed: 11/20/2022]
Abstract
Insect guts often harbor an abundance of bacteria. Many of these members are commensal, but some may emerge as opportunistic pathogens when the host is under stress. In this study, we evaluated how dietary nutritional concentration mediates a shift from commensal to pathogenic, and if host species influences those interactions. We used the lepidopterans (Noctuidae) fall armyworm (Spodoptera frugiperda), beet armyworm (Spodoptera exigua), and corn earworm (Helicoverpa zea) as hosts and a Serratia strain initially isolated from healthy fall armyworm. Diet concentration was altered by bulk reduction in nutritional content with dilution using cellulose. Our experiments revealed that low nutrient diet increased mortality from Serratia for beet armyworm and corn earworm. However, for fall armyworm, little mortality was observed in any of the diet combinations. Dietary nutrition and oral inoculation with Serratia did not change the expression of two antimicrobial peptides in fall and beet armyworm, suggesting that other mechanisms that mediate mortality were involved. Our results have implications for how pathogens may persist as commensals in the digestive tract of insects. These findings also suggest that diet plays a very important role in the switch from commensal to pathogen. Finally, our data indicate that the host response to changing conditions is critical in determining if a pathogen may overtake its host and that these three lepidopteran species have different responses to opportunistic enteric pathogens.
Collapse
|
15
|
Pupal size as a proxy for fat content in laboratory-reared and field-collected Drosophila species. Sci Rep 2022; 12:12855. [PMID: 35896578 PMCID: PMC9329298 DOI: 10.1038/s41598-022-15325-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
In arthropods, larger individuals tend to have more fat reserves, but data for many taxa are still missing. For the vinegar fly Drosophila melanogaster, only few studies have provided experimental data linking body size to fat content. This is rather surprising considering the widespread use of D. melanogaster as a model system in biology. Here, we hypothesized that fat content in D. melanogaster is positively correlated with body size. To test this, we manipulated the developmental environment of D. melanogaster by decreasing food availability. We then measured pupal size and quantified fat content of laboratory-reared D. melanogaster. We subsequently measured pupal size and fat content of several field-caught Drosophila species. Starvation, crowding, and reduced nutrient content led to smaller laboratory-reared pupae that contained less fat. Pupal size was indeed found to be positively correlated with fat content. The same correlation was found for field-caught Drosophila pupae belonging to different species. As fat reserves are often strongly linked to fitness in insects, further knowledge on the relationship between body size and fat content can provide important information for studies on insect ecology and physiology.
Collapse
|
16
|
Huisamen EJ, Colinet H, Karsten M, Terblanche JS. Dietary salt supplementation adversely affects thermal acclimation responses of flight ability in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2022; 140:104403. [PMID: 35667397 DOI: 10.1016/j.jinsphys.2022.104403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/10/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Cold acclimation may enhance low temperature flight ability, and salt loading can alter an insects' cold tolerance by affecting their ability to maintain ion balance in the cold. Presently however, it remains unclear if dietary salt impacts thermal acclimation of flight ability in insects. Here, we examined the effect of a combination of dietary salt loading (either NaCl or KCl) and low temperature exposure on the flight ability of Drosophila melanogaster at low (15 °C) and benign (optimal, 22 °C) temperatures. Additionally, we determined whether dietary salt supplementation translates into increased K+ and Na+ levels in the bodies of D. melanogaster. Lastly, we determined whether salt supplementation impacts body mass and wing morphology, to ascertain whether any changes in flight ability were potentially driven by flight-related morphometric variation. In control flies, we find that cold acclimation enhances low temperature flight ability over non-acclimated flies confirming the beneficial acclimation hypothesis. By contrast, flies supplemented with KCl that were cold acclimated and tested at a cold temperature had the lowest flight ability, suggesting that excess dietary KCl during development negates the beneficial cold acclimation process that would have otherwise taken place. Overall, the NaCl-supplemented flies and the control group had the greatest flight ability, whilst those fed a KCl-supplemented diet had the lowest. Dietary salt supplementation translated into increased Na+ and K+ concentration in the body tissues of flies, confirming that dietary shifts are reflected in changes in body composition and are not simply regulated out of the body by homeostasis over the course of development. Flies fed with a KCl-supplemented diet tended to be larger with larger wings, whilst those reared on the control or NaCl-supplemented diet were smaller with smaller wings. Additionally, the flies with greater flight ability tended to be smaller and have lower wing loading. In conclusion, dietary salts affected wing morphology as well as ion balance, and dietary KCl seemed to have a detrimental effect on cold acclimation responses of flight ability in D. melanogaster.
Collapse
Affiliation(s)
- Elizabeth J Huisamen
- Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa.
| | - Hervé Colinet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, F 35000 Rennes, France.
| | - Minette Karsten
- Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa.
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa.
| |
Collapse
|
17
|
Le Bourg E. Drosophila melanogaster flies better know than us the nutrients they need: Let them choose. Exp Gerontol 2022; 162:111768. [DOI: 10.1016/j.exger.2022.111768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/09/2022] [Accepted: 03/11/2022] [Indexed: 11/04/2022]
|
18
|
Ma X, Wei B, Guan H, Yu S. A method of calculating phenotypic traits for soybean canopies based on three-dimensional point cloud. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2021.101524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Havula E, Ghazanfar S, Lamichane N, Francis D, Hasygar K, Liu Y, Alton LA, Johnstone J, Needham EJ, Pulpitel T, Clark T, Niranjan HN, Shang V, Tong V, Jiwnani N, Audia G, Alves AN, Sylow L, Mirth C, Neely GG, Yang J, Hietakangas V, Simpson SJ, Senior AM. Genetic variation of macronutrient tolerance in Drosophila melanogaster. Nat Commun 2022; 13:1637. [PMID: 35347148 PMCID: PMC8960806 DOI: 10.1038/s41467-022-29183-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
Carbohydrates, proteins and lipids are essential nutrients to all animals; however, closely related species, populations, and individuals can display dramatic variation in diet. Here we explore the variation in macronutrient tolerance in Drosophila melanogaster using the Drosophila genetic reference panel, a collection of ~200 strains derived from a single natural population. Our study demonstrates that D. melanogaster, often considered a "dietary generalist", displays marked genetic variation in survival on different diets, notably on high-sugar diet. Our genetic analysis and functional validation identify several regulators of macronutrient tolerance, including CG10960/GLUT8, Pkn and Eip75B. We also demonstrate a role for the JNK pathway in sugar tolerance and de novo lipogenesis. Finally, we report a role for tailless, a conserved orphan nuclear hormone receptor, in regulating sugar metabolism via insulin-like peptide secretion and sugar-responsive CCHamide-2 expression. Our study provides support for the use of nutrigenomics in the development of personalized nutrition.
Collapse
Affiliation(s)
- E Havula
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - S Ghazanfar
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - N Lamichane
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - D Francis
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - K Hasygar
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Y Liu
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - L A Alton
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - J Johnstone
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - E J Needham
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - T Pulpitel
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - T Clark
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - H N Niranjan
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - V Shang
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - V Tong
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - N Jiwnani
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - G Audia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - A N Alves
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - L Sylow
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Medical and Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - C Mirth
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - G G Neely
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - J Yang
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - V Hietakangas
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - S J Simpson
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - A M Senior
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia.
- School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
20
|
De Ro M, Enriquez T, Bonte J, Ebrahimi N, Casteels H, De Clercq P, Colinet H. Effect of starvation on the cold tolerance of adult Drosophila suzukii (Diptera: Drosophilidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:694-704. [PMID: 39658936 DOI: 10.1017/s0007485321000377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The spotted wing drosophila, Drosophila suzukii, is an invasive pest in Europe and North America. Access to resources may be challenging in late fall, winter and early spring and flies may suffer from food deprivation along with cold stress in these periods. Whereas a plethora of studies have been performed on the overwintering capacity of D. suzukii, the effects of starvation on the fly's cold tolerance have not been addressed. In the present study, young D. suzukii adults (reared at 25°C, LD 12:12 h) were deprived of food for various periods (0, 12, 24 and 36 h), after which chill coma recovery time, critical thermal minimum, as well as acute and chronic cold tolerance were assessed. Additionally, the body composition of adults (body mass, water content, total lipid, glycerol, triglycerides, glucose and proteins) before and after starvation periods was analysed to confirm that starvation had detectable effects. Starved adults had a lower body mass, and both lipid and carbohydrate levels decreased with starvation time. Starvation slightly increased critical thermal minimum and affected chill coma recovery time; however, these changes were not gradual with starvation duration. Starvation promoted acute cold tolerance in both sexes. This effect appeared faster in males than in females. Food deprivation also led to enhanced survival to chronic cold stress. Short-term starvation was thus associated with significant changes in body composition in D. suzukii, and these alterations could alter some ecologically relevant traits related to cold tolerance, particularly in females. Our results suggest that food deprivation during short time (<36 h) can promote cold tolerance (especially survival after a cold stress) of D. suzukii flies. Future studies should address the ecological significance of these findings as short food deprivation may occur in the fields on many occasions and seasons.
Collapse
Affiliation(s)
- Madelena De Ro
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant - Crop Protection - Entomology, Burgemeester Van Gansberghelaan 96, 9820Merelbeke, Belgium
- Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000Gent, Belgium
| | - Thomas Enriquez
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, F-35000Rennes, France
| | - Jochem Bonte
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant - Crop Protection - Entomology, Burgemeester Van Gansberghelaan 96, 9820Merelbeke, Belgium
| | - Negin Ebrahimi
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant - Crop Protection - Entomology, Burgemeester Van Gansberghelaan 96, 9820Merelbeke, Belgium
| | - Hans Casteels
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant - Crop Protection - Entomology, Burgemeester Van Gansberghelaan 96, 9820Merelbeke, Belgium
| | - Patrick De Clercq
- Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000Gent, Belgium
| | - Hervé Colinet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, F-35000Rennes, France
| |
Collapse
|
21
|
Jaramillo A, Castañeda LE. Gut Microbiota of Drosophila subobscura Contributes to Its Heat Tolerance and Is Sensitive to Transient Thermal Stress. Front Microbiol 2021; 12:654108. [PMID: 34025608 PMCID: PMC8137359 DOI: 10.3389/fmicb.2021.654108] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota can contribute to host physiology leading to an increase of resistance to abiotic stress conditions. For instance, temperature has profound effects on ectotherms, and the role of the gut microbiota on the thermal tolerance of ectotherms is a matter of recent research. However, most of these studies have been focused on single static temperatures instead of evaluating thermal tolerance in a wide range of stressful temperatures. Additionally, there is evidence supporting that the gut microbiota is sensitive to environmental temperature, which induces changes in its composition and diversity. These studies have evaluated the effects of thermal acclimation (>2 weeks) on the gut microbiota, but we know little about the impact of transient thermal stress on the composition and diversity of the gut microbiota. Thus, we investigated the role of the gut microbiota on the heat tolerance of Drosophila subobscura by measuring the heat tolerance of conventional and axenic flies exposed to different heat stressful temperatures (35, 36, 37, and 38°C) and estimating the heat tolerance landscape for both microbiota treatments. Conventional flies exposed to mild heat conditions exhibited higher thermal tolerance than axenic flies, whereas at higher stressful temperatures there were no differences between axenic and conventional flies. We also assessed the impact of transient heat stress on the taxonomical abundance, diversity, and community structure of the gut microbiota, comparing non-stressed flies (exposed to 21°C) and heat-stressed flies (exposed to 34°C) from both sexes. Bacterial diversity indices, bacterial abundances, and community structure changed between non-stressed and heat-stressed flies, and this response was sex-dependent. In general, our findings provide evidence that the gut microbiota influences heat tolerance and that heat stress modifies the gut microbiota at the taxonomical and structural levels. These results demonstrate that the gut microbiota contributes to heat tolerance and is also highly sensitive to transient heat stress, which could have important consequences on host fitness, population risk extinction, and the vulnerability of ectotherms to current and future climatic conditions.
Collapse
Affiliation(s)
- Angélica Jaramillo
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis E Castañeda
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
22
|
Roberts KE, Longdon B. Viral susceptibility across host species is largely independent of dietary protein to carbohydrate ratios. J Evol Biol 2021; 34:746-756. [PMID: 33586293 PMCID: PMC8436156 DOI: 10.1111/jeb.13773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/23/2022]
Abstract
The likelihood of a successful host shift of a parasite to a novel host species can be influenced by environmental factors that can act on both the host and parasite. Changes in nutritional resource availability have been shown to alter pathogen susceptibility and the outcome of infection in a range of systems. Here, we examined how dietary protein to carbohydrate altered susceptibility in a large cross-infection experiment. We infected 27 species of Drosophilidae with an RNA virus on three food types of differing protein to carbohydrate ratios. We then measured how viral load and mortality across species was affected by changes in diet. We found that changes in the protein:carbohydrate in the diet did not alter the outcomes of infection, with strong positive inter-species correlations in both viral load and mortality across diets, suggesting no species-by-diet interaction. Mortality and viral load were strongly positively correlated, and this association was consistent across diets. This suggests changes in diet may give consistent outcomes across host species, and may not be universally important in determining host susceptibility to pathogens.
Collapse
Affiliation(s)
- Katherine E. Roberts
- Centre for Ecology & ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
| | - Ben Longdon
- Centre for Ecology & ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
| |
Collapse
|
23
|
Littler AS, Garcia MJ, Teets NM. Laboratory diet influences cold tolerance in a genotype-dependent manner in Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110948. [PMID: 33819503 DOI: 10.1016/j.cbpa.2021.110948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/08/2021] [Accepted: 03/30/2021] [Indexed: 11/25/2022]
Abstract
Cold stress can reduce insect fitness and is an important determinant of species distributions and responses to climate change. Cold tolerance is influenced by genotype and environmental conditions, with factors such as day length and temperature having a particularly strong influence. Recent studies also indicate that diet impacts cold tolerance, but it is unclear whether diet-mediated shifts in cold tolerance are consistent across distinct genotypes. The goal of this study was to determine the extent to which commonly used artificial diets influence cold tolerance in Drosophila melanogaster, and whether these effects are consistent across genetically distinct lines. Specifically, we tested the impact of different fly diets on 1) ability to survive cold stress, 2) critical thermal minimum (CTmin), and 3) the ability to maintain reproduction after cold stress. Experiments were conducted across six isogenic lines from the Drosophila Genetic Reference Panel, and these lines were reared on different fly diets. Cold shock survival, CTmin, and reproductive output pre- and post-cold exposure varied considerably across diet and genotype combinations, suggesting strong genotype by environment interactions shape nutritionally mediated changes in cold tolerance. For example, in some lines cold shock survival remained consistently high or low across diets, while in others cold shock survival ranged from 5% to 75% depending on diet. Ultimately, these results add to a growing literature that cold tolerance is shaped by complex interactions between genotype and environment and inform practical considerations when selecting a laboratory diet for thermal tolerance experiments in Drosophila.
Collapse
Affiliation(s)
- Aerianna S Littler
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington 40546, United States of America
| | - Mark J Garcia
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington 40546, United States of America; Department of Biology, College of Arts & Sciences, University of Louisiana at Lafayette, Lafayette, LA 70506, United States of America.
| | - Nicholas M Teets
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington 40546, United States of America
| |
Collapse
|
24
|
Alton LA, Kutz TC, Bywater CL, Beaman JE, Arnold PA, Mirth CK, Sgrò CM, White CR. Developmental nutrition modulates metabolic responses to projected climate change. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lesley A. Alton
- School of Biological Sciences Monash University Melbourne Vic Australia
| | - Teresa C. Kutz
- School of Biological Sciences Monash University Melbourne Vic Australia
| | | | - Julian E. Beaman
- School of Biological Sciences Monash University Melbourne Vic Australia
| | - Pieter A. Arnold
- School of Biological Sciences Monash University Melbourne Vic Australia
| | - Christen K. Mirth
- School of Biological Sciences Monash University Melbourne Vic Australia
| | - Carla M. Sgrò
- School of Biological Sciences Monash University Melbourne Vic Australia
| | - Craig R. White
- School of Biological Sciences Monash University Melbourne Vic Australia
- Centre for Geometric Biology Monash University Melbourne Vic Australia
| |
Collapse
|
25
|
Klepsatel P, Knoblochová D, Girish TN, Dircksen H, Gáliková M. The influence of developmental diet on reproduction and metabolism in Drosophila. BMC Evol Biol 2020; 20:93. [PMID: 32727355 PMCID: PMC7392729 DOI: 10.1186/s12862-020-01663-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Background The adaptive significance of phenotypic changes elicited by environmental conditions experienced early in life has long attracted attention in evolutionary biology. In this study, we used Drosophila melanogaster to test whether the developmental diet produces phenotypes better adapted to cope with similar nutritional conditions later in life. To discriminate among competing hypotheses on the underlying nature of developmental plasticity, we employed a full factorial design with several developmental and adult diets. Specifically, we examined the effects of early- and late-life diets (by varying their yeast and sugar contents) on reproductive fitness and on the amount of energy reserves (fat and glycogen) in two wild-caught populations. Results We found that individuals that had developed on either low-yeast or high-sugar diet showed decreased reproductive performance regardless of their adult nutritional environment. The lower reproductive fitness might be caused by smaller body size and reduced ovariole number. Overall, these results are consistent with the silver spoon concept, which posits that development in a suboptimal environment negatively affects fitness-associated traits. On the other hand, the higher amount of energy reserves (fat) in individuals that had developed in a suboptimal environment might represent either an adaptive response or a side-effect of compensatory feeding. Conclusion Our findings suggest that the observed differences in the adult physiology induced by early-life diet likely result from inevitable and general effects of nutrition on the development of reproductive and metabolic organs, rather than from adaptive mechanisms.
Collapse
Affiliation(s)
- Peter Klepsatel
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia.
| | - Diana Knoblochová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia.,Department of Genetics, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská dolina, 84215, Bratislava, Slovakia
| | - Thirnahalli Nagaraj Girish
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, 515134, India
| | - Heinrich Dircksen
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, S-106 91, Stockholm, Sweden
| | - Martina Gáliková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| |
Collapse
|
26
|
Luo J, Chai Y, Zhao M, Guo Q, Bao Y. Hypoglycemic effects and modulation of gut microbiota of diabetic mice by saponin fromPolygonatum sibiricum. Food Funct 2020; 11:4327-4338. [DOI: 10.1039/d0fo00428f] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Polygonatum sibiricumis a medicinal and homologous plant grown in China. The saponin inPolygonatum sibiricumhas shown its good hypoglycemic performance, and it can be developed as functional foods and drugs with hypoglycemic effect.
Collapse
Affiliation(s)
- Jiayuan Luo
- School of Forestry
- Northeast Forestry University
- Harbin 150040
- PR China
| | - Yangyang Chai
- School of Forestry
- Northeast Forestry University
- Harbin 150040
- PR China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province
| | - Min Zhao
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province
- Harbin 150040
- PR China
- College of Life Sciences
- Northeast Forestry University
| | - Qingqi Guo
- School of Forestry
- Northeast Forestry University
- Harbin 150040
- PR China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province
| | - Yihong Bao
- School of Forestry
- Northeast Forestry University
- Harbin 150040
- PR China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province
| |
Collapse
|