1
|
Shirai R, Shibata K, Fujii S, Fukunaga R, Inoue S. One-Step Affinity Purification of Leucine-Rich α 2-Glycoproteins from Snake Sera and Characterization of Their Phospholipase A 2-Inhibitory Activities as β-Type Phospholipase A 2 Inhibitors. Toxins (Basel) 2024; 16:126. [PMID: 38535791 PMCID: PMC10975490 DOI: 10.3390/toxins16030126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 04/25/2025] Open
Abstract
Snakes contain three types of phospholipase A2 (PLA2)-inhibitory proteins in their blood, PLIα, β, and γ, which protect them from their own venom, PLA2. PLIβ is the snake ortholog of leucine-rich α2 glycoprotein (LRG). Since autologous cytochrome c (Cyt c) serves as an endogenous ligand for LRG, in this study, we purified snake LRGs from various snake serum samples using Cyt c affinity chromatography. All purified snake LRGs were found to be dimers linked by disulfide bonds. Laticauda semifasciata and Naja kaouthia LRGs showed no inhibitory activity against L. semifasciata PLA2 and weak inhibitory activity against Gloydius brevicauda basic PLA2. Elaphe climacophora PLIβ had weaker inhibitory activity against G. brevicauda basic PLA2 than G. brevicauda and Elaphe quadrivirgata PLIs, which are abundant in blood and known to neutralize G. brevicauda basic PLA2. Protobothrops flavoviridis LRG showed no inhibitory activity against basic venom PLA2, PL-X, or G. brevicauda basic PLA2. Binding analysis of P. flavoviridis LRG using surface plasmon resonance showed very strong binding to snake Cyt c, followed by that to horse Cyt c, weak binding to yeast Cyt c, and no binding to P. flavoviridis PL-X or BPI/II. We also deduced the amino acid sequences of L. semifasciata and P. flavoviridis LRG by means of cDNA sequencing and compared them with those of other known sequences of PLIs and LRGs. This study concluded that snake LRG can potentially inhibit basic PLA2, but, whether it actually functions as a PLA2-inhibitory protein, PLIβ, depends on the snake.
Collapse
Affiliation(s)
- Ryoichi Shirai
- Department of Biochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Osaka, Japan; (R.S.); (S.F.); (R.F.)
- Misasa Onsen Hospital, Misasa 682-1097, Tottori, Japan
| | - Kana Shibata
- Department of Biochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Osaka, Japan; (R.S.); (S.F.); (R.F.)
| | - Shinobu Fujii
- Department of Biochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Osaka, Japan; (R.S.); (S.F.); (R.F.)
| | - Rikiro Fukunaga
- Department of Biochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Osaka, Japan; (R.S.); (S.F.); (R.F.)
| | - Seiji Inoue
- Department of Biochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Osaka, Japan; (R.S.); (S.F.); (R.F.)
- Center for the Advancement of Pharmaceutical Education, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Osaka, Japan
| |
Collapse
|
2
|
Lomonte B. Lys49 myotoxins, secreted phospholipase A 2-like proteins of viperid venoms: A comprehensive review. Toxicon 2023; 224:107024. [PMID: 36632869 DOI: 10.1016/j.toxicon.2023.107024] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Muscle necrosis is a potential clinical complication of snakebite envenomings, which in severe cases can lead to functional or physical sequelae such as disability or amputation. Snake venom proteins with the ability to directly damage skeletal muscle fibers are collectively referred to as myotoxins, and include three main types: cytolysins of the "three-finger toxin" protein family expressed in many elapid venoms, the so-called "small" myotoxins found in a number of rattlesnake venoms, and the widespread secreted phospholipase A2 (sPLA2) molecules. Among the latter, protein variants that conserve the sPLA2 structure, but lack such enzymatic activity, have been increasingly found in the venoms of many viperid species. Intriguingly, these sPLA2-like proteins are able to induce muscle necrosis by a mechanism independent of phospholipid hydrolysis. They are commonly referred to as "Lys49 myotoxins" since they most often present, among other substitutions, the replacement of the otherwise invariant residue Asp49 of sPLA2s by Lys. This work comprehensively reviews the historical developments and current knowledge towards deciphering the mechanism of action of Lys49 sPLA2-like myotoxins, and points out main gaps to be filled for a better understanding of these multifaceted snake venom proteins, to hopefully lead to improved treatments for snakebites.
Collapse
Affiliation(s)
- Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| |
Collapse
|
3
|
Lian Q, Zhong L, Fu K, Ji Y, Zhang X, Liu C, Huang C. Hepatic inhibitors expression profiling of venom-challenged Sinonatrix annularis and antidotal activities. Biomed Pharmacother 2022; 156:113900. [DOI: 10.1016/j.biopha.2022.113900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/02/2022] Open
|
4
|
Regner PI, Saggese MD, de Oliveira VC, Lanari LC, Desio MA, Quaglia AIE, Wiemeyer G, Capdevielle A, Zuñiga SN, de Roodt CJI, de Roodt AR. Neutralization of "Chaco eagle" (Buteogallus coronatus) serum on some activities of Bothrops spp. venoms. Toxicon 2022; 216:73-87. [PMID: 35714890 DOI: 10.1016/j.toxicon.2022.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
Several species of reptiles and mammals have components in their sera that can neutralize toxic components present in snake venoms. In this manuscript, we studied the neutralizing capacity of Chaco eagle's (Buteogallus coronatus) serum. This South American bird of prey eats snakes as a regular part of its diet and has anatomical features that protect from snakes' bites. The neutralizing potency of the Chaco eagle's serum was tested on lethal, hemorrhagic, procoagulant, and phospholipase activities of the venom of "yarará grande" (Bothrops alternatus) and on phospholipase activity of "yarará ñata" (Bothrops ammodytoides) venom; both snakes are known to be the prey of Chaco eagle. Sera of crested caracara (Caracara plancus-a scavenger, omnivorous pan-American bird of prey), secretary bird (Saggitarius serpentarius-an omnivorous bird of prey from Africa that can include venomous snakes in its diet), common hen (Gallus gallus), rat (Rattus norvegicus), mouse (Mus musculus), horse (Equus caballus), and dog (Canis lupus familiaris) were also tested to compare the inhibitory capacity of neutralization. To test isologous and xenologous neutralization, sera from Bothrops alternatus and white-eared opossum (Didelphis albiventris), respectively, were used due to their known inhibitory activity on Bothrops venoms. As a control for the neutralization activity, antibothropic antivenom was used. Chaco eagle's serum neutralized hemorrhagic and phospholipasic activity and slightly neutralized the coagulation and the lethal activity of Bothrops spp. venom. The neutralizing capacity was present in the non-immunoglobulin fraction of the serum, which showed components of acidic characteristics and lower molecular weight than IgY, in correspondence with the characteristics of PLA2s and SVMPs inhibitors described in sera from some snakes and mammals. These studies showed that Chaco eagle's serum neutralizes all toxic activities tested at a higher level than sera from animal species in which inhibitors of snake venoms have not been described (p < 0.05), while it is lower or similar in neutralizing capacity to white-eared opossum and B. alternatus sera.
Collapse
Affiliation(s)
- Pablo I Regner
- Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina; Primera Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina; Cátedra de Medicina, Producción y Tecnologías de Fauna Acuática y Terrestre, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Caba, Argentina
| | - Miguel D Saggese
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Vanessa C de Oliveira
- Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina; Primera Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina
| | - Laura C Lanari
- Área Investigación y Desarrollo, Instituto Nacional de Producción de Biológicos - ANLIS "Dr. Carlos G. Malbrán", Caba, Argentina
| | - Marcela A Desio
- Área Investigación y Desarrollo, Instituto Nacional de Producción de Biológicos - ANLIS "Dr. Carlos G. Malbrán", Caba, Argentina
| | - Agustín I E Quaglia
- Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina
| | - Guillermo Wiemeyer
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Argentina
| | - Andrés Capdevielle
- Ecoparque Buenos Aires, Ministerio de Ambiente y Espacio Público, Buenos Aires, Argentina
| | | | - Carolina J I de Roodt
- Área Investigación y Desarrollo, Instituto Nacional de Producción de Biológicos - ANLIS "Dr. Carlos G. Malbrán", Caba, Argentina
| | - Adolfo R de Roodt
- Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina; Primera Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina; Área Investigación y Desarrollo, Instituto Nacional de Producción de Biológicos - ANLIS "Dr. Carlos G. Malbrán", Caba, Argentina.
| |
Collapse
|
5
|
A comparative study of endogenous phospholipase A 2 inhibitors in the serum of Brazilian pit vipers. Toxicon 2022; 213:87-91. [PMID: 35487313 DOI: 10.1016/j.toxicon.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/20/2022]
Abstract
This work compared the presence of phospholipase A2 inhibitors (PLIs) in the serum of 19 snake species maintained at Instituto Butantan to better understand the mechanisms of venom resistance in snakes and improve the treatment of snakebite. PLI was isolated from blood of 19 snake species by one-step chromatography and identified in all samples, besides its identity was confirmed through the interaction with both phospholipase A2 and anti-γPLI. These findings highlight the diversity of snake serum PLIs and emphasize the importance of structure-function studies.
Collapse
|
6
|
Lian Q, Zhang D, Fu K, Liu C, Cao L, Xiong K, Huang C. The molecular basis of venom resistance in the non-venomous snake Sinonatrix annularis. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1195:123182. [DOI: 10.1016/j.jchromb.2022.123182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 12/22/2022]
|
7
|
Abdullah MA, Hussein HA. Integrated algal and oil palm biorefinery as a model system for bioenergy co-generation with bioproducts and biopharmaceuticals. BIORESOUR BIOPROCESS 2021; 8:40. [PMID: 38650258 PMCID: PMC10992906 DOI: 10.1186/s40643-021-00396-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/11/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND There has been a greater call for greener and eco-friendly processes and bioproducts to meet the 2030's core agenda on 17 global sustainable development goals. The challenge lies in incorporating systems thinking with a comprehensive worldview as a guiding principle to develop the economy, whilst taking cognisance of the need to safeguard the environment, and to embrace the socio-cultural diversity dimension as an equal component. Any discussion on climate change, destruction of eco-system and habitat for wildlife, poverty and starvation, and the spread of infectious diseases, must be addressed together with the emphasis on the development of cleaner energy, air and water, better management of resources and biodiversity, improved agro-practices for food production and distribution, and affordable health care, as the outcomes and key performance indicators to be evaluated. Strict regulation, monitoring and enforcement to minimize emission, pollution and wastage must also be put in place. CONCLUSION This review article focuses on the research and development efforts to achieve sustainable bioenergy production, environmental remediation, and transformation of agro-materials into value-added bioproducts through the integrated algal and oil palm biorefinery. Recent development in microalgal research with nanotechnology as anti-cancer and antimicrobial agents and for biopharmaceutical applications are discussed. The life-cycle analysis in the context of palm oil mill processes is evaluated. The way forward from this integrated biorefinery concept is to strive for inclusive development strategies, and to address the immediate and pressing problems facing the Planet and the People, whilst still reaping the Profit.
Collapse
Affiliation(s)
- Mohd Azmuddin Abdullah
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | | |
Collapse
|
8
|
Diagnostic and Therapeutic Value of Aptamers in Envenomation Cases. Int J Mol Sci 2020; 21:ijms21103565. [PMID: 32443562 PMCID: PMC7278915 DOI: 10.3390/ijms21103565] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
It is now more than a century since Albert Calmette from the Institut Pasteur changed the world of envenomation by demonstrating that antibodies raised against animal venoms have the ability to treat human victims of previously fatal bites or stings. Moreover, the research initiated at that time effectively launched the discipline of toxicology, first leading to the search for toxic venom components, followed by the demonstration of venoms that also contained compounds of therapeutic value. Interest from pharmaceutical companies to treat envenomation is, however, declining, mainly for economic reasons, and hence, the World Health Organization has reclassified this public health issue to be a highest priority concern. While the production, storage, and safety of antivenom sera suffer from major inconveniences, alternative chemical and technological approaches to the problem of envenomation need to be considered that bypass the use of antibodies for toxin neutralization. Herein, we review an emerging strategy that relies on the use of aptamers and discuss how close—or otherwise—we are to finding a viable alternative to the use of antibodies for the therapy of human envenomation.
Collapse
|
9
|
Thakur M, Bajaal S, Rana N, Verma ML. Microalgal Technology: A Promising Tool for Wastewater Remediation. MICROORGANISMS FOR SUSTAINABILITY 2020. [DOI: 10.1007/978-981-15-2679-4_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Pucca MB, Cerni FA, Janke R, Bermúdez-Méndez E, Ledsgaard L, Barbosa JE, Laustsen AH. History of Envenoming Therapy and Current Perspectives. Front Immunol 2019; 10:1598. [PMID: 31354735 PMCID: PMC6635583 DOI: 10.3389/fimmu.2019.01598] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/26/2019] [Indexed: 01/15/2023] Open
Abstract
Each year, millions of humans fall victim to animal envenomings, which may either be deadly or cause permanent disability to the effected individuals. The Nobel Prize-winning discovery of serum therapy for the treatment of bacterial infections (tetanus and diphtheria) paved the way for the introduction of antivenom therapies for envenomings caused by venomous animals. These antivenoms are based on polyclonal antibodies derived from the plasma of hyperimmunized animals and remain the only specific treatment against animal envenomings. Following the initial development of serum therapy for snakebite envenoming by French scientists in 1894, other countries with high incidences of animal envenomings, including Brazil, Australia, South Africa, Costa Rica, and Mexico, started taking up antivenom production against local venomous animals over the course of the twentieth century. These undertakings revolutionized envenoming therapy and have saved innumerous patients worldwide during the last 100 years. This review describes in detail the above-mentioned historical events surrounding the discovery and the application of serum therapy for envenomings, as well as it provides an overview of important developments and scientific breakthroughs that were of importance for antibody-based therapies in general. This begins with discoveries concerning the characterization of antibodies, including the events leading up to the elucidation of the antibody structure. These discoveries further paved the way for other milestones in antibody-based therapies, such as the introduction of hybridoma technology in 1975. Hybridoma technology enabled the expression and isolation of monoclonal antibodies, which in turn formed the basis for the development of phage display technology and transgenic mice, which can be harnessed to directly obtain fully human monoclonal antibodies. These developments were driven by the ultimate goal of producing potent neutralizing monoclonal antibodies with optimal pharmacokinetic properties and low immunogenicity. This review then provides an outline of the most recent achievements in antivenom research, which include the application of new biotechnologies, the development of the first human monoclonal antibodies that can neutralize animal toxins, and efforts toward creating fully recombinant antivenoms. Lastly, future perspectives in the field of envenoming therapies are discussed, including rational engineering of antibody cross-reactivity and the use of oligoclonal antibody mixtures.
Collapse
Affiliation(s)
- Manuela B. Pucca
- Medical School, Federal University of Roraima, Boa Vista, Brazil
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Felipe A. Cerni
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Biochemistry and Immunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Rahel Janke
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Line Ledsgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - José E. Barbosa
- Department of Biochemistry and Immunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
11
|
Shofia SI, Jayakumar K, Mukherjee A, Chandrasekaran N. Efficiency of brown seaweed ( Sargassum longifolium) polysaccharides encapsulated in nanoemulsion and nanostructured lipid carrier against colon cancer cell lines HCT 116. RSC Adv 2018; 8:15973-15984. [PMID: 35542207 PMCID: PMC9080065 DOI: 10.1039/c8ra02616e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/23/2018] [Indexed: 11/21/2022] Open
Abstract
Bioactive polysaccharides extracted from brown seaweeds have potent antioxidant, antitumor, antibacterial, antiviral, anti-inflammatory activities and nanomedicine applications. In the present study, we have made an attempt to overcome the instability and bioavailability problem of exopolysaccharides extracted from brown seaweed (Sargassum longifolium) by nanoencapsulation technology to enhance its therapeutic applications. Exopolysaccharides was encapsulated in orange oil nanoemulsion (NE) prepared by ultra-sonication method and nanostructured lipid carrier (NLC) prepared by hot solvent diffusion method. The encapsulation efficiency of nanoemulsion was 67.29% and of nanostructured lipid carrier was 78.7%. The prepared nano carriers have particle size 178 nm (NE), 153 nm (NLC) and zeta potential -43.9 mV (NE), -60 mV (NLC). In vitro release kinetics of exopolysaccharides from NE (80%) and NLC (95%) was found to be slow and sustained release which indicates increase in bioavailability. The cytotoxic effect of seaweed polysaccharide, nanocarriers loaded with seaweed polysaccharide was analyzed by MTT method in colon cancer (HCT 116) cell lines with the results revealing that seaweed polysaccharide encapsulated with NLC (80%) was superior to that encapsulated with orange oil nanoemulsion (70%). This is the first report demonstrating the potential of brown seaweed exopolysaccharide encapsulated in orange oil nanoemulsion and nanostructured lipid carrier for its biomedical application.
Collapse
Affiliation(s)
- Saghya Infant Shofia
- Department of Animal Behaviour and Physiology, School of Biological Sciences, Madurai Kamaraj University Madurai 625021 India +91-416-2202624
| | - Kannan Jayakumar
- Department of Animal Behaviour and Physiology, School of Biological Sciences, Madurai Kamaraj University Madurai 625021 India +91-416-2202624
| | - Amitava Mukherjee
- Center for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 India
| | | |
Collapse
|
12
|
Serino-Silva C, Morais-Zani K, Hikari Toyama M, Toyama DDO, Gaeta HH, Rodrigues CFB, Aguiar WDS, Tashima AK, Grego KF, Tanaka-Azevedo AM. Purification and characterization of the first γ-phospholipase inhibitor (γPLI) from Bothrops jararaca snake serum. PLoS One 2018; 13:e0193105. [PMID: 29505564 PMCID: PMC5837083 DOI: 10.1371/journal.pone.0193105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/05/2018] [Indexed: 11/25/2022] Open
Abstract
Phospholipases A2 (PLA2) are enzymes acting on the cell membrane phospholipids resulting in fatty acids and lysophospholipids and deconstructing the cell membrane. This protein is commonly found in snake venoms, causing tissue inflammation in the affected area. Evidence indicates that snakes have natural resistance to their own venom due to protective properties in plasma, that inhibit the action of proteins present in their venom. Given that, this study aimed to purify and characterize a γPLI from Bothrops jararaca serum, named γBjPLI. PLA2 inhibitor was isolated using two chromatographic steps: an ion exchange column (DEAE), followed by an affinity column (crotoxin coupled to a CNBr-activated Sepharose resin). The purity and biochemical characterization of the isolated protein were analyzed by RP-HPLC, SEC, SDS-PAGE, circular dichroism and mass spectrometry. The ability to inhibit PLA2 was determined by enzymatic activity, neutralization of paw edema and myonecrosis. The protein purity was confirmed by RP-HPLC and SEC, whilst an apparent molecular mass of 25 kDa and 20 kDa was obtained by SDS-PAGE, under reducing and non-reducing conditions, respectively. According to mass spectrometry analysis, this protein showed 72% and 68% of coverage when aligned to amino acid sequences of two proteins already described as PLIs. Thus, the inhibitory activity of enzymatic, edema and myonecrotic activities by γBjPLI suggests a role of this inhibitor for protection of these snakes against self-envenomation.
Collapse
Affiliation(s)
- Caroline Serino-Silva
- Interunidades em Biotecnologia, Universidade de São Paulo - Instituto de Pesquisas Tecnológicas - Instituto Butantan, São Paulo, São Paulo, Brasil.,Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, Brasil
| | - Karen Morais-Zani
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, Brasil
| | - Marcos Hikari Toyama
- Instituto de Biociências do Litoral Paulista, Universidade Estadual Paulista, São Vicente, São Paulo, Brasil
| | - Daniela de Oliveira Toyama
- Instituto de Biociências do Litoral Paulista, Universidade Estadual Paulista, São Vicente, São Paulo, Brasil
| | - Henrique Hessel Gaeta
- Instituto de Biociências do Litoral Paulista, Universidade Estadual Paulista, São Vicente, São Paulo, Brasil
| | - Caroline Fabri Bittencourt Rodrigues
- Interunidades em Biotecnologia, Universidade de São Paulo - Instituto de Pesquisas Tecnológicas - Instituto Butantan, São Paulo, São Paulo, Brasil.,Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, Brasil
| | - Wéslei da Silva Aguiar
- Interunidades em Biotecnologia, Universidade de São Paulo - Instituto de Pesquisas Tecnológicas - Instituto Butantan, São Paulo, São Paulo, Brasil
| | | | | | | |
Collapse
|
13
|
Nutritional and Bioactivity Evaluation of Common Seaweed Species from the Persian Gulf. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2017. [DOI: 10.1007/s40995-017-0383-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Snake Venom PLA 2, a Promising Target for Broad-Spectrum Antivenom Drug Development. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6592820. [PMID: 29318152 PMCID: PMC5727668 DOI: 10.1155/2017/6592820] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/30/2017] [Indexed: 12/04/2022]
Abstract
Snakebite envenomation is a neglected global health problem, causing substantial mortality, disability, and psychological morbidity, especially in rural tropical and subtropical zones. Antivenin is currently the only specific medicine for envenomation. However, it is restricted by cold storage, snakebite diagnosis, and high price. Snake venom phospholipase A2s (svPLA2s) are found in all kinds of venomous snake families (e.g., Viperidae, Elapidae, and Colubridae). Along with their catalytic activity, svPLA2s elicit a wide variety of pharmacological effects that play a pivotal role in envenomation damage. Hence, neutralization of the svPLA2s could weaken or inhibit toxic damage. Here we overviewed the latest knowledge on the distribution, pathophysiological effects, and inhibitors of svPLA2s to elucidate the potential for a novel, wide spectrum antivenom drug targeting svPLA2s.
Collapse
|
15
|
Ambati RR, Gogisetty D, Aswathnarayana Gokare R, Ravi S, Bikkina PN, Su Y, Lei B. Botryococcus as an alternative source of carotenoids and its possible applications – an overview. Crit Rev Biotechnol 2017; 38:541-558. [DOI: 10.1080/07388551.2017.1378997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ranga Rao Ambati
- Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
- Estuarine Fisheries Research Institute of Doumen, Zhuhai, China
| | - Deepika Gogisetty
- Department of Chemistry, Sri Vivekananda College, Viveka Educational Institutions, Tenali, India
| | | | - Sarada Ravi
- Plant Cell Biotechnology Department, Central Food Technological Research Institute (Constituent Laboratory of Council of Scientific & Industrial Research), Mysore, India
| | | | - Yuepeng Su
- Estuarine Fisheries Research Institute of Doumen, Zhuhai, China
| | - Bo Lei
- Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| |
Collapse
|
16
|
Yonamine Y, Suzuki Y, Ito T, Miura Y, Goda K, Ozeki Y, Hoshino Y. Monitoring Photosynthetic Activity in Microalgal Cells by Raman Spectroscopy with Deuterium Oxide as a Tracking Probe. Chembiochem 2017; 18:2063-2068. [DOI: 10.1002/cbic.201700314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Yusuke Yonamine
- Department of Chemical Engineering; Kyushu University; 744 Motooka Fukuoka 819-0395 Japan
| | - Yuta Suzuki
- Department of Electrical Engineering and Information Systems; University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Takuro Ito
- Japan Science and Technology Agency; 4-1-8 Honcho Kawaguchi-shi Saitama 332-0012 Japan
| | - Yoshiko Miura
- Department of Chemical Engineering; Kyushu University; 744 Motooka Fukuoka 819-0395 Japan
| | - Keisuke Goda
- Japan Science and Technology Agency; 4-1-8 Honcho Kawaguchi-shi Saitama 332-0012 Japan
- Department of Chemistry; University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Department of Electrical Engineering; University of California; 420 Westwood Plaza Los Angeles CA 90095 USA
| | - Yasuyuki Ozeki
- Department of Electrical Engineering and Information Systems; University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Yu Hoshino
- Department of Chemical Engineering; Kyushu University; 744 Motooka Fukuoka 819-0395 Japan
| |
Collapse
|
17
|
Orallo DE, Bertolotti SG, Churio MS. Photophysicochemical characterization of mycosporine-like amino acids in micellar solutions. Photochem Photobiol Sci 2017; 16:1117-1125. [PMID: 28548169 DOI: 10.1039/c7pp00051k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The properties and photochemical and photophysical behavior of the mycosporine-like amino acids (MAAs) shinorine and porphyra-334 were experimentally evaluated in solutions of direct ionic micelles as simple biomimicking environments. The preferential partition of the natural molecules in the aqueous phase of sodium dodecyl sulfate (SDS) or cetyltrimethylammonium chloride (CTAC) micellar systems is confirmed. Although the proton dissociation of the carboxylic groups in the MAAs is slightly inhibited in CTAC solutions, the molecules are predicted to be in the form of zwitterions in all the explored media around physiological pH. The increase in the fluorescence quantum yield, emission lifetime and stationary anisotropy in the presence of CTAC micelles suggest electrostatic attractions of the MAAs with the surface of the cationic micelles. Consistently, the triplet-triplet absorption spectra in CTAC solutions reveal the typical environmental features of the micellar interface, while in the presence of SDS they are similar to those determined in neat water. Finally, the photostability of the MAAs increases in the micellar systems, more noticeably in the case of CTAC. It is concluded that the ability of the two MAAs to act as UV screens is susceptible to the influence of electrostatic interactions with organized microheterogeneous environments.
Collapse
Affiliation(s)
- D E Orallo
- IFIMAR, Instituto de Investigaciones Físicas de Mar del Plata (CONICET-UNMDP), Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, (B7602AYL) Mar del Plata, Argentina.
| | - S G Bertolotti
- Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, (X5804BYA) Río Cuarto, Argentina
| | - M S Churio
- IFIMAR, Instituto de Investigaciones Físicas de Mar del Plata (CONICET-UNMDP), Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, (B7602AYL) Mar del Plata, Argentina.
| |
Collapse
|
18
|
Boukhris S, Athmouni K, Hamza-Mnif I, Siala-Elleuch R, Ayadi H, Nasri M, Sellami-Kamoun A. The Potential of a Brown Microalga Cultivated in High Salt Medium for the Production of High-Value Compounds. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4018562. [PMID: 28612024 PMCID: PMC5458432 DOI: 10.1155/2017/4018562] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/27/2017] [Indexed: 01/03/2023]
Abstract
Amphora sp. was isolated from the Sfax Solar Saltern and cultivated under hypersaline conditions. It contains moderate rates of proteins, lipids, sugars, and minerals and a prominent content of bioactive compounds: polyphenols, chlorophyll a, carotenoids, and fatty acids. The analysis of fatty acids with GC/MS showed that the C16 series accounted for about 75% of Amphora sp. lipids. Saturated fatty acids whose palmitic acid was the most important (27.41%) represented 41.31%. Amphora sp. was found to be rich in monounsaturated fatty acids with dominance of palmitoleic acid. It also contains a significant percentage of polyunsaturated fatty acids with a high amount of eicosapentaenoic acid (2.36%). Among the various solvents used, ethanol at 80% extracted the highest amounts of phenols and flavonoids that were 38.27 mg gallic acid equivalent and 17.69 mg catechin equivalent g-1 of dried extract, respectively. Using various in vitro assays including DPPH and ABTS radicals methods, reducing power assay, and β-carotene bleaching assay, the 80% ethanolic extract showed high antioxidant activity. A strong antibacterial activity was checked against Gram-positive bacteria (Staphylococcus aureus and Micrococcus luteus) and Gram-negative bacteria (Klebsiella pneumoniae and Salmonella enterica). These results are in favor of Amphora sp. valorization in aquaculture and food and pharmaceutical industries.
Collapse
Affiliation(s)
- Saoussan Boukhris
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, BP 1173, 3000 Sfax, Tunisia
| | - Khaled Athmouni
- Laboratory of Biodiversity and Aquatic Ecosystems, Ecology and Planktonology, Department of Life Sciences, Sfax University, Soukra Km 3.5, BP 1171, 3000 Sfax, Tunisia
| | - Ibtissem Hamza-Mnif
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, BP 1173, 3000 Sfax, Tunisia
| | - Rayda Siala-Elleuch
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, BP 1173, 3000 Sfax, Tunisia
| | - Habib Ayadi
- Laboratory of Biodiversity and Aquatic Ecosystems, Ecology and Planktonology, Department of Life Sciences, Sfax University, Soukra Km 3.5, BP 1171, 3000 Sfax, Tunisia
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, BP 1173, 3000 Sfax, Tunisia
| | - Alya Sellami-Kamoun
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, BP 1173, 3000 Sfax, Tunisia
| |
Collapse
|
19
|
Novoa-Garrido M, Rebours C, Aanensen L, Torp T, Lind V, Steinshamn H. Effect of seaweed on gastrointestinal microbiota isolated from Norwegian White sheep. ACTA AGR SCAND A-AN 2017. [DOI: 10.1080/09064702.2017.1310287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- M. Novoa-Garrido
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- NIBIO – Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - C. Rebours
- NIBIO – Norwegian Institute of Bioeconomy Research, Ås, Norway
- Møreforsking Ålesund AS, Ålesund, Norway
| | - L. Aanensen
- NIBIO – Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - T. Torp
- NIBIO – Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - V. Lind
- NIBIO – Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - H. Steinshamn
- NIBIO – Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
20
|
Santos-Filho NA, Santos CT. Alpha-type phospholipase A 2 inhibitors from snake blood. J Venom Anim Toxins Incl Trop Dis 2017; 23:19. [PMID: 28344595 PMCID: PMC5364564 DOI: 10.1186/s40409-017-0110-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/16/2017] [Indexed: 01/22/2023] Open
Abstract
It is of popular and scientific knowledge that toxins from snake venom (among them the PLA2 and myotoxins) are neutralized by various compounds, such as antibodies and proteins purified from animal blood. Venomous and nonvenomous snakes have PLA2 inhibitory proteins, called PLIs, in their blood serum. One hypothesis that could explain the presence of these PLIs in the serum of venomous snakes would be self-protection against the enzymes of their own venom, which eventually could reach the circulatory system. However, the presence of PLIs in non-venomous snakes suggests that their physiological role might not be restricted to protection against PLA2 toxins, but could be extended to other functions, as in the innate immune system and local regulation of PLA2s. The present study aimed to review the currently available literature on PLA2 and myotoxin alpha inhibitors present in snake plasma, thus helping to improve the research on these molecules. Furthermore, this review includes current information regarding the mechanism of action of these inhibitors in an attempt to better understand their application, and proposes the use of these molecules as new models in snakebite therapy. These molecules may help in the neutralization of different types of phospholipases A2 and myotoxins, complementing the conventional serum therapy.
Collapse
Affiliation(s)
- Norival A. Santos-Filho
- Institute of Chemistry, São Paulo State University (UNESP – Univ Estadual Paulista), Araraquara, SP Brazil
| | - Claudia T. Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP – Univ Estadual Paulista), Araraquara, SP Brazil
| |
Collapse
|
21
|
Rocha SL, Neves-Ferreira AG, Trugilho MR, Angulo Y, Lomonte B, Valente RH, Domont GB, Perales J. Screening for target toxins of the antiophidic protein DM64 through a gel-based interactomics approach. J Proteomics 2017; 151:204-213. [DOI: 10.1016/j.jprot.2016.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/05/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
|
22
|
Aziz N, Prasad R, Ibrahim AIM, Ahmed AIS. Promising Applications for the Production of Biofuels Through Algae. Microb Biotechnol 2017. [DOI: 10.1007/978-981-10-6847-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
23
|
Endogenous phospholipase A 2 inhibitors in snakes: a brief overview. J Venom Anim Toxins Incl Trop Dis 2016; 22:37. [PMID: 28031735 PMCID: PMC5175389 DOI: 10.1186/s40409-016-0092-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/30/2016] [Indexed: 11/29/2022] Open
Abstract
The blood plasma of numerous snake species naturally comprises endogenous phospholipase A2 inhibitors, which primarily neutralize toxic phospholipases A2 that may eventually reach their circulation. This inhibitor type is generally known as snake blood phospholipase A2 inhibitors (sbPLIs). Most, if not all sbPLIs are oligomeric glycosylated proteins, although the carbohydrate moiety may not be essential for PLA2 inhibition in every case. The presently known sbPLIs belong to one of three structural classes – namely sbαPLI, sbβPLI or sbγPLI – depending on the presence of characteristic C-type lectin-like domains, leucine-rich repeats or three-finger motifs, respectively. Currently, the most numerous inhibitors described in the literature are sbαPLIs and sbγPLIs, whereas sbβPLIs are rare. When the target PLA2 is a Lys49 homolog or an Asp49 myotoxin, the sbPLI is denominated a myotoxin inhibitor protein (MIP). In this brief overview, the most relevant data on sbPLIs will be presented. Representative examples of sbαPLIs and sbγPLIs from two Old World – Gloydius brevicaudus and Malayopython reticulatus – and two New World – Bothrops alternatus and Crotalus durissus terrificus – snake species will be emphasized.
Collapse
|
24
|
Shin H, Hong SJ, Yoo C, Han MA, Lee H, Choi HK, Cho S, Lee CG, Cho BK. Genome-wide transcriptome analysis revealed organelle specific responses to temperature variations in algae. Sci Rep 2016; 6:37770. [PMID: 27883062 PMCID: PMC5121895 DOI: 10.1038/srep37770] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/01/2016] [Indexed: 11/23/2022] Open
Abstract
Temperature is a critical environmental factor that affects microalgal growth. However, microalgal coping mechanisms for temperature variations are unclear. Here, we determined changes in transcriptome, total carbohydrate, total fatty acid methyl ester, and fatty acid composition of Tetraselmis sp. KCTC12432BP, a strain with a broad temperature tolerance range, to elucidate the tolerance mechanisms in response to large temperature variations. Owing to unavailability of genome sequence information, de novo transcriptome assembly coupled with BLAST analysis was performed using strand specific RNA-seq data. This resulted in 26,245 protein-coding transcripts, of which 83.7% could be annotated to putative functions. We identified more than 681 genes differentially expressed, suggesting an organelle-specific response to temperature variation. Among these, the genes related to the photosynthetic electron transfer chain, which are localized in the plastid thylakoid membrane, were upregulated at low temperature. However, the transcripts related to the electron transport chain and biosynthesis of phosphatidylethanolamine localized in mitochondria were upregulated at high temperature. These results show that the low energy uptake by repressed photosynthesis under low and high temperature conditions is compensated by different mechanisms, including photosystem I and mitochondrial oxidative phosphorylation, respectively. This study illustrates that microalgae tolerate different temperature conditions through organelle specific mechanisms.
Collapse
Affiliation(s)
- HyeonSeok Shin
- Department of Biological Sciences, Korea advanced institute of Science and Technology, Daejon 305-701, Republic of Korea
| | - Seong-Joo Hong
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea
| | - Chan Yoo
- Department of Biological Sciences, Korea advanced institute of Science and Technology, Daejon 305-701, Republic of Korea
| | - Mi-Ae Han
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea
| | - Hookeun Lee
- College of Pharmacy, Gachon University, Incheon 406-840, Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea advanced institute of Science and Technology, Daejon 305-701, Republic of Korea
| | - Choul-Gyun Lee
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea advanced institute of Science and Technology, Daejon 305-701, Republic of Korea
| |
Collapse
|
25
|
rBaltMIP, a recombinant alpha-type myotoxin inhibitor from Bothrops alternatus (Rhinocerophis alternatus) snake, as a potential candidate to complement the antivenom therapy. Toxicon 2016; 124:53-62. [PMID: 28327300 DOI: 10.1016/j.toxicon.2016.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 02/04/2023]
Abstract
Phospholipase A2 inhibitors (PLIs) are important targets in the search and development of new drugs. This study aimed at evaluating the potential of an alpha-type phospholipase A2 inhibitor from Bothrops alternatus (Rhinocerophis alternatus) snake in its recombinant form (rBaltMIP) to complement the conventional antivenom therapy. Biochemical experiments showed that rBaltMIP presented pI 5.8 and molecular masses of ∼21 kDa by SDS-PAGE and 19.57 kDa by MALDI/TOF MS. After tryptic peptides sequencing, the results were compared with other PLIs available in databases, showing 100% identity between rBaltMIP and its native inhibitor BaltMIP and from 92% to 96% identity with other inhibitors. Myotoxic activities of BthTX-I and BthTX-II toxins were measured via plasma CK levels, showing myotoxic effective concentrations (EC50) of 0.1256 μg/μL and 0.6183 μg/μL, respectively. rBaltMIP neutralized the myotoxicity caused by these two toxins up to 65%, without promoting primary antibody response against itself. Nevertheless, this recombinant PLI was immunogenic when standard immunization protocol with Freud's adjuvant was used. In paw edema assays, EC50 of 0.02581 μg/μL and 0.02810 μg/μL, respectively, were observed with edema reductions of up to 40% by rBaltMIP, suggesting its use as an additional antivenom. In addition, myotoxicity neutralization experiments with the myotoxin BthTX-I showed that rBaltMIP was more effective in inhibiting muscle damage than the conventional antivenom. Thus, considering the severity of envenomations due to Bothrops alternatus (Rhinocerophis alternatus) and the low neutralization of their local effects (such as myotoxicity) by the current antivenoms, rBaltMIP is a promising molecule for the development of novel therapeutic strategies for clinical applications.
Collapse
|
26
|
Abirami RG, Kowsalya S. Quantification and Correlation Study on Derived Phenols and Antioxidant Activity of Seaweeds from Gulf of Mannar. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/10496475.2016.1240132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- R. G. Abirami
- Department of Food Science, School of Sciences, College of Engineering Science and Technology (CEST), Fiji National University, Fiji Islands
| | - S. Kowsalya
- Department of Food Science and Nutrition, Avinashilingam University for Women, Coimbatore, India
| |
Collapse
|
27
|
Lopes G, Pinto E, Salgueiro L. Natural Products: An Alternative to Conventional Therapy for Dermatophytosis? Mycopathologia 2016; 182:143-167. [PMID: 27771883 DOI: 10.1007/s11046-016-0081-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/09/2016] [Indexed: 12/13/2022]
Abstract
The increased incidence of fungal infections, associated with the widespread use of antifungal drugs, has resulted in the development of resistance, making it necessary to discover new therapeutic alternatives. Among fungal infections, dermatophytoses constitute a serious public health problem, affecting 20-25 % of the world population. Medicinal plants represent an endless source of bioactive molecules, and their volatile and non-volatile extracts are clearly recognized for being the historical basis of therapeutic health care. Because of this, the research on natural products with antifungal activity against dermatophytes has considerably increased in recent years. However, despite the recognized anti-dermatophytic potential of natural products, often advantageous face to commercial drugs, there is still a long way to go until their use in therapeutics. This review attempts to summarize the current status of anti-dermatophytic natural products, focusing on their mechanism of action, the developed pharmaceutical formulations and their effectiveness in human and animal models of infection.
Collapse
Affiliation(s)
- Graciliana Lopes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal
| | - Eugénia Pinto
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal. .,Microbiology Service, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Lígia Salgueiro
- CNC.IBILI/Faculty of Pharmacy, University of Coimbra, Azinhaga de S. Comba, 3000-354, Coimbra, Portugal
| |
Collapse
|
28
|
Tolerance to Ultraviolet Radiation of Psychrotolerant Yeasts and Analysis of Their Carotenoid, Mycosporine, and Ergosterol Content. Curr Microbiol 2016; 72:94-101. [PMID: 26483082 DOI: 10.1007/s00284-015-0928-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/09/2015] [Indexed: 12/11/2022]
Abstract
Yeasts colonizing the Antarctic region are exposed to a high ultraviolet radiation evolving mechanisms to minimize the UV radiation damages, such as the production of UV-absorbing or antioxidant compounds like carotenoid pigments and mycosporines. Ergosterol has also been suggested to play a role in this response. These compounds are also economically attractive for several industries such as pharmaceutical and food, leading to a continuous search for biological sources of them. In this work, the UV-C radiation tolerance of yeast species isolated from the sub-Antarctic region and their production of carotenoids, mycosporines, and ergosterol were evaluated. Dioszegia sp., Leuconeurospora sp. (T27Cd2), Rhodotorula laryngis, Rhodotorula mucilaginosa, and Cryptococcus gastricus showed the highest UV-C radiation tolerance. The yeasts with the highest content of carotenoids were Dioszegia sp. (OHK torulene), Rh. laryngis (torulene and lycopene), Rh. mucilaginosa, (torulene, gamma carotene, and lycopene), and Cr. gastricus (2-gamma carotene). Probable mycosporine molecules and biosynthesis intermediates were found in Rh. laryngis, Dioszegia sp., Mrakia sp., Le. creatinivora, and Leuconeurospora sp. (T27Cd2). Ergosterol was the only sterol detected in all yeasts, and M. robertii and Le. creatinivora showed amounts higher than 4 mg g−1. Although there was not a well-defined relation between UV-C tolerance and the production of these three kinds of compounds, the majority of the yeasts with lower amounts of carotenoids showed lower UV-C tolerance. Dioszegia sp., M. robertii, and Le. creatinivora were the greatest producers of carotenoids, ergosterol, and mycosporines, respectively, representing good candidates for future studies intended to increase their production for large-scale applications.
Collapse
|
29
|
Barahona S, Yuivar Y, Socias G, Alcaíno J, Cifuentes V, Baeza M. Identification and characterization of yeasts isolated from sedimentary rocks of Union Glacier at the Antarctica. Extremophiles 2016; 20:479-91. [PMID: 27215207 DOI: 10.1007/s00792-016-0838-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/15/2016] [Indexed: 10/21/2022]
Abstract
The study of the yeasts that inhabit cold environments, such as Antarctica, is an active field of investigation oriented toward understanding their ecological roles in these ecosystems. In a great part, the interest in cold-adapted yeasts is due to several industrial and biotechnological applications that have been described for them. The aim of this work was to isolate and identify yeasts from sedimentary rock samples collected at the Union Glacier, Antarctica. Furthermore, the yeasts were physiologically characterized, including the production of metabolites of biotechnological interest. The yeasts isolated that were identified at the molecular level belonged to genera Collophora (1 isolate), Cryptococcus (2 isolates), Sporidiobolus (4 isolates), Sporobolomyces (1 isolate) and Torrubiella (2 isolates). The majority of yeasts were basidiomycetous and psychrotolerant. By cross-test assays for anti-yeast activity, it was determined that Collophora sp., Sporidiobolus salmonicolor, and Sporobolomyces roseus secreted a protein factor that kills Sporidiobolus metaroseus. The colored yeasts Sp. salmonicolor, Sp. metaroseus and Collophora sp. produced several carotenoid pigments that were identified as 2,3 dihydroxy-γ-carotene, -carotene, 4-ketotorulene, torulene β-cryptoxanthin and spirilloxanthin. Concerning analysis of mycosporines, these metabolites were only found in the yeasts Torrubiella sp. and Cryptococcus sp. T11-10-1. Furthermore, the yeasts were evaluated for the production of extracellular hydrolytic activities. Of the twelve activities analyzed, alkaline phosphatase, invertase, gelatinase, cellulase, amylase, and protease enzyme activities were detected. The yeasts Cryptococcus sp. T11-10-1 and Sporidiobolus metaroseus showed the highest number of different enzyme activities.
Collapse
Affiliation(s)
- Salvador Barahona
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Yassef Yuivar
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Gabriel Socias
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Jennifer Alcaíno
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Víctor Cifuentes
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Marcelo Baeza
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| |
Collapse
|
30
|
Structural and evolutionary insights into endogenous alpha-phospholipase A 2 inhibitors of Latin American pit vipers. Toxicon 2016; 112:35-44. [DOI: 10.1016/j.toxicon.2016.01.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/16/2016] [Accepted: 01/20/2016] [Indexed: 11/18/2022]
|
31
|
Hussain E, Wang LJ, Jiang B, Riaz S, Butt GY, Shi DY. A review of the components of brown seaweeds as potential candidates in cancer therapy. RSC Adv 2016. [DOI: 10.1039/c5ra23995h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Brown seaweeds have opened new opportunities for the development of novel anticancer agents due to their diverse structural composition and mode of action.
Collapse
Affiliation(s)
- Ejaz Hussain
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences (CAS)
- Qingdao 266071
- China
| | - Li-Jun Wang
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences (CAS)
- Qingdao 266071
- China
| | - Bo Jiang
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences (CAS)
- Qingdao 266071
- China
| | - Saba Riaz
- Phycology Lab
- Department of Botany
- Government College University
- Lahore
- Pakistan
| | | | - Da-Yong Shi
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences (CAS)
- Qingdao 266071
- China
| |
Collapse
|
32
|
Rahelivao MP, Gruner M, Andriamanantoanina H, Bauer I, Knölker HJ. Brown Algae (Phaeophyceae) from the Coast of Madagascar: preliminary Bioactivity Studies and Isolation of Natural Products. NATURAL PRODUCTS AND BIOPROSPECTING 2015; 5:223-35. [PMID: 26358714 PMCID: PMC4607676 DOI: 10.1007/s13659-015-0068-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/18/2015] [Indexed: 06/05/2023]
Abstract
Eight species of brown algae (Phaeophyceae) from the coast of Madagascar have been investigated for their chemical constituents. Fucosterol (3) was obtained as the most abundant compound. The brown alga Sargassum ilicifolium was the source for the first isolation of the terpenoid C27-alcohol 1,1',2-trinorsqualenol (1) from marine sources. From S. incisifolium we isolated the highly unsaturated glycolipid 1-O-palmitoyl-2-O-stearidonoyl-3-O-β-D-galactopyranosylglycerol (4) and we report the first full assignment of its (1)H and (13)C NMR data. Apo-9'-fucoxanthinone (8) along with 24-ketocholesterol (5), (22E)-3β-hydroxycholesta-5,22-dien-24-one (6), and saringosterol (7) were obtained from Turbinaria ornata. The crude extracts of all eight species of brown algae exhibited a pronounced antimicrobial activity against the Gram-positive bacteria Bacillus cereus, Staphylococcus aureus, and Streptococcus pneumoniae.
Collapse
Affiliation(s)
| | - Margit Gruner
- Department Chemie, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Hanta Andriamanantoanina
- Centre National de Recherche sur l'Environnement, MESupRes, BP 1739, 101, Antananarivo, Madagascar
| | - Ingmar Bauer
- Department Chemie, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Hans-Joachim Knölker
- Department Chemie, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany.
| |
Collapse
|
33
|
Chia YY, Kanthimathi MS, Khoo KS, Rajarajeswaran J, Cheng HM, Yap WS. Antioxidant and cytotoxic activities of three species of tropical seaweeds. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:339. [PMID: 26415532 PMCID: PMC4587585 DOI: 10.1186/s12906-015-0867-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 09/18/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Three species of seaweeds (Padina tetrastromatica, Caulerpa racemosa and Turbinaria ornata) are widely consumed by Asians as nutraceutical food due to their antioxidant properties. Studies have shown that these seaweeds exhibit bioactivities which include antimicrobial, antiviral, anti-hypertensive and anticoagulant activities. However, investigations into the mechanisms of action pertaining to the cytotoxic activity of the seaweeds are limited. The aim of this study was to determine the antioxidant and cytotoxic activities of whole extracts of P. tetrastromatica, C. racemosa and T. ornata, including the cellular events leading to the apoptotic cell death of the extract treated-MCF-7 cells. Bioassay guided fractionation was carried out and the compounds identified. METHODS Powdered samples were sequentially extracted for 24 h. Their antioxidant activities were assessed by the DPPH radical, superoxide, nitric oxide and hydroxyl radical scavenging assays. The cytotoxic activity of the extract-treated MCF-7cells was assessed using the MTT assay. The most potent fraction was subjected to bioassay guided fractionation with column chromatography. All the fractions were tested for cytotoxic activity, caspase activity and effect on DNA fragmentation. RESULTS All three seaweeds showed potent radical scavenging activities in the various assays. The activity of the cellular antioxidant enzymes, superoxide dismutase, catalase and glutathione reductase, in MCF-7 cells, decreased in a time-dependent manner. The partially purified fractions exhibited higher cytotoxic activity, as assessed by the MTT assay, than the whole extracts in the breast adenocarcinoma cell line, MCF-7. LC-MS analysis revealed the presence of bioactive alkaloids such as camptothecin, lycodine and pesudopelletierine. CONCLUSION Based on the results obtained, all three seaweeds are rich sources of enzymatic and non-enzymatic antioxidants which could contribute to their reported medicinal benefits.
Collapse
Affiliation(s)
- Yin Yin Chia
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - M S Kanthimathi
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- University of Malaya Centre for Proteomics Research (UMCPR), University of Malaya, Kuala Lumpur, Malaysia.
| | - Kong Soo Khoo
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (Kampar campus), Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia.
| | - Jayakumar Rajarajeswaran
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Hwee Ming Cheng
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Wai Sum Yap
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000 UCSI Heights, Kuala Lumpur, Malaysia.
| |
Collapse
|
34
|
Gupta PL, Lee SM, Choi HJ. A mini review: photobioreactors for large scale algal cultivation. World J Microbiol Biotechnol 2015; 31:1409-17. [DOI: 10.1007/s11274-015-1892-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 06/13/2015] [Indexed: 10/23/2022]
|
35
|
The Counterbalance of Skin Metabolism on Orbits and Diseases. Med Sci (Basel) 2015; 3:25-37. [PMID: 29083389 PMCID: PMC5635759 DOI: 10.3390/medsci3020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/29/2015] [Accepted: 05/04/2015] [Indexed: 11/22/2022] Open
Abstract
Human organ functions are regulated by the nervous system. When human cells receive a message, this message is transmitted to the nervous system through a series of signal transmission processes. Skin conditions that occur after applying skin cream are closely related to signal transmission and nervous regulation. We determined the connection between signal regulation and natural rhythmic operations. The diurnal variations resulting from the earth’s rotation and indicate the relative relationships between the sympathetic nervous system and the parasympathetic nerve system. A spectrum was developed to assess neural transmission conditions by using skin signals which from Fourier transformation of the waves and established the association between the spectrum and diseases. The results could explain the relationships between the neurological illnesses and established spectrum. The objective was to promote the use of this spectrum as a new tool for conducting the nervous system tests in the future.
Collapse
|
36
|
Analysis of impact of temperature and saltwater on Nannochloropsis salina bio-oil production by ultra high resolution APCI FT-ICR MS. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.02.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
37
|
Kang HK, Seo CH, Park Y. Marine peptides and their anti-infective activities. Mar Drugs 2015; 13:618-54. [PMID: 25603351 PMCID: PMC4306955 DOI: 10.3390/md13010618] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/01/2015] [Indexed: 12/29/2022] Open
Abstract
Marine bioresources are a valuable source of bioactive compounds with industrial and nutraceutical potential. Numerous clinical trials evaluating novel chemotherapeutic agents derived from marine sources have revealed novel mechanisms of action. Recently, marine-derived bioactive peptides have attracted attention owing to their numerous beneficial effects. Moreover, several studies have reported that marine peptides exhibit various anti-infective activities, such as antimicrobial, antifungal, antimalarial, antiprotozoal, anti-tuberculosis, and antiviral activities. In the last several decades, studies of marine plants, animals, and microbes have revealed tremendous number of structurally diverse and bioactive secondary metabolites. However, the treatments available for many infectious diseases caused by bacteria, fungi, and viruses are limited. Thus, the identification of novel antimicrobial peptides should be continued, and all possible strategies should be explored. In this review, we will present the structures and anti-infective activity of peptides isolated from marine sources (sponges, algae, bacteria, fungi and fish) from 2006 to the present.
Collapse
Affiliation(s)
- Hee Kyoung Kang
- Department of Biomedical Science, Chosun University, Gwangju 501-759, Korea.
| | - Chang Ho Seo
- Department of Bioinformatics, Kongju National University, Kongju 314-701, Korea.
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju 501-759, Korea.
| |
Collapse
|
38
|
Abstract
As major contributors to global oxygen levels and producers of fatty acids, carotenoids, sterols, and phycocolloids, algae have significant ecological and commercial roles. Early algal models have contributed much to our understanding of circadian clocks at physiological and biochemical levels. The genetic and molecular approaches that identified clock components in other taxa have not been as widely applied to algae. We review results from seven species: the chlorophytes Chlamydomonas reinhardtii, Ostreococcus tauri, and Acetabularia spp.; the dinoflagellates Lingulodinium polyedrum and Symbiodinium spp.; the euglenozoa Euglena gracilis; and the red alga Cyanidioschyzon merolae. The relative simplicity, experimental tractability, and ecological and evolutionary diversity of algal systems may now make them particularly useful in integrating quantitative data from "omic" technologies (e.g., genomics, transcriptomics, metabolomics, and proteomics) with computational and mathematical methods.
Collapse
Affiliation(s)
- Zeenat B Noordally
- SynthSys and School of Biological Sciences, University of Edinburgh , Edinburgh EH9 3BF, United Kingdom
| | | |
Collapse
|
39
|
Chuang LF, Chou HN, Sung PJ. Porphyra-334 isolated from the marine algae Bangia atropurpurea: conformational performance for energy conversion. Mar Drugs 2014; 12:4732-40. [PMID: 25192413 PMCID: PMC4178487 DOI: 10.3390/md12094732] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/30/2014] [Accepted: 08/25/2014] [Indexed: 11/16/2022] Open
Abstract
Prophyra-334 (p-334) may play a role of energy transfer under an uncertain mechanism, and we speculate the possible model. Via 1D and 2D NMR experiments, it was simulated the correlation between dissociation and conformation of p-334. Intramolecular interactions were observed based on a series of changes in the 1H and 13C chemical shifts. Nuclear Overhauser effect spectroscopy experiments and molecular models in various pD conditions indicated the p-334 molecular dissociation process status. In addition, we also used Chem3D software to find the most possible molecular conformation. The relationship between the structural status and energy conversion is explained. Those are the primary results. More researches on it are highly expected in the future.
Collapse
Affiliation(s)
- Li-Fan Chuang
- Institute of Fisheries Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da-An district, Taipei 106, Taiwan.
| | - Hong-Nong Chou
- Institute of Fisheries Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da-An district, Taipei 106, Taiwan.
| | - Ping-Jyun Sung
- Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan.
| |
Collapse
|
40
|
Santos-Filho NA, Boldrini-França J, Santos-Silva LK, Menaldo DL, Henrique-Silva F, Sousa TS, Cintra ACO, Mamede CCN, Oliveira F, Arantes EC, Antunes LMG, Cilli EM, Sampaio SV. Heterologous expression and biochemical and functional characterization of a recombinant alpha-type myotoxin inhibitor from Bothrops alternatus snake. Biochimie 2014; 105:119-28. [PMID: 25047442 DOI: 10.1016/j.biochi.2014.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
Abstract
Venomous and non-venomous snakes possess phospholipase A2 (PLA2) inhibitory proteins (PLIs) in their blood serum. This study shows the expression and biochemical and functional characterization of a recombinant alpha inhibitor from Bothrops alternatus snake, named rBaltMIP. Its expression was performed in Pichia pastoris heterologous system, resulting in an active recombinant protein. The expressed inhibitor was tested regarding its ability to inhibit the phospholipase activity of different PLA2s, showing slight inhibitions especially at the molar ratios of 1:1 and 1:3 (PLA2:PLI). rBaltMIP was also effective in decreasing the myotoxic activity of the tested toxins at molar ratios greater than 1:0.4 (myotoxin:PLI). The inhibition of the myotoxic activity of different Asp49 (BthTX-II and PrTX-III) and Lys49 (BthTX-I and PrTX-I) myotoxins was also performed without the prior incubation of myotoxins/inhibitor in order to analyze the real possibility of using snake plasma inhibitors or recombinant inhibitors as therapeutic agents for treating envenomations. As a result, rBaltMIP was able to significantly inhibit the myotoxicity of Lys49 myotoxins. Histopathological analysis of the gastrocnemius muscles of mice showed that the myotoxins are able to induce severe damage to the muscle fibers of experimental animals by recruiting a large number of leukocyte infiltrates, besides forming an intense accumulation of intercellular fluid, leading to local edema. When those myotoxins were incubated with rBaltMIP, a reduction of the damage site could be observed. Furthermore, the cytotoxic activity of Asp49 PLA2s and Lys49 PLA2-like enzymes on C2C12 cell lines was decreased, as shown by the higher cell viabilities after preincubation with rBaltMIP. Heterologous expression would enable large-scale obtainment of rBaltMIP, thus allowing further investigations for the elucidation of possible mechanisms of inhibition of snake PLA2s, which have not yet been fully clarified.
Collapse
Affiliation(s)
- Norival A Santos-Filho
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil; Instituto de Química, Universidade Estadual Paulista, UNESP, Araraquara, SP, Brazil.
| | - Johara Boldrini-França
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | - Ludier K Santos-Silva
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, UFSCAR, São Carlos, SP, Brazil
| | - Danilo L Menaldo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | - Flávio Henrique-Silva
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, UFSCAR, São Carlos, SP, Brazil
| | - Tiago S Sousa
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | - Adélia C O Cintra
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | - Carla C N Mamede
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Fábio Oliveira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Eliane C Arantes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | - Lusânia M Greggi Antunes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | - Eduardo M Cilli
- Instituto de Química, Universidade Estadual Paulista, UNESP, Araraquara, SP, Brazil
| | - Suely V Sampaio
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
41
|
Effect of Lignocellulose Related Compounds on Microalgae Growth and Product Biosynthesis: A Review. ENERGIES 2014. [DOI: 10.3390/en7074446] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
42
|
Bijttebier S, Zhani K, D'Hondt E, Noten B, Hermans N, Apers S, Voorspoels S. Generic characterization of apolar metabolites in red chili peppers (Capsicum frutescens L.) by orbitrap mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4812-4831. [PMID: 24762165 DOI: 10.1021/jf500285g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The aim of the present study was to develop a generic analytical method for the identification and quantitation of apolar plant metabolites in biomass using liquid chromatography-photodiode array-accurate mass mass spectrometry (LC-PDA-amMS). During this study, a single generic sample preparation protocol was applied to extract apolar plant metabolites. Compound identification was performed using a single generic screening method for apolar compounds without the need for dedicated fractionation. Such a generic approach renders vast amounts of information and is virtually limited by only the solubility and detector response of the metabolites of interest. Method validation confirmed that this approach is applicable for quantitative purposes. Furthermore, an identification-quantitation strategy based on amMS and molar extinction coefficients was used for carotenoids, eliminating the need for reference standards for each carotenoid. To challenge the validated method, chili peppers (Capsicum frutescens L.) were analyzed to unravel their complex phytochemical composition (carotenoids, glycolipids, glycerolipids, capsaicinoids, lipid-soluble vitamins).
Collapse
Affiliation(s)
- Sebastiaan Bijttebier
- Business Unit Separation and Conversion Technology (SCT), Flemish Institute for Technological Research (VITO) , Boeretang 200, 2400 Mol, Belgium
| | | | | | | | | | | | | |
Collapse
|
43
|
Chen CC, Chen YA, Liu YJ, Yao DJ. A multilayer concentric filter device to diminish clogging for separation of particles and microalgae based on size. LAB ON A CHIP 2014; 14:1459-1468. [PMID: 24615295 DOI: 10.1039/c3lc51345a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microalgae species have great economic importance; they are a source of medicines, health foods, animal feeds, industrial pigments, cosmetic additives and biodiesel. Specific microalgae species collected from the environment must be isolated for examination and further application, but their varied size and culture conditions make their isolation using conventional methods, such as filtration, streaking plate and flow cytometric sorting, labour-intensive and costly. A separation device based on size is one of the most rapid, simple and inexpensive methods to separate microalgae, but this approach encounters major disadvantages of clogging and multiple filtration steps when the size of microalgae varies over a wide range. In this work, we propose a multilayer concentric filter device with varied pore size and is driven by a centrifugation force. The device, which includes multiple filter layers, was employed to separate a heterogeneous population of microparticles into several subpopulations by filtration in one step. A cross-flow to attenuate prospective clogging was generated by altering the rate of rotation instantly through the relative motion between the fluid and the filter according to the structural design of the device. Mixed microparticles of varied size were tested to demonstrate that clogging was significantly suppressed due to a highly efficient separation. Microalgae in a heterogeneous population collected from an environmental soil collection were separated and enriched into four subpopulations according to size in a one step filtration process. A microalgae sample contaminated with bacteria and insect eggs was also tested to prove the decontamination capability of the device.
Collapse
Affiliation(s)
- Chih-Chung Chen
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu 300, Taiwan, Republic of China.
| | | | | | | |
Collapse
|
44
|
García-Bueno N, Decottignies P, Turpin V, Dumay J, Paillard C, Stiger-Pouvreau V, Kervarec N, Pouchus YF, Marín-Atucha AA, Fleurence J. Seasonal antibacterial activity of two red seaweeds, Palmariapalmataand Grateloupia turuturu, on European abalone pathogen Vibrio harveyi. AQUATIC LIVING RESOURCES 2014; 27:83-89. [DOI: 10.1051/alr/2014009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
45
|
Ribeiro NA, Abreu TM, Chaves HV, Bezerra MM, Monteiro HSA, Jorge RJB, Benevides NMB. Sulfated polysaccharides isolated from the green seaweed Caulerpa racemosa plays antinociceptive and anti-inflammatory activities in a way dependent on HO-1 pathway activation. Inflamm Res 2014; 63:569-80. [DOI: 10.1007/s00011-014-0728-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 01/11/2023] Open
|
46
|
Ambrozova JV, Misurcova L, Vicha R, Machu L, Samek D, Baron M, Mlcek J, Sochor J, Jurikova T. Influence of extractive solvents on lipid and fatty acids content of edible freshwater algal and seaweed products, the green Microalga Chlorella kessleri and the Cyanobacterium Spirulina platensis. Molecules 2014; 19:2344-60. [PMID: 24566307 PMCID: PMC6271980 DOI: 10.3390/molecules19022344] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 11/16/2022] Open
Abstract
Total lipid contents of green (Chlorella pyrenoidosa, C), red (Porphyra tenera, N; Palmaria palmata, D), and brown (Laminaria japonica, K; Eisenia bicyclis, A; Undaria pinnatifida, W, WI; Hizikia fusiformis, H) commercial edible algal and cyanobacterial (Spirulina platensis, S) products, and autotrophically cultivated samples of the green microalga Chlorella kessleri (CK) and the cyanobacterium Spirulina platensis (SP) were determined using a solvent mixture of methanol/chloroform/water (1:2:1, v/v/v, solvent I) and n-hexane (solvent II). Total lipid contents ranged from 0.64% (II) to 18.02% (I) by dry weight and the highest total lipid content was observed in the autotrophically cultivated cyanobacterium Spirulina platensis. Solvent mixture I was found to be more effective than solvent II. Fatty acids were determined by gas chromatography of their methyl esters (% of total FAMEs). Generally, the predominant fatty acids (all results for extractions with solvent mixture I) were saturated palmitic acid (C16:0; 24.64%-65.49%), monounsaturated oleic acid (C18:1(n-9); 2.79%-26.45%), polyunsaturated linoleic acid (C18:2(n-6); 0.71%-36.38%), α-linolenic acid (C18:3(n-3); 0.00%-21.29%), γ-linolenic acid (C18:3(n-6); 1.94%-17.36%), and arachidonic acid (C20:4(n-6); 0.00%-15.37%). The highest content of ω-3 fatty acids (21.29%) was determined in Chlorella pyrenoidosa using solvent I, while conversely, the highest content of ω-6 fatty acids (41.42%) was observed in Chlorella kessleri using the same solvent.
Collapse
Affiliation(s)
- Jarmila Vavra Ambrozova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, nam. T. G. Masaryka 5555, Zlin CZ-760 01, Czech Republic.
| | - Ladislava Misurcova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, nam. T. G. Masaryka 5555, Zlin CZ-760 01, Czech Republic.
| | - Robert Vicha
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, nam. T. G. Masaryka 5555, Zlin CZ-760 01, Czech Republic.
| | - Ludmila Machu
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, nam. T. G. Masaryka 5555, Zlin CZ-760 01, Czech Republic.
| | - Dusan Samek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, nam. T. G. Masaryka 5555, Zlin CZ-760 01, Czech Republic.
| | - Mojmir Baron
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valticka 337, Lednice CZ-691 44, Czech Republic.
| | - Jiri Mlcek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, nam. T. G. Masaryka 5555, Zlin CZ-760 01, Czech Republic.
| | - Jiri Sochor
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valticka 337, Lednice CZ-691 44, Czech Republic.
| | - Tunde Jurikova
- Department of Natural and Informatics Sciences, Faculty of Central European Studies, Constantine the Philosopher University in Nitra, Drazovska 4, Nitra SK-949 74, Slovak Republic.
| |
Collapse
|
47
|
Apoptogenic metabolites in fractions of the Benthic diatom Cocconeis scutellum parva. Mar Drugs 2014; 12:547-67. [PMID: 24451194 PMCID: PMC3917286 DOI: 10.3390/md12010547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/09/2014] [Accepted: 01/15/2014] [Indexed: 12/12/2022] Open
Abstract
Benthic diatoms of the genus Cocconeis contain a specific apoptogenic activity. It triggers a fast destruction of the androgenic gland in the early post-larval life of the marine shrimp Hippolyte inermis, leading to the generation of small females. Previous in vitro investigations demonstrated that crude extracts of these diatoms specifically activate a dose-dependent apoptotic process in human cancer cells (BT20 breast carcinoma) but not in human normal lymphocytes. Here, a bioassay-guided fractionation has been performed to detect the apoptogenic compound(s). Various HPLC separation systems were needed to isolate the active fractions, since the apoptogenic metabolite is highly active, present in low amounts and is masked by abundant but non-active cellular compounds. The activity is due to at least two compounds characterized by different polarities, a hydrophilic and a lipophilic fraction. We purified the lipophilic fraction, which led to the characterization of an active sub-fraction containing a highly lipophilic compound, whose molecular structure has not yet been identified, but is under investigation. The results point to the possible medical uses of the active compound. Once the molecular structure has been identified, the study and modulation of apoptotic processes in various types of cells will be possible.
Collapse
|
48
|
Paul S, Kundu R. Antiproliferative activity of methanolic extracts from two green algae, Enteromorpha intestinalis and Rizoclonium riparium on HeLa cells. ACTA ACUST UNITED AC 2013; 21:72. [PMID: 24355313 PMCID: PMC3923273 DOI: 10.1186/2008-2231-21-72] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/08/2013] [Indexed: 12/03/2022]
Abstract
Background Natural compounds can be alternative sources for finding new lead anti-cancer molecules. Marine algae have been a traditional source for bioactive compounds. Enteromorpha intestinalis and Rhizoclonium riparium are two well distributed saline/brackish water algae from Sundarbans. There’s no previous report of these two for their anti-proliferative activities. Methods Cytotoxicity of the algal methanolic extracts (AMEs) on HeLa cells were assayed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide (MTT) reduction assay. Morphological examinations were done by Haematoxylin, Hoechst 33258 and Acridine orange staining. DNA fragmentation was checked. Gene expressions of Cysteine aspartate protease (Caspase) 3, Tumor protein (TP) 53, Bcl-2 associated protein X (Bax) were studied by Reverse transcription- polymerase chain reaction (RT-PCR) keeping Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as internal control. Protein expressions were studied for Caspase 3, phospho-p53, Bax, Microtubule associated proteins-1/ light chain B (MAP1/LC3B) by western blot. Results The AMEs were found to be cytotoxic with Inhibitory concentration 50 (IC50) values 309.048 ± 3.083 μg/ml and 506.081 ± 3.714 μg/ml for E. intestinalis and R. riparium extracts respectively. Treated cells became round with blebbings with condensed nuclei. Acidic lysosomal vacuoles formation occurred in treated cells. Expression of apoptotic genes in both mRNA and protein level was lowered. Expression of LC3B-II suggested occurrence of autophagy in treated cells. Conclusions These two algae can be potent candidates for isolating new lead anticancer molecules. So they need further characterization at both molecular and structural levels.
Collapse
Affiliation(s)
| | - Rita Kundu
- Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India.
| |
Collapse
|
49
|
Screening Factors Influencing the Production of Astaxanthin from Freshwater and Marine Microalgae. Appl Biochem Biotechnol 2013; 172:2160-74. [DOI: 10.1007/s12010-013-0644-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/30/2013] [Indexed: 10/25/2022]
|
50
|
Leal MC, Munro MHG, Blunt JW, Puga J, Jesus B, Calado R, Rosa R, Madeira C. Biogeography and biodiscovery hotspots of macroalgal marine natural products. Nat Prod Rep 2013; 30:1380-90. [DOI: 10.1039/c3np70057g] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|