1
|
Cazenave J, Rossi AS, Ale A, Montalto L, Gutierrez MF, Rojas Molina F. Does temperature influence on biomarker responses to copper exposure? The invasive bivalve Limnoperna fortunei (Dunker 1857) as a model. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110059. [PMID: 39437870 DOI: 10.1016/j.cbpc.2024.110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/25/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Biomarkers are useful tools for assessing the early warning effects of pollutants. However, their responses can be influenced by confounding factors. In this study, we investigated the influence of temperature on multiple biomarkers in the invasive freshwater bivalve Limnoperna fortunei exposed to copper (Cu). The mussels were exposed to low and high environmental Cu concentrations at two temperatures (15 °C and 25 °C). After 96 h, the oxidative stress, neurotoxicity, and metabolic parameters were assessed. Our results showed that temperature is a key factor influencing biomarker responses in mussels, with higher glutathione S-transferase activity and lower energy reserves at cold temperature. In addition, the effects of Cu were greater at the highest concentration at 15 °C (increased lipid peroxidation and cholinesterase activity). Overall, these findings suggest that cold stress increases the susceptibility of L. fortunei to metal effects and highlight the importance of including temperature in toxicity testing and biomonitoring. In addition, using the invasive bivalve L. fortunei as a model could prove valuable in its role as a sentinel species for other organisms.
Collapse
Affiliation(s)
- Jimena Cazenave
- Instituto Nacional de Limnología (INALI, CONICET-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina; Facultad de Humanidades y Ciencias (FHUC-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Andrea S Rossi
- Instituto Nacional de Limnología (INALI, CONICET-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina; Facultad de Humanidades y Ciencias (FHUC-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Analía Ale
- Cátedra de Toxicología, Farmacología y Bioquímica Legal (FBCB-UNL), CONICET, Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Luciana Montalto
- Instituto Nacional de Limnología (INALI, CONICET-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina; Facultad de Humanidades y Ciencias (FHUC-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - María F Gutierrez
- Instituto Nacional de Limnología (INALI, CONICET-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina; Escuela Superior de Sanidad "Dr. Ramón Carrillo" (FBCB-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Florencia Rojas Molina
- Instituto Nacional de Limnología (INALI, CONICET-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina; Facultad de Humanidades y Ciencias (FHUC-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina.
| |
Collapse
|
2
|
Parizadeh L, Saint-Picq C, Barbier P, Bringer A, Huet V, Dubillot E, Thomas H. "Groundbreaking study: Combined effect of marine heatwaves and polyethylene microplastics on Pacific oysters, Crassostrea gigas". ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125164. [PMID: 39433206 DOI: 10.1016/j.envpol.2024.125164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Microplastics (MPs) and rising marine seawater temperatures are one of the major environmental problems threatening the survival of marine organisms and biodiversity. However, interactions between such multiple stressors are virtually unexplored. This study aimed to assess the combined effect of two temperatures and polyethylene MPs on the Pacific oyster Crassostrea gigas, one of the most globalized mollusc species for aquaculture. Our work highlights the potential ecological risk posed by these two factors on marine bivalve molluscs. The experimental design was carried out following a 14-day exposure of oysters to environmental concentrations of polyethylene MPs (0.01 mg.L-1), and to two temperatures (15 °C and 22 °C). Sampling was performed on days 0, 7, and 14. The μ-FTIR analysis was applied to quantify MPs of interest and to check a potential environmental contamination. Tissue samples of digestive glands were collected from the oysters to evaluate the activity of biomarkers including superoxide dismutase, glutathione-s-transferase, malondialdehyde and laccase through protein levels. We note that the combination of MPs and high water temperature (HWT, 22 °C) had a significant impact both on the survival of animals and on stress markers, by modifying lipid peroxidation and immune responses. This original study gave the first innovative results on this topic and provides us with knowledge of the combined effects of MPs pollution and HWT (simulating marine heatwaves situation) on C. gigas. There remains a lack of information on the toxicity and the potential environmental hazard of plastics in the marine environment.
Collapse
Affiliation(s)
- Leila Parizadeh
- Littoral Environnement et Sociétés (LIENSs), UMRi, 7266, CNRS, La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France.
| | - Camille Saint-Picq
- Littoral Environnement et Sociétés (LIENSs), UMRi, 7266, CNRS, La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Pierrick Barbier
- Centre pour l'Aquaculture, la Pêche et l'Environnement de Nouvelle-Aquitaine (CAPENA), Prise de Terdoux, 17480, Le Château d'Oléron, France
| | - Arno Bringer
- Qualyse, 5 allée de l'Océan, 17000, La Rochelle, France
| | - Valérie Huet
- Littoral Environnement et Sociétés (LIENSs), UMRi, 7266, CNRS, La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Emmanuel Dubillot
- Littoral Environnement et Sociétés (LIENSs), UMRi, 7266, CNRS, La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Hélène Thomas
- Littoral Environnement et Sociétés (LIENSs), UMRi, 7266, CNRS, La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| |
Collapse
|
3
|
Vega-Herrera A, Savva K, Lacoma P, Santos LHMLM, Hernández A, Marmelo I, Marques A, Llorca M, Farré M. Bioaccumulation and dietary bioaccessibility of microplastics composition and cocontaminants in Mediterranean mussels. CHEMOSPHERE 2024; 363:142934. [PMID: 39053781 DOI: 10.1016/j.chemosphere.2024.142934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Microplastics (MPLs) are contaminants of emerging concern (CECs) ubiquitous in aquatic environments, which can be bioaccumulated along the food chain. In this study, the accumulation of polyethylene (PE), polystyrene (PS) and polyethylene terephthalate (PET) microplastics (MPLs) of sizes below 63 μm was assessed in Mediterranean mussels (Mytilus galloprovincialis spp). Moreover, the potential of mussels to uptake and bioaccumulate other organic contaminants, such as triclosan (TCS) and per- and polyfluoroalkyl substances (PFASs), was evaluated with and without the presence of MPLs. Then, the modulation of MPLs in the human bioaccessibility of co-contaminants was assessed by in vitro assays that simulated the human digestion process. Exposure experiments were carried out in 15 L marine microcosms. The bioaccumulation and bioaccessibility of PE, PS, PET, and co-contaminants were assessed by means of liquid chromatography -size exclusion chromatography-coupled to high-resolution mass spectrometry (LC(SEC)-HRMS). Our outcomes confirm that MPL bioaccumulation in filter-feeding organisms is a function of MPL chemical composition and particle sizes. Finally, despite the lower accumulation and bioaccumulation of PFASs in the presence of MPLs, the bioaccessibility assays revealed that PFASs bioaccessibility was favoured in the presence of MPLs. Since part of the bioaccumulated PFASs are adsorbed onto MPL surfaces by hydrophobic and electrostatic interactions, these interactions easily change with the pH during digestion, and the PFASs bioaccessibility increases.
Collapse
Affiliation(s)
- Albert Vega-Herrera
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, C. Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Katerina Savva
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, C. Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Pol Lacoma
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, C. Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Lúcia H M L M Santos
- Catalan Institute for Water Research (ICRA-CERCA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Isa Marmelo
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Lisbon, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
| | - António Marques
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Lisbon, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
| | - Marta Llorca
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, C. Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Marinella Farré
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, C. Jordi Girona, 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
4
|
Cunha M, Petrillo V, Madeira M, He Y, Coppola F, Meucci V, De Marchi L, Soares AMVM, Freitas R. The influence of temperature on the impacts of caffeine in mussels: Evaluating subcellular impacts and model predictions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173453. [PMID: 38802017 DOI: 10.1016/j.scitotenv.2024.173453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
In aquatic ecosystems, the presence of pharmaceuticals, particularly caffeine (CAF), has been linked to wastewater discharge, hospital waste, and the disposal of expired pharmaceutical products containing CAF. Additionally, rising temperatures due to climate change are anticipated in aquatic environments. This study aimed to assess the toxicity of various CAF concentrations under current (17 °C) and projected (21 °C) temperature conditions, using the mussel Mytilus galloprovincialis as a bioindicator species. Subcellular impacts were evaluated following 28 days of exposure to four CAF concentrations (0.5; 1.0; 5.0; 10.0 μg/L) at the control temperature (17 °C). Only effects at an environmentally relevant CAF concentration (5.0 μg/L) were assessed at the highest temperature (21 °C). The overall biochemical response of mussels was evaluated using non-metric Multidimensional Scaling (MDS) and the Integrated Biomarker Response (IBR) index, while the Independent Action (IA) model was used to compare observed and predicted responses. Results showed that at 17 °C, increased CAF concentrations were associated with higher metabolism and biotransformation capacity, accompanied by cellular damage at the highest concentration. Conversely, under warming conditions (21 °C), the induction of antioxidant enzymes was observed, although insufficient to prevent cellular damage compared to the control temperature. Regarding neurotoxicity, at 17 °C, the activity of the acetylcholinesterase enzyme was inhibited up to 5.0 μg/L; however, at 10.0 μg/L, activity increased, possibly due to CAF competition for adenosine receptors. The IA model identified a synergistic response for most parameters when CAF and warming acted together, aligning with observed results, albeit with slightly lower magnitudes.
Collapse
Affiliation(s)
- Marta Cunha
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vincenzo Petrillo
- Department of Biology, University of Naples Federico II, 80126, Italy
| | - Madalena Madeira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Yide He
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, PR China; Sino-portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816 Jiangsu Province, China
| | - Francesca Coppola
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Lucia De Marchi
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Amadeu M V M Soares
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
5
|
Zhao R, Yang Y, Li S, Chen S, Ding J, Wu Y, Qu M, Di Y. Comparative study of integrated bio-responses in deep-sea and nearshore mussels upon abiotic condition changes: Insight into distinct regulation and adaptation. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106610. [PMID: 38879901 DOI: 10.1016/j.marenvres.2024.106610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/16/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Deep-sea mussels, one of the dominant species in most deep-sea ecosystems, have long been used as model organisms to investigate the adaptations and symbiotic relationships of deep-sea macrofauna under laboratory conditions due to their ability to survive under atmospheric pressure. However, the impact of additional abiotic conditions beyond pressure, such as temperature and light, on their physiological characteristics remains unknown. In this study, deep-sea mussels (Gigantidas platifrons) from cold seep of the South China Sea, along with nearshore mussels (Mytilus coruscus) from the East China Sea, were reared in unfavorable abiotic conditions for up to 8 days. Integrated biochemical indexes including antioxidant defense, immune ability and energy metabolism were investigated in the gill and digestive gland, while cytotoxicity was determined in hemocytes of both types of mussels. The results revealed mild bio-responses in two types of mussels in the laboratory, represented by the effective antioxidant defense with constant total antioxidant capability level and malondialdehyde content. There were also disparate adaptations in deep-sea and nearshore mussels. In deep-sea mussels, significantly increased immune response and energy reservation were observed in gills, together with the elevated cytotoxicity in hemocytes, implying the more severe biological adaptation was required, mainly due to the symbiotic bacteria loss under laboratory conditions. On the contrary, insignificant biological responses were exhibited in nearshore mussels except for the increased energy consumption, indicating the trade-off strategy to use more energy to deal with potential stress. Overall, this comparative study highlights the basal bio-responses of deep-sea and nearshore mussels out of their native environments, providing evidence that short-term culture of both mussels under easily achievable laboratory conditions would not dramatically alter their biological status. This finding will assist in broadening the application of deep-sea mussels as model organism in future research regardless of the specialized research equipment.
Collapse
Affiliation(s)
- Ruoxuan Zhao
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Yingli Yang
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Shuimei Li
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Siyu Chen
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Jiawei Ding
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Yusong Wu
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Mengjie Qu
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Yanan Di
- Ocean College, Zhejiang University, Zhoushan, 316000, China.
| |
Collapse
|
6
|
Montory JA, Cubillos VM, Chaparro OR, Gebauer P, Lee MR, Ramírez-Kuschel E, Paredes-Molina F, Lara-Sandoval V, Cumillaf JP, Salas-Yanquin LP, Büchner-Miranda JA. The Interactive Effects of the Anti-Sea Lice Pesticide Azamethiphos and Temperature on Oxidative Damage and Antioxidant Responses in the Oyster Ostrea chilensis. Antioxidants (Basel) 2024; 13:737. [PMID: 38929176 PMCID: PMC11200689 DOI: 10.3390/antiox13060737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Azamethiphos is used in the salmon industry to treat sea lice and is subsequently discharged into the sea, which may affect non-target species (NTS). A rise in seawater temperature could enhance the sensitivity of NTS. Thus, in the present investigation, the combined effects of azamethiphos (0 µg L-1, 15 µg L-1 and 100 µg L-1) and temperature (12 °C and 15 °C) was assessed over time (7 days) in the gonads and gills of the oyster Ostrea chilensis, assessing its oxidative damage (lipid peroxidation and protein carbonyls) and total antioxidant capacity. Our results indicated that in gonads and gills, lipid peroxidation levels increased over time during exposure to both pesticide concentrations. Protein carbonyl levels in gills increased significantly in all experimental treatments; however, in gonads, only pesticide concentration and exposure time effected a significant increase in protein damage. In both, gill and gonad temperature did not influence oxidative damage levels. Total antioxidant capacity in gonads was influenced only by temperature treatment, whereas in the gills, neither temperature nor azamethiphos concentration influenced defensive responses. In conclusion, our results indicated the time of pesticide exposure (both concentrations) had a greater influence than temperature on the cellular damage in this oyster.
Collapse
Affiliation(s)
- Jaime A. Montory
- Centro i~mar, Universidad de los Lagos, Casilla 557, Puerto Montt 5480000, Chile; (P.G.); (M.R.L.); (V.L.-S.)
| | - Victor M. Cubillos
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (V.M.C.); (O.R.C.); (E.R.-K.); (F.P.-M.); (J.A.B.-M.)
| | - Oscar R. Chaparro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (V.M.C.); (O.R.C.); (E.R.-K.); (F.P.-M.); (J.A.B.-M.)
| | - Paulina Gebauer
- Centro i~mar, Universidad de los Lagos, Casilla 557, Puerto Montt 5480000, Chile; (P.G.); (M.R.L.); (V.L.-S.)
| | - Matthew R. Lee
- Centro i~mar, Universidad de los Lagos, Casilla 557, Puerto Montt 5480000, Chile; (P.G.); (M.R.L.); (V.L.-S.)
| | - Eduardo Ramírez-Kuschel
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (V.M.C.); (O.R.C.); (E.R.-K.); (F.P.-M.); (J.A.B.-M.)
| | - Francisco Paredes-Molina
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (V.M.C.); (O.R.C.); (E.R.-K.); (F.P.-M.); (J.A.B.-M.)
| | - Valentina Lara-Sandoval
- Centro i~mar, Universidad de los Lagos, Casilla 557, Puerto Montt 5480000, Chile; (P.G.); (M.R.L.); (V.L.-S.)
| | - Juan P. Cumillaf
- Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Los Pinos s/n, Balneario Pelluco, Puerto Montt 5480000, Chile;
| | - Luis P. Salas-Yanquin
- Facultad de Ciencias, Unidad Multidisciplinaria de Docencia e Investigación, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal 97356, Mexico;
| | - Joseline A. Büchner-Miranda
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (V.M.C.); (O.R.C.); (E.R.-K.); (F.P.-M.); (J.A.B.-M.)
| |
Collapse
|
7
|
Fathy RF. Divergent perspectives on the synergistic impacts of thermal-chemical stress on aquatic biota within the framework of climate change scenarios. CHEMOSPHERE 2024; 355:141810. [PMID: 38554872 DOI: 10.1016/j.chemosphere.2024.141810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Climate change, including global warming, leads to rising temperatures in aquatic ecosystems, which is one of the numerous repercussions it brings. Furthermore, water warming can indirectly impact aquatic organisms by modifying the toxicity levels of pollutants. Nevertheless, numerous studies have explored the potential impacts of chemical stress on aquatic biota, but little is known about how such chemicals and toxins interact with climate change factors, especially elevated temperatures. As such, this review paper focuses on exploring the potential effects of thermochemical stress on a wide sector of aquatic organisms, including aquatic vertebrates and invertebrates, in various aquatic ecosystems (freshwater and marine systems). Herein, the objective of this study is to explore the most up-to-date the impact of water warming (without chemical stress) and thermochemical stress on various biochemical and physiological processes in aquatic fauna and how this greatly affects biodiversity and sustainability. Therefore, there is a growing need to understand and evaluate this synergistic mechanism and its potential hazardous impacts. However, we need further investigations and scientific reports to address this serious environmental issue in order to confront anthropogenic pollutants regarding climate change and chemical pollution risks in the near future and subsequently find sustainable solutions for them.
Collapse
Affiliation(s)
- Ragaa F Fathy
- Hydrobiology Department, Veterinary Research Institute, National Research Centre (NRC), 33 El-Buhouth St, 12622 Dokki, Giza, Egypt.
| |
Collapse
|
8
|
Lee JS, Lee JS, Kim HS. Toxic effects of triclosan in aquatic organisms: A review focusing on single and combined exposure of environmental conditions and pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170902. [PMID: 38354791 DOI: 10.1016/j.scitotenv.2024.170902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/12/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Triclosan (TCS) is an antibacterial agent commonly used in personal care products. Due to its widespread use and improper disposal, it is also a pervasive contaminant, particularly in aquatic environments. When released into water bodies, TCS can induce deleterious effects on developmental and physiological aspects of aquatic organisms and also interact with environmental stressors such as weather, metals, pharmaceuticals, and microplastics. Multiple studies have described the adverse effects of TCS on aquatic organisms, but few have reported on the interactions between TCS and other environmental conditions and pollutants. Because aquatic environments include a mix of contaminants and natural factors can correlate with contaminants, it is important to understand the toxicological outcomes of combinations of substances. Due to its lipophilic characteristics, TCS can interact with a wide range of substances and environmental stressors in aquatic environments. Here, we identify a need for caution when using TCS by describing not only the effects of exposure to TCS alone on aquatic organisms but also how toxicity changes when it acts in combination with multiple environmental stressors.
Collapse
Affiliation(s)
- Jin-Sol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea; Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
9
|
Romero-Freire A, De Marchi L, Freitas R, Velo A, Babarro JMF, Cobelo-García A. Ocean acidification impact on the uptake of trace elements by mussels and their biochemical effects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 269:106882. [PMID: 38442506 DOI: 10.1016/j.aquatox.2024.106882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
This study delves into the intricate interplay between ocean acidification (OA), metal bioaccumulation, and cellular responses using mussels (Mytilus galloprovincialis) as bioindicators. For this purpose, environmentally realistic concentrations of isotopically labelled metals (Cd, Cu, Ag, Ce) were added to investigate whether the OA increase would modify metal bioaccumulation and induce adverse effects at the cellular level. The study reveals that while certain elements like Cd and Ag might remain unaffected by OA, the bioavailability of Cu and Ce could potentially escalate, leading to amplified accumulation in marine organisms. The present findings highlight a significant rise in Ce concentrations within different mussel organs under elevated pCO2 conditions, accompanied by an increased isotopic fractionation of Ce (140/142Ce), suggesting a heightened potential for metal accumulation under OA. The results suggested that OA influenced metal accumulation in the gills of mussels. Conversely, metal accumulation in the digestive gland was unaffected by OA. The exposure to both trace metals and OA affects the biochemical responses of M. galloprovincialis, leading to increased metabolic capacity, changes in energy reserves, and alterations in oxidative stress markers, but the specific effects on other biomarkers (e.g., lipid peroxidation, some enzymatic responses or acetylcholinesterase activity) were not uniform, suggesting complex interactions between the stressors and the biochemical pathways in the mussels.
Collapse
Affiliation(s)
- A Romero-Freire
- Department of Soil Science and Agriculture Chemistry, University of Granada (UGR), Granada, Spain; Institute of Marine Research - Spanish National Research Council (IIM-CSIC), Vigo, Galicia, Spain.
| | - L De Marchi
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal; Department of Veterinary, University of Pisa, Via Derna 1 56126 Pisa, Italy
| | - R Freitas
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - A Velo
- Institute of Marine Research - Spanish National Research Council (IIM-CSIC), Vigo, Galicia, Spain
| | - J M F Babarro
- Institute of Marine Research - Spanish National Research Council (IIM-CSIC), Vigo, Galicia, Spain
| | - A Cobelo-García
- Institute of Marine Research - Spanish National Research Council (IIM-CSIC), Vigo, Galicia, Spain.
| |
Collapse
|
10
|
Bouzidi I, Fkiri A, Saidani W, Khazri A, Mezni A, Mougin K, Beyrem H, Sellami B. The pharmaceutical triclosan induced oxidative stress and physiological disorder in marine organism and nanoparticles as a potential mitigating tool. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106424. [PMID: 38428315 DOI: 10.1016/j.marenvres.2024.106424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/05/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Environmental research plays a crucial role in formulating novel approaches to pollution management and preservation of biodiversity. This study aims to assess the potential harm of pharmaceutical triclosan (TCS) to non-target aquatic organism, the mussel Mytilus galloprovincialis. Furthermore, our study investigates the potential effectiveness of TiO2 and ZnO nanomaterials (TiO2 NPs and ZnO NPs) in degrading TCS. To ascertain the morphology, structure, and stability of the nanomaterials, several chemical techniques were employed. To evaluate the impact of TCS, TiO2 NPs, and ZnO NPs, both physiological (filtration rate (FR) and respiration rate (RR)), antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST)) activities and malondialdehyde (MDA) contents were measured in M. galloprovincialis gills and digestive gland. The mussel's responses varied depending on the contaminant, concentration, and organ, underscoring the significance of compiling these factors in ecotoxicity tests. The main toxic mechanisms of TCS and ZnO NPs at a concentration of 100 μg/L were likely to be a decrease in FR and RR, an increase in oxidative stress, and increased lipid peroxidation. Our findings indicate that a mixture of TCS and NPs has an antagonist effect on the gills and digestive gland. This effect is particularly notable in the case of TCS2 = 100 μg/L combined with TiO2 NP2 = 100 μg/L, which warrants further investigation to determine the underlying mechanism. Additionally, our results suggest that TiO2 NPs are more effective than ZnO NPs at degrading TCS, which may have practical implications for pharmaceutical control in marine ecosystems and in water purification plants. In summary, our study provides valuable information on the impact of pharmaceuticals on non-target organisms and sheds light on potential solutions for their removal from aqueous environments.
Collapse
Affiliation(s)
- Imen Bouzidi
- Laboratoire de Biosurveillance de l'Environnement (LBE), Unité d'Ecotoxicologie et d'Ecologie Côtière (GREEC), Faculté des Sciences de Bizerte, Zarzouna, Bizerte, 7021, Tunisia; Institut Supérieur de Biotechnologies de Béja, Université de Jendouba, Jendouba, 8189, Tunisia
| | - Anis Fkiri
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Faculty of Sciences of Bizerte, University of Carthage, Zarzouna, 7021, Tunisia
| | - Wiem Saidani
- Laboratoire de Biosurveillance de l'Environnement (LBE), Unité d'Ecotoxicologie et d'Ecologie Côtière (GREEC), Faculté des Sciences de Bizerte, Zarzouna, Bizerte, 7021, Tunisia
| | - Abdelhafidh Khazri
- Laboratoire de Biosurveillance de l'Environnement (LBE), Unité d'Ecotoxicologie et d'Ecologie Côtière (GREEC), Faculté des Sciences de Bizerte, Zarzouna, Bizerte, 7021, Tunisia
| | - Amine Mezni
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Faculty of Sciences of Bizerte, University of Carthage, Zarzouna, 7021, Tunisia
| | - Karine Mougin
- Institut de Science des Matériaux, Université de Haute Alsace, IS2M-CNRS-UMR 7361, 15 Rue Jean Starcky, 68057, Mulhouse, France
| | - Hamouda Beyrem
- Laboratoire de Biosurveillance de l'Environnement (LBE), Unité d'Ecotoxicologie et d'Ecologie Côtière (GREEC), Faculté des Sciences de Bizerte, Zarzouna, Bizerte, 7021, Tunisia
| | - Badreddine Sellami
- National Institute of Marine Sciences and Technologies, Tabarka, 8110, Tunisia.
| |
Collapse
|
11
|
Pintado-Herrera MG, Aguirre-Martínez GV, Martin-Díaz LM, Blasco J, Lara-Martín PA, Sendra M. Personal care products: an emerging threat to the marine bivalve Ruditapes philippinarum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20461-20476. [PMID: 38376785 PMCID: PMC10927873 DOI: 10.1007/s11356-024-32391-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 02/05/2024] [Indexed: 02/21/2024]
Abstract
In the last few decades, there has been a growing interest in understanding the behavior of personal care products (PCPs) in the aquatic environment. In this regard, the aim of this study is to estimate the accumulation and effects of four PCPs within the clam Ruditapes philippinarum. The PCPs selected were triclosan, OTNE, benzophenone-3, and octocrylene. A progressive uptake was observed and maximum concentrations in tissues were reached at the end of the exposure phase, up to levels of 0.68 µg g-1, 24 µg g-1, 0.81 µg g-1, and 1.52 µg g-1 for OTNE, BP-3, OC, and TCS, respectively. After the PCP post-exposure period, the removal percentages were higher than 65%. The estimated logarithm bioconcentration factor ranged from 3.34 to 2.93, in concordance with the lipophobicity of each substance. No lethal effects were found although significant changes were observed for ethoxyresorufin O-demethylase activity, glutathione S-transferase activity, lipid peroxidation, and DNA damage.
Collapse
Affiliation(s)
- Marina G Pintado-Herrera
- Physical Chemistry Department, University of Cadiz, International Campus of Excellence of the Sea (CEI•MAR), 11510, Cadiz, Spain.
| | | | - Laura M Martin-Díaz
- Physical Chemistry Department, University of Cadiz, International Campus of Excellence of the Sea (CEI•MAR), 11510, Cadiz, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Rio S. Pedro, 11510, Puerto Real, Cadiz, Spain
| | - Pablo A Lara-Martín
- Physical Chemistry Department, University of Cadiz, International Campus of Excellence of the Sea (CEI•MAR), 11510, Cadiz, Spain
| | - Marta Sendra
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain
- International Research Center in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Bañuelos S/N, 09001, Burgos, Spain
| |
Collapse
|
12
|
Andrade M, Pinto J, Soares AMVM, Solé M, Pereira E, Freitas R. How predicted temperature and salinity changes will modulate the impacts induced by terbium in bivalves? CHEMOSPHERE 2024; 351:141168. [PMID: 38215828 DOI: 10.1016/j.chemosphere.2024.141168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
The threat of climate change, which includes shifts in salinity and temperature, has generated a global concern for marine organisms. These changes directly impact them and may alter their susceptibility to contaminants, such as terbium (Tb), found in electronic waste. This study assessed how decreased and increased salinity, as well as increased temperature, modulates Tb effects in Mytilus galloprovincialis mussels. After an exposure period of 28 days, Tb bioaccumulation and biochemical changes were evaluated. Results indicated no significant modulation of salinity and temperature on Tb accumulation, suggesting detoxification mechanisms and adaptations. Further analysis showed that Tb exposure alone caused antioxidant inhibition and neurotoxicity. When exposed to decreased salinity, these Tb-exposed organisms activated defense mechanisms, a response indicative of osmotic stress. Moreover, increased salinity also led to increased oxidative stress and metabolic activity in Tb-exposed organisms. Additionally, Tb-exposed organisms responded to elevated temperature with altered biochemical activities indicative of damage and stress response. Such responses suggested that Tb effects were masked by osmotic and heat stress. This study provides valuable insights into the interactions between temperature, salinity, and contaminants such as Tb, impacting marine organisms. Understanding these relationships is crucial for mitigating climate change and electronic waste effects on marine ecosystems.
Collapse
Affiliation(s)
- Madalena Andrade
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - João Pinto
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Montserrat Solé
- Departamento de Recursos Marinos Renovables, Instituto de Ciencias del Mar ICM-CSIC, Barcelona, Spain
| | - Eduarda Pereira
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
13
|
Mesquita AF, Gonçalves FJM, Gonçalves AMM. Toxicity of two pesticides in binary mixture on survival and enzymatic response of Cerastoderma edule - The warming influence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169676. [PMID: 38160819 DOI: 10.1016/j.scitotenv.2023.169676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Pesticide application increased by about 1 million tonnes in the last 3 decades. Pesticides' overuse, coupled with the need for several pesticides to control different pests in the same crop, and its application many times per year, results in dangerous chemical cocktails that enter in aquatic systems, with impacts to the ecosystems and its communities. Climatic changes are currently another great concern, is predicted by the end of the 21st century, the earth's surface temperature will increase by about 4 °C. Bivalve species are reported as essential to the ecosystems' balance. However, they are also indicated as the organisms that will suffer the most serious effects of the temperature increase. So, this work intends to: a) verify the harm of the sub-lethal concentrations of two worldwide used pesticides, oxyfluorfen and copper (Cu), when combined, to Cerastoderma edule at 15 °C and 20 °C; b) assess the changes in the antioxidant defence system, the activity of the neurological enzyme acetylcholinesterase and the nutritive value of C. edule, after exposure to sub-lethal concentrations of oxyfluorfen and Cu, single and in the mixture, at 15 °C and 20 °C; c) observe the interaction between Cu and oxyfluorfen, considering the different biomarkers. Bivalves were exposed to oxyfluorfen and Cu, single and combined, for 96 h, at 15 °C and 20 °C. Results showed lethal effects to the organisms exposed at 20 °C when exposed to the highest binary mixture concentrations. Biochemical effects were observed on the organisms exposed to 15 °C, despite not observing any lethal effects. Briefly, there was a reported increase in oxidative stress and a decrease in protein content, regardless of the increase in the activity of antioxidant enzymes. These results suggest the potentially dangerous effects of the chemicals' mixture combined with the temperature, on this species and its consumers, impacting the trophic chain, and consequently, the community structure and function.
Collapse
Affiliation(s)
- Andreia F Mesquita
- Department of Biology, CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Fernando J M Gonçalves
- Department of Biology, CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana M M Gonçalves
- Department of Biology, CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal; University of Coimbra, MARE-Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
14
|
Cunha M, Cruz I, Pinto J, Benito D, Ruiz P, Soares AMVM, Pereira E, Izagirre U, Freitas R. The influence of temperature on the effects of lead and lithium in Mytilus galloprovincialis through biochemical, cell and tissue levels: Comparison between mono and multi-element exposures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165786. [PMID: 37499837 DOI: 10.1016/j.scitotenv.2023.165786] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/18/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Lead (Pb) and lithium (Li) are metals which have been detected in the environment and, at high concentrations, can induce toxic effects that disturb the growth, metabolism or reproduction of organisms along the entire trophic chain. The impacts of these metals have scarcely been investigated using marine bivalves, especially when acting as a mixture. The present study aimed to investigate the influence of temperature on the ecotoxicological effects caused by Pb and Li, acting alone and as a mixture, on the mussel species Mytilus galloprovincialis after 28 days of exposure. The impacts were evaluated under actual (17 °C) and projected (+4 °C) warming conditions, to understand the influence of temperature rise on the effects of the metals (both acting alone or as a mixture). The results obtained showed that the increased temperature did not influence the accumulation of metals. However, the biomarkers evaluated showed greater responses in mussels that are exposed to metals under increased temperature (21 °C). The IBR index showed that there is a comparable toxic effect of Li and Pb separately, while exposure to a mixture of both pollutants causes a significantly higher stress response. Overall, the results obtained revealed that temperature may cause extra stress on the mussels and exposure to the metal mixture caused the greatest impacts compared to each metal acting alone.
Collapse
Affiliation(s)
- Marta Cunha
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Iara Cruz
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Pinto
- Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Denis Benito
- BCTA Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), Sarriena auzoa z/g, E-48940 Leioa-Bizkaia, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, E-48620 Plentzia-Bizkaia, Basque Country, Spain
| | - Pamela Ruiz
- BCTA Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), Sarriena auzoa z/g, E-48940 Leioa-Bizkaia, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, E-48620 Plentzia-Bizkaia, Basque Country, Spain
| | - Amadeu M V M Soares
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Pereira
- Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Urtzi Izagirre
- BCTA Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), Sarriena auzoa z/g, E-48940 Leioa-Bizkaia, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, E-48620 Plentzia-Bizkaia, Basque Country, Spain
| | - Rosa Freitas
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
15
|
Lopes C, Rodrigues ACM, Pires SFS, Campos D, Soares AMVM, Vieira HC, Bordalo MD. Responses of Mytilus galloprovincialis in a Multi-Stressor Scenario: Effects of an Invasive Seaweed Exudate and Microplastic Pollution under Ocean Warming. TOXICS 2023; 11:939. [PMID: 37999591 PMCID: PMC10675577 DOI: 10.3390/toxics11110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Microplastic pollution, global warming, and invasive species are known threats to marine biota, but the impact of their simultaneous exposure is still not well understood. This study investigated whether the toxic effects posed by the invasive red seaweed Asparagopsis armata exudate (2%) to the mussel Mytilus galloprovincialis are amplified by a 96 h exposure to increased temperature (24 °C) and polyethylene microplastics (PE-MPs, 1 mg/L). Biochemical (neurotoxicity, energy metabolism, oxidative stress, and damage) and physiological (byssal thread production) responses were evaluated. The number of produced byssus greatly decreased under concomitant exposure to all stressors. The antioxidant defences were depleted in the gills of mussels exposed to temperature rises and PE-MPs, regardless of exudate exposure, preventing oxidative damage. Moreover, the heat shock protein content tended to decrease in all treatments relative to the control. The increased total glutathione in the mussels' digestive gland exposed to 24 °C, exudate, and PE-MPs avoided oxidative damage. Neurotoxicity was observed in the same treatment. In contrast, the energy metabolism remained unaltered. In conclusion, depending on the endpoint, simultaneous exposure to A. armata exudate, PE-MPs, and warming does not necessarily mean an amplification of their single effects. Studies focusing on the impact of multiple stressors are imperative to better understand the underlying mechanisms of this chronic exposure.
Collapse
Affiliation(s)
- Cristiana Lopes
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Andreia C. M. Rodrigues
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.M.R.); (S.F.S.P.); (D.C.); (A.M.V.M.S.); (H.C.V.)
| | - Sílvia F. S. Pires
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.M.R.); (S.F.S.P.); (D.C.); (A.M.V.M.S.); (H.C.V.)
| | - Diana Campos
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.M.R.); (S.F.S.P.); (D.C.); (A.M.V.M.S.); (H.C.V.)
| | - Amadeu M. V. M. Soares
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.M.R.); (S.F.S.P.); (D.C.); (A.M.V.M.S.); (H.C.V.)
| | - Hugo C. Vieira
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.M.R.); (S.F.S.P.); (D.C.); (A.M.V.M.S.); (H.C.V.)
| | - Maria D. Bordalo
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.M.R.); (S.F.S.P.); (D.C.); (A.M.V.M.S.); (H.C.V.)
| |
Collapse
|
16
|
Andrade M, Soares AMVM, Solé M, Pereira E, Freitas R. Gadolinium accumulation and its biochemical effects in Mytilus galloprovincialis under a scenario of global warming. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116120-116133. [PMID: 37910362 PMCID: PMC10682062 DOI: 10.1007/s11356-023-30439-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Electrical and electronic equipment reaching the end of its useful life is currently being disposed of at such an alarmingly high pace that raises environmental concerns. Together with other potentially dangerous compounds, electronic waste contains the rare-earth element gadolinium (Gd), which has already been reported in aquatic systems. Additionally, the vulnerability of aquatic species to this element may also be modified when climate change related factors, like increase in temperature, are taken into consideration. Thus, the present study aimed to evaluate the toxicity of Gd under a scenario of increased temperature in Mytilus galloprovincialis mussels. A multi-biomarker approach and Gd bioaccumulation were assessed in mussels exposed for 28 days to 0 and 10 μg/L of Gd at two temperatures (control - 17 °C; increased - 22 °C). Results confirmed that temperature had a strong influence on the bioaccumulation of Gd. Moreover, mussels exposed to Gd alone reduced their metabolism, possibly to prevent further accumulation, and despite catalase and glutathione S-transferases were activated, cellular damage seen as increased lipid peroxidation was not avoided. Under enhanced temperature, cellular damage in Gd-exposed mussels was even greater, as defense mechanisms were not activated, possibly due to heat stress. In fact, with increased temperature alone, organisms experienced a general metabolic depression, particularly evidenced in defense enzymes, similar to the results obtained under Gd-exposure. Overall, this study underlines the importance of conducting environmental risk assessment taking into consideration anticipated climate change scenarios and exposures to emerging contaminants at relevant environmental concentrations.
Collapse
Affiliation(s)
- Madalena Andrade
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Montserrat Solé
- Departamento de Recursos Marinos Renovables, Instituto de Ciencias del Mar ICM-CSIC, Barcelona, Spain
| | - Eduarda Pereira
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
17
|
Wang M, Hou J, Deng R. Co-exposure of environmental contaminants with unfavorable temperature or humidity/moisture: Joint hazards and underlying mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115432. [PMID: 37660530 DOI: 10.1016/j.ecoenv.2023.115432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
In the context of global climate change, organisms in their natural habitats usually suffer from unfavorable climatic conditions together with environmental pollution. Temperature and humidity (or moisture) are two central climatic factors, while their relationships with the toxicity of contaminants are not well understood. This review provides a synthesis of existing knowledge on important interactions between contaminant toxicity and climatic conditions of unfavorable temperature, soil moisture, and air humidity. Both high temperature and low moisture can extensively pose severe combined hazards with organic pollutants, heavy metal ions, nanoparticles, or microplastics. There is more information on the combined effects on animalia than on other kingdoms. Prevalent mechanisms underlying their joint effects include the increased bioavailability and bioaccumulation of contaminants, modified biotransformation of contaminants, enhanced induction of oxidative stress, accelerated energy consumption, interference with cell membranes, and depletion of bodily fluids. However, the interactions of contaminants with low temperature or high humidity/moisture, particularly on plants and microorganisms, are relatively vague and need to be further revealed. This work emphasizes that the co-exposure of chemical and physical stressors results in detrimental effects generally greater than those caused by either stressor. It is necessary to take this into consideration in the ecological risk assessment of both environmental contamination and climate change.
Collapse
Affiliation(s)
- Mingpu Wang
- School of Civil Engineering, Chongqing University, Chongqing 400045, China
| | - Jie Hou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Rui Deng
- School of Civil Engineering, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
18
|
Mesquita AF, Gonçalves FJM, Gonçalves AMM. Effects of Inorganic and Organic Pollutants on the Biomarkers' Response of Cerastoderma edule under Temperature Scenarios. Antioxidants (Basel) 2023; 12:1756. [PMID: 37760058 PMCID: PMC10525251 DOI: 10.3390/antiox12091756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Currently, there is increased chemical pollution, and climate change is a major concern to scientific, political and social communities globally. Marine systems are very susceptible to changes, and considering the ecological and economic roles of bivalve species, like Cerastoderma edule, studies evaluating the effects of both stressors are of great importance. This study intends to (a) determine the toxicity of copper (Cu) and oxyfluorfen at the lethal level, considering the temperature; (b) assess the changes in the antioxidant defence enzymes as a consequence of the simultaneous exposure to chemical and warming pressures; and (c) determine if lipid peroxidation (LPO) and neurotoxic effects occur after the exposure to chemical and temperature stressors. C. edule was exposed to Cu and oxyfluorfen at different temperatures (15 °C, 20 °C and 25 °C) for 96 h. The ecotoxicological results reveal a higher tolerance of C. edule to oxyfluorfen than to Cu, regardless of the temperature. The antioxidant defence system revealed efficiency in fighting the chemicals' action, with no significant changes in the thiobarbituric reactive species (TBARS) levels to 15 °C and 20 °C. However, a significant inhibition of acetylcholinesterase (AChE) was observed on the organisms exposed to oxyfluorfen at 20 °C, as well as a decreasing trend on the ones exposed to Cu at this temperature. Moreover, the catalase (CAT) showed a significant increase in the organisms exposed to the two highest concentrations of Cu at 15 °C and in the ones exposed to the highest concentration of oxyfluorfen at 20 °C. Looking at the temperature as a single stressor, the organisms exposed to 25 °C revealed a significant increase in the TBARS level, suggesting potential LPO and explaining the great mortality at this condition.
Collapse
Affiliation(s)
- Andreia F. Mesquita
- Department of Biology and CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal; (A.F.M.); (F.J.M.G.)
| | - Fernando J. M. Gonçalves
- Department of Biology and CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal; (A.F.M.); (F.J.M.G.)
| | - Ana M. M. Gonçalves
- Department of Biology and CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal; (A.F.M.); (F.J.M.G.)
- University of Coimbra, MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
19
|
Grunst ML, Grunst AS, Grémillet D, Fort J. Combined threats of climate change and contaminant exposure through the lens of bioenergetics. GLOBAL CHANGE BIOLOGY 2023; 29:5139-5168. [PMID: 37381110 DOI: 10.1111/gcb.16822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023]
Abstract
Organisms face energetic challenges of climate change in combination with suites of natural and anthropogenic stressors. In particular, chemical contaminant exposure has neurotoxic, endocrine-disrupting, and behavioral effects which may additively or interactively combine with challenges associated with climate change. We used a literature review across animal taxa and contaminant classes, but focused on Arctic endotherms and contaminants important in Arctic ecosystems, to demonstrate potential for interactive effects across five bioenergetic domains: (1) energy supply, (2) energy demand, (3) energy storage, (4) energy allocation tradeoffs, and (5) energy management strategies; and involving four climate change-sensitive environmental stressors: changes in resource availability, temperature, predation risk, and parasitism. Identified examples included relatively equal numbers of synergistic and antagonistic interactions. Synergies are often suggested to be particularly problematic, since they magnify biological effects. However, we emphasize that antagonistic effects on bioenergetic traits can be equally problematic, since they can reflect dampening of beneficial responses and result in negative synergistic effects on fitness. Our review also highlights that empirical demonstrations remain limited, especially in endotherms. Elucidating the nature of climate change-by-contaminant interactive effects on bioenergetic traits will build toward determining overall outcomes for energy balance and fitness. Progressing to determine critical species, life stages, and target areas in which transformative effects arise will aid in forecasting broad-scale bioenergetic outcomes under global change scenarios.
Collapse
Affiliation(s)
- Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - David Grémillet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| |
Collapse
|
20
|
Bouzidi I, Beyrem H, Mahmoudi E, Al-Hoshani N, Pacioglu O, Boufahja F, Sellami B. The development of decontamination methods in coastal marine habitats by transplantation of the mussel Mytilus galloprovincialis (Lamarck, 1819): Comparison between in vivo and in situ investigations. MARINE POLLUTION BULLETIN 2023; 193:115230. [PMID: 37406401 DOI: 10.1016/j.marpolbul.2023.115230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
The health status of Mytilus galloprovincialis native from a polluted habitat was surveyed before and after 30 and 60 days of in situ transplantation and in vivo experiments. The results showed a reduction in filtration rate by 24 % and 45 %, respectively, after 60 days of in vivo and in situ experiments compared to the rates at polluted sites. The respiration rate reached a minimum of 0.081 ± 0.05 mg O2.L-1 after 60 days of in situ transplantation. Moreover, the antioxidant activities were changed in a time-dependent manner for both transplantation conditions. The highest superoxide dismutase and catalase activities corresponded to the stressed mussels and declined by 76 % and 54 %, respectively, after 60 days of in situ transplantation. Changes in lipid peroxidation and acetylcholinesterase activity were observed in internal organs following 60 days of transplantation. At this time slot, the lowest content of metals and microplastics was also noticed.
Collapse
Affiliation(s)
- Imen Bouzidi
- Laboratory of Environment Biomonitoring, Coastal Ecology Unit, Faculty of Sciences of Bizerta, University of Carthage, Zarzouna, Tunisia; Institut supérieur de Biotechnologies de Béja, Université de Jendouba, Jendouba, Tunisia
| | - Hamouda Beyrem
- Laboratory of Environment Biomonitoring, Coastal Ecology Unit, Faculty of Sciences of Bizerta, University of Carthage, Zarzouna, Tunisia
| | - Ezzeddine Mahmoudi
- Laboratory of Environment Biomonitoring, Coastal Ecology Unit, Faculty of Sciences of Bizerta, University of Carthage, Zarzouna, Tunisia
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Octavian Pacioglu
- National Institute of Research and Development for Biological Sciences, Department of Bioinformatics, Splaiul Independenței 296, 060031, Bucharest, Romania
| | - Fehmi Boufahja
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia.
| | - Badreddine Sellami
- Institut National des Sciences et Technologies de la Mer, Tabarka, Tunisia
| |
Collapse
|
21
|
Barbosa H, Leite C, Pinto J, Soares AMVM, Pereira E, Freitas R. Are Lithium batteries so eco-friendly? Ecotoxicological impacts of Lithium in estuarine bivalves. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104197. [PMID: 37356678 DOI: 10.1016/j.etap.2023.104197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Lithium (Li) is now widely used in green energies/clean technologies, although its inefficient recycling and treatment means it is an emerging contaminant in aquatic systems. Bivalves, such as clams, are considered good bioindicators of pollution, hence we evaluated the biochemical effects of Li in the clam Venerupis corrugata. Clams were exposed (14 days) to an increasing Li gradient (0, 200, 400, 800µg/L). Bioconcentration capacity tended to decrease with increasing Li exposure possibly due to efforts to eliminate Li from the cells, to avert damage. No influences on the clams' metabolic capacity and protein content were observed. Antioxidant and detoxification defences were activated, especially at 400 and 800µg/L of Li, avoiding lipid damage while protein injuries were observed at higher concentrations. Furthermore, a loss of redox balance was observed. This study highlights the importance of preventing and regulating Li discharges into the environment, avoiding adverse consequences to aquatic ecosystems.
Collapse
Affiliation(s)
- Helena Barbosa
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carla Leite
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Pinto
- Department of Chemistry and REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Pereira
- Department of Chemistry and REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
22
|
Bethke K, Kropidłowska K, Stepnowski P, Caban M. Review of warming and acidification effects to the ecotoxicity of pharmaceuticals on aquatic organisms in the era of climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162829. [PMID: 36924950 DOI: 10.1016/j.scitotenv.2023.162829] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 05/06/2023]
Abstract
An increase in the temperature and the acidification of the aquatic environment are among the many consequences of global warming. Climate change can also negatively affect aquatic organisms indirectly, by altering the toxicity of pollutants. Models of climate change impacts on the distribution, fate and ecotoxicity of persistent pollutants are now available. For pharmaceuticals, however, as new environmental pollutants, there are no predictions on this issue. Therefore, this paper organizes the existing knowledge on the effects of temperature, pH and both stressors combined on the toxicity of pharmaceuticals on aquatic organisms. Besides lethal toxicity, the molecular, physiological and behavioral biomarkers of sub-lethal stress were also assessed. Both acute and chronic toxicity, as well as bioaccumulation, were found to be affected. The direction and magnitude of these changes depend on the specific pharmaceutical, as well as the organism and conditions involved. Unfortunately, the response of organisms was enhanced by combined stressors. We compare the findings with those known for persistent organic pollutants, for which the pH has a relatively low effect on toxicity. The acid-base constant of molecules, as assumed, have an effect on the toxicity change with pH modulation. Studies with bivalves have been were overrepresented, while too little attention was paid to producers. Furthermore, the limited number of pharmaceuticals have been tested, and metabolites skipped altogether. Generally, the effects of warming and acidification were rather indicated than explored, and much more attention needs to be given to the ecotoxicology of pharmaceuticals in climate change conditions.
Collapse
Affiliation(s)
- Katarzyna Bethke
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Klaudia Kropidłowska
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magda Caban
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
23
|
Barbosa H, Soares AMVM, Pereira E, Freitas R. Are the consequences of lithium in marine clams enhanced by climate change? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121416. [PMID: 36906057 DOI: 10.1016/j.envpol.2023.121416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Coastal areas, such as estuaries and coastal lagoons, are among the most endangered aquatic ecosystems due to the intense anthropogenic activities occurring in their vicinity. These areas are highly threatened by climate change-related factors as well as pollution, especially due to their limited water exchange. Ocean warming and extreme weather events, such as marine heatwaves and rainy periods, are some of the consequences of climate change, inducing alterations in the abiotic parameters of seawater, namely temperature and salinity, which may affect the organisms as well as the behaviour of some pollutants present in water. Lithium (Li) is an element widely used in several industries, especially in the production of batteries for electronic gadgets and electric vehicles. The demand for its exploitation has been growing drastically and is predicted a large increase in the coming years. Inefficient recycling, treatment and disposal results in the release of Li into the aquatic systems, the consequences of which are poorly understood, especially in the context of climate change. Considering that a limited number of studies exist about the impacts of Li on marine species, the present study aimed to assess the effects of temperature rise and salinity changes on the impacts of Li in clams (Venerupis corrugata) collected from the Ria de Aveiro (coastal lagoon, Portugal). Clams were exposed for 14 days to 0 μg/L of Li and 200 μg/L of Li, both conditions under different climate scenarios: 3 different salinities (20, 30 and 40) at 17 °C (control temperature); and 2 different temperatures (17 and 21 °C) at salinity 30 (control salinity). Bioconcentration capacity and biochemical alterations regarding metabolism and oxidative stress were investigated. Salinity variations had a higher impact on biochemical responses than temperature increase, even when combined with Li. The combination of Li with low salinity (20) was the most stressful treatment, provoking increased metabolism and activation of detoxification defences, suggesting possible imbalances in coastal ecosystems in response to Li pollution under extreme weather events. These findings may ultimately contribute to implement environmentally protective actions to mitigate Li contamination and preserve marine life.
Collapse
Affiliation(s)
- Helena Barbosa
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal; CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Eduarda Pereira
- Department of Chemistry and REQUIMTE, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal; CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
24
|
Freitas R, Arrigo F, Coppola F, Meucci V, Battaglia F, Soares AMVM, Pretti C, Faggio C. Combined effects of temperature rise and sodium lauryl sulfate in the Mediterranean mussel. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104132. [PMID: 37088267 DOI: 10.1016/j.etap.2023.104132] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Personal care products (PCPs) are those compounds used daily (e.g., soaps, shampoos, deodorants, and toothpaste), explaining their frequent detection in aquatic systems. Still, scarce information is available on their effects on inhabiting wildlife. Among the most commonly used PCPs is the surfactant Sodium Lauryl Sulfate (SLS). The present study investigated the influence of temperature (CTL 17 ºC vs 22 ºC) on the effects of SLS (0 mg/L vs 4 mg/L) in the mussel species Mytilus galloprovincialis. Mussels' general health status was investigated, assessing their metabolic and oxidative stress responses. Higher biochemical alterations were observed in SLS-exposed mussels and warming enhanced the impacts, namely in terms of biotransformation capacity and loss of redox homeostasis, which may result in consequences to population maintenance, especially if under additional environmental stressors. These results confirm M. galloprovincialis as an excellent bioindicator of PCPs pollution, and the need to consider actual and predicted climate changes.
Collapse
Affiliation(s)
- Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Federica Arrigo
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Francesca Coppola
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Federica Battaglia
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, S. Agata-Messina, Italy
| |
Collapse
|
25
|
Miškelytė D, Žaltauskaitė J. Effects of elevated temperature and decreased soil moisture content on triclosan ecotoxicity to earthworm E. fetida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51018-51029. [PMID: 36807863 DOI: 10.1007/s11356-023-25951-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/10/2023] [Indexed: 04/16/2023]
Abstract
Emerging pollutants and climate change are two main challenges affecting soil organisms today. Changes in temperature and soil moisture with climate change are key factors determining activity and fitness of soil dwelling organisms. The occurrence and toxicity of antimicrobial agent triclosan (TCS) in terrestrial environment is of high concern, while no data are available on TCS toxicity changes to terrestrial organisms under global climate change. The study's aim was to assess the impact of elevated temperature, decreased soil moisture content, and their complex interaction on triclosan-induced changes in Eisenia fetida life cycle parameters (growth, reproduction, and survival). Eight-week TCS-contaminated soil (10-750 mg TCS kg-1) experiments with E. fetida were performed at four different treatments: C (21 °C + 60% water holding capacity (WHC)); D (21 °C and 30% WHC); T (25 °C + 60% WHC); and T + D (25 °C + 30% WHC). TCS had negative impact on the earthworm mortality, growth, and reproduction. Changing climate conditions have altered TCS toxicity to E. fetida. Drought and drought in combination with elevated temperature enhanced the adverse effects of TCS on earthworm survival, growth rate, and reproduction, while single elevated temperature slightly reduced TCS lethal toxicity as well as toxicity to growth rate and reproduction.
Collapse
Affiliation(s)
- Diana Miškelytė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto 10, Akademija, Kaunas, Lithuania.
| | - Jūratė Žaltauskaitė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto 10, Akademija, Kaunas, Lithuania
| |
Collapse
|
26
|
Araújo MJ, Quintaneiro C, Rocha RJM, Pousão-Ferreira P, Candeias-Mendes A, Soares AMVM, Monteiro MS. Single and combined effects of ultraviolet radiation and triclosan during the metamorphosis of Solea senegalensis. CHEMOSPHERE 2022; 307:135583. [PMID: 35792207 DOI: 10.1016/j.chemosphere.2022.135583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Ultraviolet radiation (UV) and triclosan (TCS) affect the early development of marine fish; however, the corresponding molecular mechanisms are still not fully understood. Therefore, this work aims to study the effects of the single and combined exposure to these stressors during the thyroid-regulated metamorphosis of the flatfish Solea senegalensis. Sub-lethal exposure (5.89 kJ m-2 UV and/or 0.546 and 1.090 mg L-1 TCS for 48 h) was performed at the beginning of metamorphosis (13 days after hatching, dah), followed by a period in clean media until complete metamorphosis (24 dah). Malformations, metamorphosis progression, length, behavior and the expression of thyroid axis-related genes were studied. TCS induced malformations, decreased swimming performance, and induced metamorphosis acceleration at 15 dah, followed by a significant metamorphosis delay. Such effects were more noticeable in the presence of UV. The down-regulation of five thyroid axis-related genes occurred after exposure to TCS (15 dah), and after 9 days in clean media two genes were still down-regulated. UV exposure increased the effect of TCS by further down-regulating gene expression immediately after the exposure. Since several effects persisted after the period in clean media, implications of these stressors (mainly TCS) on the ecological performance of the species are suggested.
Collapse
Affiliation(s)
- M J Araújo
- CESAM & Dbio, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; CIIMAR-UP-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/n, 4450-208, Porto, Portugal.
| | - C Quintaneiro
- CESAM & Dbio, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - R J M Rocha
- CESAM & Dbio, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - P Pousão-Ferreira
- IPMA - Portuguese Institute for the Ocean and Atmosphere, EPPO -Aquaculture Research Station, Av. Parque Natural da Ria Formosa S/n, 8700-194, Olhão, Portugal
| | - A Candeias-Mendes
- IPMA - Portuguese Institute for the Ocean and Atmosphere, EPPO -Aquaculture Research Station, Av. Parque Natural da Ria Formosa S/n, 8700-194, Olhão, Portugal
| | - A M V M Soares
- CESAM & Dbio, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - M S Monteiro
- CESAM & Dbio, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
27
|
Andrade M, Soares AMVM, Solé M, Pereira E, Freitas R. Do climate change related factors modify the response of Mytilus galloprovincialis to lanthanum? The case of temperature rise. CHEMOSPHERE 2022; 307:135577. [PMID: 35792214 DOI: 10.1016/j.chemosphere.2022.135577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Most of the electric and electronic waste is not recycled and the release of its components into the environment is expected, including the rare-earth element Lanthanum (La), which has already been reported in the aquatic systems. Furthermore, considering climate change factors such as the predicted increase in temperature, the susceptibility of aquatic organisms to these rare elements may be modified. In light of this, the present study aimed to evaluate the relevance of temperature on La-derived effects in the mussel Mytilus galloprovincialis. Several biomarkers and La bioaccumulation were assessed in organisms exposed to 0 (control) and 10 μg/L of La at two distinct temperatures (17 and 22 °C) for 28 days. Results showed that temperature did not influence La bioaccumulation in mussels. However, exposure to La resulted in a decreased metabolic capacity and an enhancement of biotransformation enzymes activity, as a possible defense behavior of mussels to avoid La accumulation and toxicity. Nevertheless, antioxidant defenses were also inhibited leading to increased lipid peroxidation (LPO) levels. Warming alone seemed to cause a metabolic shutdown seen as reduced enzyme activities and protein carbonylation (PC) levels. Simultaneous La exposure and temperature rise caused combined effects on mussels, as they accused metabolic depression, biotransformation defenses activation, antioxidant capacity reduction, and higher cellular damage. Overall, this study highlights the need to perform environmental risk assessment studies, by considering emerging contaminants exposures at relevant concentrations, both at present and forecasted climate change scenarios.
Collapse
Affiliation(s)
- Madalena Andrade
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Montserrat Solé
- Instituto de Ciencias del Mar ICM-CSIC, E-08003, Barcelona, Spain
| | - Eduarda Pereira
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
28
|
Marín Rodríguez B, Coppola F, Conradi M, Freitas R. The impact of temperature on lithium toxicity in the gastropod Tritia neritea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64745-64755. [PMID: 35476271 DOI: 10.1007/s11356-022-20258-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
The most important use of lithium (Li) is in rechargeable batteries. The growing use of Li, incorrect disposal of Li-based applications, and inefficient recycling strategies for their elimination will result in the release of this metal into the aquatic systems. Alongside with the impacts caused by pollutants, organisms in coastal ecosystems are also facing environmental changes as those related with climate change scenarios, namely, seawater temperature rise. In this context, the present study aimed to evaluate the influence of temperature on Li toxicity, using the Nassariid gastropod Tritia neritea as model species. Metabolism and oxidative stress related biomarkers were evaluated after a 28-day exposure period. The results demonstrated that temperature enhanced the toxic impacts of Li, most probably due to snail increased sensitivity when under warming conditions. As a consequence of inefficient antioxidant and biotransformation capacity, lipid peroxidation was observed in Li-contaminated snails at 21 ºC, demonstrating a significant interaction between both factors. Regarding snails' metabolic capacity, Li did not affect snails, but a clear decrease on their metabolism was observed at increased temperature (with or without Li) which may limit snail defense capacity. Overall, the present findings demonstrated the impacts derived from Li towards marine intertidal gastropods, evidencing enhanced threats under predicted warming conditions. Considering the role of T. neritea in the ecosystem functioning, impacts on this species may greatly affect other populations and eventually the entire community.
Collapse
Affiliation(s)
- Belén Marín Rodríguez
- Department of Zoology, Faculty of Biology, University of Sevilla, Av. Reina Mercedes s/n, 41012, Sevilla, Spain
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Mercedes Conradi
- Department of Zoology, Faculty of Biology, University of Sevilla, Av. Reina Mercedes s/n, 41012, Sevilla, Spain
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
29
|
Guerreiro ADS, Guterres BDV, Costa PG, Bianchini A, Botelho SSDC, Sandrini JZ. Combined physiological and behavioral approaches as tools to evaluate environmental risk assessment of the water accommodated-fraction of diesel oil. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106230. [PMID: 35797851 DOI: 10.1016/j.aquatox.2022.106230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/14/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
There is an increasing concern related to the toxic effects of the soluble portion of diesel oil on aquatic ecosystems and the organisms living in them. In this context, the aim of this study was to analyze the effects of diesel water accommodated-fraction (WAF) on behavioral and biochemical responses of mussels Perna perna. Animals were exposed to 5 and 20% of WAF for 96 h. Prior to the beginning of the experiments, Hall effect sensors and magnets were attached to the valves of the mussels. Valve gaping behavior was continuously recorded for 12 h of exposure and tissues (gills and digestive gland) were separated after 96 h of exposure. Overall, both behavior and biochemical biomarkers were altered due to WAF exposure. Animals exposed to WAF reduced the average amplitude of the valves and the fraction of time opened, and presented greater transition frequency, demonstrating avoidance behavior over the 12 h period. Furthermore, the biochemical biomarkers (GSH, GST, SOD and CAT) were altered following the 96 h of exposure to WAF. Considering the results presented, this study demonstrates the toxic potential of WAF in both shorter and longer exposure periods.
Collapse
Affiliation(s)
- Amanda da Silveira Guerreiro
- Programa de Pós-Graduação em Ciências Fisiológicas. Instituto de Ciências Biológicas, ICB. Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| | - Bruna de Vargas Guterres
- Programa de Pós-Graduação em Engenharia de Computação. Centro de Ciências Computacionais, C3. Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96203-900, Brazil
| | - Patricia Gomes Costa
- Instituto de Ciências Biológicas, ICB. Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96203-900, Brazil
| | - Adalto Bianchini
- Programa de Pós-Graduação em Ciências Fisiológicas. Instituto de Ciências Biológicas, ICB. Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Silvia Silva da Costa Botelho
- Programa de Pós-Graduação em Engenharia de Computação. Centro de Ciências Computacionais, C3. Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96203-900, Brazil
| | - Juliana Zomer Sandrini
- Programa de Pós-Graduação em Ciências Fisiológicas. Instituto de Ciências Biológicas, ICB. Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| |
Collapse
|
30
|
Lopes J, Coppola F, Russo T, Maselli V, Di Cosmo A, Meucci V, M V M Soares A, Pretti C, Polese G, Freitas R. Behavioral, physiological and biochemical responses and differential gene expression in Mytilus galloprovincialis exposed to 17 alpha-ethinylestradiol and sodium lauryl sulfate. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128058. [PMID: 34971986 DOI: 10.1016/j.jhazmat.2021.128058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Mixture of contaminants often determine biological responses of marine species, making difficult the interpretation of toxicological data. The pharmaceutical 17 alpha-ethinylestradiol (EE2) and the surfactant Sodium Lauryl Sulfate (SLS) commonly co-occur in the marine environment. This study evaluated the effects of EE2 (125.0 ng/L) and SLS (4 mg/L), acting individually and combined, in the mussel Mytilus galloprovincialis. Contaminated mussels closed their valves for longer periods than control ones, especially in the presence of both contaminants, with longer closure periods immediately after spiking compared to values obtained one day after spiking. Nevertheless, males and females increased their metabolism when in the presence of both contaminants (males) and SLS (females), and independently on the treatment males and females were able to activate their antioxidant and biotransformation defences. Although enhancing defences mussels still presented cellular damage and loss of redox balance, especially noticed in the presence of EE2 for males and SLS for females. Histopathological damage was found at mussel's gills in single and mixture exposure, and qPCR analysis revealed a clear estrogen receptor expression with no additive effect due to combined stressors. The results obtained highlight the harmful capacity of both contaminants but further research on this matter is needed, namely considering different climate change scenarios.
Collapse
Affiliation(s)
- Joel Lopes
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Tania Russo
- Department of Biology, University of Naples Federico II, 80126, Italy
| | - Valeria Maselli
- Department of Biology, University of Naples Federico II, 80126, Italy
| | - Anna Di Cosmo
- Department of Biology, University of Naples Federico II, 80126, Italy
| | | | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy; Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126, Italy
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
31
|
Lopes J, Coppola F, Soares AMVM, Meucci V, Pretti C, Polese G, Freitas R. How temperature rise will influence the toxic impacts of 17 α-ethinylestradiol in Mytilus galloprovincialis? ENVIRONMENTAL RESEARCH 2022; 204:112279. [PMID: 34699762 DOI: 10.1016/j.envres.2021.112279] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/23/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutical drugs are Contaminants of Emerging Concern (CECs) and are continuously discharged into the environment. As a result of human and veterinary use, these substances are reaching aquatic coastal systems, with limited information regarding the toxic effects of these compounds towards inhabiting organisms. Among CECs are pharmaceuticals like 17 α-ethinylestradiol (EE2), which is a synthetic hormone with high estrogenic potency. EE2 has been increasingly found in different aquatic systems but few studies addressed its potential toxicity to marine wildlife, in particular to bivalves. Therefore, the aim of the present study was to evaluate the influence of temperature (17 °C-control and 21 °C) on the potential effects of EE2 on the mussel Mytilus galloprovincialis. For this purpose, mussels were exposed to different concentrations of EE2 (5.0; 25.0; 125.0 and 625 ng/L), resembling low to highly polluted sites. Mussels exposed to each concentration were maintained under two temperatures, 17 and 21 °C, which represent actual and predicted warming conditions, respectively. After 28 days, oxidative stress status, metabolism related parameters, neurotoxicity and histopathological alterations were measured. The results obtained clearly showed an interactive effect of increased temperature and EE2, with limited antioxidant and biotransformation capacity when both stressors were acting together, leading to higher cellular damage. The combination of both stressors also enhanced mussels' metabolic capacity and neurotoxic effects. Nevertheless, loss of redox balance was confirmed by the strong decrease of the ratio between reduce glutathione (GSH) and oxidized glutathione (GSSG) in contaminated mussels, regardless the temperature. Histopathological indexes in contaminated mussels were significantly different from the control group, indicating impacts in gills and digestive glands of mussels due to EE2, with higher values observed at 21 °C. Overall, this study demonstrates that of EE2 represents a threat to mussels and predicted warming conditions will enhance the impacts, which in a near future might result in impairments at the population and community levels.
Collapse
Affiliation(s)
- Joel Lopes
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | | | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy; Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126, Italy
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
32
|
Silva MG, Esteves VI, Meucci V, Battaglia F, Soares AM, Pretti C, Freitas R. Metabolic and oxidative status alterations induced in Ruditapes philippinarum exposed chronically to estrogen 17α-ethinylestradiol under a warming scenario. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 244:106078. [PMID: 35074615 DOI: 10.1016/j.aquatox.2022.106078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 12/15/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The presence of pharmaceuticals in the aquatic environment is an ongoing concern. However, the information regarding their effects under different climate change scenarios is still scarce. 17α-ethinylestradiol (EE2) is widely present in different aquatic systems showing negative impacts on aquatic organisms even when present at trace concentrations (≈1 ng/L). Nevertheless, its impact on bivalves is poorly understood, especially considering the influence of climate change factors. This study aimed to assess the toxicological impacts of EE2 under current and predicted warming scenarios, in the edible clam Ruditapes philippinarum. For this, clams were exposed for 28 days to different EE2 concentrations (5, 25, 125, 625 ng/L), under two temperatures (17 °C (control) and 21 °C). Drug concentrations, bioconcentration factors and biochemical parameters, related to oxidative stress and energy metabolism, were evaluated. Results showed that under actual and predicted temperature scenarios EE2 concentrations led to a disturbance in redox homeostasis of the clams, characterized by an increase in oxidized glutathione in contaminated organisms compared to control ones. Nevertheless, clams were capable to cope with the stressful conditions, activating their defence mechanisms (especially at the highest exposure concentration and in particular at increased temperature), and no oxidative damage occured. Although limited effects were observed, the present findings indicate that under both temperatures contaminated clams altered their biochemical performance, which can impair their sensitivity and protection capacity to respond to other environmental changes and/or affect their capacity to grow and reproduce. The results presented here highlight the need for further research on this thematic, considering that climate change is an ongoing problem, and the levels of some pharmaceutical drugs will continue to increase in marine/estuarine environments.
Collapse
Affiliation(s)
- Mónica G Silva
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Valdemar I Esteves
- Department of Chemistry & CESAM, University of Aveiro, Aveiro 3810-193, Portugal
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado (PI) 56122, Italy
| | - Federica Battaglia
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado (PI) 56122, Italy
| | - Amadeu Mvm Soares
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado (PI) 56122, Italy; Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", Livorno 57128, Italy
| | - Rosa Freitas
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.
| |
Collapse
|
33
|
Georgieva E, Antal L, Stoyanova S, Aranudova D, Velcheva I, Iliev I, Vasileva T, Bivolarski V, Mitkovska V, Chassovnikarova T, Todorova B, Uzochukwu IE, Nyeste K, Yancheva V. Biomarkers for pollution in caged mussels from three reservoirs in Bulgaria: A pilot study. Heliyon 2022; 8:e09069. [PMID: 35284685 PMCID: PMC8914122 DOI: 10.1016/j.heliyon.2022.e09069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/11/2022] [Accepted: 03/03/2022] [Indexed: 12/22/2022] Open
Abstract
The mussel-watch concept was firstly proposed in 1975, which was later adopted by several international monitoring programs worldwide. However, for the very first time, a field experiment with caged mussels was performed in three reservoirs in Bulgaria to follow the harmful effects of sub-chronic pollution (30 days) of metals, trace, and macro-elements, as well as some organic toxicants, such as polybrominated diphenyl ethers and chlorinated paraffins. Therefore, we studied the biometric indices, histochemical lesions in the gills, biochemical changes in the digestive glands (antioxidant defense enzymes, such as catalase, glutathione reductase, and glutathione peroxidase; metabolic enzymes, such as lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase, and the neurotransmitter cholinesterase), in addition to the DNA damage in the Chinese pond mussel, Sinanodonta woodiana (Lea, 1834) in Kardzhali, Studen Kladenets and Zhrebchevo reservoirs in Bulgaria. Significant correlation trends between the pollution levels, which we reported before, and the biomarker responses were established in the current paper. Overall, we found that both tested organs were susceptible to pollution-induced oxidative stress. The different alterations in the selected biomarkers in the caged mussels compared to the reference group were linked to the different kinds and levels of water pollution in the reservoirs, and also to the simultaneously conducted bioaccumulation studies. The effects of water pollution in caged mussels from three large dam reservoirs in Bulgaria were assessed. A cocktail of different inorganic and organic toxicants was measured both in waters and mussels for the first time. Different biomarker responses (cellular to individual) were also followed in gills and digestive glands of the transplants. Correlation trends between the pollution levels and the applied biological tools were established.
Collapse
|
34
|
Tapia-Salazar M, Diaz-Sosa VR, Cardenas-Chavez DL. Toxicological effect and enzymatic disorder of non-studied emerging contaminants in Artemia salina model. Toxicol Rep 2022; 9:210-218. [DOI: 10.1016/j.toxrep.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022] Open
|
35
|
Queirós V, Azeiteiro UM, Barata C, Santos JL, Alonso E, Soares AMVM, Freitas R. Effects of the antineoplastic drug cyclophosphamide on the biochemical responses of the mussel Mytilus galloprovincialis under different temperatures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117735. [PMID: 34271515 DOI: 10.1016/j.envpol.2021.117735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Cyclophosphamide (CP) is an antineoplastic drug widely used in chemotherapy treatments with high consumption rates and that has been detected in the aquatic environment. After being released into the aquatic environment, CP may cause adverse effects on aquatic organisms since antineoplastics are well-known cytotoxic, genotoxic, mutagenic and teratogenic drugs. Moreover, predicted environmental changes, such as the temperature rising, may alter the impacts caused by CP on organisms. Thus, the present study aimed to assess the effects caused by CP chronic exposure in the mussel Mytilus galloprovincialis, under actual and predicted warming scenarios. Organisms were exposed for 28 days to different concentrations of CP (10, 100, 500 and 1000 ng/L) at control (17 ± 1.0 °C) and increased (21 ± 1.0 °C) temperatures. Biochemical responses related to metabolic capacity, energy reserves, oxidative stress and neurotoxicity were assessed. The results showed that the organisms were able to maintain their metabolic capacity under all exposure conditions. However, their antioxidant defense mechanisms were activated mostly at higher CP concentrations being able to prevent cellular damage, even under the warming scenario. Overall, the present findings suggest that temperature rise may not alter the impacts of CP towards M. galloprovincialis.
Collapse
Affiliation(s)
- Vanessa Queirós
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ulisses M Azeiteiro
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Spain
| | - Amadeu M V M Soares
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
36
|
Kumar S, Paul T, Shukla SP, Kumar K, Karmakar S, Bera KK, Bhushan Kumar C. Biomarkers-based assessment of triclosan toxicity in aquatic environment: A mechanistic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117569. [PMID: 34438492 DOI: 10.1016/j.envpol.2021.117569] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/21/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Triclosan (TCS), an emergent pollutant, is raising a global concern due to its toxic effects on organisms and aquatic ecosystems. The non-availability of proven treatment technologies for TCS remediation is the central issue stressing thorough research on understanding the underlying mechanisms of toxicity and assessing vital biomarkers in the aquatic organism for practical monitoring purposes. Given the unprecedented circumstances during COVID 19 pandemic, a several-fold higher discharge of TCS in the aquatic ecosystems cannot be considered a remote possibility. Therefore, identifying potential biomarkers for assessing chronic effects of TCS are prerequisites for addressing the issues related to its ecological impact and its monitoring in the future. It is the first holistic review on highlighting the biomarkers of TCS toxicity based on a comprehensive review of available literature about the biomarkers related to cytotoxicity, genotoxicity, hematological, alterations of gene expression, and metabolic profiling. This review establishes that biomarkers at the subcellular level such as oxidative stress, lipid peroxidation, neurotoxicity, and metabolic enzymes can be used to evaluate the cytotoxic effect of TCS in future investigations. Micronuclei frequency and % DNA damage proved to be reliable biomarkers for genotoxic effects of TCS in fishes and other aquatic organisms. Alteration of gene expression and metabolic profiling in different organs provides a better insight into mechanisms underlying the biocide's toxicity. In the concluding part of the review, the present status of knowledge about mechanisms of antimicrobial resistance of TCS and its relevance in understanding the toxicity is also discussed referring to the relevant reports on microorganisms.
Collapse
Affiliation(s)
- Saurav Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India.
| | - Tapas Paul
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - S P Shukla
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Kundan Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Sutanu Karmakar
- West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, West Bengal, India
| | - Kuntal Krishna Bera
- West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, West Bengal, India
| | - Chandra Bhushan Kumar
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, 226002, Uttar Pradesh, India
| |
Collapse
|
37
|
Coppola F, Jiang W, Soares AMVM, Marques PAAP, Polese G, Pereira ME, Jiang Z, Freitas R. How efficient is graphene-based nanocomposite to adsorb Hg from seawater. A laboratory assay to assess the toxicological impacts induced by remediated water towards marine bivalves. CHEMOSPHERE 2021; 277:130160. [PMID: 33794434 DOI: 10.1016/j.chemosphere.2021.130160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/15/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Advanced investigations on the use of graphene based nanomaterials have highlighted the capacity of these materials for wastewater treatment. Research on this topic revealed the efficiency of the nanocomposite synthetized by graphene oxide functionalized with polyethyleneimine (GO-PEI) to adsorb mercury (Hg) from contaminated seawater. However, information on the environmental risks associated with these approaches are still lacking. The focus of this study was to evaluate the effects of Hg in contaminated seawater and seawater remediated by GO-PEI, using the species Ruditapes philippinarum, maintained at two different warming scenarios: control (17 °C) and increased (22 °C) temperatures. The results obtained showed that organisms exposed to non-contaminated and remediated seawaters at control temperature presented similar biological patterns, with no considerable differences expressed in terms of biochemical and histopathological alterations. Moreover, the present findings revealed increased toxicological effects in clams under remediated seawater at 22 °C in comparison to those subjected to the equivalent treatment at 17 °C. These results confirm the capability of GO-PEI to adsorb Hg from water with no noticeable toxic effects, although temperature could alter the responses of mussels to remediated seawater. These materials seem to be a promise eco-friendly approach to remediate wastewater, with low toxicity evidenced by remediated seawater and high regenerative capacity of this nanomaterial, keeping its high removal performance after successive sorption-desorption cycles.
Collapse
Affiliation(s)
- Francesca Coppola
- CESAM & Department of Biology, University of Aveiro, 3810-193, Portugal
| | - Weiwei Jiang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, China
| | | | - Paula A A P Marques
- TEMA & Department of Mechanical Engineering, University of Aveiro, 3810-193, Portugal
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126, Italy
| | | | - Zengjie Jiang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, China.
| | - Rosa Freitas
- CESAM & Department of Biology, University of Aveiro, 3810-193, Portugal.
| |
Collapse
|
38
|
Coppola F, Soares AMVM, Figueira E, Pereira E, Marques PAAP, Polese G, Freitas R. The Influence of Temperature Increase on the Toxicity of Mercury Remediated Seawater Using the Nanomaterial Graphene Oxide on the Mussel Mytilus galloprovincialis. NANOMATERIALS 2021; 11:nano11081978. [PMID: 34443810 PMCID: PMC8400667 DOI: 10.3390/nano11081978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/08/2021] [Accepted: 07/28/2021] [Indexed: 01/25/2023]
Abstract
Mercury (Hg) has been increasing in waters, sediments, soils and air, as a result of natural events and anthropogenic activities. In aquatic environments, especially marine systems (estuaries and lagoons), Hg is easily bioavailable and accumulated by aquatic wildlife, namely bivalves, due to their lifestyle characteristics (sedentary and filter-feeding behavior). In recent years, different approaches have been developed with the objective of removing metal(loid)s from the water, including the employment of nanomaterials. However, coastal systems and marine organisms are not exclusively challenged by pollutants but also by climate changes such as progressive temperature increment. Therefore, the present study aimed to (i) evaluate the toxicity of remediated seawater, previously contaminated by Hg (50 mg/L) and decontaminated by the use of graphene-based nanomaterials (graphene oxide (GO) functionalized with polyethyleneimine, 10 mg/L), towards the mussel Mytilus galloprovincialis; (ii) assess the influence of temperature on the toxicity of decontaminated seawater. For this, alterations observed in mussels’ metabolic capacity, oxidative and neurotoxic status, as well as histopathological injuries in gills and digestive tubules were measured. This study demonstrated that mussels exposed to Hg contaminated seawater presented higher impacts than organisms under remediated seawater. When comparing the impacts at 21 °C (present study) and 17 °C (previously published data), organisms exposed to remediated seawater at a higher temperature presented higher injuries than organisms at 17 °C. These results indicate that predicted warming conditions may negatively affect effective remediation processes, with the increasing of temperature being responsible for changes in organisms’ sensitivity to pollutants or increasing pollutants toxicity.
Collapse
Affiliation(s)
- Francesca Coppola
- Department of Biology CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (F.C.); (A.M.V.M.S.); (E.F.)
| | - Amadeu M. V. M. Soares
- Department of Biology CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (F.C.); (A.M.V.M.S.); (E.F.)
| | - Etelvina Figueira
- Department of Biology CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (F.C.); (A.M.V.M.S.); (E.F.)
| | - Eduarda Pereira
- Department of Chemistry LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Paula A. A. P. Marques
- Department of Mechanical Engineering TEMA, Universidade de Aveiro, 3810-193 Aveiro, Portugal;
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Rosa Freitas
- Department of Biology CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (F.C.); (A.M.V.M.S.); (E.F.)
- Correspondence:
| |
Collapse
|
39
|
Maynou F, Costa S, Freitas R, Solé M. Effects of triclosan exposure on the energy budget of Ruditapes philippinarum and R. decussatus under climate change scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146068. [PMID: 33676217 DOI: 10.1016/j.scitotenv.2021.146068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
We built a simulation model based on Dynamic Energy Budget theory (DEB) to assess the growth and reproductive potential of the native European clam Ruditapes decussatus and the introduced Manila clam Ruditapes philippinarum under current temperature and pH conditions in a Portuguese estuary and under those forecasted for the end of the 21st c. The climate change scenario RCP8.5 predicts temperature increase of 3 °C and a pH decrease of 0.4 units. The model was run under additional conditions of exposure to the emerging contaminant triclosan (TCS) and in the absence of this compound. The parameters of the DEB model were calibrated with the results of laboratory experiments complemented with data from the literature available for these two important commercial shellfish resources. For each species and experimental condition (eight combinations), we used data from the experiments to produce estimates for the key parameters controlling food intake flux, assimilation flux, somatic maintenance flux and energy at the initial simulation time. The results showed that the growth and reproductive potential of both species would be compromised under future climate conditions, but the effect of TCS exposure had a higher impact on the energy budget than forecasted temperature and pH variations. The egg production of R. philippinarum was projected to suffer a more marked reduction with exposure to TCS, regardless of the climatic factor, while the native R. decussatus appeared more resilient to environmental causes of stress. The results suggest a likely decrease in the rates of expansion of the introduced R. philippinarum in European waters, and negative effects on fisheries and aquaculture production of exposure to emerging contaminants (e.g., TCS) and climate change.
Collapse
Affiliation(s)
- Francesc Maynou
- Institut de Ciències del Mar, CSIC, Psg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - Silvana Costa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Montserrat Solé
- Institut de Ciències del Mar, CSIC, Psg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| |
Collapse
|
40
|
Piscopo R, Almeida Â, Coppola F, De Marchi L, Esteves VI, Soares AMVM, Pretti C, Morelli A, Chiellini F, Polese G, Freitas R. How temperature can alter the combined effects of carbon nanotubes and caffeine in the clam Ruditapes decussatus? ENVIRONMENTAL RESEARCH 2021; 195:110755. [PMID: 33556353 DOI: 10.1016/j.envres.2021.110755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Nowadays, multi-walled carbon nanotubes are considered to be emerging contaminants and their impact in ecosystem has drawn special research attention, while other contaminants, such as caffeine, have more coverage in literature. Despite this, the effects of a combination of the two has yet to be evaluated, especially considering predicted temperature rise. In the present study a typical bioindicator species for marine environment, the clam Ruditapes decussatus, and classical tools, such as biomarkers and histopathological indices, were used to shed light on the species' response to these contaminants, under actual and predicted warming scenarios. The results obtained showed that both contaminants have a harmful effect at tissue level, as shown by higher histopathological index, especially in digestive tubules. Temperatures seemed to induce greater biochemical impacts than caffeine (CAF) and -COOH functionalized multi-walled carbon nanotubes (f-MWCNTs) when acting alone, namely in terms of antioxidant defences and energy reserves content, which were exacerbated when both contaminants were acting in combination (MIX treatment). Overall, the present findings highlight the complex response of clams to both pollutants, evidencing the role of temperature on clams' sensitivity, especially to mixture of pollutants.
Collapse
Affiliation(s)
- Raffaele Piscopo
- Department of Biology, University of Aveiro, 3810-193, Portugal; Department of Biology, University of Naples Federico II, 80126, Italy
| | - Ângela Almeida
- Department of Biology, University of Aveiro, 3810-193, Portugal; Department of Biology & CESAM, University of Aveiro, 3810-193, Portugal
| | - Francesca Coppola
- Department of Biology, University of Aveiro, 3810-193, Portugal; Department of Biology & CESAM, University of Aveiro, 3810-193, Portugal
| | - Lucia De Marchi
- Department of Biology, University of Aveiro, 3810-193, Portugal; Department of Biology & CESAM, University of Aveiro, 3810-193, Portugal; Department of Biology, University of Pisa, 56126, Pisa, Italy
| | - Valdemar I Esteves
- Department of Chemistry & CESAM, University of Aveiro, 3810-193, Portugal
| | - Amadeu M V M Soares
- Department of Biology, University of Aveiro, 3810-193, Portugal; Department of Biology & CESAM, University of Aveiro, 3810-193, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, 56126, Italy
| | - Andrea Morelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56126, Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56126, Italy
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126, Italy
| | - Rosa Freitas
- Department of Biology, University of Aveiro, 3810-193, Portugal; Department of Biology & CESAM, University of Aveiro, 3810-193, Portugal.
| |
Collapse
|
41
|
Solé M, Freitas R, Rivera-Ingraham G. The use of an in vitro approach to assess marine invertebrate carboxylesterase responses to chemicals of environmental concern. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 82:103561. [PMID: 33307128 DOI: 10.1016/j.etap.2020.103561] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Carboxylesterases (CEs) are key enzymes which catalyse the hydrolysis reactions of multiple xenobiotics and endogenous ester moieties. Given their growing interest in the context of marine pollution and biomonitoring, this study focused on the in vitro sensitivity of marine invertebrate CEs to some pesticides, pharmaceuticals, personal care products and plastic additives to assess their potential interaction on this enzymatic system and its suitability as biomarkers. Three bivalves, one gastropod and two crustaceans were used and CEs were quantified following current protocols set for mammalian models. Four substrates were screened for CEs determination and to test their adequacy in the hepatic fraction measures of the selected invertebrates. Two commercial recombinant human isoforms (hCE1 and hCE2) were also included for methodological validation. Among the invertebrates, mussels were revealed as the most sensitive to xenobiotic exposures while gastropods were the least as well as with particular substrate-specific preferences. Among chemicals of environmental concern, the plastic additive tetrabromobisphenol A displayed the highest CE-inhibitory capacity in all species. Since plastic additives easily breakdown from the polymer and may accumulate and metabolise in marine biota, their interaction with the CE key metabolic/detoxification processes may have consequences in invertebrate's physiology, affect bioaccumulation and therefore trophic web transfer and, ultimately, human health as shellfish consumers.
Collapse
Affiliation(s)
- Montserrat Solé
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| | - Rosa Freitas
- Department of Biology & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Georgina Rivera-Ingraham
- Laboratorio de Fisiología y Genética Marina, Centro de Estudios Avanzados en Zonas Áridas, Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile
| |
Collapse
|
42
|
Viana T, Ferreira N, Henriques B, Leite C, De Marchi L, Amaral J, Freitas R, Pereira E. How safe are the new green energy resources for marine wildlife? The case of lithium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115458. [PMID: 33254618 DOI: 10.1016/j.envpol.2020.115458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 06/12/2023]
Abstract
Considering the increasing use of Lithium (Li) and the necessity to fulfil this demand, labile Li occurrence in the environment will be enhanced. Thus, additional research is needed regarding the presence of this element in marine environment and its potential toxic impacts towards inhabiting wildlife. The aim of the present study was to evaluate Li toxicity based on the exposure of Mytilus galloprovincialis to this metal, assessing the biochemical changes related with mussels' metabolism, oxidative stress and neurotoxicity. For this, organisms were exposed to different Li concentrations (100, 250, 750 μg/L) for 28 days. The results obtained clearly demonstrated that Li lead to mussels' metabolism depression. The present study also revealed that, especially at the highest concentrations, antioxidant and biotransformation enzymes were not activated, leading to the occurrence of lipid peroxidation and loss of redox homeostasis, with increased content in oxidized glutathione in comparison to the reduced form. Furthermore, after 28 days, higher Li exposure concentrations induced neurotoxic effects in mussels, with a decrease in acetylcholinesterase enzyme activity. The responses observed were closely related with Li concentrations in mussels' tissues, which were more pronounced at higher exposure concentrations. Such results highlight the potential toxic effects of Li to marine species, which may even be higher under predicted climate changes and/or in the presence of other pollutants.
Collapse
Affiliation(s)
- Thainara Viana
- Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Nicole Ferreira
- Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Bruno Henriques
- Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal; LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, University of Aveiro, Aveiro, Portugal
| | - Carla Leite
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia De Marchi
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal; Department of Mechanical Engineering & Centre for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Joana Amaral
- Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal; Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Eduarda Pereira
- Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal; LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
43
|
Freitas R, Silvestro S, Pagano M, Coppola F, Meucci V, Battaglia F, Intorre L, Soares AMVM, Pretti C, Faggio C. Impacts of salicylic acid in Mytilus galloprovincialis exposed to warming conditions. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103448. [PMID: 32593631 DOI: 10.1016/j.etap.2020.103448] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 05/17/2023]
Abstract
While many studies have been conducted on drug-inducing alterations in the aquatic environment, little is known about their interaction with climate change, such as rising temperatures. To increase knowledge on this topic, Mytilus galloprovincialis mussels were exposed to two different temperatures 17 ± 1 °C (control) and 21 ± 1 °C in the absence and presence of salicylic acid (SA) (4 mg/L) for 28 days. Salicylic acid in the water and tissues was measured and its impact reported through biomarker responses including: energy metabolism (electron transport system (ETS) activity, glycogen (GLY), protein (PROT) and lipids (LIP) contents), oxidative stress markers (activity of the enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)), glutathione balance between the reduced and the oxidized forms (GSH/GSSG), and damage to membrane lipids (lipid peroxidation - LPO). The mussels responded differently if the stresses imposed were single or combined, with greater impacts when both stressors were acting together. Contaminated mussels exposed to high temperatures were unable to increase their metabolic capacity to restore their defence mechanisms, reducing the expenditure of LIP. In the presence of SA and increased temperature antioxidant defences respond differently, with higher SOD levels and inhibition of CAT. The present study highlights not only the negative impact of warming and SA, but especially how temperature increase will promote the impact of SA in M. galloprovincialis, which under predicted climate change scenarios may greatly impair population maintenance and ecosystem biodiversity.
Collapse
Affiliation(s)
- Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, Portugal.
| | - Serena Silvestro
- Departamento de Biologia & CESAM, Universidade de Aveiro, Portugal; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Maria Pagano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | | | | | | | - Luigi Intorre
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy
| | | | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy; Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy.
| |
Collapse
|
44
|
Freitas R, Marques F, De Marchi L, Vale C, Botelho MJ. Biochemical performance of mussels, cockles and razor shells contaminated by paralytic shellfish toxins. ENVIRONMENTAL RESEARCH 2020; 188:109846. [PMID: 32846638 DOI: 10.1016/j.envres.2020.109846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/12/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Marine toxins in bivalves pose an important risk to human health, and regulatory authorities throughout the world impose maximum toxicity values. In general, bivalve toxicities due to paralytic shellfish toxins (PSTs) above the regulatory limit occur during short periods, but in some cases, it may be extended from weeks to months. The present study examines whether cockles (Cerastoderme edule), mussels (Mytilus galloprovincialis) and razor shells (Solen marginatus) naturally exposed to a bloom of Gymnodinium catenatum activated or suppressed biochemical responses as result of the presence of PSTs in their soft tissues. Toxins (C1+2, C3+4, GTX5, GTX6, dcSTX, dcGTX2+3 and dcNEO) and a set of biomarkers (ETS, electron transport system activity; GLY, glycogen; PROT, protein; SOD, superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase; GST, glutathione S-transferases; LPO, lipid peroxidation; reduced (GSH) and oxidized (GSSG) glutathione contents and AChE, acetylcholinesterase activity) were determined in the three bivalve species. Specimens were harvested weekly in Aveiro lagoon, Portugal, along thirteen weeks. This period included three weeks in which bivalve toxicity exceeded largely the regulatory limit and the subsequence recovery period of ten weeks. Biochemical performance of the surveyed species clearly indicated that PSTs induce oxidative stress and neurotoxicity, with higher impact on mussels and razor shells than in cockles. The antioxidant enzymes CAT and GPx seemed to be the biomarkers better associated with toxin effects.
Collapse
Affiliation(s)
- Rosa Freitas
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipa Marques
- IPMA, Portuguese Institute for Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Lucia De Marchi
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos Vale
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Maria João Botelho
- IPMA, Portuguese Institute for Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida Norton de Matos, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
45
|
Morosetti B, Freitas R, Pereira E, Hamza H, Andrade M, Coppola F, Maggioni D, Della Torre C. Will temperature rise change the biochemical alterations induced in Mytilus galloprovincialis by cerium oxide nanoparticles and mercury? ENVIRONMENTAL RESEARCH 2020; 188:109778. [PMID: 32574852 DOI: 10.1016/j.envres.2020.109778] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/06/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
It is known that, for marine coastal ecosystems, pollution and global warming are among the most threatening factors. Among emerging pollutants, nanoparticles (NPs) deserve particular attention as their possible adverse effects are significantly influenced by environmental factors such as salinity, pH and temperature, as well as by their ability to interact with other contaminants. In this framework, the present study aimed to evaluate the potential interactions between CeO2 NPs and the toxic classic metal mercury (Hg), under current and warming conditions. The marine bivalve Mytilus galloprovincialis was used as biological model and exposed to CeO2 NPs and Hg, either alone or in combination, for 28 day at 17 °C and 22 °C. A suite of biomarkers related to energetic metabolism, oxidative stress/damage, redox balance, and neurotoxicity was applied in exposed and non-exposed (control) mussels. The Hg and Ce accumulation was also assessed. Results showed that the exposure to CeO2 NPs alone did not induce toxic effects in M. galloprovincialis. On the contrary, Hg exposure determined a significant loss of energetic metabolism and a general impairment in biochemical performances. Hg accumulation in mussels was not modified by the presence of CeO2 NPs, while the biochemical alterations induced by Hg alone were partially canceled upon co-exposure with CeO2 NPs. The temperature increase induced loss of metabolic and biochemical functions and the effects of temperature prevailed on mussels exposed to pollutants acting alone or combined.
Collapse
Affiliation(s)
- Bianca Morosetti
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal; Department of Biosciences, University of Milan, Via Celoria 26 20133 Milan, Italy
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - Eduarda Pereira
- Departamento de Química & REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Hady Hamza
- Department of Chemistry, University of Milan, Via Venezian 20133 Milan, Italy
| | - Madalena Andrade
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Daniela Maggioni
- Department of Chemistry, University of Milan, Via Venezian 20133 Milan, Italy
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26 20133 Milan, Italy.
| |
Collapse
|
46
|
Leite C, Coppola F, Monteiro R, Russo T, Polese G, Silva MRF, Lourenço MAO, Ferreira P, Soares AMVM, Pereira E, Freitas R. Toxic impacts of rutile titanium dioxide in Mytilus galloprovincialis exposed to warming conditions. CHEMOSPHERE 2020; 252:126563. [PMID: 32443264 DOI: 10.1016/j.chemosphere.2020.126563] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Climate change is leading to a gradual increase in the ocean temperature, which can cause physiological and biochemical impairments in aquatic organisms. Along with the environmental changes, the presence of emerging pollutants such as titanium dioxide (TiO2) in marine coastal systems has also been a topic of concern, especially considering the interactive effects that both factors may present to inhabiting organisms. In the present study, it has been assessed the effects of the presence in water of particles of rutile, the most common polymorph of TiO2, in Mytilus galloprovincialis, under actual and predicted warming conditions. Organisms were exposed to different concentrations of rutile (0, 5, 50, 100 μg/L) at control (18 ± 1.0 °C) and increased (22 ± 1.0 °C) temperatures. Histopathological and biochemical changes were evaluated in mussels after 28 days of exposure. Histopathological examination revealed similar alterations on mussels' gills and digestive glands with increasing rutile concentrations at both temperatures. Biochemical markers showed that contaminated mussels have an unchanged metabolic capacity at 18 °C, which increased at 22 °C. Although antioxidant defences were activated in contaminated organisms at 22 °C, cellular damage was still observed. Overall, our findings showed that histopathological impacts occurred after rutile exposure regardless of the temperature, while biochemical alterations were only significantly noticeable when temperature was enhanced to 22 °C. Thus, this study demonstrated that temperature rise may significantly enhance the sensitivity of bivalves towards emerging pollutants.
Collapse
Affiliation(s)
- Carla Leite
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rui Monteiro
- Departamento de Química & CESAM/LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal; CIIMAR, Universidade do Porto, 4050-123 Porto, Portugal
| | - Tania Russo
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, 80126, Napoli, Italy
| | - Gianluca Polese
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, 80126, Napoli, Italy
| | - Mariana R F Silva
- CICECO- Instituto de Materiais de Aveiro, Departamento de Engenharia de Materiais e Cerâmica, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Mirtha A O Lourenço
- CICECO- Instituto de Materiais de Aveiro, Departamento de Engenharia de Materiais e Cerâmica, Universidade de Aveiro, 3810-193, Aveiro, Portugal; Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies, Via Livorno, 60, 10144, Torino TO, Italy
| | - Paula Ferreira
- CICECO- Instituto de Materiais de Aveiro, Departamento de Engenharia de Materiais e Cerâmica, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Eduarda Pereira
- Departamento de Química & CESAM/LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
47
|
Costa S, Coppola F, Pretti C, Intorre L, Meucci V, Soares AMVM, Solé M, Freitas R. Biochemical and physiological responses of two clam species to Triclosan combined with climate change scenario. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138143. [PMID: 32408439 DOI: 10.1016/j.scitotenv.2020.138143] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
Ocean acidification and warming are among the man-induced factors that most likely impact aquatic wildlife worldwide. Besides effects caused by temperature rise and lowered pH conditions, chemicals of current use can also adversely affect aquatic organisms. Both climate change and emerging pollutants, including toxic impacts in marine invertebrates, have been investigated in recent years. However, less information is available on the combined effects of these physical and chemical stressors that, in nature, occur simultaneously. Thus, this study contrasts the effects caused by the antimicrobial agent and plastic additive, Triclosan (TCS) in the related clams Ruditapes philippinarum (invasive) and Ruditapes decussatus (native) and evaluates if the impacts are influenced by combined temperature and pH modifications. Organisms were acclimated for 30 days at two conditions (control: 17 °C; pH 8.1 and climate change scenario: 21 °C, pH 7.7) in the absence of the drug (experimental period I) followed by a 7 days exposure under the same water physical parameters but either in absence (unexposed) or presence of TCS at 1 μg/L (experimental period II). Biochemical responses covering metabolic, oxidative defences and damage-related biomarkers were contrasted in clams at the end of experimental period II. The overall picture showed a well-marked antioxidant activation and higher TCS bioaccumulation of the drug under the forecasted climate scenario despite a reduction on respiration rate and unaltered metabolism in the exposed clams. Since clams are highly consumed shellfish, the consequences for higher tissue bioaccumulation of anthropogenic chemicals to final consumers should be alerted not only at present conditions but more significantly under predicted climatic conditions for humans but also for other components of the marine trophic chain.
Collapse
Affiliation(s)
- Silvana Costa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy; Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Luigi Intorre
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy
| | | | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Montserrat Solé
- Instituto de Ciencias del Mar ICM-CSIC, E-08003 Barcelona, Spain
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
48
|
Coppola F, Tavares DS, Henriques B, Monteiro R, Trindade T, Figueira E, Soares AMVM, Pereira E, Freitas R. Can water remediated by manganese spinel ferrite nanoparticles be safe for marine bivalves? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137798. [PMID: 32392676 DOI: 10.1016/j.scitotenv.2020.137798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
In the last few years the use of nanoparticles (NPs) such as the manganese spinel ferrite (MnFe2O4) has been increasing, with a vast variety of applications including water remediation from pollutants as metal(oid)s. Although an increasing number of studies already demonstrated the potential toxicity of NPs towards aquatic systems and inhabiting organisms, there is still scarce information on the potential hazard of the remediated water using NPs. The present study aimed to evaluate the ecotoxicological safety of Pb contaminated seawater remediated with MnFe2O4, NPs, assessing the toxicity induced in mussels Mytilus galloprovincialis exposed to contaminated seawater and to water that was remediated using MnFe2O4, NPs. The results obtained demonstrated that seawater contaminated with Pb, NPs or the mixture of both (Pb + NPs) induced higher toxicity in mussels compared to organisms exposed to Pb, NPs and Pb + NPs after the remediation process. In particular, higher metabolic depression, oxidative stress and neurotoxicity were observed in mussels exposed to contaminated seawater in comparison to mussels exposed to remediated seawater.
Collapse
Affiliation(s)
- Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Daniela S Tavares
- Departamento de Química & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Departamento de Química & CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Henriques
- Departamento de Química & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rui Monteiro
- Departamento de Química & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CIIMAR, Universidade do Porto, 4050-123 Porto, Portugal
| | - Tito Trindade
- Departamento de Química & CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Pereira
- Departamento de Química & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
49
|
Freitas R, Silvestro S, Coppola F, Meucci V, Battaglia F, Intorre L, Soares AMVM, Pretti C, Faggio C. Combined effects of salinity changes and salicylic acid exposure in Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136804. [PMID: 32006781 DOI: 10.1016/j.scitotenv.2020.136804] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/27/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Pharmaceuticals and Personal care products (PPCPs) are frequently released into several marine matrices, representing significant environmental and ecotoxicological risks. Among the widest spread PPCPs in aquatic systems is Salicylic acid (SA), with known negative effects on marine and freshwater species. Nevertheless, the toxicity resulting from these emerging pollutants, including SA, together with climate change has still received little attention up to date. Among climate change related factors salinity is one that most affects aquatic organisms. To better understand the combined impacts of SA and salinity, the present study evaluated the biochemical alterations induced in Mytilus galloprovincialis mussels exposed to SA and different salinity levels, acting individually and in combination. The effects observed clearly highlighted that cellular damages were mainly observed at higher salinity (35), with no additive or synergistic effects derived from the combined presence of SA. Higher antioxidant capacity of mussels in the presence of SA may prevent increased LPO levels in comparison to uncontaminated mussels. Nevertheless, in the presence of SA mussels revealed loss of redox balance, regardless of the salinity level. Furthermore, mussels exposed to SA at control salinity showed increased metabolic capacity which decreased when exposed to salinities 25 and 35. These findings may indicate the protective capacity of mussels towards higher stressful conditions, with lower energy reserves expenditure when in the presence of SA and salinities out of their optimal range. Although limited cellular damages were observed, changes on mussel's redox balance, antioxidant mechanisms and metabolism derived from the combined exposure to SA and salinity changes may compromise mussel's growth and reproduction. Overall, the present study highlights the need to investigate the impacts induced by pollutants under present and future climate change scenarios, towards a more realistic environmental risk assessment.
Collapse
Affiliation(s)
- Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Serena Silvestro
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | | | | | - Luigi Intorre
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy; Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| |
Collapse
|
50
|
Freitas R, Cardoso CED, Costa S, Morais T, Moleiro P, Lima AFD, Soares M, Figueiredo S, Águeda TL, Rocha P, Amador G, Soares AMVM, Pereira E. New insights on the impacts of e-waste towards marine bivalves: The case of the rare earth element Dysprosium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113859. [PMID: 31991344 DOI: 10.1016/j.envpol.2019.113859] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/30/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
With the technological advances and economic development, the multiplicity and wide variety of applications of electrical and electronic equipment have increased, as well as the amount of end-of-life products (waste of electrical and electronic equipment, WEEE). Accompanying their increasing application, there is an increasing risk to aquatic ecosystems and inhabiting organisms. Among the most common elements present in WEEE are rare earth elements (REE) such as Dysprosium (Dy). The present study evaluated the metabolic and oxidative stress responses of mussels Mytilus galloprovincialis exposed to an increasing range of Dy concentrations, after a 28 days experimental period. The results obtained highlighted that Dy was responsible for mussel's metabolic increase associated with glycogen expenditure, activation of antioxidant and biotransformation defences and cellular damage, with a clear loss of redox balance. Such effects may greatly impact mussel's physiological functions, including reproduction capacity and growth, with implications for population conservation. Overall the present study pointed out the need for more research on the toxic impacts resulting from these emerging pollutants, especially towards marine and estuarine invertebrate species.
Collapse
Affiliation(s)
- Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - Celso E D Cardoso
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Silvana Costa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Tiago Morais
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Pedro Moleiro
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - André F D Lima
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Márcio Soares
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Samuel Figueiredo
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Tiago L Águeda
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Pedro Rocha
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Gonçalo Amador
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Eduarda Pereira
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|