1
|
Shu Y, Zhou W, Zhang W, Lu L, Gao Y, Yu Y, Shan C, Tong D, Zhang X, Shi W, Liu G. Exposure to malathion impairs learning and memory of zebrafish by disrupting cholinergic signal transmission, undermining synaptic plasticity, and aggravating neuronal apoptosis. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137391. [PMID: 39892146 DOI: 10.1016/j.jhazmat.2025.137391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
The prevalence of organophosphorus pesticides, such as malathion, in water environments poses a severe threat to aquatic organisms. Although the brain is a potential target for malathion, little is known about its effect on cognitive functions in fish. In this study, we evaluated the effect of 4-week malathion exposure on the learning and memory of zebrafish using T-maze tasks. In addition to verifying the accumulation of malathion in the brain and its deleterious effects on blood-brain barrier integrity, the impacts of malathion on cholinergic signal transmission, synaptic plasticity, apoptosis, and oxidative stress were determined. Our results demonstrated that a 4-week malathion exposure resulted in typical learning and memory-deficit-like behaviors. Apart from inhibiting cholinergic signal transmission, synaptic plasticity was severely undermined by malathion (as evidenced by the disruption of BDNF/PI3K/AKT/CREB pathway, suppression of synaptophysins, and activation of microglia). Moreover, significantly higher levels of TUNEL fluorescence signals as well as apoptotic enzymes and genes probably induced by oxidative stress were detected in the brains of malathion-exposed zebrafish. Collectively, our results suggested that malathion at environmentally realistic levels can significantly undermine learning and memory of zebrafish by disrupting cholinergic signal transmission, impairing synaptic plasticity, and aggravating neuronal apoptosis via inducing oxidative stress.
Collapse
Affiliation(s)
- Yang Shu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Gao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Conghui Shan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
He J, Feng L, Yang H, Gao S, Dong J, Lu G, Liu L, Zhang X, Zhong K, Guo S, Zha G, Han L, Li H, Wang Y. Sirtuin 5 alleviates apoptosis and autophagy stimulated by ammonium chloride in bovine mammary epithelial cells. Exp Ther Med 2024; 28:295. [PMID: 38827477 PMCID: PMC11140291 DOI: 10.3892/etm.2024.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/28/2024] [Indexed: 06/04/2024] Open
Abstract
Ammonia (NH3) is an irritating and harmful gas that affects cell apoptosis and autophagy. Sirtuin 5 (SIRT5) has multiple enzymatic activities and regulates NH3-induced autophagy in tumor cells. In order to determine whether SIRT5 regulates NH3-induced bovine mammary epithelial cell apoptosis and autophagy, cells with SIRT5 overexpression or knockdown were generated and in addition, bovine mammary epithelial cells were treated with SIRT5 inhibitors. The results showed that SIRT5 overexpression reduced the content of NH3 and glutamate in cells by inhibiting glutaminase activity in glutamine metabolism, and reduced the ratio of ADP/ATP. The results in the SIRT5 knockdown and inhibitor groups were comparable, including increased content of NH3 and glutamate in cells by activating glutaminase activity, and an elevated ratio of ADP/ATP. It was further confirmed that SIRT5 inhibited the apoptosis and autophagy of bovine mammary epithelial cells through reverse transcription-quantitative PCR, western blot, flow cytometry with Annexin V FITC/PI staining and transmission electron microscopy. In addition, it was also found that the addition of LY294002 or Rapamycin inhibited the PI3K/Akt or mTOR kinase signal, decreasing the apoptosis and autophagy activities of bovine mammary epithelial cells induced by SIRT5-inhibited NH3. In summary, the PI3K/Akt/mTOR signal involved in NH3-induced cell autophagy and apoptosis relies on the regulation of SIRT5. This study provides a new theory for the use of NH3 to regulate bovine mammary epithelial cell apoptosis and autophagy, and provides guidance for improving the health and production performance of dairy cows.
Collapse
Affiliation(s)
- Junhui He
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| | - Luping Feng
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| | - Hanlin Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| | - Shikai Gao
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| | - Jinru Dong
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| | - Guangyang Lu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| | - Luya Liu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| | - Xinyi Zhang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| | - Kai Zhong
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| | - Shuang Guo
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| | - Guangming Zha
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| | - Liqiang Han
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| | - Heping Li
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| | - Yueying Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, P.R. China
| |
Collapse
|
3
|
Jing TX, Jiang SD, Tang XP, Guo PY, Wang L, Wang JJ, Wei DD. Overexpression of an Integument Esterase Gene LbEST-inte4 Infers the Malathion Detoxification in Liposcelis bostrychophila (Psocoptera: Liposcelididae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11221-11229. [PMID: 38703356 DOI: 10.1021/acs.jafc.4c02436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Liposcelis bostrychophila, commonly known as booklouse, is an important stored-product pest worldwide. Studies have demonstrated that booklices have developed resistance to several insecticides. In this study, an integument esterase gene, LbEST-inte4, with upregulated expression, was characterized in L. bostrychophila. Knockdown of LbEST-inte4 resulted in a substantial increase in the booklice susceptibility to malathion. Overexpression of LbEST-inte4 in Drosophila melanogaster significantly enhanced its malathion tolerance. Molecular modeling and docking analysis suggested potential interactions between LbEST-inte4 and malathion. When overexpressed LbEST-inte4 in Sf9 cells, a notable elevation in esterase activity and malathion tolerance was observed. HPLC analysis indicated that the LbEST-inte4 enzyme could effectively degrade malathion. Taken together, the upregulated LbEST-inte4 appears to contribute to malathion tolerance in L. bostrychophila by facilitating the depletion of malathion. This study elucidates the molecular mechanism underlying malathion detoxification and provides the foundations for the development of effective prevention and control measures against psocids.
Collapse
Affiliation(s)
- Tian-Xing Jing
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Shi-Die Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Xin-Ping Tang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Peng-Yu Guo
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Lin Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
4
|
Martins JRN, Lopes S, Hurtado HN, da Silva FN, Villard DR, Taboga SR, Souza KLA, Quesada I, Soriano S, Rafacho A. Acute and chronic effects of the organophosphate malathion on the pancreatic α and β cell viability, cell structure, and voltage-gated K + currents. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104046. [PMID: 36587778 DOI: 10.1016/j.etap.2022.104046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Studies indicate that the pesticide malathion may have a role in diabetes. Herein, we determined the effects of different concentrations of malathion on survival, ultrastructure, and electrophysiologic islet cell parameters. Acutely, high concentrations of malathion (0.5 or 1 mM) increased cell death in rat islet cells, while low concentrations (0.1 mM) caused signs of cell damage in pancreatic α and β cells. Exposure of RINm5F cells to malathion for 24 or 48 h confirmed the reduction in β-cell viability at lower concentrations (0.001-100 µM). Chronic exposure of mouse pancreatic α and β cells to 3 nM of malathion led to increased voltage-gated K+ (Kv) currents in α-cells. Our findings show a time and concentration dependency for the malathion effect on the reduction of islet cell viability and indicate that pancreatic α cells are more sensitive to malathion effects on Kv currents and cell death.
Collapse
Affiliation(s)
- J R N Martins
- Laboratory of Investigation in Chronic Diseases LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil; Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil
| | - S Lopes
- Central Laboratory of Electron Microscopy LCME, PROPESQ, Federal University of Santa Catarina UFSC, Florianópolis, Brazil
| | - H N Hurtado
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | - F N da Silva
- Laboratory of Investigation in Chronic Diseases LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil; Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil
| | - D R Villard
- NUMPEX-BIO, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro (UFRJ), Campus UFRJ Duque de Caxias Prof. Geraldo Cidade, Duque de Caxias 25245-390, Brazil
| | - S R Taboga
- Department of Biological Sciences, Laboratory of Microscopy and Microanalysis, Universidade Estadual Paulista-UNESP, São Paulo, Brazil
| | - K L A Souza
- NUMPEX-BIO, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro (UFRJ), Campus UFRJ Duque de Caxias Prof. Geraldo Cidade, Duque de Caxias 25245-390, Brazil
| | - I Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - S Soriano
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - A Rafacho
- Laboratory of Investigation in Chronic Diseases LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil; Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil.
| |
Collapse
|
5
|
Ortiz-Delgado JB, Funes V, Albendín G, Scala E, Sarasquete C. Toxicity of malathion during Senegalese sole, Solea senegalensis larval development and metamorphosis: Histopathological disorders and effects on type B esterases and CYP1A enzymatic systems. ENVIRONMENTAL TOXICOLOGY 2021; 36:1894-1910. [PMID: 34156741 DOI: 10.1002/tox.23310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/24/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
The toxicity of malathion to Solea senegalensis was studied in a static renewal bioassay during its first month of larval life (between 4 and 30 dph). Through the use of different biomarkers and biochemical, cellular and molecular approaches (inhibition of cholinesterases [ChEs], changes in cytochrome P450-1A [CYP1A] and the study of histopathological alterations), the effects of three concentrations of malathion (1.56, 3.12, and 6.25 μg/L) have been analyzed. In subacute exposure, malathion inhibited cholinesterase activities (AChE, BChE, CbE) in a dose- and time-dependent manner, ranging the inhibition percentage from 20% to 90%. However, the expression levels of CYP1A and AChE transcripts or proteins were not modified. Additionally, exposure to malathion provoked histopathological alterations in several organ systems of Senegalese sole in a time- and dose dependent way, namely disruption of parenchymal architecture in the liver, epithelial desquamation, pyknotic nuclei and steatosis in the intestine, disorganization of supporting cartilage, and sings of hyperplasia and hypertrophy in the gills and degeneration of the epithelial cells from the renal tubules. Malathion exposure also provoked strong disorganization of cardiac fibers from the heart. The findings provide evidence that exposure to sublethal concentrations of malathion that provoked serious injury to the fish S. senegalensis, were below the expected environmental concentrations reported in many other ecosystems and different fish species,revealing a higher sensitivity for Solea senegalensis to malathion exposure, thus reinforcing its use as sentinel species for environmental pollution in coastal and estuarine environments.
Collapse
Affiliation(s)
- Juan Bosco Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía-ICMAN, CSIC Campus Universitario Río San Pedro, Cádiz
| | - Victoria Funes
- IFAPA Centro el Toruño, Camino Tiro de Pichón, Cádiz, Spain
| | - Gemma Albendín
- CEIMAR, Universidad de Cádiz, Campus Universitario Río San Pedro, Cádiz, Spain
| | - Emanuele Scala
- Instituto de Ciencias Marinas de Andalucía-ICMAN, CSIC Campus Universitario Río San Pedro, Cádiz
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía-ICMAN, CSIC Campus Universitario Río San Pedro, Cádiz
| |
Collapse
|
6
|
Chandra RK, Bhardwaj AK, Tripathi MK. Evaluation of triazophos induced immunotoxicity of spleen and head kidney in fresh water teleost, Channa punctata. Comp Biochem Physiol C Toxicol Pharmacol 2021; 245:109029. [PMID: 33722765 DOI: 10.1016/j.cbpc.2021.109029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/20/2021] [Accepted: 03/11/2021] [Indexed: 11/30/2022]
Abstract
The utilization of pesticides has increased for destroying pests and protecting crops in the agriculture field. Triazophos is a commonly used organophosphorous insecticide that causes alterations in haematological and histological parameters in fish. The present study was designed to evaluate the effect of triazophos induced innate and cell mediated immunotoxicity in freshwater teleost, Channa punctata. Fishes were exposed to triazophos at concentrations 5 and 10% of LC50 value for 10 and 20 days. Splenic and head kidney macrophage phagocytosis, nitric oxide production and superoxide production were assayed to evaluate the innate immunity. Cell-mediated immunity was measured through splenic and head kidney lymphocyte proliferation in presence of T and B cell mitogens. Results of the present study revealed that macrophage phagocytosis was significantly reduced after in vivo triazophos treatment. Differential suppressive effect of triazophos was also observed where mitogen induced splenic and head kidney lymphocyte proliferations were reduced after 10 and 20 days treatment. Concentration dependent effect of triazophos was observed in in vivo studies where the production of reactive oxygen and nitrogen intermediates were suppressed. This study describes the first investigation of the effect of triazophos on immune functions and will help to determine appropriate ecotoxicity and immunotoxicity in freshwater teleosts.
Collapse
Affiliation(s)
- Rakesh Kumar Chandra
- Department of Zoology, School of Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Ajay Kumar Bhardwaj
- Department of Zoology, School of Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Manish Kumar Tripathi
- Department of Zoology, School of Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India.
| |
Collapse
|
7
|
Bhardwaj AK, Chandra RK, Tripathi MK. Analysis of suppressive effects of pesticide triazophos on leucocyte immune responses in a teleost, Channa Punctatus. Drug Chem Toxicol 2021; 45:1833-1839. [PMID: 33602036 DOI: 10.1080/01480545.2021.1886306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Triazophos is a commonly used organophosphate insecticide, which inhibits the acetylcholinesterase enzyme and causes paralysis and death of insects. Impact of the pesticides on immunity has scarcely been investigated, especially in fishes. The present study was designed to analyze the immunotoxic role of in vitro triazophos exposure to the leucocytes in freshwater teleost, Channa punctatus. Triazophos, at in vitro concentrations of 0.1, 0.5, and 1 µg ml-1, was used to study leucocyte phagocytosis, superoxide production, nitrite release, and lymphocyte proliferation. Dose-dependent suppression of various immune responses was observed. Nitrite release and superoxide production by leucocytes were reduced in cultures incubated with triazophos. Mitogen-induced lymphocyte proliferation was significantly reduced at 0.5 and 1 µg ml-1 but not at 0.1 µg ml-1 concentration of pesticide. The biphasic suppressive effect was also discovered while evaluating phagocytic response. These investigations describe the effects of pesticide on immune responses in C. punctatus, which are helpful in understanding the immunotoxicity in fish. Substantially more researches are required to help design the measures to combat ecotoxicity in freshwater bodies.
Collapse
Affiliation(s)
- Ajay Kumar Bhardwaj
- Department of Zoology, School of Studies in Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Rakesh Kumar Chandra
- Department of Zoology, School of Studies in Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Manish Kumar Tripathi
- Department of Zoology, School of Studies in Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| |
Collapse
|
8
|
Jin X, Chen D, Wu F, Zhang L, Huang Y, Lin Z, Wang X, Wang R, Xu L, Chen Y. Hydrogen Sulfide Protects Against Ammonia-Induced Neurotoxicity Through Activation of Nrf2/ARE Signaling in Astrocytic Model of Hepatic Encephalopathy. Front Cell Neurosci 2020; 14:573422. [PMID: 33192318 PMCID: PMC7642620 DOI: 10.3389/fncel.2020.573422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Objective: Hepatic encephalopathy (HE) characterized by neuropsychiatric abnormalities is a major complication of cirrhosis with high mortality. However, the pathogenesis of HE has not been fully elucidated. This study aimed to determine endogenous hydrogen sulfide (H2S) in the blood of HE patients and investigate the role of H2S in an astrocytic model of HE. Methods: Patients with and without HE were recruited to determine plasma H2S levels and blood microbial 16S rRNA gene. Rat astrocytes were employed as a model of HE by treatment of NH4Cl. Exogenous H2S was preadded. Cell viability was measured by Cell Counting Kit-8 (CCK-8) assay, and cell death was evaluated by lactate dehydrogenase (LDH) release. Apoptosis was determined by Hoechst 33342/Propidium Iodide (PI) Double Staining and Western blot analysis of apoptosis-related protein expression. Intracellular reactive oxygen species (ROS) levels were assessed by flow cytometer. Expressions of Nrf2 and its downstream regulated genes were examined by immunofluorescence staining and Western blot, respectively. Nrf2 gene knockdown was performed by antisense shRNA of Nrf2 gene. Results: There was a significant decrease in H2S levels in cirrhotic patients with HE compared with without HE. Blood microbiota analyses revealed that certain strains associated with H2S production were negatively correlated with HE. In vitro, H2S markedly attenuated NH4Cl-induced cytotoxicity, oxidative stress, and apoptosis. This effect was mediated by Nrf2/ARE signaling, and knockdown of Nrf2 expression abolished the antagonistic effect of H2S on NH4Cl-induced neurotoxicity in astrocytes. Conclusion: Levels of H2S and bacteria associated with H2S production are decreased in HE, and H2S functions as the neuroprotector against NH4Cl-induced HE by activating Nrf2/ARE signaling of astrocytes.
Collapse
Affiliation(s)
- Xiaozhi Jin
- Department of Infectious Diseases, Wenzhou Key Laboratory of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| | - Dazhi Chen
- Department of Gastroenterology, The First Hospital of Peking University, Beijing, China
| | - Faling Wu
- Department of Infectious Diseases, Wenzhou Key Laboratory of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| | - Lei Zhang
- Department of Infectious Diseases, Wenzhou Key Laboratory of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| | - Yu Huang
- Department of Infectious Diseases, Wenzhou Key Laboratory of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| | - Zhuo Lin
- Department of Infectious Diseases, Wenzhou Key Laboratory of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| | - Xiaodong Wang
- Department of Infectious Diseases, Wenzhou Key Laboratory of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| | - Rui Wang
- Department of Infectious Diseases, Wenzhou Key Laboratory of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| | - Lanman Xu
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Ningbo, China.,Department of Infectious Diseases and Liver Diseases, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Yongping Chen
- Department of Infectious Diseases, Wenzhou Key Laboratory of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| |
Collapse
|
9
|
Oxidative and apoptotic effects of fluoxetine and its metabolite norfluoxetine in Daphnia magna. Arh Hig Rada Toksikol 2020; 71:211-222. [PMID: 33074175 PMCID: PMC7968500 DOI: 10.2478/aiht-2020-71-3473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/01/2020] [Indexed: 01/25/2023] Open
Abstract
The aim of this study was to investigate the oxidative and apoptotic potential of fluoxetine, a widely used antidepressant in Turkey and the world, and of its metabolite norfluoxetine on a model non-target organism, Daphnia magna to see how exposure to this group of antidepressants (specific serotonin reuptake inhibitors) could affect the aquatic environment in which they end up. Juvenile D. magna specimens were chronically exposed to fluoxetine and norfluoxetine alone and in combination at concentrations found in the aquatic environment (0.091 and 0.011 μg/L, respectively) and to their 10-fold environmental concentrations for 21 days. Another group of 17-day-old animals were subacutely exposed to 100-fold environmental concentrations for four days. After exposure, we measured their glutathione peroxidase (GPx) and cholinesterase (ChE) activities, thiobarbituric acid-reactive substances (TBARS), and total protein content spectrophotometrically, while mitochondrial membrane potential (MMP) was analysed by fluorescence staining, and cytochrome c and ERK1/2 protein content by Western blotting. This is the first-time cytochrome c and ERK1/2 were determined at the protein level in D. magna. We also measured their carapace length, width, and caudal spine length microscopically. At environmental concentrations fluoxetine and norfluoxetine caused an increase in ChE activity and brood production. They also caused a decrease in juvenile carapace length, width, and caudal spine length and depolarised the mitochondrial membrane. At 10-fold environmental concentrations, GPx activity, lipid peroxidation levels, cytochrome c, and ERK1/2 protein levels rose. The most pronounced effect was observed in D. magna exposed to norfluoxetine. Norfluoxetine also decreased brood production. Similar effects were observed with subacute exposure to 100-fold environmental concentrations. However, total protein content decreased. All this confirms that fluoxetine and norfluoxetine have oxidative and apoptotic potential in D. magna. Daphnia spp. have a great potential to give us precious insight into the mechanisms of environmental toxicants, but there is still a long way to go before they are clarified in these organisms.
Collapse
|
10
|
Díaz-Resendiz KJG, Bernal-Ortega JA, Covantes-Rosales CE, Ortiz-Lazareno PC, Toledo-Ibarra GA, Ventura-Ramon GH, Girón-Pérez MI. In-vitro effect of diazoxon, a metabolite of diazinon, on proliferation, signal transduction, and death induction in mononuclear cells of Nile tilapia fish (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2020; 105:8-15. [PMID: 32629105 DOI: 10.1016/j.fsi.2020.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
The immune response of teleosts (bonefish) is altered by diazinon (DZN), an organophosphate pesticide. It has been suggested that such alteration is due to the extraneuronal cholinergic system in fish leukocytes that renders these cells a target of pesticides. Diazoxon (DZO), the oxon metabolite of DZN, has been attributed immunotoxic effects. Still, to date there are no reports on the effects of DZO upon parameters involved in the signaling cascade of immune response cells. Therefore, this work evaluated the effect of DZO on key parameters of cell signaling (intracellular Ca2+ flux, ERK 1/2 phosphorylation), cell proliferation, and antiproliferative processes (apoptosis, senescence, mitochondrial membrane potential) in spleen mononuclear cells of Nile tilapia fish. The results obtained show that DZO does not affect cell proliferation but causes a lack of response to stimulation with PMA and ionomycin to release intracellular calcium. In addition, it inhibits ERK 1/2 phosphorylation and causes loss of mitochondrial membrane potential, apoptosis, and senescence. These results suggest that the lack of cell response to release intracytoplasmic Ca2+ inhibits ERK which disrupts the mitochondrial membrane potential, leading to cell apoptosis and senescence. These findings prove that DZO significantly affects key parameters involved in the survival of immune response cells.
Collapse
Affiliation(s)
- K J G Díaz-Resendiz
- Laboratorio de Inmunotoxicología, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Cd de la Cultura s/n, Z.P. 63000, Tepic Nayarit, Mexico; Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Centro Nayarita de Innovación y Transferencia de Tecnología A.C., Calle Tres s/n. Col. Cd Industrial, Z.P. 63173, Tepic, Mexico
| | - J A Bernal-Ortega
- Unidad Académica de Ciencias Químicobiológicas y Farmacéuticas, Cd de la Cultura s/n, Z.P. 63000, Tepic Nayarit, Mexico
| | - C E Covantes-Rosales
- Laboratorio de Inmunotoxicología, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Cd de la Cultura s/n, Z.P. 63000, Tepic Nayarit, Mexico
| | - P C Ortiz-Lazareno
- Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara Jalisco, Mexico
| | - G A Toledo-Ibarra
- Laboratorio de Inmunotoxicología, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Cd de la Cultura s/n, Z.P. 63000, Tepic Nayarit, Mexico; Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Centro Nayarita de Innovación y Transferencia de Tecnología A.C., Calle Tres s/n. Col. Cd Industrial, Z.P. 63173, Tepic, Mexico
| | - G H Ventura-Ramon
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Centro Nayarita de Innovación y Transferencia de Tecnología A.C., Calle Tres s/n. Col. Cd Industrial, Z.P. 63173, Tepic, Mexico; Unidad Académica de Ciencias Químicobiológicas y Farmacéuticas, Cd de la Cultura s/n, Z.P. 63000, Tepic Nayarit, Mexico
| | - M I Girón-Pérez
- Laboratorio de Inmunotoxicología, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Cd de la Cultura s/n, Z.P. 63000, Tepic Nayarit, Mexico; Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Centro Nayarita de Innovación y Transferencia de Tecnología A.C., Calle Tres s/n. Col. Cd Industrial, Z.P. 63173, Tepic, Mexico.
| |
Collapse
|
11
|
Wang J, Jin Y, Wu S, Yu H, Zhao Y, Fang H, Shen J, Zhou C, Fu Y, Li R, Wang R, Wang J, Zheng K, Fan Q, Chen B, Zhang J. Deoxynivalenol induces oxidative stress, inflammatory response and apoptosis in bovine mammary epithelial cells. J Anim Physiol Anim Nutr (Berl) 2019; 103:1663-1674. [PMID: 31423645 DOI: 10.1111/jpn.13180] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 12/18/2022]
Abstract
Deoxynivalenol (DON) is a toxic secondary metabolite produced by Fusarium graminearum. It is one of the most common feed contaminants that poses a serious threat to the health and performance of dairy cows. This study investigated the in vitro cytotoxicity of DON on bovine mammary epithelial cells (MAC-T). DON at different concentrations (0.25, 0.3, 0.5, 0.8, 1 or 2 μg/ml) inhibited the growth of MAC-T cells after 24 hr of exposure (p < .001). DON at 0.25 μg/ml increased lactate dehydrogenase (LDH) leakage (p < .05); decreased glutathione (GSH) levels (p < .001), total superoxide dismutase (T-SOD) activity and total antioxidant capacity (T-AOC; p < .01); and increased malondialdehyde (MDA) concentration (p < .01) in MAC-T cells after 24 hr of exposure. We also observed that DON increased reactive oxygen species (ROS) levels in cells incubated for 9, 15 and 24 hr (p < .001). DON at 0.25 μg/ml triggered oxidative damage in MAC-T cells. Furthermore, it induced an inflammatory response in the cells incubated for 9, 15 and 24 hr (p < .05) by increasing the mRNA expression levels of nuclear factor kappa B, myeloid differentiation factor 88 (MyD88), tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, cyclooxygenase-2 and IL-8. We further examined the effect of DON on apoptosis. DON prevented normal proliferation of MAC-T cells by blocked cell cycle progression in 24 hr (p < .001). In addition, the apoptosis rate measured using annexin V-FITC significantly increased (p < .05) with increase in the mRNA expression level of Bax (p < .01) and increase in the Bax/Bcl-2 ratio (p < .01) in cells incubated for 24 hr. In summary, DON exerts toxic effects in MAC-T cells by causing oxidative stress, inducing an inflammatory response, affecting cell cycle and leading to apoptosis.
Collapse
Affiliation(s)
- Junmei Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Yongcheng Jin
- College of Animal Science, Jilin University, Changchun, China
| | - Shunlu Wu
- College of Animal Science, Jilin University, Changchun, China
| | - Hao Yu
- College of Animal Science, Jilin University, Changchun, China
| | - Yun Zhao
- College of Animal Science, Jilin University, Changchun, China
| | - Hengtong Fang
- College of Animal Science, Jilin University, Changchun, China
| | - Jinglin Shen
- College of Animal Science, Jilin University, Changchun, China
| | - Changhai Zhou
- College of Animal Science, Jilin University, Changchun, China
| | - Yurong Fu
- College of Animal Science, Jilin University, Changchun, China
| | - Ruihua Li
- College of Animal Science, Jilin University, Changchun, China
| | - Rui Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Junxiong Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Kexin Zheng
- College of Animal Science, Jilin University, Changchun, China
| | - Qingsong Fan
- College of Animal Science, Jilin University, Changchun, China
| | - Bojiong Chen
- College of Animal Science, Jilin University, Changchun, China
| | - Jing Zhang
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
12
|
Astragaloside IV Alleviates Ammonia-Induced Apoptosis and Oxidative Stress in Bovine Mammary Epithelial Cells. Int J Mol Sci 2019; 20:ijms20030600. [PMID: 30704086 PMCID: PMC6386910 DOI: 10.3390/ijms20030600] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/19/2019] [Accepted: 01/28/2019] [Indexed: 12/14/2022] Open
Abstract
Ammonia is one of the major toxic components of metabolites in blood and tissues of high-producing dairy cows and could affect the health of bovine mammary glands. Bovine mammary epithelial cells are sensitive to oxidative stress induced by intensive cell metabolism. In our previous study, we found that ammonia could induce oxidative stress, apoptosis and inflammatory responses in bovine mammary epithelial cells. In the present study, the cytoprotective effects of astragaloside IV against ammonia in vitro were explored. The results demonstrated that pretreatment of MAC-T cells with astragaloside IV could potently suppress the increase in the level of intracellular reactive oxygen species (ROS) and the rate of cell apoptosis, inhibit the ammonia-induced inflammatory responses, and rescue the decrease of cell viability. Astragaloside IV prevented ammonia-induced endoplasmic reticulum stress. Astragaloside IV also significantly suppressed the levels of BAX, caspase 3 and p53 phosphorylation in ammonia-induced MAC-T cells. Nuclear factor erythroid 2-related factor 2(Nrf2) was essential for cytoprotective effects of astragaloside IV in MAC-T cells, as knockdown of Nrf2 dramatically abolished the prosurvival effects of astragaloside IV on treated cells. Furthermore, the PI3K/AKT and ERK/MAPK pathways were responsible for the induction of Nrf2 by astragaloside IV. In conclusion, astragaloside IV played a beneficial role against ammonia-induced damage of MAC-T cells. This provides a cue for future study to use astragaloside IV as a protective and curative agent against ammonia exposure of mammary glands in dairy cows.
Collapse
|
13
|
Wang F, Chen S, Jiang Y, Zhao Y, Sun L, Zheng B, Chen L, Liu Z, Zheng X, Yi K, Li C, Zhou X. Effects of ammonia on apoptosis and oxidative stress in bovine mammary epithelial cells. Mutagenesis 2019; 33:291-299. [PMID: 30184101 DOI: 10.1093/mutage/gey023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022] Open
Abstract
Ammonia, produced mainly from the deamination of amino acids and glutamine, is one of the major toxic components in blood and tissues that may affect bovine health. However, the physiological and pathological roles of ammonia in the mammary glands are not understood clearly. In the present study, the bovine mammary epithelial cell line (MAC-T) was utilised as an in vitro model to determine the effects of ammonia on bovine mammary gland. We demonstrated that ammonia stimulated the production of intracellular reactive oxygen species, decreased mitochondrial membrane potential, interrupted intracellular calcium ion (Ca2+) homeostasis and induced cell apoptosis. Ammonia also significantly reduced cell viability and increased the proportion of apoptotic cells through enhancing the level of p53 phosphorylation and increasing the expressions of BAX, caspase 8, caspase 9, caspase 3. Interestingly, bumetanide, a specific Na+ K+ 2Cl--cotransporter inhibitor, dramatically abolished the damaging effects of ammonia on the cells. These data suggest that ammonia exposure induces apoptosis in bovine mammary epithelial cells via activation of the p53 pathway and the mitochondrial apoptotic pathway, and that these effects involved the Na+ K+ 2Cl--cotransporter.
Collapse
Affiliation(s)
- Fengge Wang
- College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Shuxiong Chen
- College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Yanwen Jiang
- College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Yun Zhao
- College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Liting Sun
- College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Biaobiao Zheng
- College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Zhuo Liu
- College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Xue Zheng
- College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan, P.R. China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
14
|
AnvariFar H, Amirkolaie AK, Jalali AM, Miandare HK, Sayed AH, Üçüncü Sİ, Ouraji H, Ceci M, Romano N. Environmental pollution and toxic substances: Cellular apoptosis as a key parameter in a sensible model like fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 204:144-159. [PMID: 30273782 DOI: 10.1016/j.aquatox.2018.09.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/06/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
Abstract
The industrial wastes, sewage effluents, agricultural run-off and decomposition of biological waste may cause high environmental concentration of chemicals that can interfere with the cell cycle activating the programmed process of cells death (apoptosis). In order to provide a detailed understanding of environmental pollutants-induced apoptosis, here we reviewed the current knowledge on the interactions of environmental chemicals and programmed cell death. Metals (aluminum, arsenic, cadmium, chromium, cobalt, zinc, copper, mercury and silver) as well as other chemicals including bleached kraft pulp mill effluent (BKME), persistent organic pollutants (POPs), and pesticides (organo-phosphated, organo-chlorinated, carbamates, phyretroids and biopesticides) were evaluated in relation to apoptotic pathways, heat shock proteins and metallothioneins. Although research performed over the past decades has improved our understanding of processes involved in apoptosis in fish, yet there is lack of knowledge on associations between environmental pollutants and apoptosis. Thus, this review could be useful tool to study the cytotoxic/apoptotic effects of different pollutants in fish species.
Collapse
Affiliation(s)
- Hossein AnvariFar
- Department of Fisheries, Faculty of Animal Science and Fisheries, University of Agriculture and Natural Resources, P.O. Box 578, Sari, Iran; University of Applied Science and Technology, Provincial Unit, P.O. Box: 4916694338, Golestan, Iran
| | - A K Amirkolaie
- Department of Fisheries, Faculty of Animal Science and Fisheries, University of Agriculture and Natural Resources, P.O. Box 578, Sari, Iran
| | - Ali M Jalali
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49138-15739, Iran; Sturgeon Affairs Management, Gorgan, Golestan, Iran; Center for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, VIC, 3280, Australia
| | - H K Miandare
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49138-15739, Iran
| | - Alaa H Sayed
- Department of Zoology, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Sema İşisağ Üçüncü
- Department of Biology, Faculty of Science, Ege University, Bornova, 35100, İzmir, Turkey
| | - Hossein Ouraji
- Department of Fisheries, Faculty of Animal Science and Fisheries, University of Agriculture and Natural Resources, P.O. Box 578, Sari, Iran
| | - Marcello Ceci
- Department Ecological and Biological Sciences, University of Tuscia, Tuscia University, Viterbo, 01100, Italy
| | - Nicla Romano
- Department Ecological and Biological Sciences, University of Tuscia, Tuscia University, Viterbo, 01100, Italy.
| |
Collapse
|
15
|
Bhardwaj JK, Saraf P, Kumari P, Mittal M, Kumar V. N-Acetyl-cysteine mediated inhibition of spermatogonial cells apoptosis against malathion exposure in testicular tissue. J Biochem Mol Toxicol 2018; 32:e22046. [DOI: 10.1002/jbt.22046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology; Kurukshetra University; Kurukshetra Haryana 136119 India
| | - Priyanka Saraf
- Reproductive Physiology Laboratory, Department of Zoology; Kurukshetra University; Kurukshetra Haryana 136119 India
| | - Priya Kumari
- Reproductive Physiology Laboratory, Department of Zoology; Kurukshetra University; Kurukshetra Haryana 136119 India
| | - Meenu Mittal
- Reproductive Physiology Laboratory, Department of Zoology; Kurukshetra University; Kurukshetra Haryana 136119 India
| | - Vijay Kumar
- Reproductive Physiology Laboratory, Department of Zoology; Kurukshetra University; Kurukshetra Haryana 136119 India
| |
Collapse
|
16
|
Zeng Z, Yan Y, Wang B, Liu N, Xu H. Discovery and identification of O, O-diethyl O-(4-(5-phenyl-4, 5-dihydroisoxazol-3-yl) phenyl) phosphorothioate (XP-1408) as a novel mode of action of organophosphorus insecticides. Sci Rep 2017; 7:3617. [PMID: 28620187 PMCID: PMC5472594 DOI: 10.1038/s41598-017-03663-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/03/2017] [Indexed: 12/28/2022] Open
Abstract
Organophosphorus (OP) insecticides play an important role in pest control. Many OP insecticides have been removed from the market because of their high toxicity to humans. We designed and synthesized a new OP insecticide with the goal of providing a low cost, and less toxic insecticide. The mode of action of O, O-diethyl O-(4-(5-phenyl-4, 5-dihydroisoxazol-3-yl) phenyl) phosphorothioate (XP-1408) was studied in Drosophila melanogaster. Bioassays showed that XP-1408 at a concentration of 50 mg/L delayed larval development. Molecular docking into Drosophila acetylcholinesterase (AChE) and voltage-gated sodium channels suggested that XP-1408 fitted into their active sites and could be inhibitory. Whole-cell patch clamp recordings indicated that XP-1408 exhibited synergistic effects involving the inhibition of cholinergic synaptic transmission and blockage of voltage-gated potassium (Kv) channels and sodium (Nav) channels. In conclusion, the multiple actions of XP-1408 rendered it as a lead compound for formulating OP insecticides with a novel mode of action.
Collapse
Affiliation(s)
- Zhigang Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, P.R. China
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, P.R. China
| | - Ying Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Bingfeng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Niu Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, P.R. China.
| |
Collapse
|
17
|
Salazar Z, Ducolomb Y, Betancourt M, Bonilla E, Cortés L, Hernández-Hernández F, González-Márquez H. Gene Expression Analysis on the Early Development of Pig Embryos Exposed to Malathion. Int J Toxicol 2016; 26:143-9. [PMID: 17454254 DOI: 10.1080/10915810701226263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Malathion is a widely used pesticide and there is evidence that it could alter mammal’s germ and somatic cells, as well as cell lines. There are not enough studies showing how the nonacute malathion doses affect gene expression. This study analyzes gene expression alterations in pig morular embryos exposed in vitro , for 96 h, to several malathion concentrations after in vitro fertilization. cDNA libraries of isolated morular embryos were created and differential screenings performed to identify target genes. Seven clones were certainly identified. Genes related to mitochondrial metabolism as cytochrome c subunits I and III, nuclear genes such as major histocompatibility complex I (MHC I), and a hypothetical protein related with a splicing factor were the target of malathion’s deregulation effect. The widespread use of malathion as a pesticide should be regarded with reproductive implications and more detailed analysis would yield more about molecular mechanisms of malathion injury on embryo cells.
Collapse
Affiliation(s)
- Zayil Salazar
- Doctorado en Biología Experimental, CBS, Universidad Autónoma Metropolitana, Iztapalapa, México, D. F. México
| | | | | | | | | | | | | |
Collapse
|
18
|
Jimenez-Torres C, Ortiz I, San-Martin P, Hernandez-Herrera RI. Biodegradation of malathion, α- and β-endosulfan by bacterial strains isolated from agricultural soil in Veracruz, Mexico. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2016; 51:853-859. [PMID: 27715499 DOI: 10.1080/03601234.2016.1211906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The objective of this study was to evaluate the capacity of two bacterial strains isolated, cultivated, and purified from agricultural soils of Veracruz, Mexico, for biodegradation and mineralisation of malathion (diethyl 2-(dimethoxyphosphorothioyl) succinate) and α- and β-endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6-9-methano-2,4,3-benzodioxathiepine-3-oxide). The isolated bacterial strains were identified using biochemical and morphological characterization and the analysis of their 16S rDNA gene, as Enterobacter cloacae strain PMM16 (E1) and E. amnigenus strain XGL214 (M1). The E1 strain was able to degrade endosulfan, whereas the M1 strain was capable of degrading both pesticides. The E1 strain degraded 71.32% of α-endosulfan and 100% of β-endosulfan within 24 days. The absence of metabolites, such as endosulfan sulfate, endosulfan lactone, or endosulfan diol, would suggest degradation of endosulfan isomers through non-oxidative pathways. Malathion was completely eliminated by the M1 strain. The major metabolite was butanedioic acid. There was a time-dependent increase in bacterial biomass, typical of bacterial growth, correlated with the decrease in pesticide concentration. The CO2 production also increased significantly with the addition of pesticides to the bacterial growth media, demonstrating that, under aerobic conditions, the bacteria utilized endosulfan and malathion as a carbon source. Here, two bacterial strains are shown to metabolize two toxic pesticides into non-toxic intermediates.
Collapse
Affiliation(s)
- Catya Jimenez-Torres
- a Environmental Biotechnology Laboratory, Faculty of Biological and Agricultural Sciences, Universidad Veracruzana , Xalapa , Mexico
| | - Irmene Ortiz
- b Department of Processes and Technology , Universidad Autónoma Metropolitana-Cuajimalpa , Mexico City , Mexico
| | - Pablo San-Martin
- a Environmental Biotechnology Laboratory, Faculty of Biological and Agricultural Sciences, Universidad Veracruzana , Xalapa , Mexico
| | - R Idalia Hernandez-Herrera
- a Environmental Biotechnology Laboratory, Faculty of Biological and Agricultural Sciences, Universidad Veracruzana , Xalapa , Mexico
| |
Collapse
|
19
|
Lu J, Li Y, Shen Z, Lu C, Lu L. TNF-α is involved in apoptosis triggered by grass carp reovirus infection in vitro. FISH & SHELLFISH IMMUNOLOGY 2016; 55:559-567. [PMID: 27346157 DOI: 10.1016/j.fsi.2016.06.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/13/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
Grass carp reovirus (GCRV) infection causes apoptosis in Ctenopharyngodon idella kidney cells (CIK). However, the cause of GCRV-induced apoptosis and its signaling pathways remain unknown. This study investigated the role of TNF-α-induced capase-8 pathways in mediating GCRV-induced apoptosis in the grass carp (Ctenopharyngodon idella). Recombinant TNF-α was expressed and purified from Escherichia. coli. The western blot assay indicated that TNF-α expression level in kidney and spleen was higher than that in liver. In apoptosis assay, recombinant TNF-α triggered significant apoptosis in CIK cells, which was characterized by increased mRNA levels of TNF-α, TRADD or caspase-8, and enhanced caspase-8 activity in CIK cells. To confirm the biological activity of TNF-α during GCRV infection, significant apoptosis in CIK cells was induced by GCRV correlating with enhanced caspase-8 activity, increased mRNA level of TNF-α, TRADD or caspase-8, increased protein level of TNF-α in CIK cells and cell supernatant, suggesting that TNF-α-induced capase-8 pathways might be involved in GCRV-triggered apoptosis. Furthermore, treatment with an anti-TNF-α polyclonal antibody significantly decreased the degree of apoptosis in infected CIK cells compared with cells treated with a control antibody, which confirmed that TNF-α was a key mediator involved in GCRV-induced apoptosis. Taken together, these results indicated that GCRV might trigger apoptosis via TNF-α induced capase-8 pathways in CIK cells.
Collapse
Affiliation(s)
- Jianfei Lu
- Aquatic Pathogen Collection Center, MOA Key Laboratory of Freshwater Fishery Germplasm Resources, Shanghai Ocean University, Shanghai 201306, China
| | - Yan Li
- Aquatic Pathogen Collection Center, MOA Key Laboratory of Freshwater Fishery Germplasm Resources, Shanghai Ocean University, Shanghai 201306, China
| | - Zhaoyuan Shen
- Aquatic Pathogen Collection Center, MOA Key Laboratory of Freshwater Fishery Germplasm Resources, Shanghai Ocean University, Shanghai 201306, China
| | - Cuiyu Lu
- Aquatic Pathogen Collection Center, MOA Key Laboratory of Freshwater Fishery Germplasm Resources, Shanghai Ocean University, Shanghai 201306, China
| | - Liqun Lu
- Aquatic Pathogen Collection Center, MOA Key Laboratory of Freshwater Fishery Germplasm Resources, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
20
|
Liu B, Cui Y, Brown PB, Ge X, Xie J, Xu P. Cytotoxic effects and apoptosis induction of enrofloxacin in hepatic cell line of grass carp (Ctenopharyngodon idellus). FISH & SHELLFISH IMMUNOLOGY 2015; 47:639-644. [PMID: 26475364 DOI: 10.1016/j.fsi.2015.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 10/04/2015] [Accepted: 10/09/2015] [Indexed: 06/05/2023]
Abstract
We determined the effect of enrofloxacin on the lactate dehydrogenase (LDH) release, reactive oxygen species (ROS), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), malondialdehyde (MDA), mitochondria membrane potential (ΔΨm) and apoptosis in the hepatic cell line of grass carp (Ctenopharyngodon idellus). Cultured cells were treated with different concentrations of enrofloxacin (12.5-200 ug/mL) for 24 h. We found that the cytotoxic effect of enrofloxacin was mediated by apoptosis, and that this apoptosis occurred in a dose-dependent manner. The doses of 50,100 and 200 μg/mL enrofloxacin increased the LDH release and MDA concentration, induced cell apoptosis and reduced the ΔΨm compared to the control. The highest dose of 200 ug/mL enrofloxacin also significantly induced apoptosis accompanied by ΔΨm disruption and ROS generation and significantly reduced T-AOC and increased MDA concentration compared to the control. Our results suggest that the dose of 200 ug/mL enrofloxacin exerts its cytotoxic effect and produced ROS via apoptosis by affecting the mitochondria of the hepatic cells of grass carp.
Collapse
Affiliation(s)
- Bo Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; Wuxi Fisheries College, Nanjing Agriculture University, Wuxi, 214081, China.
| | - Yanting Cui
- Wuxi Fisheries College, Nanjing Agriculture University, Wuxi, 214081, China
| | - Paul B Brown
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, 47907, Indiana, USA
| | - Xianping Ge
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; Wuxi Fisheries College, Nanjing Agriculture University, Wuxi, 214081, China
| | - Jun Xie
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; Wuxi Fisheries College, Nanjing Agriculture University, Wuxi, 214081, China.
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; Wuxi Fisheries College, Nanjing Agriculture University, Wuxi, 214081, China.
| |
Collapse
|
21
|
Modulation of immune response by organophosphorus pesticides: fishes as a potential model in immunotoxicology. J Immunol Res 2015; 2015:213836. [PMID: 25973431 PMCID: PMC4417994 DOI: 10.1155/2015/213836] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 02/06/2023] Open
Abstract
Immune response is modulated by different substances that are present in the environment. Nevertheless, some of these may cause an immunotoxic effect. In this paper, the effect of organophosphorus pesticides (frequent substances spilled in aquatic ecosystems) on the immune system of fishes and in immunotoxicology is reviewed. Furthermore, some cellular and molecular mechanisms that might be involved in immunoregulation mechanisms of organophosphorus pesticides are discussed.
Collapse
|
22
|
Chandak N, Bhardwaj JK, Sharma RK, Sharma PK. Inhibitors of apoptosis in testicular germ cells: synthesis and biological evaluation of some novel IBTs bearing sulfonamide moiety. Eur J Med Chem 2012; 59:203-8. [PMID: 23220649 DOI: 10.1016/j.ejmech.2012.11.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 11/09/2012] [Accepted: 11/12/2012] [Indexed: 12/18/2022]
Abstract
Pifithrin-α, a known p53 inactivator, inhibits p53-dependant mitochondrial cell death induced by toxins or γ-radiation. It has been found that aromatic IBT analogues of PFT-α are more cytoprotective and nonpeptide-based, isatin sulfonamides selectively inhibit caspases 3 and 7, responsible for mitochondrial mediated apoptosis. Therefore, we envisioned the synthesis of novel IBTs 4 and 5 bearing sulfonamide moiety and observed the mitigating effects of these IBTs in rescue of malathion induced apoptosis in testicular germ cells of goat. Two IBTs (4b; R = CH(3), 5b; R(1) = Cl) showed very high survival rate of cells whereas IBT 4f (R = NO(2)) showed some exceptional behaviour by increasing the apoptosis. These IBTs nullify the cytotoxic effect of malathion on mitochondria, following p53-independent pathway.
Collapse
Affiliation(s)
- Navneet Chandak
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | | | | | | |
Collapse
|
23
|
Danion M, Le Floch S, Kanan R, Lamour F, Quentel C. Effects of in vivo chronic exposure to pendimethalin/Prowl 400® on sanitary status and the immune system in rainbow trout (Oncorhynchus mykiss). THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 424:143-152. [PMID: 22444063 DOI: 10.1016/j.scitotenv.2012.02.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 05/31/2023]
Abstract
The in vivo effects of the herbicide active substance (AS) pendimethalin (alone and with Prowl 400® adjuvant) were evaluated on sanitary status i.e. the health status with regard to chemical pollution and on the physiological state via the immune system in rainbow trout, Oncorhynchus mykiss. Four nominal exposure conditions were tested: i) control (C), ii) AS at 500 ng L(-1) (P500), iii) AS at 800 ng L(-1) (P800) and iv) Prowl 400® at 500 ng L(-1) (Pw). After a 28 day exposure period (D28), 10 fish were sampled for each condition and 10 other after a 15 day recovery period in clean fresh water (D43). Pendimethalin concentrations in the exposure water and muscles were followed. White blood cell counts, differential leucocyte counts, cell mortality and phagocytosis activity were measured. Haemolytic alternative complement activity, lysozyme concentration and stress parameters were analyzed. The resulting concentration of pendimethalin in the exposure water was lower than the expected concentration. At D28, the concentration quantified in the contaminated fish was negligible in comparison with the Reference Dose for Oral Exposure estimated by US-EPA's Integrated Risk Information System. Leucopenia was noted in all contaminated fish. A decrease in phagocytosis activity and ACH(50) was also observed in contaminated fish by P800 and Pw. Disturbed lysozyme activity was noted only in fish exposed to Pw. Furthermore, during exposure to a similar concentration of pendimethalin, the commercial product seemed to be more immunotoxic than the AS alone. Finally, at D43, the effects proved reversible for sanitary status while immunity was still disturbed in contaminated fish by P800 and Pw.
Collapse
Affiliation(s)
- Morgane Danion
- Anses, Ploufragan-Plouzané Laboratory, Technopôle Brest-Iroise, 29280 Plouzané, France.
| | | | | | | | | |
Collapse
|
24
|
Moore PD, Yedjou CG, Tchounwou PB. Malathion-induced oxidative stress, cytotoxicity, and genotoxicity in human liver carcinoma (HepG2) cells. ENVIRONMENTAL TOXICOLOGY 2010; 25:221-6. [PMID: 19399848 PMCID: PMC2862833 DOI: 10.1002/tox.20492] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Accepted: 03/08/2009] [Indexed: 05/25/2023]
Abstract
Malathion is an organophosphate pesticide that is known for its high toxicity to insects and low to moderate potency to humans and other mammals. Its toxicity has been associated with the inhibition of acetylcholinesterase activity, leading to the interference with the transmission of nerve impulse, accumulation of acetylcholine at synaptic junctions, and subsequent induction of adverse health effects including headache, dizziness, nausea, vomiting, bradycardia, and miosis. Oxidative stress (OS) has been reported as a possible mechanism of malathion toxicity in humans. Hence, the aim of this study was to examine the role of OS in malathion-induced cytotoxicity and genotoxicity. To achieve this goal, MTT, lipid peroxidation, and single cell gel electrophoresis (Comet) assays were performed, respectively, to evaluate the levels of cell viability, malondialdehyde (MDA) production, and DNA damage in human liver carcinoma (HepG(2)) cells. Study results indicated that malathion is mitogenic at lower levels of exposure, and cytotoxic at higher levels of exposure. Upon 48 h of exposure, the average percentages of cell viability were 100% +/- 11%, 117% +/- 15%, 86% +/- 15%, 35% +/- 9%, and 27% +/- 7% for 0, 6, 12, 18, and 24 mM, respectively. In the lipid peroxidation assay, the concentrations of MDA produced were 12.55 +/- 0.16, 20.65 +/- 0.27, 31.1 +/- 0.40, 34.75 +/- 0.45, and 15.1 +/- 0.20 muM in 0, 6, 12, 18, and 24 mM malathion, respectively. The Comet assay showed a significant increase in DNA damage at the 24 mM malathion exposure. Taken together, our results indicate that malathion exposure at higher concentrations induces cytotoxic and genotoxic effects in HepG(2) cells, and its toxicity may be mediated through OS as evidenced by a significant production of MDA, an end product of lipid peroxidation.
Collapse
Affiliation(s)
- Pamela D. Moore
- Molecular Toxicology Research Laboratory, NIH RCMI - Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18540, Jackson, MS 39217, USA
| | - Clement G. Yedjou
- Molecular Toxicology Research Laboratory, NIH RCMI - Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18540, Jackson, MS 39217, USA
| | - Paul B. Tchounwou
- Molecular Toxicology Research Laboratory, NIH RCMI - Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18540, Jackson, MS 39217, USA
| |
Collapse
|
25
|
Li L, Cao Z, Jia P, Wang Z. Calcium signals and caspase-12 participated in paraoxon-induced apoptosis in EL4 cells. Toxicol In Vitro 2010; 24:728-36. [DOI: 10.1016/j.tiv.2010.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 12/08/2009] [Accepted: 01/11/2010] [Indexed: 10/20/2022]
|
26
|
Ali M, Rahman S, Rehman H, Bhatia K, Ansari RA, Raisuddin S. Pro-apoptotic effect of fly ash leachates in hepatocytes of freshwater fish (Channa punctata Bloch). Toxicol In Vitro 2007; 21:63-71. [PMID: 17052884 DOI: 10.1016/j.tiv.2006.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 07/25/2006] [Accepted: 08/23/2006] [Indexed: 11/26/2022]
Abstract
The pro-apoptotic effect of fly ash leachates (FAL) was studied in the hepatocytes of an Indian freshwater fish, Channa punctata Bloch. Hepatocytes were exposed to different concentrations of '7-day' FAL for 24 and 48h and various parameters of apoptosis were studied using standardized procedures. FAL-induced apoptosis in hepatocytes was indicated by cytological examination, DNA fragmentation and DNA laddering. The induction in cytochrome-c release, caspases 3, 7, 10 and 9 activities and lactate dehydrogenase level provide mechanistic platform for FAL-induced apoptosis. Cytological examination showed an unambiguous apoptotic effect of ash leachates in fish hepatocytes. Exposed hepatocytes also showed increased production of H(2)O(2), superoxide ions and an increase in lipid peroxidation (LPO). The present study suggests a possible role of reactive oxygen species (ROS) in FAL-induced apoptosis in hepatocytes. Lactate dehydrogenase, LPO and apoptosis as biomarkers of cytotoxicity have recently been used for assessment of ecotoxicological impact of environmental chemicals. Our findings show that these biomarkers may also be used for evaluation of ecotoxicological impact of complex chemical mixture such as fly ash and its leachates.
Collapse
Affiliation(s)
- Mehboob Ali
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | | | | | | | | | | |
Collapse
|