1
|
Xie H, Qian T, Liu L, Sun R, Che W, Zhao M, Hou X, Pan H, Su Y, Li J, Dong X, Liu P. Effect of progestin on thyroid function in female Wistar rats. Front Endocrinol (Lausanne) 2024; 15:1362774. [PMID: 38904035 PMCID: PMC11188309 DOI: 10.3389/fendo.2024.1362774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction To characterize the influence of female-specific hormones on women's thyroid function, the study investigated the influence of extra progestin from oral contraceptives on inducing thyroid dysfunction. Methods Sixty female Wistar rats were divided into six groups based on levonorgestrel or desogestrel administration as the main active agents: control, low (0.0039 mg*20-fold), medium (0.0039 mg*100-fold), high (0.0318 mg*100-fold) levonorgestrel (pure product); and low (0.0083 mg*20-fold) and high (0.0083 mg*100-fold) desogestrel (pure product). Progestin was administered by gavage every 4 days for 1 month. Statistical analysis was performed using one-way analysis of variance and the Kruskal-Wallis test. Results Following levonorgestrel gavage, serum free T4 and thyroidstimulating hormone levels were significantly lower in the experimental group than that in the control group (p=0.013 and 0.043). After desogestrel gavage, the serum free T4 and free T3 levels were lower in the experimental group than that in the control group (p=0.019 and 0.030). Thyroid hormone antibody concentrations were lower in rats administered levonorgestrel and desogestrel than that in control rats. Moreover, exposure to progestin upregulated the expression of the thyroid-stimulating hormone receptor and sodium iodide symporter in thyroid. Discussion Progestin stimulation enhanced the proliferation of follicular epithelial cells in rat thyroid tissues. Progestin exposure could cause thyroid dysfunction by upregulating the transcription of thyroid-stimulating hormone receptor and sodium iodide symporter in thyroid, thus inducing pathomorphological changes in rats' thyroid.
Collapse
Affiliation(s)
- Honglei Xie
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Tingting Qian
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
- Endemic Disease Control Section, Yun nan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Lanchun Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Rong Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Wenjing Che
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Meng Zhao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Xin Hou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Haowen Pan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Yue Su
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Jia Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Xiaoqiu Dong
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
- Ultrasound Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health, Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China
| |
Collapse
|
2
|
Li M, Zhang N, Huang Y, Pan CG, Dong Z, Lin Z, Li C, Jiang YX, Liang YQ. The effects of 17α-methyltestosterone on gonadal histology and gene expression along hypothalamic-pituitary-gonadal axis, germ cells, sex determination, and hypothalamus-pituitary-thyroid axis in zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY 2024; 39:1494-1504. [PMID: 37994244 DOI: 10.1002/tox.24044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 07/22/2023] [Accepted: 11/05/2023] [Indexed: 11/24/2023]
Abstract
As a synthetic androgen, 17α-methyltestosterone (MT) is widely used in aquaculture to induce sex reversal and may pose a potential risk to aquatic organisms. This ecological risk has attracted the attention of many scholars, but it is not comprehensive enough. Thus, the adverse effects of MT on zebrafish (Danio rerio) were comprehensively evaluated from gonadal histology, as well as the mRNA expression levels of 47 genes related to hypothalamic-pituitary-gonadal (HPG) axis, germ cell differentiation, sex determination, and hypothalamus-pituitary-thyroid (HPT) axis. Adult zebrafish with a female/male ratio of 5:7 were exposed to a solvent control (0.001% dimethyl sulfoxide) and three measured concentrations of MT (5, 51 and 583 ng/L) for 50 days. The results showed that MT had no significant histological effects on the ovaries of females, but the frequency of late-mature oocytes (LMO) showed a downward trend, indicating that MT could induce ovarian suppression to a certain extent. The transcriptional expression of activating transcription factor 4b1 (atf4b1), activating transcription factor 4b2 (atf4b2), calcium/calmodulin-dependent protein kinase II delta 1 (camk2d1), calcium/calmodulin-dependent protein kinase II delta 2 (camk2d2) and calcium/calmodulin-dependent protein kinase II inhibitor 2 (camk2n2) genes in the brain of females increased significantly at all treatment groups of MT, and the mRNA expression of forkhead box L2a (foxl2) and ovarian cytochrome P450 aromatase (cyp19a1a) genes in the ovaries were down-regulated by 5 and 583 ng/L group, which would translate into inhibition of oocyte development. As compared to females, MT had relatively little effects on the reproductive system of males, and only the transcriptional alterations of synaptonemal complex protein 3 (sycp3) and 17-alpha-hydroxylase/17,20-lyase (cyp17) genes were observed in the testes, not enough to affect testicular histology. In addition, MT at all treatments strongly increased corticotropin-releasing hormone (crh) transcript in the brain of females, as well as deiodinase 2 (dio2) transcript in the brain of males. The paired box protein 8 (pax8) gene was significantly decreased at 51 or 583 ng/L of MT in both female and male brains. The above results suggest that MT can pose potential adverse effects on the reproductive and thyroid endocrine system of fish.
Collapse
Affiliation(s)
- Minchun Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, People's Republic of China
| | - Ning Zhang
- College of Fishery, Guangdong Ocean University, Zhanjiang, People's Republic of China
| | - Yiting Huang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, People's Republic of China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, People's Republic of China
| | - Zhongdian Dong
- College of Fishery, Guangdong Ocean University, Zhanjiang, People's Republic of China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, People's Republic of China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, People's Republic of China
| | - Chengyong Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, People's Republic of China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, People's Republic of China
| | - Yu-Xia Jiang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, People's Republic of China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, People's Republic of China
| |
Collapse
|
3
|
Geng Y, Zou H, Guo Y, Huang M, Wu Y, Hou L. Chronic exposure to cortisone induces thyroid endocrine disruption and retinal dysfunction in adult female zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167022. [PMID: 37709101 DOI: 10.1016/j.scitotenv.2023.167022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
Cortisone has a large content in rivers because of its wide range of medical applications and elimination by organisms that naturally secrete it. As a steroid hormone, cortisone is recognized as a novel endocrine disruptor. Although ecotoxicological effects of the reproductive endocrine system have mainly been reported recently, thyroid endocrine in fish remains relatively less understood. Here, adult female zebrafish were exposed to cortisone at 0.0 (control), 3.2, 38.7, and 326.9 ng/L for 60 days. Evidence in this study came from fish behavior, hormone levels, gene expression, histological and morphological examinations. The results showed that THs (thyroid hormone) level disruption and pathohistological changes occurred in the thyroid gland, which may account for the gene expression changes in the hypothalamus-pituitary-thyroid gland axis. Specifically, more conversion of T4 (thyroxine) to T3 (triiodothyronine) led to an increased TSH (thyroid stimulating hormone) level in plasma. Severe thyroid tissue damage mainly occurred in the zebrafish exposed to 326.9 ng/L of cortisone. Meanwhile, consistent with the THs trend, the fish locomotion activity displayed more anxiety and excitement, the partial blockage of GABA (γ - aminobutyric acid) synthetic pathway genes might be the explanation of the underlying mechanism. Cortisone affected the gene expressions in the visual cycle and the circadian rhythm network also suggested interactions between thyroid endocrine disruption, retinal dysfunction, and abnormal behaviors of zebrafish. In summary, these findings suggest chronic exposure to cortisone induced various adverse effects in adult female zebrafish, which may help us better understand the risk of cortisone to fish in the wild.
Collapse
Affiliation(s)
- Yuxin Geng
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Hong Zou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Yanfang Guo
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Manlin Huang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Yashi Wu
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China.
| |
Collapse
|
4
|
Dong Z, Li X, Chen Y, Zhang N, Wang Z, Liang YQ, Guo Y. Short-term exposure to norethisterone affected swimming behavior and antioxidant enzyme activity of medaka larvae, and led to masculinization in the adult population. CHEMOSPHERE 2023; 310:136844. [PMID: 36252902 DOI: 10.1016/j.chemosphere.2022.136844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Norethisterone (NET), one of the synthetic progestins, is detected with increasing frequency in the water environment and distributed in the ocean, with a potential toxicity risk to marine organisms. However, current studies on the adverse effects of progestins (including NET) in aquatic environments have focused on freshwater organisms, mainly fish. In the present, marine medaka (Oryzias melastigma) larvae were exposed to 91.31 ng/L NET for 10 days, and then the swimming behavior, oxidation-antioxidant-related enzyme activities, sex and thyroid hormone levels, and the gene transcription patterns of the larvae were measured. After NET treatment, medaka larvae were raised in artificial seawater until 5 months of age, and the sex ratio was counted. Ten-day exposure to 91.31 ng/L NET inhibited swimming behavior, of marine medaka larvae, which showed that the time in the resting state was significantly prolonged, while the time in the large motor state was significantly reduced; disrupted oxidative-antioxidant system, significantly up-regulated the enzymatic activities of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px); affected the hormone levels of larvae, lowered 11- keto testosterone (11-KT) and triiodothyronine (T3) concentrations. RNA-seq results showed that 91.31 ng/L NET exposure for 10 days changed the transcript levels of 275 genes, of which 28 were up-regulated and 247 were down-regulated. Differentially expressed genes (DEGs) were mainly significantly enriched in piwi interacting RNA (piRNA), gonadal development, gametogenesis, and steroidogenesis biological processes, etc. After removing NET exposure and returning to breeding for 140 days, a significant increase in male proportions (69.67%) was observed in sexually mature medaka populations in the NET-treated group. These results show that exposure to 91.31 ng/L NET for 10 days can lead to various adverse effects on marine medaka larvae. These findings shed light on the potential ecological risks of synthetic progestins to marine organisms.
Collapse
Affiliation(s)
- Zhongdian Dong
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Xueyou Li
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Yuebi Chen
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Ning Zhang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China; State Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University School, Changsha, 410081, PR China.
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Yusong Guo
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| |
Collapse
|
5
|
Steinbach C, Lutz I, Šandová M, Pech M, Šálková E, Bořík A, Valentová O, Kroupová HK. Effects of the synthetic progestin levonorgestrel on some aspects of thyroid physiology in common carp (Cyprinus carpio). CHEMOSPHERE 2023; 310:136860. [PMID: 36244424 DOI: 10.1016/j.chemosphere.2022.136860] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
The objective of the present study was to assess the effects of levonorgestrel (LNG), a synthetic progestin, on early development and the thyroid system of carp using morphological, histological, immunohistochemical, and gene expression analysis. Fish were exposed to LNG at three levels (3, 31, and 310 ng L-1) from eggs to the onset of juvenile stage (47 days). LNG had no significant effect on early development in common carp or on the occurrence of morphological anomalies. No pathological alterations of the thyroid follicles were found. Immunohistochemical examination of the thyroid follicles using antibodies against thyroxin did not show any differences in fish exposed to 310 ng L-1 LNG compared to the controls. mRNA expression of iodothyronine deiodinases (dio1, 2, 3) was differentially affected by LNG treatment during carp development. Most importantly, dio3 was markedly downregulated in fish exposed to all three LNG levels compared to the controls at the conclusion of the experiment (47 days post-fertilization). A decrease in dio1 or dio3 or an increase in dio2 transcription observed at different time points of the study may be a sign of hypothyroidism. mRNA expression of genes npr, esr1, and esr2b in the body and npr and esr2b in the head of fish exposed to 310 ng L-1 LNG was significantly upregulated compared to the solvent control group at the end of the test. Together, these results show that levonorgestrel caused parallel changes in the hypothalamus-pituitary-thyroid and hypothalamus-pituitary-gonad axes.
Collapse
Affiliation(s)
- Christoph Steinbach
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Ilka Lutz
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany.
| | - Marie Šandová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Michal Pech
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Eva Šálková
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Adam Bořík
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Olga Valentová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Hana Kocour Kroupová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| |
Collapse
|
6
|
Mannai A, Hmida L, Bouraoui Z, Guerbej H, Gharred T, Jebali J. Does thermal stress modulate the biochemical and physiological responses of Ruditapes decussatus exposed to the progestin levonorgestrel? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85211-85228. [PMID: 35794321 DOI: 10.1007/s11356-022-21786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
In this study, we investigated the effects of 1000 ng/l levonorgestrel (LNG) alone or combined with increased temperature of 20, 24, and 28 °C on the biochemical and physiological responses of the clam (Ruditapes decussatus) for 28 days. Our results revealed that female clams treated with levonorgestrel (LNG) alone showed enhancement of the antioxidant defense against oxidative stress related to the inductions of catalase (CAT), gluthatione -S -transferase (GST), and protein sulfhydryl (PSH), while the elevated temperatures of 20, 24, and 28 °C diminished most of the specific responses to LNG and was the main factor in the determining the responses to combine exposures. The responses of lysosomal membrane stability, alkaline phosphatase, and NADP+-dependent isocitrate dehydrogenase detected were the most common signs of an adverse effect in all exposures. Female clams' testosterone and estradiol responses to LNG were the most particular manifestations depending on the exposure. Overall, these findings showed clearly that chronic warming stress caused disruption in physiological, biochemical parameters of the female clam R. decussatus, and this may have implications for the whole organism and populations.
Collapse
Affiliation(s)
- Asma Mannai
- Laboratory of Genetics Biodiversity and Valorization of Bio-resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia.
| | - Leila Hmida
- Research Unit Ecosystems & Aquatic Resources (UR13AGRO1), National Agronomic Institute of Tunisia (INAT), University of Carthage, Charles Nicolle Avenue 43, Mahrajene City, 1082, Tunis, Tunisia
| | - Zied Bouraoui
- National Institute of Marine Sciences and Technology, Laboratory of Blue Biotechnology and Aquatic Bioproducts (LR16INSTM05), Monastir, Tunisia
| | - Hamadi Guerbej
- National Institute of Marine Sciences and Technology, Laboratory of Blue Biotechnology and Aquatic Bioproducts (LR16INSTM05), Monastir, Tunisia
| | - Tahar Gharred
- Laboratory of Bioresources: Integrative Biology & Valorization (LR 14ES06), Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Jamel Jebali
- Laboratory of Genetics Biodiversity and Valorization of Bio-resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
7
|
Tan J, Chen H, Chen S, Hu J, Wang X, Wang Y, Liao S, Chen P, Liang C, Dai M, Du Q, Hou L. The interactive effects of ethinylestradiol and progesterone on transcriptional expression of genes along the hypothalamus-pituitary-thyroid axis in embryonic zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150371. [PMID: 34818814 DOI: 10.1016/j.scitotenv.2021.150371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Progestins and estrogens are widespread in various aquatic environments and their potential endocrine disruption effects to aquatic organisms have drawn growing concern. However, their combined effects in aquatic organisms remain elusive. The aim of the present study was to assess the effects of the binary mixtures of gestodene (GES) and 17α-ethinylestradiol (EE2) on the hypothalamic-pituitary-thyroid (HPT) axis of zebrafish (Danio rerio) using the eleuthero-embryos. Embryos were exposed to GES and EE2 alone or in combination at concentrations ranging from 41 to 5329 ng L-1 (nominal ones from 50 to 5000 ng L-1) for 48 h, 96 h and 144 h post fertilization (hpf). The results showed that the transcripts of the genes along the HPT axis displayed pronounced alterations. There was no clear pattern in the change of the transcripts of these genes over time and with concentrations. However, in general, the transcripts of the genes were inversely affected by EE2 (increase 0.5 to 4.2-folds) and GES (inhibition 0.4 to 4.9-folds), and their mixtures showed interactive effects in embryonic zebrafish. In addition, physiological data (mortality, malformation, body length and heart rate etc.) denoted higher toxicity of the two chemicals in combination than alone based on the developmental toxicity and neurotoxicity (locomotor behavior). These results indicated that the interactive effects of these two chemicals might be different between at the transcriptional level and at the whole organismal level. In summary, GES and EE2 affect the HPT axis (related genes expression and thyroid hormones (THs) levels) and exhibit developmental toxicity and neurotoxicity.
Collapse
Affiliation(s)
- Jiefeng Tan
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Shanduo Chen
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Junjie Hu
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Xiaolan Wang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Yifan Wang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Shuling Liao
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Peixian Chen
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Chuyan Liang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Menglin Dai
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Qianping Du
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China.
| |
Collapse
|
8
|
Thomson P, Pineda M, Yargeau V, Langlois VS. Chronic Exposure to Two Gestagens Differentially Alters Morphology and Gene Expression in Silurana tropicalis. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:745-759. [PMID: 33856560 DOI: 10.1007/s00244-021-00831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Gestagens are active ingredients in human and veterinary drugs with progestogenic activity. Two gestagens-progesterone (P4), and the synthetic P4 analogue, melengestrol acetate (MGA)-are approved for use in beef cattle agriculture in North America. Both P4 and MGA have been measured in surface water receiving runoff from animal agricultural operations. This project aimed to assess the morphometric and molecular consequences of chronic exposures to P4, MGA, and their mixture during Western clawed frog metamorphosis. Chronic exposure (from embryo to metamorphosis) to MGA (1.7 µg/L) or P4 + MGA (0.22 µg/L P4 + 1.5 µg/L MGA) caused a considerable dysregulation of metamorphic timing, as evidenced by an inhibition of growth, narrower head, and lack of forelimb emergence in all animals. Molecular analysis revealed that chronic exposure to the mixture induced an additive upregulation of neurosteroid-related (GABAA receptor subunit α6 (gabra6) and steroid 5-alpha reductase 1 (srd5α1) gene expression in brain tissue. Chronic P4 exposure (0.26 µg/L P4) induced a significant upregulation of the expression hypothalamic-pituitary-gonadal (HPG)-related genes (ipgr, erα) in the gonadal mesonephros complex (GMC). Our data suggest that exposure to P4, MGA, and their mixture induces multiple endocrine responses and adverse effects in larval Western clawed frogs. This study helps to better our understanding of the consequences of chronic gestagen exposure and suggests that the implications and risk of high gestagen use in beef cattle feeding operations may extend to the aquatic environment.
Collapse
Affiliation(s)
- Paisley Thomson
- Institut national de la recherche scientifique (INRS) - Centre Eau Terre Environnement, 490 rue de la Couronne, Québec City, QC, G1K 9A9, Canada
| | - Marco Pineda
- Department of Chemical Engineering, McGill University, 3610 University St, Montreal, QC, H3A 0C5, Canada
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, 3610 University St, Montreal, QC, H3A 0C5, Canada
| | - Valerie S Langlois
- Institut national de la recherche scientifique (INRS) - Centre Eau Terre Environnement, 490 rue de la Couronne, Québec City, QC, G1K 9A9, Canada.
| |
Collapse
|
9
|
Gorini F, Bustaffa E, Coi A, Iervasi G, Bianchi F. Bisphenols as Environmental Triggers of Thyroid Dysfunction: Clues and Evidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2654. [PMID: 32294918 PMCID: PMC7216215 DOI: 10.3390/ijerph17082654] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/25/2022]
Abstract
Bisphenols (BPs), and especially bisphenol A (BPA), are known endocrine disruptors (EDCs), capable of interfering with estrogen and androgen activities, as well as being suspected of other health outcomes. Given the crucial role of thyroid hormones and the increasing incidence of thyroid carcinoma in the last few decades, this review analyzes the effects of BPS on the thyroid, considering original research in vitro, in vivo, and in humans published from January 2000 to October 2019. Both in vitro and in vivo studies reported the ability of BPs to disrupt thyroid function through multiple mechanisms. The antagonism with thyroid receptors (TRs), which affects TR-mediated transcriptional activity, the direct action of BPs on gene expression at the thyroid and the pituitary level, the competitive binding with thyroid transport proteins, and the induction of toxicity in several cell lines are likely the main mechanisms leading to thyroid dysfunction. In humans, results are more contradictory, though some evidence suggests the potential of BPs in increasing the risk of thyroid nodules. A standardized methodology in toxicological studies and prospective epidemiological studies with individual exposure assessments are warranted to evaluate the pathophysiology resulting in the damage and to establish the temporal relationship between markers of exposure and long-term effects.
Collapse
|
10
|
Šauer P, Tumová J, Steinbach C, Golovko O, Komen H, Maillot-Maréchal E, Máchová J, Grabic R, Aït-Aïssa S, Kocour Kroupová H. Chronic simultaneous exposure of common carp (Cyprinus carpio) from embryonic to juvenile stage to drospirenone and gestodene at low ng/L level caused intersex. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109912. [PMID: 31706240 DOI: 10.1016/j.ecoenv.2019.109912] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/15/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
Synthetic progestins are emerging contaminants of the aquatic environment with endocrine disrupting potential. The main aim of the present study was to investigate the effects of the synthetic progestins gestodene, and drospirenone on sex differentiation in common carp (Cyprinus carpio) by histological analysis. To gain insights into the mechanisms behind the observations from the in vivo experiment on sex differentiation, we analyzed expression of genes involved in hypothalamus-pituitary-gonad (HPG) and hypothalamus-pituitary-thyroid (HPT) axes, histology of hepatopancreas, and in vitro bioassays. Carp were continuously exposed to concentrations of 2 ng/L of single progestins (gestodene or drospirenone) or to their mixture at concentration 2 ng/L of each. The exposure started 24 h after fertilization of eggs and concluded 160 days post-hatching. Our results showed that exposure of common carp to a binary mixture of drospirenone and gestodene caused increased incidence of intersex (32%) when compared to clean water and solvent control groups (both 3%). Intersex most probably was induced by a combination of multiple modes of action of the studied substances, namely anti-gonadotropic activity, interference with androgen receptor, and potentially also with HPT axis or estrogen receptor.
Collapse
Affiliation(s)
- Pavel Šauer
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Vodňany, Czech Republic.
| | - Jitka Tumová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Vodňany, Czech Republic
| | - Christoph Steinbach
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Vodňany, Czech Republic
| | - Oksana Golovko
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Vodňany, Czech Republic; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07, Uppsala, Sweden
| | - Hans Komen
- Wageningen University, Animal Breeding and Genomics Centre, Wageningen, the Netherlands
| | - Emmanuelle Maillot-Maréchal
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité d'Ecotoxicologie in vitro et in vivo, UMR-I 02 SEBIO, Verneuil-en-Halatte, France
| | - Jana Máchová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Vodňany, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Vodňany, Czech Republic
| | - Selim Aït-Aïssa
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité d'Ecotoxicologie in vitro et in vivo, UMR-I 02 SEBIO, Verneuil-en-Halatte, France
| | - Hana Kocour Kroupová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Vodňany, Czech Republic.
| |
Collapse
|
11
|
Sun Y, Li Y, Liu Z, Chen Q. Environmentally relevant concentrations of mercury exposure alter thyroid hormone levels and gene expression in the hypothalamic-pituitary-thyroid axis of zebrafish larvae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1175-1183. [PMID: 29691693 DOI: 10.1007/s10695-018-0504-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
Mercury (Hg) is one of the most toxic heavy metals that can cause severe damage to fish. Studies have demonstrated that Hg has a specific affinity for the endocrine system, but little is known about the effects of Hg on thyroid endocrine system in fish. In this study, zebrafish embryos were exposed to environmentally relevant concentrations of 1, 4, and 16 μg/L Hg2+ (added as HgCl2) from 2 h post-fertilization (hpf) to 168 hpf. Thyroid hormone (TH) levels and mRNA expression levels of genes involved in the hypothalamus-pituitary-thyroid (HPT) axis were determined. The results showed that exposure to 16 μg/L Hg2+ increased the whole-body thyroxine (T4) and triiodothyronine (T3) levels. The transcription levels of corticotrophin releasing hormone (crh) and thyroid stimulating hormone (tshβ) were up-regulated by Hg2+ exposure. Analysis of the mRNA levels of genes related to thyroid development (hhex, nkx2.1, and pax8) and THs synthesis (nis and tg) revealed that exposure to higher Hg2+ concentrations markedly up-regulated hhex, nkx2.1, nis, and tg expression, while had no significant effect on the transcripts of pax8. For the transcription of two types of deiodinases (deio1 and deio2), deio1 showed no significant changes in all the treatments, whereas deio2 was significantly up-regulated in the 16 μg/L Hg2+ group. In addition, Hg2+ exposure up-regulated thyroid hormone receptor β (trβ) mRNA level, while the transcription of trα was not changed. Overall, our study indicated that environmentally relevant concentrations of Hg2+ exposure could alter TH levels and the transcription of related HPT-axis genes, disturbing the normal processes of TH metabolism.
Collapse
Affiliation(s)
- Yaling Sun
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Yingwen Li
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Zhihao Liu
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Qiliang Chen
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
12
|
Li L, Li M, Lu J, Ge X, Xie W, Wang Z, Li X, Li C, Wang X, Han Y, Wang Y, Zhong L, Xiang W, Huang X, Chen H, Yao P. Prenatal Progestin Exposure Is Associated With Autism Spectrum Disorders. Front Psychiatry 2018; 9:611. [PMID: 30510526 PMCID: PMC6252360 DOI: 10.3389/fpsyt.2018.00611] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
We have previously reported that prenatal progestin exposure induces autism-like behavior in offspring through ERβ (estrogen receptor β) suppression in the brain, indicating that progestin may induce autism spectrum disorders (ASD). In this study, we aim to investigate whether prenatal progestin exposure is associated with ASD. A population-based case-control epidemiology study was conducted in Hainan province of China. The ASD children were first screened with the Autism Behavior Checklist (ABC) questionnaire, and then diagnosed by clinical professionals using the ASD diagnosis criteria found in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V). Eventually, 235 cases were identified as ASD from 37863 children aged 0-6 years old, and 682 matched control subjects with typically developing children were selected for the analysis of potential impact factors on ASD prevalence using multivariate logistic regression. Our data show that the ASD prevalence rate in Hainan was 0.62% with a boy:girl ratio of 5.4:1. Interestingly, we found that the following factors were strongly associated with ASD prevalence: use of progestin to prevent threatened abortion, use of progestin contraceptives at the time of conception, and prenatal consumption of progestin-contaminated seafood during the first trimester of pregnancy. All the above factors were directly or indirectly involved with prenatal progestin exposure. Additionally, we conducted in vivo experiments in rats to further confirm our findings. Either endogenous (progesterone) or synthetic progestin (norethindrone)-treated seafood zebrafish were used to feed pregnant dams, and the subsequent offspring showed autism-like behavior, which further demonstrated that prenatal progestin exposure may induce ASD. We conclude that prenatal progestin exposure may be associated with ASD development.
Collapse
Affiliation(s)
- Ling Li
- Department of Pediatrics, Hainan Maternal and Child Health Hospital, Haikou, China
| | - Min Li
- Institute of Rehabilitation Center, Tongren Hospital of Wuhan University, Wuhan, China
| | - Jianping Lu
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen, China
| | - Xiaohu Ge
- SALIAI Stem Cell Institute of Guangdong, Guangzhou SALIAI Stem Cell Science and Technology Co. LTD., Guangzhou, China
| | - Weiguo Xie
- Institute of Rehabilitation Center, Tongren Hospital of Wuhan University, Wuhan, China
| | - Zichen Wang
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen, China
| | - Xiaoling Li
- Department of Pediatrics, Hainan Maternal and Child Health Hospital, Haikou, China
| | - Chao Li
- Department of Pediatrics, Hainan Maternal and Child Health Hospital, Haikou, China
| | - Xiaoyan Wang
- SALIAI Stem Cell Institute of Guangdong, Guangzhou SALIAI Stem Cell Science and Technology Co. LTD., Guangzhou, China
| | - Yan Han
- Department of Pediatrics, Hainan Maternal and Child Health Hospital, Haikou, China
| | - Yifei Wang
- SALIAI Stem Cell Institute of Guangdong, Guangzhou SALIAI Stem Cell Science and Technology Co. LTD., Guangzhou, China
| | - Liyan Zhong
- Department of Pediatrics, Hainan Maternal and Child Health Hospital, Haikou, China
| | - Wei Xiang
- Department of Pediatrics, Hainan Maternal and Child Health Hospital, Haikou, China
| | - Xiaodong Huang
- Institute of Rehabilitation Center, Tongren Hospital of Wuhan University, Wuhan, China
| | - Haijia Chen
- SALIAI Stem Cell Institute of Guangdong, Guangzhou SALIAI Stem Cell Science and Technology Co. LTD., Guangzhou, China
| | - Paul Yao
- Department of Pediatrics, Hainan Maternal and Child Health Hospital, Haikou, China.,Institute of Rehabilitation Center, Tongren Hospital of Wuhan University, Wuhan, China.,Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
13
|
Hou L, Xu H, Ying G, Yang Y, Shu H, Zhao J, Cheng X. Physiological responses and gene expression changes in the western mosquitofish (Gambusia affinis) exposed to progesterone at environmentally relevant concentrations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:69-77. [PMID: 28934642 DOI: 10.1016/j.aquatox.2017.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Progesterone (P4) is a natural and synthetic steroid, widely distributed in the aquatic environments. It can lead to adverse effects on the endocrine system in aquatic organisms. This study investigated the toxicological effects of exposure to environmentally relevant concentrations (4, 44, and 410ng/L) of progesterone for 42 d on adult female mosquitofish, Gambusia affinis. We performed morphological and histological analyses on gonads, anal fins, liver, and gills after the exposure of mosquito fish to P4. The expression levels of genes (vtg, er, and ar isoforms) related to fish reproduction and detoxification (cyp1a) in the liver were quantified by quantitative real-time polymerase chain reaction. The results showed that the progesterone exposure induced slight masculinization in female mosquitofish, influenced the oocyte maturation as revealed by histology of the ovaries, and caused severe damages to the liver and gills of adult female mosquitofish. It also suppressed the mRNAs expression of vtg, er, cyp1a, and significantly enhanced the expression of ar mRNA in the liver. This study reveals the molecular and physiological effects of progesterone at environmentally relevant concentrations, which might further be translated to alterations in the reproduction of mosquitofish.
Collapse
Affiliation(s)
- Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Hongyan Xu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| | - Guangguo Ying
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Yang Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Hu Shu
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Jianliang Zhao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Xuemei Cheng
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| |
Collapse
|
14
|
Romano SN, Edwards HE, Souder JP, Ryan KJ, Cui X, Gorelick DA. G protein-coupled estrogen receptor regulates embryonic heart rate in zebrafish. PLoS Genet 2017; 13:e1007069. [PMID: 29065151 PMCID: PMC5669493 DOI: 10.1371/journal.pgen.1007069] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 11/03/2017] [Accepted: 10/11/2017] [Indexed: 01/31/2023] Open
Abstract
Estrogens act by binding to estrogen receptors alpha and beta (ERα, ERβ), ligand-dependent transcription factors that play crucial roles in sex differentiation, tumor growth and cardiovascular physiology. Estrogens also activate the G protein-coupled estrogen receptor (GPER), however the function of GPER in vivo is less well understood. Here we find that GPER is required for normal heart rate in zebrafish embryos. Acute exposure to estrogens increased heart rate in wildtype and in ERα and ERβ mutant embryos but not in GPER mutants. GPER mutant embryos exhibited reduced basal heart rate, while heart rate was normal in ERα and ERβ mutants. We detected gper transcript in discrete regions of the brain and pituitary but not in the heart, suggesting that GPER acts centrally to regulate heart rate. In the pituitary, we observed gper expression in cells that regulate levels of thyroid hormone triiodothyronine (T3), a hormone known to increase heart rate. Compared to wild type, GPER mutants had reduced levels of T3 and estrogens, suggesting pituitary abnormalities. Exposure to exogenous T3, but not estradiol, rescued the reduced heart rate phenotype in gper mutant embryos, demonstrating that T3 acts downstream of GPER to regulate heart rate. Using genetic and mass spectrometry approaches, we find that GPER regulates maternal estrogen levels, which are required for normal embryonic heart rate. Our results demonstrate that estradiol plays a previously unappreciated role in the acute modulation of heart rate during zebrafish embryonic development and suggest that GPER regulates embryonic heart rate by altering maternal estrogen levels and embryonic T3 levels. Estrogen hormones are important for the formation and function of the nervous, reproductive and cardiovascular systems. Here we report that acute exposure to estrogens increases heart rate, a previously unappreciated function of estrogens. Using zebrafish with mutations in genes that respond to estrogens, we found that heart rate is regulated not by the typical molecules that respond to estrogens–the nuclear estrogen receptors–but rather by a different molecule, the G protein-coupled estrogen receptor. We also show that estrogens increase heart rate by increasing levels of thyroid hormone. Our results reveal a new function for the G protein-coupled estrogen receptor and a new connection between estrogens and thyroid hormone. Environmental compounds that mimic estrogens can be harmful because they can influence gonad function. Our results suggest that endocrine disrupting compounds may also influence cardiac function.
Collapse
Affiliation(s)
- Shannon N. Romano
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hailey E. Edwards
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jaclyn Paige Souder
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kevin J. Ryan
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Xiangqin Cui
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Daniel A. Gorelick
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
15
|
Siegenthaler PF, Zhao Y, Zhang K, Fent K. Reproductive and transcriptional effects of the antiandrogenic progestin chlormadinone acetate in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 223:346-356. [PMID: 28118999 DOI: 10.1016/j.envpol.2017.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/06/2017] [Accepted: 01/15/2017] [Indexed: 06/06/2023]
Abstract
Chlormadinone acetate (CMA) is a frequently used progestin with antiandrogenic activity in humans. Residues may enter the aquatic environment but potential adverse effects in fish are unknown. While our previous work focused on effects of CMA in vitro and in zebrafish eleuthero-embryos, the present study reports on reproductive and transcriptional effects in adult female and male zebrafish (Danio rerio). We performed a reproductive study using breeding groups of zebrafish. After 15 days of pre-exposure, we exposed zebrafish to different measured concentrations between 6.4 and 53,745 ng/L CMA for 21 days and counted produced eggs daily to determine fecundity. Additionally, transcriptional effects of CMA in brains, livers, and gonads were analyzed. CMA induced a slight but statistically significant reduction in fecundity at 65 ng/L and 53,745 ng/L compared to pre-exposure. Furthermore, we observed differential expression for gene transcripts of steroid hormone receptors, genes related to the hypothalamic-pituitary-gonadal axis, and steroidogenesis. In particular, we found a significant decrease of transcript levels of vitellogenin (vtg1) in ovaries and liver, and of cyp2k7 in the liver of males, as well as a significant increase of transcripts of the progesterone receptor (pgr) in testes, and cyp2k1 in the liver of females. The observed effects were weaker than those of other very potent progestins, which is probably related to the lack of interaction of CMA with the zebrafish progesterone receptor.
Collapse
Affiliation(s)
- Patricia Franziska Siegenthaler
- University of Applied Sciences and Arts Northwestern Switzerland, FHNW, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Yanbin Zhao
- University of Applied Sciences and Arts Northwestern Switzerland, FHNW, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Kun Zhang
- University of Applied Sciences and Arts Northwestern Switzerland, FHNW, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, FHNW, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental System Sciences, CH-8092 Zürich, Switzerland.
| |
Collapse
|
16
|
Giatti S, Melcangi RC, Pesaresi M. The other side of progestins: effects in the brain. J Mol Endocrinol 2016; 57:R109-26. [PMID: 27339142 DOI: 10.1530/jme-16-0061] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/22/2016] [Indexed: 01/06/2023]
Abstract
Progestins are a broad class of progestational agents widely differing in their chemical structures and pharmacological properties. Despite emerging data suggest that progestins, besides their action as endometrial protection, can also have multiple nonreproductive functions, much remains to be discovered regarding the actions exerted by these molecules in the nervous system. Here, we report the role exerted by different progestins, currently used for contraception or in postmenopausal hormone replacement therapies, in regulating cognitive functions as well as social behavior and mood. We provide evidence that the effects and mechanisms underlying their actions are still confusing due to the use of different estrogens and progestins as well as different doses, duration of exposure, route of administration, baseline hormonal status and age of treated women. We also discuss the emerging issue concerning the relevant increase of these substances in the environment, able to deeply affect aquatic wildlife as well as to exert a possible influence in humans, which may be exposed to these compounds via contaminated drinking water and seafood. Finally, we report literature data showing the neurobiological action of progestins and in particular their importance during neurodegenerative events. This is extremely interesting, since some of the progestins currently used in clinical practice exert neuroprotective and anti-inflammatory effects in the nervous system, opening new promising opportunities for the use of these molecules as therapeutic agents for trauma and neurodegenerative disorders.
Collapse
Affiliation(s)
- Silvia Giatti
- Department of Pharmacological and Biomolecular SciencesCenter of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy
| | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular SciencesCenter of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy
| | - Marzia Pesaresi
- Department of Pharmacological and Biomolecular SciencesCenter of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
17
|
Zhang Y, Zhang Y, Chen A, Zhang W, Chen H, Zhang Q. Enantioselectivity in Developmental Toxicity ofrac-metalaxyl andR-metalaxyl in Zebrafish (Danio rerio) Embryo. Chirality 2016; 28:489-94. [DOI: 10.1002/chir.22605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Yinjun Zhang
- College of Biological and Environmental Engineering; Zhejiang University of Technology; Hangzhou China
| | - Yi Zhang
- College of Biological and Environmental Engineering; Zhejiang University of Technology; Hangzhou China
| | - An Chen
- Affiliated High School to Hangzhou Normal University; Hangzhou China
| | - Wei Zhang
- College of Biological and Environmental Engineering; Zhejiang University of Technology; Hangzhou China
| | - Hao Chen
- College of Biological and Environmental Engineering; Zhejiang University of Technology; Hangzhou China
| | - Quan Zhang
- College of Biological and Environmental Engineering; Zhejiang University of Technology; Hangzhou China
| |
Collapse
|
18
|
Tang T, Yang Y, Chen Y, Tang W, Wang F, Diao X. Thyroid Disruption in Zebrafish Larvae by Short-Term Exposure to Bisphenol AF. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:13069-84. [PMID: 26501309 PMCID: PMC4627017 DOI: 10.3390/ijerph121013069] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/02/2015] [Accepted: 10/09/2015] [Indexed: 11/16/2022]
Abstract
Bisphenol AF (BPAF) is extensively used as a raw material in industry, resulting in its widespread distribution in the aqueous environment. However, the effect of BPAF on the hypothalamic-pituitary-thyroidal (HPT) axis remains unknown. For elucidating the disruptive effects of BPAF on thyroid function and expression of the representative genes along the HPT axis in zebrafish (Danio rerio) embryos, whole-body total 3,3',5-triiodothyronine (TT3), total 3,5,3',5'-tetraiodothyronine (TT4), free 3,3',5-triiodothyronine (FT3) and free 3,5,3',5'-tetraiodothyronine (FT4) levels were examined following 168 h post-fertilization exposure to different BPAF concentrations (0, 5, 50 and 500 μg/L). The results showed that whole-body TT3, TT4, FT3 and FT4 contents decreased significantly with the BPAF treatment, indicating an endocrine disruption of thyroid. The expression of thyroid-stimulating hormone-β and thyroglobulin genes increased after exposing to 50 μg/L BPAF in seven-day-old larvae. The expressions of thyronine deiodinases type 1, type 2 and transthyretin mRNAs were also significantly up-regulated, which were possibly associated with a deterioration of thyroid function. However, slc5a5 gene transcription was significantly down-regulated at 50 μg/L and 500 μg/L BPAF exposure. Furthermore, trα and trβ genes were down-regulated transcriptionally after BPAF exposure. It demonstrates that BPAF exposure triggered thyroid endocrine toxicity by altering the whole-body contents of thyroid hormones and changing the transcription of the genes involved in the HPT axis in zebrafish larvae.
Collapse
Affiliation(s)
- Tianle Tang
- College of Environment and Plant Protection, Hainan University, Haikou 570228, China.
- School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou 571199, China.
| | - Yang Yang
- College of Environment and Plant Protection, Hainan University, Haikou 570228, China.
| | - Yawen Chen
- College of Environment and Plant Protection, Hainan University, Haikou 570228, China.
| | - Wenhao Tang
- College of Environment and Plant Protection, Hainan University, Haikou 570228, China.
- Haikou Key Laboratory of Environment Toxicology, Hainan University, Haikou 570228, China.
| | - Fuqiang Wang
- College of Environment and Plant Protection, Hainan University, Haikou 570228, China.
| | - Xiaoping Diao
- Haikou Key Laboratory of Environment Toxicology, Hainan University, Haikou 570228, China.
| |
Collapse
|