1
|
Fu H, Mo X, Ivanov AA. Decoding the functional impact of the cancer genome through protein-protein interactions. Nat Rev Cancer 2025; 25:189-208. [PMID: 39810024 DOI: 10.1038/s41568-024-00784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
Acquisition of genomic mutations enables cancer cells to gain fitness advantages under selective pressure and, ultimately, leads to oncogenic transformation. Interestingly, driver mutations, even within the same gene, can yield distinct phenotypes and clinical outcomes, necessitating a mutation-focused approach. Conversely, cellular functions are governed by molecular machines and signalling networks that are mostly controlled by protein-protein interactions (PPIs). The functional impact of individual genomic alterations could be transmitted through regulated nodes and hubs of PPIs. Oncogenic mutations may lead to modified residues of proteins, enabling interactions with other proteins that the wild-type protein does not typically interact with, or preventing interactions with proteins that the wild-type protein usually interacts with. This can result in the rewiring of molecular signalling cascades and the acquisition of an oncogenic phenotype. Here, we review the altered PPIs driven by oncogenic mutations, discuss technologies for monitoring PPIs and provide a functional analysis of mutation-directed PPIs. These driver mutation-enabled PPIs and mutation-perturbed PPIs present a new paradigm for the development of tumour-specific therapeutics. The intersection of cancer variants and altered PPI interfaces represents a new frontier for understanding oncogenic rewiring and developing tumour-selective therapeutic strategies.
Collapse
Affiliation(s)
- Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| | - Xiulei Mo
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Andrey A Ivanov
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|
2
|
Jani V, Sonavane U, Sawant S. Understanding the conformational dynamics of PI3Kα due to helical domain mutations: insights from Markov state model analysis. Mol Divers 2025:10.1007/s11030-025-11138-1. [PMID: 39982680 DOI: 10.1007/s11030-025-11138-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Phosphoinositide 3-kinases (PI3Ks) phosphorylate phosphoinositides on the membrane, which act as secondary signals for various cellular processes. PI3Kα, a heterodimer of the p110α catalytic subunit and the p85α regulatory subunit, is activated by growth factor receptors or mutations. Among these mutations, E545K present in the helical domain is strongly associated with cancer, and is known to disrupt interactions between the regulatory and catalytic subunits, leading to its constitutive activation. However, while the mutation's role in disrupting autoinhibition is well documented, the molecular mechanisms linking this mutation in the helical domain to the structural changes in the kinase domain remain poorly understood. This study aims to understand the conformational events triggered by the E545K mutation, elucidate how these changes propagate from the helical domain to the kinase domain, and identify crucial residues involved in the activation process. Molecular dynamics (MD) simulations combined with Markov state modeling (MSM) were employed to explore the conformational landscapes of both the wild-type and mutant systems. Structural and energetic analyses, including Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) calculations, revealed that the E545K mutation significantly reduces the binding affinity between the regulatory and catalytic subunits. The mutation was found to induce a sliding motion of the regulatory subunit along the catalytic subunit, leading to the disruption of key salt-bridges between these domains. This disruption releases the inhibitory effect of the regulatory subunit, resulting in increased domain motion, particularly in the adaptor-binding domain (ABD). Enhanced flexibility in the ABD, helical, and C2 domains facilitates the rearrangement of the two lobes of kinase domain, thereby promoting activation. Additionally, the mutation appears to enhance PI3Kα's membrane affinity via the Ras-binding domain (RBD). Network analysis helped to identify key residues that may involve in allosteric signaling pathways, providing insights into the communication between domains. Druggable pockets in the metastable states were predicted followed by its docking with a PI3K inhibitor library. Docking studies revealed the crucial residues that may be participating in inhibitor binding. The identification of residues and regions involved in activation mechanisms using MSM helped to reveal the conformational events and the knowledge on probable allosteric pockets, which may be helpful in designing better therapeutics.
Collapse
Affiliation(s)
- Vinod Jani
- HPC-M&BA Group, Centre for Development of Advanced Computing, Pune, 411008, India
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, 411007, India
| | - Uddhavesh Sonavane
- HPC-M&BA Group, Centre for Development of Advanced Computing, Pune, 411008, India.
| | - Sangeeta Sawant
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, 411007, India
| |
Collapse
|
3
|
Sheng Z, Beck P, Gabby M, Habte-Mariam S, Mitkos K. Molecular Basis of Oncogenic PI3K Proteins. Cancers (Basel) 2024; 17:77. [PMID: 39796708 PMCID: PMC11720314 DOI: 10.3390/cancers17010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
The dysregulation of phosphatidylinositol 3-kinase (PI3K) signaling plays a pivotal role in driving neoplastic transformation by promoting uncontrolled cell survival and proliferation. This oncogenic activity is primarily caused by mutations that are frequently found in PI3K genes and constitutively activate the PI3K signaling pathway. However, tumorigenesis can also arise from nonmutated PI3K proteins adopting unique active conformations, further complicating the understanding of PI3K-driven cancers. Recent structural studies have illuminated the functional divergence among highly homologous PI3K proteins, revealing how subtle structural alterations significantly impact their activity and contribute to tumorigenesis. In this review, we summarize current knowledge of Class I PI3K proteins and aim to unravel the complex mechanism underlying their oncogenic traits. These insights will not only enhance our understanding of PI3K-mediated oncogenesis but also pave the way for the design of novel PI3K-based therapies to combat cancers driven by this signaling pathway.
Collapse
Affiliation(s)
- Zhi Sheng
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Faculty of Health Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Patrick Beck
- Division of General Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Maegan Gabby
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | | | - Katherine Mitkos
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| |
Collapse
|
4
|
Liu L, Graff SL, Wang Y. New Emerging Therapies Targeting PI3K/AKT/mTOR/PTEN Pathway in Hormonal Receptor-Positive and HER2-Negative Breast Cancer-Current State and Molecular Pathology Perspective. Cancers (Basel) 2024; 17:16. [PMID: 39796647 PMCID: PMC11718791 DOI: 10.3390/cancers17010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
In hormone receptor-positive and HER2-negative breast cancers, a growing number of revolutionary personalized therapies are in clinical use or trials, such as CDK4/6 inhibitors, immune checkpoint inhibitors, and PIK3CA inhibitors. Those treatment options are largely driven by the presence or absence of genomic alterations in the tumor. Therefore, molecular profiling is often performed during disease progression. The most encountered genomic alterations are in the PI3K/AKT/mTOR/PTEN pathway. This review discusses the genetic alterations associated with the PI3K/AKT/mTOR/PTEN pathway to help clinicians understand drug selection, resistance, or interaction from a molecular pathologist's perspective.
Collapse
Affiliation(s)
- Liu Liu
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Brown University Health, Providence, RI 02903, USA;
- Legorreta Cancer Center, Warren Alpert School of Medicine, Brown University, Providence, RI 02903, USA;
| | - Stephanie L. Graff
- Legorreta Cancer Center, Warren Alpert School of Medicine, Brown University, Providence, RI 02903, USA;
- Division of Medical Oncology, Rhode Island Hospital and Brown University Health, Providence, RI 02903, USA
| | - Yihong Wang
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Brown University Health, Providence, RI 02903, USA;
- Legorreta Cancer Center, Warren Alpert School of Medicine, Brown University, Providence, RI 02903, USA;
| |
Collapse
|
5
|
Gupta I, Gaykalova DA. Unveiling the role of PIK3R1 in cancer: A comprehensive review of regulatory signaling and therapeutic implications. Semin Cancer Biol 2024; 106-107:58-86. [PMID: 39197810 DOI: 10.1016/j.semcancer.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Phosphoinositide 3-kinase (PI3K) is responsible for phosphorylating phosphoinositides to generate secondary signaling molecules crucial for regulating various cellular processes, including cell growth, survival, and metabolism. The PI3K is a heterodimeric enzyme complex comprising of a catalytic subunit (p110α, p110β, or p110δ) and a regulatory subunit (p85). The binding of the regulatory subunit, p85, with the catalytic subunit, p110, forms an integral component of the PI3K enzyme. PIK3R1 (phosphoinositide-3-kinase regulatory subunit 1) belongs to class IA of the PI3K family. PIK3R1 exhibits structural complexity due to alternative splicing, giving rise to distinct isoforms, prominently p85α and p55α. While the primary p85α isoform comprises multiple domains, including Src homology 3 (SH3) domains, a Breakpoint Cluster Region Homology (BH) domain, and Src homology 2 (SH2) domains (iSH2 and nSH2), the shorter isoform, p55α, lacks certain domains present in p85α. In this review, we will highlight the intricate regulatory mechanisms governing PI3K signaling along with the impact of PIK3R1 alterations on cellular processes. We will further delve into the clinical significance of PIK3R1 mutations in various cancer types and their implications for prognosis and treatment outcomes. Additionally, we will discuss the evolving landscape of targeted therapies aimed at modulating PI3K-associated pathways. Overall, this review will provide insights into the dynamic interplay of PIK3R1 in cancer, fostering advancements in precision medicine and the development of targeted interventions.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Wong GYM, Li J, McKay M, Castaneda M, Bhimani N, Diakos C, Hugh TJ, Molloy MP. Proteogenomic Characterization of Early Intrahepatic Recurrence after Curative-Intent Treatment of Colorectal Liver Metastases. J Proteome Res 2024; 23:4523-4537. [PMID: 39264718 DOI: 10.1021/acs.jproteome.4c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Clinical and pathological factors are insufficient to accurately identify patients at risk of early recurrence after curative-intent treatment of colorectal liver metastases (CRLM). This study aimed to identify candidate prognostic proteogenomic biomarkers for early intrahepatic recurrence after curative-intent resection of CRLM. Patients diagnosed with intrahepatic recurrence within 6 months of liver resection were categorized as the "early recurrence" group, while those who achieved a recurrence-free status for 10 years were designated as "durable remission". Comprehensive genomic and proteomic profiling of fresh frozen samples from these prognostically distinct groups was performed using the TruSight Oncology 500 assay and label-free data-dependent acquisition liquid chromatography-mass spectrometry. Genetic alterations were identified in 117 of the 523 profiled genes in patients with early recurrence. The most common somatic mutations linked to early recurrence were TP53 (88%), APC (71%), KRAS (38%), and SMAD4 (21%). SMAD4 alterations were absent in samples from patients with a durable remission. Calponin-2, versican core protein, glutathione peroxidase 3, fibulin-5, and amyloid-β precursor protein were upregulated more than 2-fold in early recurrence. Exploratory analysis of these proteogenomic biomarkers suggests that SMAD4, calponin-2, and glutathione peroxidase 3 may have the potential to predict early recurrence, enabling improved prognostication and precision oncology in CRLM.
Collapse
Affiliation(s)
- Geoffrey Yuet Mun Wong
- Department of Upper Gastrointestinal Surgery, Royal North Shore Hospital, Sydney, New South Wales 2065, Australia
- Northern Clinical School, The University of Sydney, Sydney, New South Wales 2065, Australia
- Bowel Cancer and Biomarker Research Laboratory, Kolling Institute, St Leonards, New South Wales 2065, Australia
| | - Jun Li
- Bowel Cancer and Biomarker Research Laboratory, Kolling Institute, St Leonards, New South Wales 2065, Australia
| | - Matthew McKay
- Bowel Cancer and Biomarker Research Laboratory, Kolling Institute, St Leonards, New South Wales 2065, Australia
| | - Miguel Castaneda
- Bowel Cancer and Biomarker Research Laboratory, Kolling Institute, St Leonards, New South Wales 2065, Australia
| | - Nazim Bhimani
- Department of Upper Gastrointestinal Surgery, Royal North Shore Hospital, Sydney, New South Wales 2065, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Connie Diakos
- Northern Clinical School, The University of Sydney, Sydney, New South Wales 2065, Australia
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, New South Wales 2065, Australia
| | - Thomas J Hugh
- Department of Upper Gastrointestinal Surgery, Royal North Shore Hospital, Sydney, New South Wales 2065, Australia
- Northern Clinical School, The University of Sydney, Sydney, New South Wales 2065, Australia
| | - Mark P Molloy
- Bowel Cancer and Biomarker Research Laboratory, Kolling Institute, St Leonards, New South Wales 2065, Australia
| |
Collapse
|
7
|
Li J, Liu W, Mojumdar K, Kim H, Zhou Z, Ju Z, Kumar SV, Ng PKS, Chen H, Davies MA, Lu Y, Akbani R, Mills GB, Liang H. A protein expression atlas on tissue samples and cell lines from cancer patients provides insights into tumor heterogeneity and dependencies. NATURE CANCER 2024; 5:1579-1595. [PMID: 39227745 PMCID: PMC11999798 DOI: 10.1038/s43018-024-00817-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 08/05/2024] [Indexed: 09/05/2024]
Abstract
The Cancer Genome Atlas (TCGA) and the Cancer Cell Line Encyclopedia (CCLE) are foundational resources in cancer research, providing extensive molecular and phenotypic data. However, large-scale proteomic data across various cancer types for these cohorts remain limited. Here, we expand upon our previous work to generate high-quality protein expression data for approximately 8,000 TCGA patient samples and around 900 CCLE cell line samples, covering 447 clinically relevant proteins, using reverse-phase protein arrays. These protein expression profiles offer profound insights into intertumor heterogeneity and cancer dependency and serve as sensitive functional readouts for somatic alterations. We develop a systematic protein-centered strategy for identifying synthetic lethality pairs and experimentally validate an interaction between protein kinase A subunit α and epidermal growth factor receptor. We also identify metastasis-related protein markers with clinical relevance. This dataset represents a valuable resource for advancing our understanding of cancer mechanisms, discovering protein biomarkers and developing innovative therapeutic strategies.
Collapse
Affiliation(s)
- Jun Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Liu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kamalika Mojumdar
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Kim
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhicheng Zhou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shwetha V Kumar
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick Kwok-Shing Ng
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
| | - Han Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yiling Lu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rehan Akbani
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Gordon B Mills
- Knight Cancer Institute and Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA.
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
8
|
Trivedi TS, Shaikh AM, Mankad AU, Rawal RM, Patel SK. Genome-Wide Characterization of Fennel (Anethum foeniculum) MiRNome and Identification of its Potential Targets in Homo sapiens and Arabidopsis thaliana: An Inter and Intra-species Computational Scrutiny. Biochem Genet 2024; 62:2766-2795. [PMID: 38017284 DOI: 10.1007/s10528-023-10575-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023]
Abstract
MicroRNAs could be promising biomarkers for various diseases, and small RNA drugs have already been FDA approved for clinical use. This area of research is rapidly expanding and has significant potential for the future. Fennel (Anethum foeniculum) is a highly esteemed spice plant with economic and medicinal benefits, making it an invaluable asset in the pharmaceutical industry. To characterize the fennel miRNAs and their Arabidopsis thaliana and Homo sapience targets with functional enrichment analysis and human disease association. A homology-based computational approach characterized the MiRnome of the Anethum foeniculum genome and assessed its impact on Arabidopsis thaliana and Homo sapience transcriptomes. In addition, functional enrichment analysis was evaluated for both species' targets. Moreover, PPI network analysis, hub gene identification, and MD simulation analysis of the top hub node with fennel miRNA were incorporated. We have identified 100 miRNAs of fennel and their target genes, which include 2536 genes in Homo sapiens and 1314 genes in Arabidopsis thaliana. Functional enrichment analysis reveals 56 Arabidopsis thaliana targets of fennel miRNAs showed involvement in metabolic pathways. Highly enriched human KEGG pathways were associated with several diseases, especially cancer. The protein-protein interaction network of human targets determined the top ten nodes; from them, seven hub nodes, namely MAPK1, PIK3R1, STAT3, EGFR, KRAS, CDC42, and SMAD4, have shown their involvement in the pancreatic cancer pathway. Based on the Blast algorithm, 21 fennel miRNAs are homologs to 16 human miRNAs were predicted; from them, the CSPP1 target was a common target for afo-miR11117a-3p and has-miR-6880-5p homologs miRNAs. Our results are the first to report the 100 fennel miRNAs, and predictions for their endogenous and human target genes provide a basis for further understanding of Anethum foeniculum miRNAs and the biological processes and diseases with which they are associated.
Collapse
Affiliation(s)
- Tithi S Trivedi
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Aafrinbanu M Shaikh
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Archana U Mankad
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Rakesh M Rawal
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Saumya K Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
9
|
Song L, Wang D, Zhai Y, Zhang X, Zhang Y, Yu Y, Sun L, Zhou K. Aqueous extract of Epimedium sagittatum (Sieb. et Zucc.) Maxim. induces liver injury in mice via pyroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118164. [PMID: 38593963 DOI: 10.1016/j.jep.2024.118164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epimedium sagittatum (Sieb. et Zucc.) Maxim. has been used traditionally in Asia. It can dispel wind and cold, tonify the kidney, and strengthen bones and tendons. However, adverse effects of E. sagittatum have been reported, and the underlying mechanisms remain unclear. AIM OF THE STUDY This study aimed to investigate liver injury caused by an aqueous extract of E. sagittatum in Institute of Cancer Research (ICR) mice and explore its potential mechanisms. MATERIALS AND METHODS Dried E. sagittatum leaves were decocted in water to prepare aqueous extracts for ultra-high performance liquid chromatography analysis. Mice were administered an aqueous extract of E. sagittatum equivalent to either 3 g raw E. sagittatum/kg or 10 g raw E. sagittatum/kg once daily via intragastric injection for three months. The liver weights and levels of the serum biochemical parameters including alanine transaminase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), total bilirubin (TBIL), and alkaline phosphatase were measured. Hematoxylin-eosin staining was performed for histopathology. Apoptosis was detected using the TUNEL apoptosis assay kit. IL-1β was detected using ELISA kits. Proteomics was used to identify the differentially expressed proteins. Western blot analysis was performed to determine the levels of proteins significantly affected by the aqueous extract of E. sagittatum. RESULTS E. sagittatum treatment increased the liver weights and liver coefficients, and ALT and AST levels significantly increased (p < 0.05). A high dose of E. sagittatum significantly increased LDH and TBIL levels (p < 0.05). Ruptured cell membranes and multiple sites of inflammatory cell infiltration were also observed. No evidence of apoptosis was observed. IL-1β levels were significantly increased (p < 0.05). The expressions of PIK3R1, p-MAP2K4, p-Jun N-terminal kinase (JNK)/JNK, p-c-Jun, VDAC2, Bax, and CYC were upregulated, whereas that of Bcl-2 was inhibited by E. sagittatum. The expression of cleaved caspase-1 was significantly increased; however, its effects on GSDMD and GSDMD-N were significantly decreased. The expression levels of cleaved caspase-3 and its effector proteins GSDME and GSDME-N significantly increased. CONCLUSIONS Our results suggest that the aqueous extract of E. sagittatum induces liver injury in ICR mice after three months of intragastric injection via inflammatory pyroptosis.
Collapse
Affiliation(s)
- Lei Song
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin, 301617, China
| | - Dongyu Wang
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuxia Zhai
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaoying Zhang
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yue Zhang
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin, 301617, China
| | - Yingli Yu
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin, 301617, China
| | - Likang Sun
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kun Zhou
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
10
|
Rausio H, Cervera A, Heuser VD, West G, Oikkonen J, Pianfetti E, Lovino M, Ficarra E, Taimen P, Hynninen J, Lehtonen R, Hautaniemi S, Carpén O, Huhtinen K. PIK3R1 fusion drives chemoresistance in ovarian cancer by activating ERK1/2 and inducing rod and ring-like structures. Neoplasia 2024; 51:100987. [PMID: 38489912 PMCID: PMC10955102 DOI: 10.1016/j.neo.2024.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
Gene fusions are common in high-grade serous ovarian cancer (HGSC). Such genetic lesions may promote tumorigenesis, but the pathogenic mechanisms are currently poorly understood. Here, we investigated the role of a PIK3R1-CCDC178 fusion identified from a patient with advanced HGSC. We show that the fusion induces HGSC cell migration by regulating ERK1/2 and increases resistance to platinum treatment. Platinum resistance was associated with rod and ring-like cellular structure formation. These structures contained, in addition to the fusion protein, CIN85, a key regulator of PI3K-AKT-mTOR signaling. Our data suggest that the fusion-driven structure formation induces a previously unrecognized cell survival and resistance mechanism, which depends on ERK1/2-activation.
Collapse
Affiliation(s)
- Heidi Rausio
- Institute of Biomedicine and FICAN West Cancer Centre, Faculty of Medicine, University of Turku, Turku, Finland; Drug Research Doctoral Programme (DRDP), University of Turku, Turku, Finland.
| | - Alejandra Cervera
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Vanina D Heuser
- Institute of Biomedicine and FICAN West Cancer Centre, Faculty of Medicine, University of Turku, Turku, Finland
| | - Gun West
- Institute of Biomedicine and FICAN West Cancer Centre, Faculty of Medicine, University of Turku, Turku, Finland
| | - Jaana Oikkonen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Elena Pianfetti
- Department of Engineering, Enzo Ferrari, University of Modena and Reggio Emilia, Modena, Italy
| | - Marta Lovino
- Department of Engineering, Enzo Ferrari, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Ficarra
- Department of Engineering, Enzo Ferrari, University of Modena and Reggio Emilia, Modena, Italy
| | - Pekka Taimen
- Institute of Biomedicine and FICAN West Cancer Centre, Faculty of Medicine, University of Turku, Turku, Finland; Department of Pathology, Turku University Hospital, Turku, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, Turku University Hospital and University of Turku, Turku, Finland
| | - Rainer Lehtonen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Carpén
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Pathology, University of Helsinki and HUSLAB, University Hospital, Helsinki, Finland
| | - Kaisa Huhtinen
- Institute of Biomedicine and FICAN West Cancer Centre, Faculty of Medicine, University of Turku, Turku, Finland; Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Dobish KK, Wittorf KJ, Swenson SA, Bean DC, Gavile CM, Woods NT, Ghosal G, Hyde RK, Buckley SM. FBXO21 mediated degradation of p85α regulates proliferation and survival of acute myeloid leukemia. Leukemia 2023; 37:2197-2208. [PMID: 37689825 PMCID: PMC10624613 DOI: 10.1038/s41375-023-02020-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by clonal expansion of myeloid blasts in the bone marrow (BM). Despite advances in therapy, the prognosis for AML patients remains poor, and there is a need to identify novel molecular pathways regulating tumor cell survival and proliferation. F-box ubiquitin E3 ligase, FBXO21, has low expression in AML, but expression correlates with survival in AML patients and patients with higher expression have poorer outcomes. Silencing FBXO21 in human-derived AML cell lines and primary patient samples leads to differentiation, inhibition of tumor progression, and sensitization to chemotherapy agents. Additionally, knockdown of FBXO21 leads to up-regulation of cytokine signaling pathways. Through a mass spectrometry-based proteomic analysis of FBXO21 in AML, we identified that FBXO21 ubiquitylates p85α, a regulatory subunit of the phosphoinositide 3-kinase (PI3K) pathway, for degradation resulting in decreased PI3K signaling, dimerization of free p85α and ERK activation. These findings reveal the ubiquitin E3 ligase, FBXO21, plays a critical role in regulating AML pathogenesis, specifically through alterations in PI3K via regulation of p85α protein stability.
Collapse
Affiliation(s)
- Kasidy K Dobish
- Department of Internal Medicine, Division of Hematology & Hematopoietic Malignancies, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Karli J Wittorf
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Samantha A Swenson
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dalton C Bean
- Department of Internal Medicine, Division of Hematology & Hematopoietic Malignancies, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, USA
| | - Catherine M Gavile
- Department of Internal Medicine, Division of Hematology & Hematopoietic Malignancies, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Nicholas T Woods
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Gargi Ghosal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - R Katherine Hyde
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shannon M Buckley
- Department of Internal Medicine, Division of Hematology & Hematopoietic Malignancies, University of Utah, Salt Lake City, UT, USA.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
- Department of Oncological Sciences, University of Utah, Salt Lake City, USA.
| |
Collapse
|
12
|
Mayoh C, Mao J, Xie J, Tax G, Chow SO, Cadiz R, Pazaky K, Barahona P, Ajuyah P, Trebilcock P, Malquori A, Gunther K, Avila A, Yun DY, Alfred S, Gopalakrishnan A, Kamili A, Wong M, Cowley MJ, Jessop S, Lau LM, Trahair TN, Ziegler DS, Fletcher JI, Gifford AJ, Tsoli M, Marshall GM, Haber M, Tyrrell V, Failes TW, Arndt GM, Lock RB, Ekert PG, Dolman MEM. High-Throughput Drug Screening of Primary Tumor Cells Identifies Therapeutic Strategies for Treating Children with High-Risk Cancer. Cancer Res 2023; 83:2716-2732. [PMID: 37523146 PMCID: PMC10425737 DOI: 10.1158/0008-5472.can-22-3702] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/10/2023] [Accepted: 06/02/2023] [Indexed: 08/01/2023]
Abstract
For one-third of patients with pediatric cancer enrolled in precision medicine programs, molecular profiling does not result in a therapeutic recommendation. To identify potential strategies for treating these high-risk pediatric patients, we performed in vitro screening of 125 patient-derived samples against a library of 126 anticancer drugs. Tumor cell expansion did not influence drug responses, and 82% of the screens on expanded tumor cells were completed while the patients were still under clinical care. High-throughput drug screening (HTS) confirmed known associations between activating genomic alterations in NTRK, BRAF, and ALK and responses to matching targeted drugs. The in vitro results were further validated in patient-derived xenograft models in vivo and were consistent with clinical responses in treated patients. In addition, effective combinations could be predicted by correlating sensitivity profiles between drugs. Furthermore, molecular integration with HTS identified biomarkers of sensitivity to WEE1 and MEK inhibition. Incorporating HTS into precision medicine programs is a powerful tool to accelerate the improved identification of effective biomarker-driven therapeutic strategies for treating high-risk pediatric cancers. SIGNIFICANCE Integrating HTS with molecular profiling is a powerful tool for expanding precision medicine to support drug treatment recommendations and broaden the therapeutic options available to high-risk pediatric cancers.
Collapse
Affiliation(s)
- Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Jie Mao
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Jinhan Xie
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Gabor Tax
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Shu-Oi Chow
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Roxanne Cadiz
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Karina Pazaky
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Paulette Barahona
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Pamela Ajuyah
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Peter Trebilcock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Angela Malquori
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Kate Gunther
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Anica Avila
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Doo Young Yun
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Stephanie Alfred
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Anjana Gopalakrishnan
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Alvin Kamili
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Marie Wong
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Mark J. Cowley
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Sophie Jessop
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Loretta M.S. Lau
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Toby N. Trahair
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - David S. Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Jamie I. Fletcher
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Andrew J. Gifford
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Anatomical Pathology, NSW Health Pathology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Maria Tsoli
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Glenn M. Marshall
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Vanessa Tyrrell
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Timothy W. Failes
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Greg M. Arndt
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Richard B. Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Paul G. Ekert
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - M. Emmy M. Dolman
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
13
|
Safaroghli-Azar A, Sanaei MJ, Pourbagheri-Sigaroodi A, Bashash D. Phosphoinositide 3-kinase (PI3K) classes: From cell signaling to endocytic recycling and autophagy. Eur J Pharmacol 2023:175827. [PMID: 37269974 DOI: 10.1016/j.ejphar.2023.175827] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Lipid signaling is defined as any biological signaling action in which a lipid messenger binds to a protein target, converting its effects to specific cellular responses. In this complex biological pathway, the family of phosphoinositide 3-kinase (PI3K) represents a pivotal role and affects many aspects of cellular biology from cell survival, proliferation, and migration to endocytosis, intracellular trafficking, metabolism, and autophagy. While yeasts have a single isoform of phosphoinositide 3-kinase (PI3K), mammals possess eight PI3K types divided into three classes. The class I PI3Ks have set the stage to widen research interest in the field of cancer biology. The aberrant activation of class I PI3Ks has been identified in 30-50% of human tumors, and activating mutations in PIK3CA is one of the most frequent oncogenes in human cancer. In addition to indirect participation in cell signaling, class II and III PI3Ks primarily regulate vesicle trafficking. Class III PI3Ks are also responsible for autophagosome formation and autophagy flux. The current review aims to discuss the original data obtained from international research laboratories on the latest discoveries regarding PI3Ks-mediated cell biological processes. Also, we unravel the mechanisms by which pools of the same phosphoinositides (PIs) derived from different PI3K types act differently.
Collapse
Affiliation(s)
- Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Tharin Z, Richard C, Derangère V, Ilie A, Arnould L, Ghiringhelli F, Boidot R, Ladoire S. PIK3CA and PIK3R1 tumor mutational landscape in a pan-cancer patient cohort and its association with pathway activation and treatment efficacy. Sci Rep 2023; 13:4467. [PMID: 36934165 PMCID: PMC10024711 DOI: 10.1038/s41598-023-31593-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 03/14/2023] [Indexed: 03/20/2023] Open
Abstract
There is little data concerning the implications of PIK3CA mutations outside of the known hotspots described in ER+/HER2- metastatic breast cancer (mBC). Similarly, PIK3R1 mutations could also lead to activation of PI3K pathway, but are poorly described. We determined the incidence and type of all somatic PIK3CA and PIK3R1 mutations by whole exome sequencing (WES) in a pan-cancer cohort of 1200 patients. Activation of the PI3K pathway was studied using phospho-AKT immunohistochemistry. Associations between PIK3CA/PIK3R1 mutations and response to chemotherapy were studied in mBC cases. We found 141 patients (11.8%) with a PIK3CA and/or PIK3R1 mutation across 20 different cancer types. The main cancer subtype was mBC (45.4%). Eighty-four mutations (62.2%) occurred in the three described hotspots; 51 mutations occurred outside of these hotspots. In total, 78.4% were considered activating or probably activating. Among PIK3R1 mutations, 20% were loss of function mutations, leading to a constitutional activation of the pathway. Phospho-AKT quantification in tumor samples was in favor of activation of the PI3K pathway in the majority of mutated tumors, regardless of mutation type. In ER+/HER2- mBC, first line chemotherapy efficacy was similar for PIK3CA-mutated and PIK3CA-WT tumors, whereas in triple negative mBC, chemotherapy appeared to be more effective in PIK3CA-WT tumors. In this large, real-life pan-cancer patient cohort, our results indicate that PIK3CA/PIK3R1 mutations are widely spread, and plead in favour of evaluating the efficacy of PI3K inhibitors outside of ER+/HER2- mBC and outside of hotspot mutations.
Collapse
Affiliation(s)
- Zoé Tharin
- Department of Medical Oncology, Centre Georges François Leclerc-UNICANCER, 1 Rue du Professeur Marion, 21000, Dijon, France
| | - Corentin Richard
- Department of Pathology and Tumor Biology, Centre Georges François Leclerc, Dijon, France
| | - Valentin Derangère
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center, Dijon, France
- University of Burgundy-Franche Comté, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| | - Alis Ilie
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| | - Laurent Arnould
- Department of Pathology and Tumor Biology, Centre Georges François Leclerc, Dijon, France
| | - François Ghiringhelli
- Department of Medical Oncology, Centre Georges François Leclerc-UNICANCER, 1 Rue du Professeur Marion, 21000, Dijon, France
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center, Dijon, France
- University of Burgundy-Franche Comté, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| | - Romain Boidot
- Department of Pathology and Tumor Biology, Centre Georges François Leclerc, Dijon, France
- ICMUB UMR CNRS 6302, Dijon, France
| | - Sylvain Ladoire
- Department of Medical Oncology, Centre Georges François Leclerc-UNICANCER, 1 Rue du Professeur Marion, 21000, Dijon, France.
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center, Dijon, France.
- University of Burgundy-Franche Comté, Dijon, France.
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France.
| |
Collapse
|
15
|
Modlin EW, Slavotinek AM, Darling TN, Lipkowitz S, Barr FG, Munster PN, Biesecker LG, Ours CA. Late-onset Proteus syndrome with cerebriform connective tissue nevus and subsequent development of intraductal papilloma. Am J Med Genet A 2022; 188:2766-2771. [PMID: 35441778 PMCID: PMC9519031 DOI: 10.1002/ajmg.a.62761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 01/25/2023]
Abstract
Proteus syndrome (PS) is a rare segmental overgrowth disorder caused by a mosaic activating variant in AKT1. The features of PS are often not present at birth but develop during the first few years of life. We describe a 55-year-old female, whose first symptom of overgrowth, a cerebriform connective tissue nevus, occurred at 19 years of age. We report the identification of the AKT1 c.49G > A p.(Glu17Lys) variant in this progressive lesion, the bony overgrowth, and recurrence after surgical intervention. In the sixth decade of life, this individual developed intraductal papillomas within her right breast which were confirmed to contain the same activating AKT1 variant as the connective tissue nevus. While similar neoplasms have been described in an individual with Proteus syndrome, none has been evaluated for the presence of the AKT1 variant. The tumor also contained two likely pathogenic variants in PIK3R1, c.1392_1403dupTAGATTATATGA p.(Asp464_Tyr467dup) and c.1728_1730delGAG p.(Arg577del). The finding of additional genetic variation putatively affecting the PI3K/AKT pathway in the neoplastic tissue may provide preliminary evidence of a molecular mechanism for tumorigenesis in PS. The late onset of symptoms and molecular characterization of the breast tumor expand the clinical spectrum of this rare disorder.
Collapse
Affiliation(s)
- Emily W. Modlin
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anne M. Slavotinek
- Department of Pediatrics, Division of Genetics, University of California San Francisco, San Francisco, California, USA
| | - Thomas N. Darling
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stanley Lipkowitz
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Frederic G. Barr
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Pamela N. Munster
- Department of Medicine, University of California Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Leslie G. Biesecker
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher A. Ours
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Chakraborty G, Nandakumar S, Hirani R, Nguyen B, Stopsack KH, Kreitzer C, Rajanala SH, Ghale R, Mazzu YZ, Pillarsetty NVK, Mary Lee GS, Scher HI, Morris MJ, Traina T, Razavi P, Abida W, Durack JC, Solomon SB, Vander Heiden MG, Mucci LA, Wibmer AG, Schultz N, Kantoff PW. The Impact of PIK3R1 Mutations and Insulin-PI3K-Glycolytic Pathway Regulation in Prostate Cancer. Clin Cancer Res 2022; 28:3603-3617. [PMID: 35670774 PMCID: PMC9438279 DOI: 10.1158/1078-0432.ccr-21-4272] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/07/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Oncogenic alterations of the PI3K/AKT pathway occur in >40% of patients with metastatic castration-resistant prostate cancer, predominantly via PTEN loss. The significance of other PI3K pathway components in prostate cancer is largely unknown. EXPERIMENTAL DESIGN Patients in this study underwent tumor sequencing using the MSK-IMPACT clinical assay to capture single-nucleotide variants, insertions, and deletions; copy-number alterations; and structural rearrangements, or were profiled through The Cancer Genome Atlas. The association between PIK3R1 alteration/expression and survival was evaluated using univariable and multivariable Cox proportional-hazards regression models. We used the siRNA-based knockdown of PIK3R1 for functional studies. FDG-PET/CT examinations were performed with a hybrid positron emission tomography (PET)/CT scanner for some prostate cancer patients in the MSK-IMPACT cohort. RESULTS Analyzing 1,417 human prostate cancers, we found a significant enrichment of PIK3R1 alterations in metastatic cancers compared with primary cancers. PIK3R1 alterations or reduced mRNA expression tended to be associated with worse clinical outcomes in prostate cancer, particularly in primary disease, as well as in breast, gastric, and several other cancers. In prostate cancer cell lines, PIK3R1 knockdown resulted in increased cell proliferation and AKT activity, including insulin-stimulated AKT activity. In cell lines and organoids, PIK3R1 loss/mutation was associated with increased sensitivity to AKT inhibitors. PIK3R1-altered patient prostate tumors had increased uptake of the glucose analogue 18F-fluorodeoxyglucose in PET imaging, suggesting increased glycolysis. CONCLUSIONS Our findings describe a novel genomic feature in metastatic prostate cancer and suggest that PIK3R1 alteration may be a key event for insulin-PI3K-glycolytic pathway regulation in prostate cancer.
Collapse
Affiliation(s)
- Goutam Chakraborty
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Subhiksha Nandakumar
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rahim Hirani
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Bastien Nguyen
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Konrad H. Stopsack
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Christoph Kreitzer
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Romina Ghale
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ying Z. Mazzu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Gwo-Shu Mary Lee
- Department of Medicine, Dana-Farber Cancer Institute, Boston, MA
| | - Howard I. Scher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Biomarker Development Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael J. Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tiffany Traina
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jeremy C. Durack
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Stephen B. Solomon
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Matthew G. Vander Heiden
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, MA
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Andreas G. Wibmer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nikolaus Schultz
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Philip W. Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
17
|
Wang K, Hu Y, Xu L, Zhao S, Song C, Sun S, Li X, Li M. A novel mutant PIK3R1 EY451delinsD breast cancer patient resistant to HER2-targeted therapy treated with everolimus: a case report. Mol Biol Rep 2022; 49:6155-6160. [PMID: 35384625 DOI: 10.1007/s11033-022-07407-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/18/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Resistance to HER2-targeted therapy is a critical issue in breast cancer that must be addressed immediately. PIK3R1 mutations are more common in Chinese breast cancer patients (17%, 25/147, Fudan University Shanghai Cancer Center FUSCC vs. 1.8%, 87/4602, TCGA all breast cancer studies). However, very limited information is available on the relationship between PIK3R1 mutation status and resistance to HER2-targeted therapies in patients with HER2-positive breast cancer. CASE REPORT We present a case of a HER2-positive advanced breast cancer patient with the PIK3R1EY451delinsD mutation who developed resistance to HER2-targeted therapy and had a better response to everolimus combined with trastuzumab and carboplatin. CONCLUSIONS To the best of our knowledge, this is the first study to show that the PIK3R1EY451delinsD mutation confers resistance to anti-HER2 therapy in breast cancer and that combining with everolimus treatment may overcome this resistance mechanism. We hypothesize that the PIK3R1EY451delinsD mutation is associated with the resistance to anti-HER2 therapy, and that this mutation merits further investigation as a clinical biomarker and therapeutic target.
Collapse
Affiliation(s)
- Kainan Wang
- Department of Oncology & Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, Liaoning Province, China
| | - Ye Hu
- Department of Oncology & Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, Liaoning Province, China
| | - Lingzhi Xu
- Department of Oncology & Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, Liaoning Province, China
| | - Shanshan Zhao
- Department of Oncology & Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, Liaoning Province, China
| | - Chen Song
- Department of Oncology & Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, Liaoning Province, China
| | - Siwen Sun
- Department of Oncology & Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, Liaoning Province, China
| | - Xuelu Li
- Department of Oncology & Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, Liaoning Province, China.
| | - Man Li
- Department of Oncology & Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, Liaoning Province, China.
| |
Collapse
|
18
|
Vasan N, Cantley LC. At a crossroads: how to translate the roles of PI3K in oncogenic and metabolic signalling into improvements in cancer therapy. Nat Rev Clin Oncol 2022; 19:471-485. [PMID: 35484287 PMCID: PMC11215755 DOI: 10.1038/s41571-022-00633-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
Numerous agents targeting various phosphatidylinositol 3-kinase (PI3K) pathway components, including PI3K, AKT and mTOR, have been tested in oncology clinical trials, resulting in regulatory approvals for the treatment of selected patients with breast cancer, certain other solid tumours or particular haematological malignancies. However, given the prominence of PI3K signalling in cancer and the crucial role of this pathway in linking cancer growth with metabolism, these clinical results could arguably be improved upon. In this Review, we discuss past and present efforts to overcome the somewhat limited clinical efficacy of PI3Kα pathway inhibitors, including optimization of inhibitor specificity, patient selection and biomarkers across cancer types, with a focus on breast cancer, as well as identification and abrogation of signalling-related and metabolic mechanisms of resistance, and interventions to improve management of prohibitive adverse events. We highlight the advantages and limitations of laboratory-based model systems used to study the PI3K pathway, and propose technologies and experimental inquiries to guide the future clinical deployment of PI3K pathway inhibitors in the treatment of cancer.
Collapse
Affiliation(s)
- Neil Vasan
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
19
|
Izquierdo E, Carvalho DM, Mackay A, Temelso S, Boult JK, Pericoli G, Fernandez E, Das M, Molinari V, Grabovska Y, Rogers RF, Ajmone-Cat MA, Proszek PZ, Stubbs M, Depani S, O'Hare P, Yu L, Roumelioti G, Choudhary JS, Clarke M, Fairchild AR, Jacques TS, Grundy RG, Howell L, Picton S, Adamski J, Wilson S, Gray JC, Zebian B, Marshall LV, Carceller F, Grill J, Vinci M, Robinson SP, Hubank M, Hargrave D, Jones C. DIPG Harbors Alterations Targetable by MEK Inhibitors, with Acquired Resistance Mechanisms Overcome by Combinatorial Inhibition. Cancer Discov 2022; 12:712-729. [PMID: 34737188 PMCID: PMC7612484 DOI: 10.1158/2159-8290.cd-20-0930] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/04/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
The survival of children with diffuse intrinsic pontine glioma (DIPG) remains dismal, with new treatments desperately needed. In a prospective biopsy-stratified clinical trial, we combined detailed molecular profiling and drug screening in newly established patient-derived models in vitro and in vivo. We identified in vitro sensitivity to MEK inhibitors in DIPGs harboring MAPK pathway alterations, but treatment of patient-derived xenograft models and a patient at relapse failed to elicit a significant response. We generated trametinib-resistant clones in a BRAFG469V model through continuous drug exposure and identified acquired mutations in MEK1/2 with sustained pathway upregulation. These cells showed hallmarks of mesenchymal transition and expression signatures overlapping with inherently trametinib-insensitive patient-derived cells, predicting sensitivity to dasatinib. Combined trametinib and dasatinib showed highly synergistic effects in vitro and on ex vivo brain slices. We highlight the MAPK pathway as a therapeutic target in DIPG and show the importance of parallel resistance modeling and combinatorial treatments for meaningful clinical translation. SIGNIFICANCE We report alterations in the MAPK pathway in DIPGs to confer initial sensitivity to targeted MEK inhibition. We further identify for the first time the mechanism of resistance to single-agent targeted therapy in these tumors and suggest a novel combinatorial treatment strategy to overcome it in the clinic. This article is highlighted in the In This Issue feature, p. 587.
Collapse
Affiliation(s)
- Elisa Izquierdo
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Diana M. Carvalho
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Alan Mackay
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Sara Temelso
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Jessica K.R. Boult
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Giulia Pericoli
- Department of Haematology/Oncology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Elisabet Fernandez
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Molina Das
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Valeria Molinari
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Yura Grabovska
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Rebecca F. Rogers
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | | | - Paula Z. Proszek
- Molecular Diagnostics, Royal Marsden Hospital NHS Trust, Sutton, United Kingdom
| | - Mark Stubbs
- Division of Cancer Therapeutics, Institute of Cancer Research, London, United Kingdom
| | - Sarita Depani
- Department of Haematology and Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Patricia O'Hare
- Department of Haematology and Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Lu Yu
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Georgia Roumelioti
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Jyoti S. Choudhary
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Matthew Clarke
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Amy R. Fairchild
- UCL Great Ormond Street Institute for Child Health, London, United Kingdom
| | - Thomas S. Jacques
- UCL Great Ormond Street Institute for Child Health, London, United Kingdom
| | - Richard G. Grundy
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Lisa Howell
- Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Susan Picton
- Leeds Children's Hospital, Leeds, United Kingdom
| | - Jenny Adamski
- Birmingham Women's and Children's Hospital, Birmingham, United Kingdom
| | - Shaun Wilson
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Juliet C. Gray
- Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | - Bassel Zebian
- Department of Neurosurgery, Kings College Hospital NHS Trust, London, United Kingdom
| | - Lynley V. Marshall
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Children & Young People's Unit, Royal Marsden Hospital NHS Trust, Sutton, United Kingdom
| | - Fernando Carceller
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Children & Young People's Unit, Royal Marsden Hospital NHS Trust, Sutton, United Kingdom
| | - Jacques Grill
- Department of Pediatric and Adolescent Oncology and INSERM Unit U891, Team “Genomics and Oncogenesis of Pediatric Brain Tumors,” Gustave Roussy and University Paris-Saclay, Villejuif, France
| | - Maria Vinci
- Department of Haematology/Oncology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Simon P. Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Michael Hubank
- Molecular Diagnostics, Royal Marsden Hospital NHS Trust, Sutton, United Kingdom
| | - Darren Hargrave
- Department of Haematology and Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- UCL Great Ormond Street Institute for Child Health, London, United Kingdom
| | - Chris Jones
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
20
|
Li J, Lu H, Ng PKS, Pantazi A, Ip CKM, Jeong KJ, Amador B, Tran R, Tsang YH, Yang L, Song X, Dogruluk T, Ren X, Hadjipanayis A, Bristow CA, Lee S, Kucherlapati M, Parfenov M, Tang J, Seth S, Mahadeshwar HS, Mojumdar K, Zeng D, Zhang J, Protopopov A, Seidman JG, Creighton CJ, Lu Y, Sahni N, Shaw KR, Meric-Bernstam F, Futreal A, Chin L, Scott KL, Kucherlapati R, Mills GB, Liang H. A functional genomic approach to actionable gene fusions for precision oncology. SCIENCE ADVANCES 2022; 8:eabm2382. [PMID: 35138907 PMCID: PMC8827659 DOI: 10.1126/sciadv.abm2382] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/16/2021] [Indexed: 06/01/2023]
Abstract
Fusion genes represent a class of attractive therapeutic targets. Thousands of fusion genes have been identified in patients with cancer, but the functional consequences and therapeutic implications of most of these remain largely unknown. Here, we develop a functional genomic approach that consists of efficient fusion reconstruction and sensitive cell viability and drug response assays. Applying this approach, we characterize ~100 fusion genes detected in patient samples of The Cancer Genome Atlas, revealing a notable fraction of low-frequency fusions with activating effects on tumor growth. Focusing on those in the RTK-RAS pathway, we identify a number of activating fusions that can markedly affect sensitivity to relevant drugs. Last, we propose an integrated, level-of-evidence classification system to prioritize gene fusions systematically. Our study reiterates the urgent clinical need to incorporate similar functional genomic approaches to characterize gene fusions, thereby maximizing the utility of gene fusions for precision oncology.
Collapse
Affiliation(s)
- Jun Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hengyu Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Patrick Kwok-Shing Ng
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Angeliki Pantazi
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
| | - Carman Ka Man Ip
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kang Jin Jeong
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bianca Amador
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard Tran
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yiu Huen Tsang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lixing Yang
- Ben May Department for Cancer Research and Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
- Institute for Applied Cancer Science, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Turgut Dogruluk
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Xiaojia Ren
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
| | - Angela Hadjipanayis
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
| | - Christopher A. Bristow
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
- Institute for Applied Cancer Science, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Semin Lee
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Melanie Kucherlapati
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
| | - Michael Parfenov
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jiabin Tang
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
- Institute for Applied Cancer Science, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Sahil Seth
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
- Institute for Applied Cancer Science, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Harshad S. Mahadeshwar
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
- Institute for Applied Cancer Science, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Kamalika Mojumdar
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dong Zeng
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
- Institute for Applied Cancer Science, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
- Institute for Applied Cancer Science, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Alexei Protopopov
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
- Institute for Applied Cancer Science, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan G. Seidman
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
| | - Chad J. Creighton
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Yiling Lu
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Nidhi Sahni
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
| | - Kenna R. Shaw
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Futreal
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Lynda Chin
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
- Institute for Applied Cancer Science, The University of MD Anderson Cancer Center, Houston, TX, USA
- Dell Medical School, The University of Texas Austin, Austin, TX, USA
| | - Kenneth L. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Raju Kucherlapati
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
| | - Gordon B. Mills
- Division of Oncologic Sciences, Knight Cancer Institute, Oregon Health Sciences University, Portland, OR, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
21
|
Karagiannakos A, Adamaki M, Tsintarakis A, Vojtesek B, Fåhraeus R, Zoumpourlis V, Karakostis K. Targeting Oncogenic Pathways in the Era of Personalized Oncology: A Systemic Analysis Reveals Highly Mutated Signaling Pathways in Cancer Patients and Potential Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14030664. [PMID: 35158934 PMCID: PMC8833388 DOI: 10.3390/cancers14030664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is the second leading cause of death globally. One of the main hallmarks in cancer is the functional deregulation of crucial molecular pathways via driver genetic events that lead to abnormal gene expression, giving cells a selective growth advantage. Driver events are defined as mutations, fusions and copy number alterations that are causally implicated in oncogenesis. Molecular analysis on tissues that have originated from a wide range of anatomical areas has shown that mutations in different members of several pathways are implicated in different cancer types. In recent decades, significant efforts have been made to incorporate this knowledge into daily medical practice, providing substantial insight towards clinical diagnosis and personalized therapies. However, since there is still a strong need for more effective drug development, a deep understanding of the involved signaling mechanisms and the interconnections between these pathways is highly anticipated. Here, we perform a systemic analysis on cancer patients included in the Pan-Cancer Atlas project, with the aim to select the ten most highly mutated signaling pathways (p53, RTK-RAS, lipids metabolism, PI-3-Kinase/Akt, ubiquitination, b-catenin/Wnt, Notch, cell cycle, homology directed repair (HDR) and splicing) and to provide a detailed description of each pathway, along with the corresponding therapeutic applications currently being developed or applied. The ultimate scope is to review the current knowledge on highly mutated pathways and to address the attractive perspectives arising from ongoing experimental studies for the clinical implementation of personalized medicine.
Collapse
Affiliation(s)
- Alexandros Karagiannakos
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Antonis Tsintarakis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (B.V.); (R.F.)
| | - Robin Fåhraeus
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (B.V.); (R.F.)
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
- International Centre for Cancer Vaccine Science, University of Gdansk, 80-822 Gdansk, Poland
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
- Correspondence: (V.Z.); (K.K.)
| | - Konstantinos Karakostis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: (V.Z.); (K.K.)
| |
Collapse
|
22
|
Cancer-associated mutations in the p85α N-terminal SH2 domain activate a spectrum of receptor tyrosine kinases. Proc Natl Acad Sci U S A 2021; 118:2101751118. [PMID: 34507989 PMCID: PMC8449365 DOI: 10.1073/pnas.2101751118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
Phosphoinositide 3-kinase activation typically occurs following stimulation by upstream receptor tyrosine kinases (RTKs), which alleviate p110α inhibition by p85α. p85α and p110α driver mutations have been reported to activate p110α by disrupting the inhibitory interface between p85α and p110α. This study revealed that driver mutations in the p85α N-terminal SH2 domain can enhance p110α activity by inducing the activation of multiple RTKs. Furthermore, combination treatment with RTK and AKT inhibitors provides synergistic therapeutic efficacy. This previously uncharacterized oncogenic mechanism presents the exploitable vulnerability of a class of p85α mutant tumors. The phosphoinositide 3-kinase regulatory subunit p85α is a key regulator of kinase signaling and is frequently mutated in cancers. In the present study, we showed that in addition to weakening the inhibitory interaction between p85α and p110α, a group of driver mutations in the p85α N-terminal SH2 domain activated EGFR, HER2, HER3, c-Met, and IGF-1R in a p110α-independent manner. Cancer cells expressing these mutations exhibited the activation of p110α and the AKT pathway. Interestingly, the activation of EGFR, HER2, and c-Met was attributed to the ability of driver mutations to inhibit HER3 ubiquitination and degradation. The resulting increase in HER3 protein levels promoted its heterodimerization with EGFR, HER2, and c-Met, as well as the allosteric activation of these dimerized partners; however, HER3 silencing abolished this transactivation. Accordingly, inhibitors of either AKT or the HER family reduced the oncogenicity of driver mutations. The combination of these inhibitors resulted in marked synergy. Taken together, our findings provide mechanistic insights and suggest therapeutic strategies targeting a class of recurrent p85α mutations.
Collapse
|
23
|
Abstract
Technological innovation and rapid reduction in sequencing costs have enabled the genomic profiling of hundreds of cancer-associated genes as a component of routine cancer care. Tumour genomic profiling can refine cancer subtype classification, identify which patients are most likely to benefit from systemic therapies and screen for germline variants that influence heritable cancer risk. Here, we discuss ongoing efforts to enhance the clinical utility of tumour genomic profiling by integrating tumour and germline analyses, characterizing allelic context and identifying mutational signatures that influence therapy response. We also discuss the potential clinical utility of more comprehensive whole-genome and whole-transcriptome sequencing and ultra-sensitive cell-free DNA profiling platforms, which allow for minimally invasive, serial analyses of tumour-derived DNA in blood.
Collapse
Affiliation(s)
- Debyani Chakravarty
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David B Solit
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
24
|
Zhang X, Wang G, Li H, Jiang X, Zhao X. STAT3-mediated effects of methyltransferase inhibitor 5-aza-2'-deoxycytidine on preeclampsia. Am J Transl Res 2021; 13:4103-4119. [PMID: 34150002 PMCID: PMC8205656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To investigate the effects of 5-aza-2'-deoxycytidine (5-AZA-DC) on preeclampsia (PE) and functional mechanisms dependent on STAT3. MATERIALS AND METHODS Trophoblastic cells (HTR8/Svneo, JEG-3, JAR and BeWo) were used to constructed STAT3-overexpressing or -silenced cells. qRT-PCR, Western blot, and FISH were used to detect mRNA and protein expression. GST-pull down, ChIP and dual luciferase reporter were used to prove the association of STAT3 and PTEN or TSC2, LC-MS/MS for proteome, and MeDIP-Seq for transcriptome. CCK-8 and flow cytometry were used to examine cell proliferation and apoptosis. C57BL/6J mice were divided into 4 groups (control, control + 5-AZA-DC, PE and PE + 5-AZA-DC). Systolic blood pressure, 24-h urinary protein, APTT, D-D, PT, ALT, Scr, and BUN were determined. Placental blood flow velocity was detected by Doppler ultrasound, HE staining for kidney injury. RESULTS STAT3, PTEN and TSC2 were the dominantly differential expressed genes in preeclampsia. Aberrant STAT3 expression increased DNMT1 levels. STAT3 regulated PTEN promoter activity. STAT3 interacted with PTEN and TSC2. DNMT1 was increased while STAT3, PTEN and TSC2 were decreased by 5-AZA-DC. Cell proliferation was promoted and apoptosis was inhibited by 5-AZA-DC. PE-induced STAT3 down-regulation was restored by 5-AZA-DC. Systolic blood pressure, 24-h urinary protein, APTT, D-D, PT, ALT, Scr and BUN were increased, and velocity of placental blood flow was inhibited in PE compared with control mice, while 5-AZA-DC relived these indicators. CONCLUSIONS Preeclampsia symptoms was relieved by 5-AZA-DC, suggesting that 5-AZA-DC could be used as a potential drug for epigenetic treatment of preeclampsia.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Obstetrics and Gynecology, Affiliated Huadu Hospital, Southern Medical University (People’s Hospital of Huadu District)Guangzhou 510800, China
- The Third School of Clinical Medicine, Southern Medical UniversityGuangzhou 510800, China
| | - Gang Wang
- Department of Obstetrics and Gynecology, Affiliated Huadu Hospital, Southern Medical University (People’s Hospital of Huadu District)Guangzhou 510800, China
| | - Hui Li
- Department of Obstetrics and Gynecology, Affiliated Huadu Hospital, Southern Medical University (People’s Hospital of Huadu District)Guangzhou 510800, China
| | - Xiangming Jiang
- Department of Obstetrics and Gynecology, Affiliated Huadu Hospital, Southern Medical University (People’s Hospital of Huadu District)Guangzhou 510800, China
| | - Xiaoyong Zhao
- The Third School of Clinical Medicine, Southern Medical UniversityGuangzhou 510800, China
- Department of Neurosurgery, Affiliated Huadu Hospital, Southern Medical University (People’s Hospital of Huadu District)Guangzhou 510800, China
| |
Collapse
|
25
|
Fusco N, Malapelle U, Fassan M, Marchiò C, Buglioni S, Zupo S, Criscitiello C, Vigneri P, Dei Tos AP, Maiorano E, Viale G. PIK3CA Mutations as a Molecular Target for Hormone Receptor-Positive, HER2-Negative Metastatic Breast Cancer. Front Oncol 2021; 11:644737. [PMID: 33842357 PMCID: PMC8027489 DOI: 10.3389/fonc.2021.644737] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the significant achievements in the diagnosis and treatment of metastatic breast cancer (MBC), this condition remains substantially an incurable disease. In recent years, several clinical studies have aimed to identify novel molecular targets, therapeutic strategies, and predictive biomarkers to improve the outcome of women with MBC. Overall, ~40% of hormone receptor (HR)+/HER2- MBC cases harbor alterations affecting the (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway. This pathway is a major target in oncogenesis, as it regulates growth, proliferation, cell survival, and angiogenesis. Lately, the pharmacologic targeting of PIK3CA in HR+/HER2- MBC has shown significant benefits after the occurrence of endocrine therapy resistance. The orally available α-selective PIK3CA inhibitor, alpelisib, has been approved in this setting. To perform an optimal patients' selection for this drug, it is crucial to adopt a tailored methodology. Clinically relevant PIK3CA alterations may be detected in several biospecimens (e.g. tissue samples and liquid biopsy) using different techniques (e.g. real-time PCR and next-generation sequencing). In this study, we provide an overview of the role of PIK3CA in breast cancer and of the characterization of its mutational status for appropriate clinical management.
Collapse
Affiliation(s)
- Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Matteo Fassan
- Department of Pathology, Padua University Hospital, Padua, Italy
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Caterina Marchiò
- Division of Pathology, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Simonetta Buglioni
- Division of Pathology and Cytopathology, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Simonetta Zupo
- Department of Pathology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Carmen Criscitiello
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Paolo Vigneri
- Experimental Oncology and Hematology Center, A.O.U. Policlinico “G. Rodolico - S. Marco”, Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Angelo Paolo Dei Tos
- Department of Pathology, Padua University Hospital, Padua, Italy
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Eugenio Maiorano
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Viale
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
26
|
Mäkelä R, Arjonen A, Suryo Rahmanto A, Härmä V, Lehtiö J, Kuopio T, Helleday T, Sangfelt O, Kononen J, Rantala JK. Ex vivo assessment of targeted therapies in a rare metastatic epithelial-myoepithelial carcinoma. Neoplasia 2020; 22:390-398. [PMID: 32645560 PMCID: PMC7341452 DOI: 10.1016/j.neo.2020.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022]
Abstract
Epithelial-myoepithelial carcinoma (EMC) is a rare subtype of salivary gland neoplasms. Since the initial description of the cancer, just over 300 cases have been reported. EMCs occupy a biphasic cellular differentiation-state defined by the constitution of two cell types representing epithelial and myoepithelial lineages, yet the functional consequence of the differentiation-state heterogeneity with respect to therapy resistance of the tumors remains unclear. The reported local recurrence rate of the cases is approximately 30%, and while distant metastases are rare, a significant fraction of these cases are reported to receive no survival benefit from radio- or chemotherapy given in addition to surgery. Moreover, no targeted therapies have been reported for these neoplasms. We report here the first use and application of ex vivo drug screening together with next generation sequencing to assess targeted treatment strategies for a rare metastatic epithelial-myoepithelial carcinoma. Results of the ex vivo drug screen demonstrate significant differential therapeutic sensitivity between the epithelial and myoepithelial intra-tumor cell lineages suggesting that differentiation-state heterogeneity within epithelial-myoepithelial carcinomas may present an outlet to partial therapeutic responses to targeted therapies including MEK and mTOR inhibitors. These results suggest that the intra-tumor lineage composition of EMC could be an important factor to be assessed when novel treatments are being evaluated for management of metastatic EMC.
Collapse
Affiliation(s)
| | | | | | - Ville Härmä
- Misvik Biology Oy, Turku, Finland; University of Sheffield, Department of Oncology and Metabolism, South Yorkshire, Sheffield, UK.
| | - Janne Lehtiö
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.
| | - Teijo Kuopio
- Central Finland Health Care District, Jyväskylä Medical Centre, Jyväskylä, Finland.
| | - Thomas Helleday
- University of Sheffield, Department of Oncology and Metabolism, South Yorkshire, Sheffield, UK
| | - Olle Sangfelt
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden.
| | - Juha Kononen
- Central Finland Health Care District, Jyväskylä Medical Centre, Jyväskylä, Finland; Docrates Hospital, Helsinki, Finland.
| | - Juha K Rantala
- Misvik Biology Oy, Turku, Finland; University of Sheffield, Department of Oncology and Metabolism, South Yorkshire, Sheffield, UK.
| |
Collapse
|
27
|
Rao L, Mak VCY, Zhou Y, Zhang D, Li X, Fung CCY, Sharma R, Gu C, Lu Y, Tipoe GL, Cheung ANY, Mills GB, Cheung LWT. p85β regulates autophagic degradation of AXL to activate oncogenic signaling. Nat Commun 2020; 11:2291. [PMID: 32385243 PMCID: PMC7210311 DOI: 10.1038/s41467-020-16061-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
PIK3R2 encodes the p85β regulatory subunit of phosphatidylinositol 3-kinase and is frequently amplified in cancers. The signaling mechanism and therapeutic implication of p85β are poorly understood. Here we report that p85β upregulates the protein level of the receptor tyrosine kinase AXL to induce oncogenic signaling in ovarian cancer. p85β activates p110 activity and AKT-independent PDK1/SGK3 signaling to promote tumorigenic phenotypes, which are all abolished upon inhibition of AXL. At the molecular level, p85β alters the phosphorylation of TRIM2 (an E3 ligase) and optineurin (an autophagy receptor), which mediate the selective regulation of AXL by p85β, thereby disrupting the autophagic degradation of the AXL protein. Therapeutically, p85β expression renders ovarian cancer cells vulnerable to inhibitors of AXL, p110, or PDK1. Conversely, p85β-depleted cells are less sensitive to these inhibitors. Together, our findings provide a rationale for pharmacological blockade of the AXL signaling axis in PIK3R2-amplified ovarian cancer.
Collapse
Affiliation(s)
- Ling Rao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Victor C Y Mak
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yuan Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Dong Zhang
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Xinran Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Chloe C Y Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Rakesh Sharma
- Proteomics and Metabolomics Core Facility, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Chao Gu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - George L Tipoe
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Annie N Y Cheung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Gordon B Mills
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Lydia W T Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
28
|
Harrison PT, Vyse S, Huang PH. Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer. Semin Cancer Biol 2020; 61:167-179. [PMID: 31562956 PMCID: PMC7083237 DOI: 10.1016/j.semcancer.2019.09.015] [Citation(s) in RCA: 375] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 12/18/2022]
Abstract
Epidermal growth factor receptor (EGFR) mutations are the second most common oncogenic driver event in non-small cell lung cancer (NSCLC). Classical activating mutations (exon 19 deletions and the L858R point mutation) comprise the vast majority of EGFR mutations and are well defined as strong predictors for good clinical response to EGFR tyrosine kinase inhibitors (EGFRi). However, low frequency mutations including point mutations, deletions, insertions and duplications occur within exons 18-25 of the EGFR gene in NSCLC and are associated with poorer responses to EGFRi. Despite an increased uptake of more sensitive detection methods to identify rare EGFR mutations in patients, our understanding of the biology of these rare EGFR mutations is poor compared to classical mutations. In particular, clinical data focused on these mutations is lacking due to their rarity and challenges in trial recruitment, resulting in an absence of effective treatment strategies for many low frequency EGFR mutations. In this review, we describe the structural and mechanistic features of rare EGFR mutations in NSCLC and discuss the preclinical and clinical evidence for EGFRi response for individual rare EGFR mutations. We also discuss EGFRi sensitivity for complex EGFR mutations, and conclude by offering a perspective on the outstanding questions and future steps required to make advances in the treatment of NSCLC patients that harbour rare EGFR mutations.
Collapse
Affiliation(s)
- Peter T Harrison
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Simon Vyse
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Paul H Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW3 6JB, UK.
| |
Collapse
|
29
|
Condorelli R, Mosele F, Verret B, Bachelot T, Bedard PL, Cortes J, Hyman DM, Juric D, Krop I, Bieche I, Saura C, Sotiriou C, Cardoso F, Loibl S, Andre F, Turner NC. Genomic alterations in breast cancer: level of evidence for actionability according to ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann Oncol 2020; 30:365-373. [PMID: 30715161 DOI: 10.1093/annonc/mdz036] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Better knowledge of the tumor genomic landscapes has helped to develop more effective targeted drugs. However, there is no tool to interpret targetability of genomic alterations assessed by next-generation sequencing in the context of clinical practice. Our aim is to rank the level of evidence of individual recurrent genomic alterations observed in breast cancer based on the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT) in order to help the clinicians to prioritize treatment. Analyses of databases suggested that there are around 40 recurrent driver alterations in breast cancer. ERBB2 amplification, germline BRCA1/2 mutations, PIK3CA mutations were classified tier of evidence IA based on large randomized trials showing antitumor activity of targeted therapies in patients presenting the alterations. NTRK fusions and microsatellite instability (MSI) were ranked IC. ESR1 mutations and PTEN loss were ranked tier IIA, and ERBB2 mutations and AKT1 mutations tier IIB. Somatic BRCA 1/2 mutations, MDM2 amplifications and ERBB 3 mutations were ranked tier III. Seventeen genes were ranked tier IV based on preclinical evidence. Finally, FGFR1 and CCND1 were ranked tier X alterations because previous studies have shown lack of actionability.
Collapse
Affiliation(s)
- R Condorelli
- Department of Medical Oncolo, INSERM U981, Université Paris Sud, Gustave Roussy, Villejuif, France; Institute of Oncology and Breast Unit of Southern Switzerland, Bellinzona, Switzerland
| | - F Mosele
- Department of Medical Oncolo, INSERM U981, Université Paris Sud, Gustave Roussy, Villejuif, France.
| | - B Verret
- Department of Medical Oncolo, INSERM U981, Université Paris Sud, Gustave Roussy, Villejuif, France
| | - T Bachelot
- Department of Medical Oncology, Cancer Research Center of Lyon Inserm, Lyon, France
| | - P L Bedard
- Division of Medical Oncology & Hematolog, Department of Medicine, Princess Margaret Cancer Centre, Toronto, Canada
| | - J Cortes
- Ramon y Cajal University Hospital, Madrid & Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - D M Hyman
- Memorial Sloan Kettering Cancer Center, New York
| | - D Juric
- Massachusetts General Hospital (MGH), Boston
| | - I Krop
- Dana-Farber Cancer Institute, Boston, USA
| | - I Bieche
- Department of Genetics, Curie Institute, Paris, France
| | - C Saura
- Department of Medical Oncolog, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - C Sotiriou
- J.C. Heuson Breast Cancer Translational Research Laborator, Université Libre de Bruxelles, Institut Jules Bordet, Brussels, Belgium
| | - F Cardoso
- Breast Uni, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - S Loibl
- German Breast Group, Neu-Isenburg, Germany
| | - F Andre
- Department of Medical Oncolo, INSERM U981, Université Paris Sud, Gustave Roussy, Villejuif, France
| | - N C Turner
- Royal Marsden Hospital and Institute of Cancer Research, London, UK
| |
Collapse
|
30
|
Kotelevets L, Chastre E. Rac1 Signaling: From Intestinal Homeostasis to Colorectal Cancer Metastasis. Cancers (Basel) 2020; 12:cancers12030665. [PMID: 32178475 PMCID: PMC7140047 DOI: 10.3390/cancers12030665] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/14/2022] Open
Abstract
The small GTPase Rac1 has been implicated in a variety of dynamic cell biological processes, including cell proliferation, cell survival, cell-cell contacts, epithelial mesenchymal transition (EMT), cell motility, and invasiveness. These processes are orchestrated through the fine tuning of Rac1 activity by upstream cell surface receptors and effectors that regulate the cycling Rac1-GDP (off state)/Rac1-GTP (on state), but also through the tuning of Rac1 accumulation, activity, and subcellular localization by post translational modifications or recruitment into molecular scaffolds. Another level of regulation involves Rac1 transcripts stability and splicing. Downstream, Rac1 initiates a series of signaling networks, including regulatory complex of actin cytoskeleton remodeling, activation of protein kinases (PAKs, MAPKs) and transcription factors (NFkB, Wnt/β-catenin/TCF, STAT3, Snail), production of reactive oxygen species (NADPH oxidase holoenzymes, mitochondrial ROS). Thus, this GTPase, its regulators, and effector systems might be involved at different steps of the neoplastic progression from dysplasia to the metastatic cascade. After briefly placing Rac1 and its effector systems in the more general context of intestinal homeostasis and in wound healing after intestinal injury, the present review mainly focuses on the several levels of Rac1 signaling pathway dysregulation in colorectal carcinogenesis, their biological significance, and their clinical impact.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Institut National de la Santé et de la Recherche Médicale, UMR S 938, Centre de Recherche Saint-Antoine, 75012 Paris, France
- Sorbonne Université, Hôpital Saint-Antoine, Site Bâtiment Kourilsky, 75012 Paris, France
- Correspondence: (L.K.); (E.C.)
| | - Eric Chastre
- Institut National de la Santé et de la Recherche Médicale, UMR S 938, Centre de Recherche Saint-Antoine, 75012 Paris, France
- Sorbonne Université, Hôpital Saint-Antoine, Site Bâtiment Kourilsky, 75012 Paris, France
- Correspondence: (L.K.); (E.C.)
| |
Collapse
|
31
|
Mao Y, Chen L, Li J, Shangguan AJ, Kujawa S, Zhao H. A network analysis revealed the essential and common downstream proteins related to inguinal hernia. PLoS One 2020; 15:e0226885. [PMID: 31910207 PMCID: PMC6946160 DOI: 10.1371/journal.pone.0226885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/08/2019] [Indexed: 01/10/2023] Open
Abstract
Although more than 1 in 4 men develop symptomatic inguinal hernia during their lifetime, the molecular mechanism behind inguinal hernia remains unknown. Here, we explored the protein-protein interaction network built on known inguinal hernia-causative genes to identify essential and common downstream proteins for inguinal hernia formation. We discovered that PIK3R1, PTPN11, TGFBR1, CDC42, SOS1, and KRAS were the most essential inguinal hernia-causative proteins and UBC, GRB2, CTNNB1, HSP90AA1, CBL, PLCG1, and CRK were listed as the most commonly-involved downstream proteins. In addition, the transmembrane receptor protein tyrosine kinase signaling pathway was the most frequently found inguinal hernia-related pathway. Our in silico approach was able to uncover a novel molecular mechanism underlying inguinal hernia formation by identifying inguinal hernia-related essential proteins and potential common downstream proteins of inguinal hernia-causative proteins.
Collapse
Affiliation(s)
- Yimin Mao
- School of Information and Technology, Jiangxi University of Science and Technology, Jiangxi, China
- Applied Science Institute, Jiangxi University of Science and Technology, Jiangxi, China
| | - Le Chen
- School of Information and Technology, Jiangxi University of Science and Technology, Jiangxi, China
| | - Jianghua Li
- School of Information and Technology, Jiangxi University of Science and Technology, Jiangxi, China
| | - Anna Junjie Shangguan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Stacy Kujawa
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Hong Zhao
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
32
|
Bin Y, Wang X, Zhao L, Wen P, Xia J. An analysis of mutational signatures of synonymous mutations across 15 cancer types. BMC MEDICAL GENETICS 2019; 20:190. [PMID: 31815613 PMCID: PMC6900878 DOI: 10.1186/s12881-019-0926-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Synonymous mutations have been identified to play important roles in cancer development, although they do not modify the protein sequences. However, relatively little research has specifically delineated the functionality of synonymous mutations in cancer. Results We investigated the nucleotide-based and amino acid-based features of synonymous mutations across 15 cancer types from The Cancer Genome Atlas (TCGA), and revealed novel driver candidates by identifying hotspot mutations. Firstly, synonymous mutations were analyzed between TCGA and 1000 Genomes Project at nucleotide and amino acid levels. We found that C:G → T:A transitions were the most frequent single-base substitutions, and leucine underwent the largest number of synonymous mutations in TCGA due to prevalent C → T transition, which induced the transformation between optimal and non-optimal codons. Next, 97 synonymous hotspot mutations in 86 genes were nominated as candidate drivers with potential cancer risk by considering the mutational rates across different sequence contexts. We observed that non-CpG-island GC transition sequence context was positively selected across most of cancer types, and different sequence contexts under which hotspot mutations occur could be significance for genetic differences and functional features. We also found that the hotspots were more conserved than neutral mutations of hotspot-mutation-containing-genes and frequently happened at leucine. In addition, we mapped hotspots, neutral and non-hotspot mutations of hotspot-mutation-containing-genes to their respective protein domains and found ion transport domain was the most frequent one, which could mediate the cell interaction and had relevant implication for tumor therapy. And the signatures of synonymous hotspots were qualitatively similar with those of harmful missense variants. Conclusions We illustrated the preferences of cancer associated synonymous mutations, especially hotspots, and laid the groundwork for understanding the synonymous mutations act as drivers in cancer.
Collapse
Affiliation(s)
- Yannan Bin
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology, Anhui University, Hefei, 230601, Anhui, China
| | - Xiaojuan Wang
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology, Anhui University, Hefei, 230601, Anhui, China
| | - Le Zhao
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology, Anhui University, Hefei, 230601, Anhui, China
| | - Pengbo Wen
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology, Anhui University, Hefei, 230601, Anhui, China
| | - Junfeng Xia
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology, Anhui University, Hefei, 230601, Anhui, China.
| |
Collapse
|
33
|
Abstract
One of the hallmarks of hormone receptor (HR)-positive breast cancer is its dependence on the phosphatidylinositol-3-kinase (PI3K) pathway. Here, we review the epidemiologic, functional, and pharmacologic interactions between oncogenic PI3K and the estrogen receptor (ER). We discuss the epidemiology of PI3K pathway alterations, mechanisms of resistance to PI3K inhibitors, and the current mechanistic landscape of crosstalk between PI3K and ER, which provide the rationale for dual ER and PI3K inhibition and is now a standard of care in the treatment of ER+ PIK3CA-mutant metastatic breast cancer. We outline newer studies in this field that delineate the clinically relevant overlaps between PI3K and parallel signaling pathways, insulin signaling, and ER epigenetic modifiers. We also identify several caveats with the current data and propose new strategies to overcome these bottlenecks.
Collapse
Affiliation(s)
- N Vasan
- Human Oncology and Pathogenesis Program, New York, USA
- Departments of Medicine, New York, USA
| | - E Toska
- Human Oncology and Pathogenesis Program, New York, USA
| | - M Scaltriti
- Human Oncology and Pathogenesis Program, New York, USA
- Departments of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
34
|
Kaoud TS, Johnson WH, Ebelt ND, Piserchio A, Zamora-Olivares D, Van Ravenstein SX, Pridgen JR, Edupuganti R, Sammons R, Cano M, Warthaka M, Harger M, Tavares CDJ, Park J, Radwan MF, Ren P, Anslyn EV, Tsai KY, Ghose R, Dalby KN. Modulating multi-functional ERK complexes by covalent targeting of a recruitment site in vivo. Nat Commun 2019; 10:5232. [PMID: 31745079 PMCID: PMC6863825 DOI: 10.1038/s41467-019-12996-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 10/10/2019] [Indexed: 12/31/2022] Open
Abstract
Recently, the targeting of ERK with ATP-competitive inhibitors has emerged as a potential clinical strategy to overcome acquired resistance to BRAF and MEK inhibitor combination therapies. In this study, we investigate an alternative strategy of targeting the D-recruitment site (DRS) of ERK. The DRS is a conserved region that lies distal to the active site and mediates ERK-protein interactions. We demonstrate that the small molecule BI-78D3 binds to the DRS of ERK2 and forms a covalent adduct with a conserved cysteine residue (C159) within the pocket and disrupts signaling in vivo. BI-78D3 does not covalently modify p38MAPK, JNK or ERK5. BI-78D3 promotes apoptosis in BRAF inhibitor-naive and resistant melanoma cells containing a BRAF V600E mutation. These studies provide the basis for designing modulators of protein-protein interactions involving ERK, with the potential to impact ERK signaling dynamics and to induce cell cycle arrest and apoptosis in ERK-dependent cancers.
Collapse
Affiliation(s)
- Tamer S Kaoud
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA.,Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - William H Johnson
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nancy D Ebelt
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrea Piserchio
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY, USA
| | | | - Sabrina X Van Ravenstein
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jacey R Pridgen
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ramakrishna Edupuganti
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Rachel Sammons
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Micael Cano
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Mangalika Warthaka
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Matthew Harger
- Biomedical Engineering Department, The University of Texas at Austin, Austin, TX, USA
| | - Clint D J Tavares
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jihyun Park
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohamed F Radwan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Pengyu Ren
- Biomedical Engineering Department, The University of Texas at Austin, Austin, TX, USA
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY, USA.,Graduate Programs in Biochemistry, Chemistry and Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
35
|
The Yin and Yang of cancer genes. Gene 2019; 704:121-133. [DOI: 10.1016/j.gene.2019.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/21/2019] [Accepted: 04/08/2019] [Indexed: 12/31/2022]
|
36
|
Turturro SB, Najor MS, Yung T, Portt L, Malarkey CS, Abukhdeir AM, Cobleigh MA. Somatic loss of PIK3R1 may sensitize breast cancer to inhibitors of the MAPK pathway. Breast Cancer Res Treat 2019; 177:325-333. [PMID: 31209687 DOI: 10.1007/s10549-019-05320-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/10/2019] [Indexed: 01/04/2023]
Abstract
PURPOSE The PI3K pathway, which includes the PI3K catalytic subunits p110α (PIK3CA) and the PI3K regulatory subunit p85α (PIK3R1), is the most frequently altered pathway in cancer. We encountered a breast cancer patient whose tumor contained a somatic alteration in PIK3R1. Some commercial sequencing platforms suggest that somatic mutations in PIK3R1 may sensitize cancers to drugs that inhibit the mammalian target of rapamycin (mTOR). However, a review of the preclinical and clinical literature did not find evidence substantiating that hypothesis. The purpose of this study was to knock out PIK3R1 in order to determine the optimal therapeutic approach for breast cancers lacking p85α. METHODS We created an isogenic cellular system by knocking out both alleles of the PIK3R1 gene in the non-tumorigenic human breast cell line MCF-10A. Knockout cells were compared with wild-type cells by measuring growth, cellular signaling, and response to drugs. RESULTS We observed hyperphosphorylation of MEK in these knockouts, which sensitized PIK3R1-null cells to a MEK inhibitor, trametinib. However, they were not sensitized to the mTOR inhibitor, everolimus. CONCLUSIONS Our findings suggest that breast cancers with loss of p85α may not respond to mTOR inhibition, but may be sensitive to MEK inhibition.
Collapse
Affiliation(s)
- Sanja B Turturro
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, 1725 W. Harrison St., Chicago, IL, 60612, USA
| | - Matthew S Najor
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, 1725 W. Harrison St., Chicago, IL, 60612, USA
| | - Timothy Yung
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, 1725 W. Harrison St., Chicago, IL, 60612, USA
| | - Liam Portt
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, 1725 W. Harrison St., Chicago, IL, 60612, USA
| | - Christopher S Malarkey
- School of Pharmacy, Rueckert-Hartman College for Health Professions, Regis University, 3333 Regis Boulevard, H-28, Denver, CO, 80221-1099, USA
| | - Abde M Abukhdeir
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, 1725 W. Harrison St., Chicago, IL, 60612, USA.
| | - Melody A Cobleigh
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, 1725 W. Harrison St., Chicago, IL, 60612, USA
| |
Collapse
|
37
|
Zhu Y, Ke J, Gong Y, Yang Y, Peng X, Tian J, Zou D, Yang N, Wang X, Mei S, Rao M, Ying P, Deng Y, Wang H, Zhang H, Li B, Wan H, Li Y, Niu S, Cai Y, Zhang M, Lu Z, Zhong R, Miao X, Chang J. A genetic variant in PIK3R1 is associated with pancreatic cancer survival in the Chinese population. Cancer Med 2019; 8:3575-3582. [PMID: 31059194 PMCID: PMC6601582 DOI: 10.1002/cam4.2228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/02/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is one of the deadliest malignancies with few early detection tests or effective therapies. PI3K-AKT signaling is recognized to modulate cancer progression. We previously identified that a genetic variant in PKN1 increased pancreatic cancer risk through the PKN1/FAK/PI3K/AKT pathway. In order to investigate the associations between genetic variations in that pathway and pancreatic cancer prognosis, we conducted a two-stage survival analysis in a total of 547 Chinese pancreatic cancer patients. Consequently, a variant, rs13167294 A>C in PIK3R1, was significantly associated with poor survival in both stages and with hazard ratio being 1.32 (95% CI = 1.13-1.56, P = 0.0007) in the combined analysis. Function annotation and prediction suggested that genetic variants in this locus might affect overall survival of pancreatic cancer patients by regulating PIK3R1 expression.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Juntao Ke
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yajie Gong
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yang Yang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xiating Peng
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Danyi Zou
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Nan Yang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xiaoyang Wang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Shufang Mei
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Meilin Rao
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Pingting Ying
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yao Deng
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Haoxue Wang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Hongli Zhang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Bin Li
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Hao Wan
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yue Li
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Siyuan Niu
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| |
Collapse
|
38
|
De Santis MC, Gulluni F, Campa CC, Martini M, Hirsch E. Targeting PI3K signaling in cancer: Challenges and advances. Biochim Biophys Acta Rev Cancer 2019; 1871:361-366. [DOI: 10.1016/j.bbcan.2019.03.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/19/2022]
|
39
|
Kopetz S, Mills Shaw KR, Lee JJ, Zhang J, Litzenburger B, Holla V, Kinyua W, Broaddus E, Daniels MS, Meric-Bernstam F, Broaddus RR. Use of a Targeted Exome Next-Generation Sequencing Panel Offers Therapeutic Opportunity and Clinical Benefit in a Subset of Patients With Advanced Cancers. JCO Precis Oncol 2019; 3:1800213. [PMID: 32914008 PMCID: PMC7446317 DOI: 10.1200/po.18.00213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Smaller hotspot-based next-generation sequencing (NGS) panels have emerged to support standard of care therapy for patients with cancer. When standard treatments fail, it is unknown whether additional testing using an expanded panel of genes provides any benefit. The purpose of this study was to determine if larger sequencing panels that capture additional actionable genes, coupled with decision support, translates into treatment with matched therapy after frontline therapy has failed. PATIENTS AND METHODS A prospective protocol accrued 521 patients with a wide variety of refractory cancers. NGS testing using a 46- or 50-gene hotspot assay, then a 409-gene whole-exome assay, was sequentially performed in a Clinical Laboratory Improvement Amendments–certified clinical laboratory. A decision-support team annotated somatic alterations in clinically actionable genes for function and facilitated therapeutic matching. Survival and the impact of matched therapy use were determined by Kaplan-Meier estimate, log-rank test, and Cox proportional hazards regression. RESULTS The larger NGS panel identified at least one alteration in an actionable gene not previously identified in the smaller sequencing panel in 214 (41%) of 521 of enrolled patients. After the application of decision support, 41% of the alterations in actionable genes were considered to affect the function of the gene and were deemed actionable. Forty patients (40 of 214 [19%]) were subsequently treated with matched therapy. Treatment with matched therapy was associated with significantly improved overall survival compared with treatment with nonmatched therapy (P = .017). CONCLUSION Combining decision support with larger NGS panels that incorporate genes beyond those recommended in current treatment guidelines helped to identify patients who were eligible for matched therapy while improving overall treatment selection and survival. This survival benefit was restricted to a small subset of patients.
Collapse
Affiliation(s)
- Scott Kopetz
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - J Jack Lee
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jiexin Zhang
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Walter Kinyua
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Emily Broaddus
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | |
Collapse
|
40
|
Deregulated Gab2 phosphorylation mediates aberrant AKT and STAT3 signaling upon PIK3R1 loss in ovarian cancer. Nat Commun 2019; 10:716. [PMID: 30755611 PMCID: PMC6372715 DOI: 10.1038/s41467-019-08574-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 01/18/2019] [Indexed: 02/08/2023] Open
Abstract
Copy number loss of PIK3R1 (p85α) most commonly occurs in ovarian cancer among all cancer types. Here we report that ovarian cancer cells manifest a spectrum of tumorigenic phenotypes upon knockdown of PIK3R1. PIK3R1 loss activates AKT and p110-independent JAK2/STAT3 signaling through inducing changes in the phosphorylation of the docking protein Gab2, thereby relieving the negative inhibition on AKT and promoting the assembly of JAK2/STAT3 signalosome, respectively. Additional mechanisms leading to AKT activation include enhanced p110α kinase activity and a decrease in PTEN level. PIK3R1 loss renders ovarian cancer cells vulnerable to inhibition of AKT or JAK2/STAT3. The combination of AKT and STAT3 inhibitors significantly increases the anti-tumor effect compared to single-agent treatments. Together, our findings provide a rationale for mechanism-based therapeutic approach that targets tumors with loss of PIK3R1.
Collapse
|
41
|
Bell DW, Ellenson LH. Molecular Genetics of Endometrial Carcinoma. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:339-367. [PMID: 30332563 DOI: 10.1146/annurev-pathol-020117-043609] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endometrial cancer is the most commonly diagnosed gynecologic malignancy in the United States. Endometrioid endometrial carcinomas constitute approximately 85% of newly diagnosed cases; serous carcinomas represent approximately 3-10% of diagnoses; clear cell carcinoma accounts for <5% of diagnoses; and uterine carcinosarcomas are rare, biphasic tumors. Longstanding molecular observations implicate PTEN inactivation as a major driver of endometrioid carcinomas; TP53 inactivation as a major driver of most serous carcinomas, some high-grade endometrioid carcinomas, and many uterine carcinosarcomas; and inactivation of either gene as drivers of some clear cell carcinomas. In the past decade, targeted gene and exome sequencing have uncovered additional pathogenic aberrations in each histotype. Moreover, an integrated genomic analysis by The Cancer Genome Atlas (TCGA) resulted in the molecular classification of endometrioid and serous carcinomas into four distinct subgroups, POLE (ultramutated), microsatellite instability (hypermutated), copy number low (endometrioid), and copy number high (serous-like). In this review, we provide an overview of the major molecular features of the aforementioned histopathological subtypes and TCGA subgroups and discuss potential prognostic and therapeutic implications for endometrial carcinoma.
Collapse
Affiliation(s)
- Daphne W Bell
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Lora Hedrick Ellenson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine/New York Presbyterian Hospital, New York, New York 10065, USA;
| |
Collapse
|
42
|
Structural Basis for Regulation of Phosphoinositide Kinases and Their Involvement in Human Disease. Mol Cell 2018; 71:653-673. [DOI: 10.1016/j.molcel.2018.08.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/22/2018] [Accepted: 07/30/2018] [Indexed: 01/09/2023]
|
43
|
Characterization of PIK3CA and PIK3R1 somatic mutations in Chinese breast cancer patients. Nat Commun 2018; 9:1357. [PMID: 29636477 PMCID: PMC5893593 DOI: 10.1038/s41467-018-03867-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/20/2018] [Indexed: 02/07/2023] Open
Abstract
Deregulation of the phosphoinositide 3-kinase (PI3K) pathway contributes to the development and progression of tumors. Here, we determine that somatic mutations in PIK3CA (44%), PIK3R1 (17%), AKT3 (15%), and PTEN (12%) are prevalent and diverse in Chinese breast cancer patients, with 60 novel mutations identified. A high proportion of tumors harbors multiple mutations, especially PIK3CA plus PIK3R1 mutations (9.0%). Next, we develop a recombination-based mutation barcoding (ReMB) library for impactful mutations conferring clonal advantage in proliferation and drug responses. The highest-ranking PIK3CA and PIK3R1 mutations include previously reported deleterious mutations, as well as mutations with unknown significance. These PIK3CA and PIK3R1 impactful mutations exhibit a mutually exclusive pattern, leading to oncogenesis and hyperactivity of PI3K pathway. The PIK3CA impactful mutations are tightly associated with hormone receptor positivity. Collectively, these findings advance our understanding of PI3K impactful mutations in breast cancer and have important implications for PI3K-targeted therapy in precision oncology. The PI3K pathway is altered across various cancer types. Here the authors use amplicon exon sequencing to analyze the landscape of somatic mutations affecting the PI3K pathway specifically in breast cancer patients in China.
Collapse
|
44
|
Dornan GL, Burke JE. Molecular Mechanisms of Human Disease Mediated by Oncogenic and Primary Immunodeficiency Mutations in Class IA Phosphoinositide 3-Kinases. Front Immunol 2018; 9:575. [PMID: 29616047 PMCID: PMC5868324 DOI: 10.3389/fimmu.2018.00575] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/07/2018] [Indexed: 12/13/2022] Open
Abstract
The signaling lipid phosphatidylinositol 3,4,5, trisphosphate (PIP3) is an essential mediator of many vital cellular processes, including growth, survival, and metabolism. PIP3 is generated through the action of the class I phosphoinositide 3-kinases (PI3K), and their activity is tightly controlled through interactions with regulatory proteins and activating stimuli. The class IA PI3Ks are composed of three distinct p110 catalytic subunits (p110α, p110β, and p110δ), and they play different roles in specific tissues due to disparities in both expression and engagement downstream of cell-surface receptors. Disruption of PI3K regulation is a frequent driver of numerous human diseases. Activating mutations in the PIK3CA gene encoding the p110α catalytic subunit of class IA PI3K are frequently mutated in several cancer types, and mutations in the PIK3CD gene encoding the p110δ catalytic subunit have been identified in primary immunodeficiency patients. All class IA p110 subunits interact with p85 regulatory subunits, and mutations/deletions in different p85 regulatory subunits have been identified in both cancer and primary immunodeficiencies. In this review, we will summarize our current understanding for the molecular basis of how class IA PI3K catalytic activity is regulated by p85 regulatory subunits, and how activating mutations in the PI3K catalytic subunits PIK3CA and PIK3CD (p110α, p110δ) and regulatory subunits PIK3R1 (p85α) mediate PI3K activation and human disease.
Collapse
Affiliation(s)
- Gillian L Dornan
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
45
|
Ng PKS, Li J, Jeong KJ, Shao S, Chen H, Tsang YH, Sengupta S, Wang Z, Bhavana VH, Tran R, Soewito S, Minussi DC, Moreno D, Kong K, Dogruluk T, Lu H, Gao J, Tokheim C, Zhou DC, Johnson AM, Zeng J, Ip CKM, Ju Z, Wester M, Yu S, Li Y, Vellano CP, Schultz N, Karchin R, Ding L, Lu Y, Cheung LWT, Chen K, Shaw KR, Meric-Bernstam F, Scott KL, Yi S, Sahni N, Liang H, Mills GB. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell 2018; 33:450-462.e10. [PMID: 29533785 PMCID: PMC5926201 DOI: 10.1016/j.ccell.2018.01.021] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/07/2017] [Accepted: 01/30/2018] [Indexed: 12/11/2022]
Abstract
The functional impact of the vast majority of cancer somatic mutations remains unknown, representing a critical knowledge gap for implementing precision oncology. Here, we report the development of a moderate-throughput functional genomic platform consisting of efficient mutant generation, sensitive viability assays using two growth factor-dependent cell models, and functional proteomic profiling of signaling effects for select aberrations. We apply the platform to annotate >1,000 genomic aberrations, including gene amplifications, point mutations, indels, and gene fusions, potentially doubling the number of driver mutations characterized in clinically actionable genes. Further, the platform is sufficiently sensitive to identify weak drivers. Our data are accessible through a user-friendly, public data portal. Our study will facilitate biomarker discovery, prediction algorithm improvement, and drug development.
Collapse
Affiliation(s)
- Patrick Kwok-Shing Ng
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kang Jin Jeong
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shan Shao
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hu Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yiu Huen Tsang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sohini Sengupta
- Division of Oncology, Department of Medicine, Washington University, St. Louis, MO 63108, USA
| | - Zixing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Richard Tran
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephanie Soewito
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Darlan Conterno Minussi
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniela Moreno
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kathleen Kong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Turgut Dogruluk
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hengyu Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianjiong Gao
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Collin Tokheim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Daniel Cui Zhou
- Division of Oncology, Department of Medicine, Washington University, St. Louis, MO 63108, USA
| | - Amber M Johnson
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jia Zeng
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carman Ka Man Ip
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew Wester
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shuangxing Yu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yongsheng Li
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christopher P Vellano
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nikolaus Schultz
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rachel Karchin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins Medicine, Baltimore, MD 21287, USA
| | - Li Ding
- Division of Oncology, Department of Medicine, Washington University, St. Louis, MO 63108, USA; Siteman Cancer Center, Washington University, St. Louis, MO 63108, USA
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lydia Wai Ting Cheung
- HKU Shenzhen Institute of Research and Innovation, Shenzhen, China; School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kenna R Shaw
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Funda Meric-Bernstam
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kenneth L Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Song Yi
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Nidhi Sahni
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
46
|
Phosphorylation of PI3K regulatory subunit p85 contributes to resistance against PI3K inhibitors in radioresistant head and neck cancer. Oral Oncol 2018; 78:56-63. [PMID: 29496059 DOI: 10.1016/j.oraloncology.2018.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/09/2018] [Accepted: 01/18/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVES PI3K/Akt/mTOR pathway is commonly activated in most cancers and is correlated with resistance to anticancer therapies such as radiotherapy. Therefore, PI3K is an attractive target for treating PI3K-associated cancers. MATERIAL AND METHODS We investigated the basal expression and the expression after treatment of PI3K inhibitor or Src inhibitor of PI3K/Akt pathway-related proteins in AMC-HN3, AMC-HN3R, HN30 and HN31 cells by performing immunoblotting analysis. The sensitivity to PI3K inhibitors or Src inhibitor was analyzed by MTT assay and clonogenic assay. To determine the antitumoral activity of combination treatment with PI3K inhibitor and Src inhibitor, we used using xenograft mouse model. RESULTS We found that PI3K regulatory subunit p85 was predominantly phosphorylated in radioresistant head and neck cancer cell line (HN31), which showed resistance to PI3K inhibitors. Next, we investigated mechanism through which PI3K p85 phosphorylation modulated response to PI3K inhibitors. Of note, constitutive activation of Src was found in HN31 cells and upon PI3K inhibitor treatment, restoration of p-Src was occurred. Src inhibitor improved the efficacy of PI3K inhibitor treatment and suppressed the reactivation of both Src and PI3K p85 in HN31 cells. Furthermore, downregulation of PI3K p85 expression by using a specific siRNA suppressed Src phosphorylation. CONCLUSIONS Together, our results imply the novel role of the PI3K regulatory subunit p85 in the development of resistance to PI3K inhibitors and suggest the presence of a regulatory loop between PI3K p85 and Src in radioresistant head and neck cancers with constitutively active PI3K/Akt pathway.
Collapse
|
47
|
Aksoy BA, Dancík V, Smith K, Mazerik JN, Ji Z, Gross B, Nikolova O, Jaber N, Califano A, Schreiber SL, Gerhard DS, Hermida LC, Jagu S, Sander C, Floratos A, Clemons PA. CTD2 Dashboard: a searchable web interface to connect validated results from the Cancer Target Discovery and Development Network. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2017:4079798. [PMID: 29220450 PMCID: PMC5569694 DOI: 10.1093/database/bax054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/25/2017] [Indexed: 12/15/2022]
Abstract
The Cancer Target Discovery and Development (CTD2) Network aims to use functional genomics to accelerate the translation of high-throughput and high-content genomic and small-molecule data towards use in precision oncology. As part of this goal, and to share its conclusions with the research community, the Network developed the ‘CTD2 Dashboard’ [https://ctd2-dashboard.nci.nih.gov/], which compiles CTD2 Network-generated conclusions, termed ‘observations’, associated with experimental entities, collected by its member groups (‘Centers’). Any researcher interested in learning about a given gene, protein, or compound (a ‘subject’) studied by the Network can come to the CTD2 Dashboard to quickly and easily find, review, and understand Network-generated experimental results. In particular, the Dashboard allows visitors to connect experiments about the same target, biomarker, etc., carried out by multiple Centers in the Network. The Dashboard’s unique knowledge representation allows information to be compiled around a subject, so as to become greater than the sum of the individual contributions. The CTD2 Network has broadly defined levels of validation for evidence (‘Tiers’) pertaining to a particular finding, and the CTD2 Dashboard uses these Tiers to indicate the extent to which results have been validated. Researchers can use the Network’s insights and tools to develop a new hypothesis or confirm existing hypotheses, in turn advancing the findings towards clinical applications. Database URL:https://ctd2-dashboard.nci.nih.gov/
Collapse
Affiliation(s)
- Bülent Arman Aksoy
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vlado Dancík
- Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Kenneth Smith
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Jessica N Mazerik
- Office of Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhou Ji
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Benjamin Gross
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Olga Nikolova
- Computational Biology Program, School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nadia Jaber
- Office of Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Daniela S Gerhard
- Office of Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leandro C Hermida
- Office of Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Subhashini Jagu
- Office of Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chris Sander
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aris Floratos
- Department of Systems Biology, Columbia University, New York, NY 10032, USA.,Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA
| | - Paul A Clemons
- Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
48
|
Abstract
A complete understanding of human cancer variants requires new methods to systematically and efficiently assess the functional effects of genomic mutations at a large scale. Here, we describe a set of tools to rapidly clone and stratify thousands of cancer mutations at base resolution. This protocol provides a massively parallel pipeline to achieve high stringency and throughput. The approach includes high-throughput generation of mutant clones by Gateway, confirmation of variant identity by barcoding and next-generation sequencing, and stratification of cancer variants by multiplexed interaction profiling. Compared with alternative site-directed mutagenesis methods, our protocol requires less sequencing effort and enables robust statistical calling of allele-specific effects. To ensure the precision of variant interaction profiling, we further describe two complementary methods-a high-throughput enhanced yeast two-hybrid (HT-eY2H) assay and a mammalian-cell-based Gaussia princeps luciferase protein-fragment complementation assay (GPCA). These independent assays with standard controls validate mutational interaction profiles with high quality. This protocol provides experimentally derived guidelines for classifying candidate cancer alleles emerging from whole-genome or whole-exome sequencing projects as 'drivers' or 'passengers'. For ∼100 genomic mutations, the protocol-including target primer design, variant library construction, and sequence verification-can be completed within as little as 2-3 weeks, and cancer variant stratification can be completed within 2 weeks.
Collapse
|
49
|
Anjanappa M, Hao Y, Simpson ER, Bhat-Nakshatri P, Nelson JB, Tersey SA, Mirmira RG, Cohen-Gadol AA, Saadatzadeh MR, Li L, Fang F, Nephew KP, Miller KD, Liu Y, Nakshatri H. A system for detecting high impact-low frequency mutations in primary tumors and metastases. Oncogene 2017; 37:185-196. [PMID: 28892047 DOI: 10.1038/onc.2017.322] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022]
Abstract
Tumor complexity and intratumor heterogeneity contribute to subclonal diversity. Despite advances in next-generation sequencing (NGS) and bioinformatics, detecting rare mutations in primary tumors and metastases contributing to subclonal diversity is a challenge for precision genomics. Here, in order to identify rare mutations, we adapted a recently described epithelial reprograming assay for short-term propagation of epithelial cells from primary and metastatic tumors. Using this approach, we expanded minor clones and obtained epithelial cell-specific DNA/RNA for quantitative NGS analysis. Comparative Ampliseq Comprehensive Cancer Panel sequence analyses were performed on DNA from unprocessed breast tumor and tumor cells propagated from the same tumor. We identified previously uncharacterized mutations present only in the cultured tumor cells, a subset of which has been reported in brain metastatic but not primary breast tumors. In addition, whole-genome sequencing identified mutations enriched in liver metastases of various cancers, including Notch pathway mutations/chromosomal inversions in 5/5 liver metastases, irrespective of cancer types. Mutations/rearrangements in FHIT, involved in purine metabolism, were detected in 4/5 liver metastases, and the same four liver metastases shared mutations in 32 genes, including mutations of different HLA-DR family members affecting OX40 signaling pathway, which could impact the immune response to metastatic cells. Pathway analyses of all mutated genes in liver metastases showed aberrant tumor necrosis factor and transforming growth factor signaling in metastatic cells. Epigenetic regulators including KMT2C/MLL3 and ARID1B, which are mutated in >50% of hepatocellular carcinomas, were also mutated in liver metastases. Thus, irrespective of cancer types, organ-specific metastases may share common genomic aberrations. Since recent studies show independent evolution of primary tumors and metastases and in most cases mutation burden is higher in metastases than primary tumors, the method described here may allow early detection of subclonal somatic alterations associated with metastatic progression and potentially identify therapeutically actionable, metastasis-specific genomic aberrations.
Collapse
Affiliation(s)
- M Anjanappa
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Y Hao
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN, USA
| | - E R Simpson
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN, USA
| | - P Bhat-Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J B Nelson
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S A Tersey
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R G Mirmira
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A A Cohen-Gadol
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - M R Saadatzadeh
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - L Li
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| | - F Fang
- Medical Science Program, Indiana University, Bloomington, IN, USA
| | - K P Nephew
- Medical Science Program, Indiana University, Bloomington, IN, USA
| | - K D Miller
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Y Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| | - H Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
50
|
Otani Y, Ishida J, Kurozumi K, Oka T, Shimizu T, Tomita Y, Hattori Y, Uneda A, Matsumoto Y, Michiue H, Tomida S, Matsubara T, Ichikawa T, Date I. PIK3R1Met326Ile germline mutation correlates with cysteine-rich protein 61 expression and poor prognosis in glioblastoma. Sci Rep 2017; 7:7391. [PMID: 28785028 PMCID: PMC5547066 DOI: 10.1038/s41598-017-07745-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/30/2017] [Indexed: 01/12/2023] Open
Abstract
Despite therapeutic advances, glioblastoma represents a lethal brain tumor. Recently, research to identify prognostic markers for glioblastoma has intensified. Our previous study demonstrated that median progression-free survival (PFS) and overall survival (OS) of patients with high cysteine-rich protein 61 (CCN1) expression was significantly shorter than that of patients with low CCN1 expression. To understand the molecular mechanisms that regulate CCN1 expression, we examined 147 tumour samples from 80 patients with glioblastoma and 67 patients with lower grade glioma. Next-generation and Sanger sequencing showed that PIK3R1Met326Ile was more frequent in the CCN1 high expression group (10/37 cases, 27.0%) than the CCN1 low expression group (3/38 cases, 7.9%) in glioblastoma. This mutation was also detected in corresponding blood samples. In multivariate analysis, high CCN1 expression and PIK3R1Met326Ile in glioblastoma patients were prognostic factors for OS [HR = 2.488 (1.298–4.769), p = 0.006] and [HR = 2.089 (1.020–4.277), p = 0.0439], respectively. Thus, the PIK3R1Met326Ile germline appears to be correlated with CCN1 expression and poor prognosis in glioblastoma.
Collapse
Affiliation(s)
- Yoshihiro Otani
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Joji Ishida
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiko Kurozumi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
| | - Tetsuo Oka
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshihiko Shimizu
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yusuke Tomita
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuhiko Hattori
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Atsuhito Uneda
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yuji Matsumoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Michiue
- Department of Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shuta Tomida
- Okayama University Hospital Biobank, Okayama University Hospital, Okayama, Japan.,Department of Biobank, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takehiro Matsubara
- Okayama University Hospital Biobank, Okayama University Hospital, Okayama, Japan
| | - Tomotsugu Ichikawa
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|