1
|
Dasgupta P, Puduvalli VK. Diversity of metabolic features and relevance to clinical subtypes of gliomas. Semin Cancer Biol 2025; 112:126-134. [PMID: 40194749 DOI: 10.1016/j.semcancer.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/13/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025]
Abstract
Gliomas carry a dismal prognosis and have proven difficult to treat. Current treatments and efforts to target individual signaling pathways have failed. This is thought to be due to genetic and epigenetic heterogeneity and resistance. Therefore, interest has grown in developing a deeper understanding of the metabolic alterations that represent drivers and dependencies in gliomas. Therapies that target glioma-specific metabolic dependencies overcome the challenges of disease heterogeneity. Here, we present the diverse metabolic features of each current clinical subtype of glioma. We believe that this approach will enable the development of novel strategies to specifically target the various clinical and molecular subtypes of glioma using these metabolic features.
Collapse
Affiliation(s)
- Pushan Dasgupta
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| | - Vinay K Puduvalli
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Liang Q, Wen F, Wang P, Jiang Y, Geng Y, Zha X. A patent review of IDH1 inhibitors (2018-present). Expert Opin Ther Pat 2025:1-28. [PMID: 40317206 DOI: 10.1080/13543776.2025.2500959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/11/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
INTRODUCTION isocitrate dehydrogenase 1 (IDH1), a key metabolic enzyme in the cytosol, catalyzes the oxidative decarboxylation of isocitrate to produce α-ketoglutarate (α-KG) and NADPH in the TCA cycle. Pan-cancer studies have demonstrated that IDH1 exhibits a higher mutation frequency and is implicated in a broader range of cancer types, indicating its potential as a promising anti-tumor target. AREAS COVERED We summarized patents from 2018 to the present that identify novel molecules, compounds, formulations, and methods for inhibiting mIDH1. The literature was retrieved from Web of Science and PubMed. Patent information was obtained via the State Intellectual Property Office's Patent Search and Analysis platform. Clinical data were sourced from the Cortellis Drug Discovery Intelligence database. The date of the most recent search was . EXPERT OPINION Due to multiple signaling pathway dysregulations and compensatory pathways in solid tumor, monotherapies targeting mutant IDH1 (mIDH1) often fail to achieve desired therapeutic outcomes. Consequently, the combination of mIDH1 inhibitors with other therapeutic agents can enhance the efficacy of antitumor treatments and mitigate the risk of drug resistance. Moreover, the development of novel dual or multiple inhibitors and functional molecules targeting mIDH1 May represent a more promising approach.
Collapse
Affiliation(s)
- Qing Liang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Fei Wen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Peilin Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yitong Jiang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yuting Geng
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Xiaoming Zha
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
3
|
Gabellier L, Bosetta E, Heiblig M, Sarry JE. Metabolism and therapeutic response in acute myeloid leukemia with IDH1/2 mutations. Trends Cancer 2025; 11:475-490. [PMID: 39955197 DOI: 10.1016/j.trecan.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/17/2025]
Abstract
Pathogenic variants of isocitrate dehydrogenase 1 and 2 (IDH1/2) genes are present in approximately 20% of acute myeloid leukemia (AML) cases, resulting in the oncometabolite R-2-hydroxyglutarate (R-2-HG). The accumulation of R-2-HG in leukemic cells and in their niche induces epigenetic modifications, profound rewiring of the cellular metabolism, and microenvironmental remodeling. These changes promote cellular differentiation bias, enhancing the survival and proliferation of leukemic cells, and thus playing a pivotal role in leukemogenesis and resistance to standard AML therapy. This review focuses on the different perspectives offered by studying metabolism and resistance to standard treatments in AML with IDH1 or IDH2 pathogenic variants, for the development of new biomarkers and therapeutic solutions.
Collapse
MESH Headings
- Humans
- Isocitrate Dehydrogenase/genetics
- Isocitrate Dehydrogenase/metabolism
- Isocitrate Dehydrogenase/antagonists & inhibitors
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mutation
- Glutarates/metabolism
- Drug Resistance, Neoplasm/genetics
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Epigenesis, Genetic
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
Collapse
Affiliation(s)
- Ludovic Gabellier
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; Team «Ubiquitin family in hematological malignancies», Institut de Génétique Moléculaire de Montpellier, CNRS UMR5535, Université de Montpellier, Montpellier, France
| | - Enzo Bosetta
- Centre de Recherches en Cancérologie de Toulouse, U1037, Inserm, Université de Toulouse, Toulouse, France
| | - Maël Heiblig
- Service d'Hématologie Clinique, Hôpital Lyon Sud Pierre-Bénite, Lyon, France; Team «Lymphoma Immuno-Biology», Inserm U1111, CNRS UMR5308, Université Claude Bernard, Lyon I - ENS de Lyon, Faculté de Médecine Lyon-Sud, Lyon, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, U1037, Inserm, Université de Toulouse, Toulouse, France.
| |
Collapse
|
4
|
Park S, Chun KS, Kim DH. Targeting IDH1 mutation-driven Nrf2 signaling to suppress malignant behavior in fibrosarcoma cells. Toxicol Res 2025; 41:267-278. [PMID: 40291110 PMCID: PMC12021749 DOI: 10.1007/s43188-025-00284-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/14/2025] [Accepted: 02/02/2025] [Indexed: 04/30/2025] Open
Abstract
Isocitrate dehydrogenase 1 (IDH1) mutations are prevalent in various cancers and have significant implications for tumor biology. It is known that cancer cells with IDH1 mutations, particularly R132C or R132H, exhibit decreased production of nicotinamide adenine dinucleotide phosphate and thus impaired glutathione synthesis. This study investigated the roles of IDH1 mutations in the regulation of nuclear factor erythroid-2-related factor 2 (Nrf2)-mediated signaling pathways in fibrosarcoma HT1080 cells harboring the IDH1 R132C mutation. Knockdown of IDH1 using siRNA in HT1080 cells inhibited Nrf2 stabilization and reduced the expression of antioxidant genes, thereby providing favorable conditions for cancer progression. In addition, inhibition of IDH1 decreased reactive oxygen species (ROS) production and impaired cell migration, highlighting its role in promoting malignant behavior such as colony-forming ability. Small molecule inhibitors targeting the IDH1 R132 mutation suppressed cell migration and colony formation in HT1080 cells. Moreover, we observed that IDH and Nrf2 contribute to immune evasion by modulating the expression of programmed death-ligand 1 (PD-L1) in HT1080 cells. Altogether, our findings provide valuable insights for the development of therapeutic approaches for IDH1-mutant cancers. We suggest targeting the IDH1-Nrf2 axis as a strategy to regulate the immune response and inhibit cell migration in fibrosarcoma. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-025-00284-1.
Collapse
Affiliation(s)
- Seoyeon Park
- Department of Chemistry, Kyonggi University, Suwon, 16227 Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu, 42601 Republic of Korea
| | - Do-Hee Kim
- Department of Chemistry, Kyonggi University, Suwon, 16227 Republic of Korea
| |
Collapse
|
5
|
Li M, Zhang H, Wu X, Yu M, Yang Q, Sun L, Li W, Jiang Z, Xue F, Wang T, An X, Chen L. IDH1 regulates human erythropoiesis by eliciting chromatin state reprogramming. eLife 2025; 13:RP100406. [PMID: 40299922 PMCID: PMC12040319 DOI: 10.7554/elife.100406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025] Open
Abstract
Isocitrate dehydrogenase 1 (IDH1) is the key enzyme that can modulate cellular metabolism, epigenetic modification, and redox homeostasis. Gain-of-function mutations and decreased expression of IDH1 have been demonstrated to be associated with pathogenesis of various myeloid malignancies characterized by ineffective erythropoiesis, such as acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, the function and mechanism of IDH1 in human erythropoiesis still remains unclear. Here, utilizing the human erythropoiesis system, we present an evidence of IDH1-mediated chromatin state reprogramming besides its well-characterized metabolism effects. We found that knockdown IDH1 induced chromatin reorganization and subsequently led to abnormalities biological events in erythroid precursors, which could not be rescued by addition of reactive oxygen species (ROS) scavengers or supplementation of α-ketoglutarate (α-KG).We further revealed that knockdown IDH1 induces genome-wide changes in distribution and intensity of multiple histone marks, among which H3K79me3 was identified as a critical factor in chromatin state reprogramming. Integrated analysis of ChIP-seq, ATAC-seq, and RNA-seq recognized that SIRT1 was the key gene affected by IDH1 deficiency. Thus, our current work provided novel insights for further clarifying fundamental biological function of IDH1 which has substantial implications for an in-depth understanding of pathogenesis of diseases with IDH1 dysfunction and accordingly development of therapeutic strategies.
Collapse
Affiliation(s)
- Mengjia Li
- State Key Laboratory of Metabolic Dysregulation and Prevention and Treatment of Esophageal Cancer; School of Life Sciences, Zhengzhou UniversityZhengzhouChina
- Department of Hematology, First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hengchao Zhang
- State Key Laboratory of Metabolic Dysregulation and Prevention and Treatment of Esophageal Cancer; School of Life Sciences, Zhengzhou UniversityZhengzhouChina
| | - Xiuyun Wu
- State Key Laboratory of Metabolic Dysregulation and Prevention and Treatment of Esophageal Cancer; School of Life Sciences, Zhengzhou UniversityZhengzhouChina
| | - Mengqi Yu
- State Key Laboratory of Metabolic Dysregulation and Prevention and Treatment of Esophageal Cancer; School of Life Sciences, Zhengzhou UniversityZhengzhouChina
| | - Qianqian Yang
- State Key Laboratory of Metabolic Dysregulation and Prevention and Treatment of Esophageal Cancer; School of Life Sciences, Zhengzhou UniversityZhengzhouChina
| | - Lei Sun
- State Key Laboratory of Metabolic Dysregulation and Prevention and Treatment of Esophageal Cancer; School of Life Sciences, Zhengzhou UniversityZhengzhouChina
| | - Wei Li
- Department of Hematology, First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhongxing Jiang
- Department of Hematology, First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Fumin Xue
- Department of Gastroenterology, Children's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Ting Wang
- State Key Laboratory of Metabolic Dysregulation and Prevention and Treatment of Esophageal Cancer; School of Life Sciences, Zhengzhou UniversityZhengzhouChina
| | - Xuili An
- Laboratory of Membrane Biology, New York Blood CenterNew YorkUnited States
| | - Lixiang Chen
- State Key Laboratory of Metabolic Dysregulation and Prevention and Treatment of Esophageal Cancer; School of Life Sciences, Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
6
|
Pang Y, Li Q, Sergi Z, Yu G, Kim O, Lu P, Chan M, Sang X, Wang H, Ranjan A, Robey RW, Soheilian F, Tran B, Núñez FJ, Zhang M, Song H, Zhang W, Davis D, Gilbert MR, Gottesman MM, Liu Z, Thomas CJ, Castro MG, Gujral TS, Wu J. Exploiting the therapeutic vulnerability of IDH-mutant gliomas with zotiraciclib. iScience 2025; 28:112283. [PMID: 40241769 PMCID: PMC12001108 DOI: 10.1016/j.isci.2025.112283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/07/2024] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Isocitrate dehydrogenase (IDH)-mutant gliomas have distinctive metabolic and biological traits that potentially render them susceptible to targeted treatments. Here, by conducting a high-throughput drug screen, we pinpointed a specific vulnerability of IDH-mutant gliomas to zotiraciclib (ZTR). ZTR exhibited selective growth inhibition across multiple IDH-mutant glioma in vitro and in vivo models. Mechanistically, ZTR at low doses suppressed CDK9 and RNA Pol II phosphorylation in IDH-mutant cells, disrupting mitochondrial function and NAD+ production, resulting in oxidative stress. Integrated biochemical profiling of ZTR kinase targets and transcriptomics unveiled that ZTR-induced bioenergetic failure was linked to the suppression of PIM kinase activity. We posit that the combination of mitochondrial dysfunction and an inability to adapt to oxidative stress resulted in significant cell death upon ZTR treatment, ultimately increasing the therapeutic vulnerability of IDH-mutant gliomas. These findings prompted a clinical trial evaluating ZTR in IDH-mutant gliomas (NCT05588141).
Collapse
Affiliation(s)
- Ying Pang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qi Li
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zach Sergi
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Guangyang Yu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Olga Kim
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peng Lu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marina Chan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Xueyu Sang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Herui Wang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alice Ranjan
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert W. Robey
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ferri Soheilian
- Electron Microscopy Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21701, USA
| | - Bao Tran
- Cancer Research Technology Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 20701, USA
| | - Felipe J. Núñez
- Departments of Neurosurgery and Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Meili Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hua Song
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dionne Davis
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark R. Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael M. Gottesman
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhenggang Liu
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Craig J. Thomas
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD 20850, USA
| | - Maria G. Castro
- Departments of Neurosurgery and Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Taranjit S. Gujral
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jing Wu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Sviderskiy VO, Vasudevaraja V, Dubois LG, Stafford J, Liu EK, Serrano J, Possemato R, Snuderl M. Metabolic profiling of adult and pediatric gliomas reveals enriched glucose availability in pediatric gliomas and increased fatty acid oxidation in adult gliomas. Acta Neuropathol Commun 2025; 13:61. [PMID: 40087788 PMCID: PMC11909955 DOI: 10.1186/s40478-025-01961-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/15/2025] [Indexed: 03/17/2025] Open
Abstract
Gliomas are the most common primary brain tumors and a major source of mortality and morbidity in adults and children. Recent genomic studies have identified multiple molecular subtypes; however metabolic characterization of these tumors has thus far been limited. We performed metabolic profiling of 114 adult and pediatric primary gliomas and integrated metabolomic data with transcriptomics and DNA methylation classes. We identified that pediatric tumors have higher levels of glucose and reduced lactate compared to adult tumors regardless of underlying genetics or grade, suggesting differences in availability of glucose and/or utilization of glucose for downstream pathways. Differences in glucose utilization in pediatric gliomas may be facilitated through overexpression of SLC2A4, which encodes the insulin-stimulated glucose transporter GLUT4. Transcriptomic comparison of adult and pediatric tumors suggests that adult tumors may have limited access to glucose and experience more hypoxia, which is supported by enrichment of lactate, 2-hydroxyglutarate (2-HG), even in isocitrate dehydrogenase (IDH) wild-type tumors, and 3-hydroxybutyrate, a ketone body that is produced by oxidation of fatty acids and ketogenic amino acids during periods of glucose scarcity. Our data support adult tumors relying more on fatty acid oxidation, as they have an abundance of acyl carnitines compared to pediatric tumors and have significant enrichment of transcripts needed for oxidative phosphorylation. Our findings suggest striking differences exist in the metabolism of pediatric and adult gliomas, which can provide new insight into metabolic vulnerabilities for therapy.
Collapse
Affiliation(s)
- Vladislav O Sviderskiy
- Department of Pathology, NYU Langone Health, New York, NY, USA
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Luiz Gustavo Dubois
- Department of Pathology, NYU Langone Health, New York, NY, USA
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - James Stafford
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Elisa K Liu
- NYU Grossman School of Medicine, New York, NY, 10016, USA
| | | | - Richard Possemato
- Department of Pathology, NYU Langone Health, New York, NY, USA.
- NYU Grossman School of Medicine, New York, NY, 10016, USA.
- Laura and Isaac Perlmutter Cancer Center, New York, NY, 10016, USA.
- Department of Pathology, NYU Langone Health, 550 First Avenue, Smilow 611, New York, NY, 10016, USA.
| | - Matija Snuderl
- Department of Pathology, NYU Langone Health, New York, NY, USA.
- NYU Grossman School of Medicine, New York, NY, 10016, USA.
- Laura and Isaac Perlmutter Cancer Center, New York, NY, 10016, USA.
- Department of Pathology, NYU Langone Health, 240 E 38Th Street, 22Nd Floor, New York, NY, 10016, USA.
| |
Collapse
|
8
|
Zhou L, Li Z, Zhou S, Wang B, Liang Z, Hu S, Zhang H, Duan L, Zhao D, Cheng L, Ren H, Wakimoto H, Li M. Targeting NAD + biosynthesis suppresses TGF-β1/Smads/RAB26 axis and potentiates cisplatin cytotoxicity in non-small cell lung cancer brain metastasis. Acta Neuropathol Commun 2025; 13:56. [PMID: 40069888 PMCID: PMC11895195 DOI: 10.1186/s40478-025-01967-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) plays an important role in tumor progression, but its role in non-small cell lung cancer with brain metastasis (NSCLC BM) remains unclear. Herein, we investigated NAD+ biosynthesis targeting as a new therapeutic strategy for NSCLC BM. Therapeutic activity of nicotinamide phosphoribosyl transferase (NAMPT) inhibitors was evaluated in mouse models of NSCLC BM and using various assays such as NAD+ quantitation, cell viability, and apoptosis assays. To explore impact on downstream signaling, RNA sequencing was used in NAMPT inhibitor-treated and control cells, followed by validation with genetic knockdown, western blot and qRT-PCR. Expression of NAMPT and downstream proteins in human NSCLC BM and its association with patient prognosis were examined. Finally, combination of NAMPT inhibitor and cisplatin was tested in vivo. Systemic treatment with NAMPT inhibitors demonstrated intracranial activity in an NSCLC BM model. NAMPT inhibitors decreased cellular NAD levels and suppressed proliferation and invasion, and induced apoptosis in NSCLC cells. Supplementation with NAD+ precursor NMN rescued these NAMPT inhibitor effects. Mechanistically, disruption of NAMPT-mediated NAD+ biosynthesis suppressed TGF-β1/Smads/RAB26 signaling, leading to inhibition of NSCLC cells. Expression of NAMPT/TGF-β1/Smads/RAB26 axis proteins was upregulated in NSCLC BM tissues and correlated with poor prognosis. Combining NAMPT inhibitors with cisplatin further extended the survival of NSCLC BM-bearing mice. Targeting NAD+ biosynthesis provides a new therapeutic strategy for NSCLC BM and can be effectively combined with cisplatin. Our studies identified the TGF-β1/Smads/RAB26 signaling downstream of NAMPT, which was targeted by NAMPT inhibition to mediate anti-cancer effects.
Collapse
Affiliation(s)
- Liyun Zhou
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, People's Republic of China
| | - Zhiying Li
- Department of Neurosurgery, The 7th People's Hospital of Zhengzhou, Zhengzhou, 450000, China
| | - Shengli Zhou
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, People's Republic of China
| | - Bin Wang
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, People's Republic of China
| | - Zhen Liang
- Department of Neurosurgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Sen Hu
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, People's Republic of China
| | - Hang Zhang
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, People's Republic of China
| | - Lin Duan
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, People's Republic of China
| | - Dongxu Zhao
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, People's Republic of China
| | - Luyao Cheng
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, People's Republic of China
| | - Hang Ren
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, People's Republic of China
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Ming Li
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, People's Republic of China.
| |
Collapse
|
9
|
Soncini D, Becherini P, Ladisa F, Ravera S, Chedere A, Gelli E, Giorgetti G, Martinuzzi C, Piacente F, Mastracci L, Veneziano C, Santamaria G, Monacelli F, Ghanem MS, Cagnetta A, Guolo F, Garibotto M, Aquino S, Passalaqua M, Bruzzone S, Bellotti A, Duchosal MA, Nahimana A, Angelucci E, Nagasuma C, Nencioni A, Lemoli RM, Cea M. NAD+ metabolism restriction boosts high-dose melphalan efficacy in patients with multiple myeloma. Blood Adv 2025; 9:1024-1039. [PMID: 39661983 PMCID: PMC11909440 DOI: 10.1182/bloodadvances.2024013425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/08/2024] [Accepted: 11/24/2024] [Indexed: 12/13/2024] Open
Abstract
ABSTRACT Elevated levels of the NAD+-generating enzyme nicotinamide phosphoribosyltransferase (NAMPT) are a common feature across numerous cancer types. Accordingly, we previously reported pervasive NAD+ dysregulation in multiple myeloma (MM) cells in association with upregulated NAMPT expression. Unfortunately, albeit being effective in preclinical models of cancer, NAMPT inhibition has proven ineffective in clinical trials because of the existence of alternative NAD+ production routes using NAD+ precursors other than nicotinamide. Here, by leveraging mathematical modeling approaches integrated with transcriptome data, we defined the specific NAD+ landscape of MM cells and established that the Preiss-Handler pathway for NAD+ biosynthesis, which uses nicotinic acid as a precursor, supports NAD+ synthesis in MM cells via its key enzyme nicotinate phosphoribosyltransferase (NAPRT). Accordingly, we found that NAPRT confers resistance to NAD+-depleting agents. Transcriptomic, metabolic, and bioenergetic profiling of NAPRT-knockout (KO) MM cells showed these to have weakened endogenous antioxidant defenses, increased propensity to oxidative stress, and enhanced genomic instability. Concomitant NAMPT inhibition further compounded the effects of NAPRT-KO, effectively sensitizing MM cells to the chemotherapeutic drug, melphalan; NAPRT added-back fully rescues these phenotypes. Overall, our results propose comprehensive NAD+ biosynthesis inhibition, through simultaneously targeting NAMPT and NAPRT, as a promising strategy to be tested in randomized clinical trials involving transplant-eligible patients with MM, especially those with more aggressive disease.
Collapse
Affiliation(s)
| | - Pamela Becherini
- Clinic of Hematology, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Francesco Ladisa
- Clinic of Hematology, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Silvia Ravera
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Adithya Chedere
- Biological Science Division, Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Elisa Gelli
- Genetics and Epigenetics of Behavior Laboratory, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Giulia Giorgetti
- Clinic of Hematology, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | | | - Luca Mastracci
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Integrated Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy
| | - Claudia Veneziano
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Fiammetta Monacelli
- Geriatrics Clinic, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Moustafa S. Ghanem
- Geriatrics Clinic, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | | | - Fabio Guolo
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Clinic of Hematology, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Matteo Garibotto
- Clinic of Hematology, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Sara Aquino
- Hematology and Hematopoietic Stem Cell Transplantation Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mario Passalaqua
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Santina Bruzzone
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Axel Bellotti
- Service and Central Laboratory of Hematology, Departments of Oncology and Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michel A. Duchosal
- Service and Central Laboratory of Hematology, Departments of Oncology and Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Aimable Nahimana
- Service and Central Laboratory of Hematology, Departments of Oncology and Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Emanuele Angelucci
- Hematology and Hematopoietic Stem Cell Transplantation Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Chandra Nagasuma
- Biological Science Division, Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Alessio Nencioni
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Geriatrics Clinic, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Roberto Massimo Lemoli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Clinic of Hematology, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Michele Cea
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Clinic of Hematology, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| |
Collapse
|
10
|
Dutta H, Jain N. Degrading mutant IDH1 employing a PROTAC-based approach impairs STAT3 activation. Arch Biochem Biophys 2025; 765:110281. [PMID: 39828078 DOI: 10.1016/j.abb.2024.110281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Heterozygous mutations in IDH1 (isocitrate dehydrogenase 1) are found in most grade II and III brain tumors. A slew of mutant IDH1 inhibitors were identified soon after the discovery of IDH1 mutations in brain tumors. But recent reports show that mutant IDH1 inhibitors reverse therapeutic vulnerabilities and activate the oncogenic transcription factor STAT3 in mutant IDH1-expressing cells. Thus, inhibiting mutant IDH1 using mutant IDH1-specific inhibitors can result in drug resistance. Therefore, to block mutant IDH1, it is imperative to identify alternative modes of therapy. In these lines, recent findings show that PROteolysis TArgeting Chimera (PROTAC) molecules can be designed to degrade target proteins in cancer cells. However, it is unknown whether degrading mutant IDH1 leads to STAT3 activation. Therefore, in this study, we asked if degrading mutant IDH1 by employing a PROTAC-based approach leads to STAT3 activation. To answer the question, we adopted the dTAG system, where we fused FKBP12F36V to mutant IDH1 proteins and used the FKBP12F36V-specific PROTAC, dTAG-13, to degrade mutant IDH1-FKBP12F36V. We assessed STAT3 activation in dTAG-13-treated cells expressing mutant IDH1-FKBP12F36V. We found that fusing FKBP12F36V-HA to mutant IDH1 phenocopies mutant IDH1 with similar expression levels, enzyme activity, and cellular localization. We observed that dTAG-13 degrades mutant IDH1-FKBP12F36V-HA in a dose- and time-responsive manner. Unlike inhibiting, degrading mutant IDH1-FKBP12F36V-HA did not lead to pSTAT3-Y705 activation. We conclude that degrading mutant IDH1 by employing a PROTAC-based approach impairs STAT3 activation. Based on these observations, we suggest that mutant IDH1-specific PROTACs can be developed to degrade mutant IDH1 in gliomas.
Collapse
Affiliation(s)
- Hashnu Dutta
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nishant Jain
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Lang F, Kaur K, Fu H, Zaheer J, Ribeiro DL, Aladjem MI, Yang C. D-2-hydroxyglutarate impairs DNA repair through epigenetic reprogramming. Nat Commun 2025; 16:1431. [PMID: 39920158 PMCID: PMC11806014 DOI: 10.1038/s41467-025-56781-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025] Open
Abstract
Cancer-associated mutations in IDH are associated with multiple types of human malignancies, which exhibit distinctive metabolic reprogramming, production of oncometabolite D-2-HG, and shifted epigenetic landscape. IDH mutated malignancies are signatured with "BRCAness", highlighted with the sensitivity to DNA repair inhibitors and genotoxic agents, although the underlying molecular mechanism remains elusive. In the present study, we demonstrate that D-2-HG impacts the chromatin conformation adjustments, which are associated with DNA repair process. Mechanistically, D-2-HG diminishes the chromatin interactions in the DNA damage regions via revoking CTCF binding. The hypermethylation of cytosine, resulting from the suppression of TET1 and TET2 activities by D-2-HG, contributes to the dissociation of CTCF from DNA damage regions. CTCF depletion leads to the disruption of chromatin organization around the DNA damage sites, which abolishes the recruitment of essential DNA damage repair proteins BRCA2 and RAD51, as well as impairs homologous repair in the IDH mutant cancer cells. These findings provide evidence that CTCF-mediated chromatin interactions play a key role in DNA damage repair proceedings. Oncometabolites jeopardize genome stability and DNA repair by affecting high-order chromatin structure.
Collapse
Affiliation(s)
- Fengchao Lang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Karambir Kaur
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Haiqing Fu
- Developmental Therapeutic Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Javeria Zaheer
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Diego Luis Ribeiro
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mirit I Aladjem
- Developmental Therapeutic Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Chunzhang Yang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
12
|
Bray A, Sahai V. IDH Mutant Cholangiocarcinoma: Pathogenesis, Management, and Future Therapies. Curr Oncol 2025; 32:44. [PMID: 39851960 PMCID: PMC11763940 DOI: 10.3390/curroncol32010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Mutations in isocitrate dehydrogenase (IDH) genes are among the most frequently encountered molecular alterations in cholangiocarcinoma (CCA). These neomorphic point mutations endow mutant IDH (mIDH) with the ability to generate an R-enantiomer of 2-hydroxyglutarate (R2HG), a metabolite that drives malignant transformation through aberrant epigenetic signaling. As a result, pharmacologic inhibition of mIDH has become an attractive therapeutic strategy in CCAs harboring this mutation. One such inhibitor, ivosidenib, has already undergone clinical validation and received FDA approval in this disease, but there is still much work to be done to improve outcomes in mIDH CCA patients. In this publication we will review the pathogenesis and treatment of mIDH CCA with special emphasis on novel agents and combinations currently under investigation.
Collapse
Affiliation(s)
| | - Vaibhav Sahai
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
13
|
Furth N, Cohen N, Spitzer A, Salame TM, Dassa B, Mehlman T, Brandis A, Moussaieff A, Friedmann-Morvinski D, Castro MG, Fortin J, Suvà ML, Tirosh I, Erez A, Ron G, Shema E. Oncogenic IDH1 mut drives robust loss of histone acetylation and increases chromatin heterogeneity. Proc Natl Acad Sci U S A 2025; 122:e2403862122. [PMID: 39793065 PMCID: PMC11725805 DOI: 10.1073/pnas.2403862122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/15/2024] [Indexed: 01/12/2025] Open
Abstract
Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2mut) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype. Yet, the complete depiction of the epigenetic alterations in IDHmut cells has not been thoroughly explored. Here, we applied an unbiased approach, leveraging epigenetic-focused cytometry by time-of-flight (CyTOF) analysis, to systematically profile the effect of mutant-IDH1 expression on a broad panel of histone modifications at single-cell resolution. This analysis revealed extensive remodeling of chromatin patterns by mutant-IDH1, with the most prominent being deregulation of histone acetylation marks. The loss of histone acetylation occurs rapidly following mutant-IDH1 induction and affects acetylation patterns over enhancers and intergenic regions. Notably, the changes in acetylation are not predominantly driven by 2-HG, can be rescued by pharmacological inhibition of mutant-IDH1, and reversed by acetate supplementations. Furthermore, cells expressing mutant-IDH1 show higher epigenetic and transcriptional heterogeneity and upregulation of oncogenes such as KRAS and MYC, highlighting its tumorigenic potential. Our study underscores the tight interaction between chromatin and metabolism dysregulation in glioma and highlights epigenetic and oncogenic pathways affected by mutant-IDH1-driven metabolic rewiring.
Collapse
Affiliation(s)
- Noa Furth
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Niv Cohen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Avishay Spitzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
- Oncology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv6423906, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv6997801, Israel
| | - Tomer-Meir Salame
- Mass Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Tevie Mehlman
- Targeted Metabolomics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Alexander Brandis
- Targeted Metabolomics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Arieh Moussaieff
- The Institute for Drug Research, Faculty of Medicine, Hebrew University, Jerusalem9112102, Israel
| | - Dinorah Friedmann-Morvinski
- Sagol School of Neurobiology, Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv6997801, Israel
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI48109
| | - Jerome Fortin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QCH3A 2B4, Canada
| | - Mario L. Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
- Broad Institute of Harvard and MIT, Cambridge, MA02142
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Guy Ron
- Racah Institute of Physics, Hebrew University, Jerusalem9190401, Israel
| | - Efrat Shema
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|
14
|
Caggiano R, Prokhorova E, Duma L, Schützenhofer K, Lauro R, Catara G, Melillo RM, Celetti A, Smith R, Weroha SJ, Kaufmann SH, Ahel I, Palazzo L. Suppression of ADP-ribosylation reversal triggers cell vulnerability to alkylating agents. Neoplasia 2025; 59:101092. [PMID: 39615107 PMCID: PMC11648251 DOI: 10.1016/j.neo.2024.101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
The ADP-ribosyl hydrolases PARG and ARH3 counteract PARP enzymatic activity by removing ADP-ribosylation. PARG and ARH3 activities have a synthetic lethal effect; however, the specific molecular mechanisms underlying this response remain unknown. Here, we show that the PARG and ARH3 synthetic lethality is enhanced further in the presence of DNA alkylating agents, suggesting that the inability to revert ADP-ribosylation primarily affects the repair of alkylated DNA bases. ARH3 knockout cells, treated with PARG inhibitor and alkylating genotoxins, accumulated single-stranded DNA and DNA damage, resulting in G2/M cell cycle arrest and apoptosis. Furthermore, we reveal a reduction in PARP1/PARP2 levels in ARH3-deficient cells treated with PARG inhibitor due to excessive ADP-ribosylation, which may contribute to alkylating agents' vulnerability. Collectively, these results uncover the potential of targeting ADP-ribosyl hydrolases in combination with alkylating agents for cancer therapy and provide insights into the mechanisms underlying the synthetic lethal effect.
Collapse
Affiliation(s)
- Rocco Caggiano
- Institute of Experimental Endocrinology and Oncology, National Research Council of Italy, Naples, Italy
| | - Evgeniia Prokhorova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Lena Duma
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Kira Schützenhofer
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Raffaella Lauro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Naples, Italy
| | - Rosa Marina Melillo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Angela Celetti
- Institute of Experimental Endocrinology and Oncology, National Research Council of Italy, Naples, Italy
| | - Rebecca Smith
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - S John Weroha
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, United States
| | - Scott H Kaufmann
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, United States
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.
| | - Luca Palazzo
- Institute of Experimental Endocrinology and Oncology, National Research Council of Italy, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
15
|
Mateo-Nouel EDJ, Mondragón-Soto MG, Nicolás-Cruz CF, Villanueva-Castro E, Rodriguez Hernandez LA, Reyes-Moreno I, Violante Villanueva JA, de Leo-Vargas RA, Jiménez SM, Gonzalez Aguilar A. Efficient Detection of Oligodendroglioma With 1p/19q Codeletion Mutation via Methionine PET Imaging: A Promising Diagnostic Approach. Cureus 2025; 17:e77826. [PMID: 39996200 PMCID: PMC11848700 DOI: 10.7759/cureus.77826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Background Oligodendrogliomas are a distinct subtype of gliomas frequently characterized by the 1p/19q codeletion and isocitrate dehydrogenase (IDH) gene mutations, both associated with improved therapeutic response and prolonged survival. These genetic alterations modulate the transsulfuration pathway, leading to increased methionine uptake by tumor cells. Positron emission tomography (PET) with 11C-labeled methionine (MET PET) leverages these metabolic changes, providing a noninvasive means to distinguish oligodendrogliomas and predict the 1p/19q codeletion presence. This study evaluates the diagnostic potential of MET PET in detecting 1p/19q deletions and quantifying SUV max (maximum standardized uptake value) to evaluate metabolic activity in newly diagnosed oligodendrogliomas, emphasizing the value of advanced imaging in guiding targeted clinical management. Methods We performed a retrospective chart review of pediatric and adult patients treated between 1999 and 2010, a period selected to capture evolving clinical protocols and advancements in imaging techniques. This timeframe maximized data availability and provided a longitudinal perspective on how shifts in diagnostic and therapeutic strategies may have influenced outcomes. All participants underwent MET PET scans and subsequent oligodendroglioma resections, with follow-up data extending until 2010. Relevant information, including demographics, clinical details, and glioma-specific mutations, was extracted from clinical records. Cases without histological confirmation or missing genetic results (1p/19q codeletion, IDH) were excluded to safeguard data integrity and limit bias. Both univariate and multivariate linear regression analyses were employed to assess the relationship between MET PET findings (SUV max) and these genetic alterations, aiming to clarify the predictive value of PET imaging in tumor genetics. Results Among the 85 oligodendroglioma patients analyzed (median age 50 ± 3 years), 47.1% (n = 40) harbored the 1p/19q codeletion, whereas 52.9% (n = 45) did not. The median SUV max was significantly higher in patients lacking the codeletion (3.7, IQR: 2.9-4.4) than in those with it (2.2, IQR: 1.8-2.6; p < 0.001). A Mann-Whitney U test confirmed the discrepancy (U = 189, z = -6.261, p < 0.0001). Further analysis using a multiple linear regression model indicated that the absence of the 1p/19q codeletion and an elevated Ki-67 index collectively predicted higher SUV max (F(1, 82) = 10.43, p < 0.0001), accounting for approximately 42.2% of the variability in SUV max. Conclusions The findings from this study underscore the utility of the MET PET scan not only as a diagnostic tool for identifying the presence of the 1p/19q deletion in patients with oligodendrogliomas but also for evaluating tumor metabolism through SUV max measurements. The scan's ability to distinguish tumor from necrosis based on metabolic activity enhances its clinical value, providing critical insights for optimal patient management. The data suggest that patients with higher SUV max are more likely to lack the 1p/19q deletion, a finding that could significantly influence treatment decisions and prognostic assessments. Given these results, MET PET scans represent a potent tool in refining diagnostic and follow-up strategies for oligodendroglioma, guiding more targeted and effective therapeutic approaches.
Collapse
Affiliation(s)
| | - Michel G Mondragón-Soto
- Neurosurgery, Instituto Nacional de Neurología y Neurocirugía Manuel V. Suárez, Mexico City, MEX
| | - Carlos F Nicolás-Cruz
- Neurosurgery, Instituto Nacional de Neurología y Neurocirugía Manuel V. Suárez, Mexico City, MEX
| | | | | | - Ignacio Reyes-Moreno
- Neuro-Oncology, Instituto Nacional de Neurología y Neurocirugía Manuel V. Suárez, Mexico City, MEX
| | | | - Roberto A de Leo-Vargas
- Neurosurgery, Instituto Nacional de Neurología y Neurocirugía Manuel V. Suárez, Mexico City, MEX
| | - Sergio M Jiménez
- Neurosurgery, Instituto Nacional de Neurología y Neurocirugía Manuel V. Suárez, Mexico City, MEX
| | | |
Collapse
|
16
|
Meng W, Li L, Hao Y, Tang M, Cao C, He J, Wang L, Cao B, Zhang Y, Li L, Zhu G. NAD+ Metabolism Reprogramming Mediates Irradiation-Induced Immunosuppressive Polarization of Macrophages. Int J Radiat Oncol Biol Phys 2025; 121:176-190. [PMID: 39127084 DOI: 10.1016/j.ijrobp.2024.07.2327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
PURPOSE Radiation therapy stands as an important complementary treatment for head and neck squamous cell carcinoma (HNSCC), yet it does not invariably result in complete tumor regression. The infiltration of immunosuppressive macrophages is believed to mediate the radiation therapy resistance, whose mechanism remains largely unexplored. This study aimed to elucidate the role of immunosuppressive macrophages during radiation therapy and the associated underlying mechanisms. METHODS AND MATERIALS Male C3H mice bearing syngeneic SCC-VII tumor received irradiation (2 × 8 Gy). The impact of irradiation on tumor-infiltrating macrophages was assessed. Bone marrow-derived macrophages were evaluated in differentiation, proliferation, migration, and inflammatory cytokines after treatment of irradiated tumor culture medium and irradiated tumor-derived extracellular vesicles (irTEVs). A comprehensive metabolomics profiling of the irTEVs was conducted using liquid chromatography-mass spectrometry, whereas key metabolites were investigated for their role in the mechanism of immunosuppression of macrophages in vitro and in vivo. RESULTS Radiation therapy on SCC-VII syngeneic graft tumors increased polarization of both M1 and M2 macrophages in the tumor microenvironment and drove infiltrated macrophages toward an immunosuppressive phenotype. Irradiation-induced polarization and immunosuppression of macrophages were dependent on irTEVs which delivered an increased amount of niacinamide (NAM) to macrophages. NAM directly bound to the nuclear factor kappa-B transcriptional activity regulator USP7, through which NAM reduced translocation of nuclear factor kappa-B into the nucleus, thereby decreasing the release of cytokines interleukin 6 and interleukin 8. Increased enzyme activity of NAM phosphoribosyl transferase which is the rate-limiting enzyme of NAD+ metabolism, contributed to the irradiation-induced accumulation levels of NAM in irradiated HNSCC and irTEVs. Inhibition of NAM phosphoribosyl transferase decreased NAM levels in irTEVs and increased radiation therapy sensitivity by alleviating the immunosuppressive function of macrophages. CONCLUSIONS Radiation therapy could induce NAD+ metabolic reprogramming of HNSCC cells, which regulate macrophages toward an immunosuppressive phenotype. Pharmacologic targeting of NAD+ metabolism might be a promising strategy for radiation therapy sensitization of HNSCC.
Collapse
Affiliation(s)
- Wanrong Meng
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China
| | - Ling Li
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yaying Hao
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Miaomiao Tang
- Institute of Rare Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang Cao
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China
| | - Jialu He
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China
| | - Linlin Wang
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Bangrong Cao
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yongqing Zhang
- School of Computer Science, Chengdu University of Information Technology, Chengdu, China
| | - Longjiang Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China.
| | - Guiquan Zhu
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
de la Fuente MI, Touat M, van den Bent MJ, Preusser M, Peters KB, Young RJ, Huang RY, Ellingson BM, Capper D, Phillips JJ, Halasz LM, Shih HA, Rudà R, Lim-Fat MJ, Blumenthal DT, Weller M, Arakawa Y, Whittle JR, Ducray F, Reardon DA, Bi WL, Minniti G, Rahman R, Hervey-Jumper S, Chang SM, Wen PY. The role of vorasidenib in the treatment of isocitrate dehydrogenase-mutant glioma. Neuro Oncol 2024:noae259. [PMID: 39723472 DOI: 10.1093/neuonc/noae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Isocitrate dehydrogenase (IDH)-mutant gliomas are the most common malignant primary brain tumors in young adults. This condition imposes a substantial burden on patients and their caregivers, marked by neurocognitive deficits and high mortality rates due to tumor progression, coupled with significant morbidity from current treatment modalities. Although surgery, radiation therapy, and chemotherapy improve survival, these treatments can adversely affect cognitive function, quality of life, finances, employment status, and overall independence. Consequently, there is an urgent need for innovative strategies that delay progression and the use of radiation therapy and chemotherapy. The recent Federal Drug Administration (FDA) approval of vorasidenib, a brain-penetrant small molecule targeting mutant IDH1/2 proteins, heralds a shift in the therapeutic landscape for IDH-mutant gliomas. In this review, we address the role of vorasidenib in the treatment of IDH-mutant gliomas, providing a roadmap for its incorporation into daily practice. We discuss ongoing clinical trials with vorasidenib and other IDH inhibitors, as single-agent or in combination with other therapies, as well as current challenges and future directions.
Collapse
Affiliation(s)
- Macarena I de la Fuente
- Department of Neurology, University of Miami, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Mehdi Touat
- Service de Neuro-oncologie, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, Paris Brain Institute, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France
- Department of Neurology, Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Martin J van den Bent
- Service de Neuro-oncologie, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, Paris Brain Institute, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France
- Department of Neurology, Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Katherine B Peters
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| | - Robert J Young
- Service Neuroradiology, Department of Radiology, Memorial Sloan Kettering Cancer, New York, New York, USA
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - David Capper
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Berlin, Heidelberg, Germany
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Joanna J Phillips
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Lia M Halasz
- Department of Radiation Oncology, University of Washington/Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience, University of Turin, Turin, Italy
| | - Mary Jane Lim-Fat
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - James R Whittle
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Personalised Oncology Division, WEHI, Parkville, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - François Ducray
- Department of Neuro-Oncology, East Group Hospital, Hospices Civils de Lyon, Université de Lyon, Université Claude Bernard, Lyon, France
| | - David A Reardon
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Giuseppe Minniti
- IRCCS Neuromed, Pozzilli, Isernia, Italy
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Rifaquat Rahman
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Susan M Chang
- Division of Neuro-Oncology, Department of Neurosurgery, University of California, San Francisco, California, USA
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Lanskikh D, Kuziakova O, Baklanov I, Penkova A, Doroshenko V, Buriak I, Zhmenia V, Kumeiko V. Cell-Based Glioma Models for Anticancer Drug Screening: From Conventional Adherent Cell Cultures to Tumor-Specific Three-Dimensional Constructs. Cells 2024; 13:2085. [PMID: 39768176 PMCID: PMC11674823 DOI: 10.3390/cells13242085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/08/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Gliomas are a group of primary brain tumors characterized by their aggressive nature and resistance to treatment. Infiltration of surrounding normal tissues limits surgical approaches, wide inter- and intratumor heterogeneity hinders the development of universal therapeutics, and the presence of the blood-brain barrier reduces the efficiency of their delivery. As a result, patients diagnosed with gliomas often face a poor prognosis and low survival rates. The spectrum of anti-glioma drugs used in clinical practice is quite narrow. Alkylating agents are often used as first-line therapy, but their effectiveness varies depending on the molecular subtypes of gliomas. This highlights the need for new, more effective therapeutic approaches. Standard drug-screening methods involve the use of two-dimensional cell cultures. However, these models cannot fully replicate the conditions present in real tumors, making it difficult to extrapolate the results to humans. We describe the advantages and disadvantages of existing glioma cell-based models designed to improve the situation and build future prospects to make drug discovery comprehensive and more effective for each patient according to personalized therapy paradigms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (D.L.); (O.K.); (I.B.); (A.P.); (V.D.); (I.B.); (V.Z.)
| |
Collapse
|
19
|
Baek C, Laurenge A, Touat M. Advances in the treatment of IDH-mutant gliomas. Curr Opin Neurol 2024; 37:708-716. [PMID: 39253756 DOI: 10.1097/wco.0000000000001316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW Isocitrate dehydrogenase (IDH) mutation is a defining molecular driver of WHO grade 2-4 astrocytomas and oligodendrogliomas. In this article, we review the recent therapeutic approaches specifically targeting IDH-mutant gliomas and summarize ongoing clinical trials in this population. RECENT FINDINGS The IDH inhibitor vorasidenib recently demonstrated its efficacy after surgical resection in grade 2 IDH-mutated gliomas. Several studies in patients with IDH-mutant gliomas are currently exploring various strategies to target IDH mutations, including the use of small-molecule inhibitors, immunotherapies, peptide vaccines and agents targeting metabolic and epigenomic vulnerabilities. SUMMARY Mutant-IDH targeting holds significant promise in treating progressive or recurrent IDH-mutant gliomas. Recent results with IDH inhibitors will change practice and influence the existing guidelines in a near future.
Collapse
Affiliation(s)
- Chooyoung Baek
- Service de Neuro-oncologie, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, AP-HP, Sorbonne Université
| | - Alice Laurenge
- Service de Neuro-oncologie, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, AP-HP, Sorbonne Université
- Institut du Cerveau, Paris Brain Institute (ICM), Inserm, CNRS, Sorbonne Université, AP-HP, SIRIC CURAMUS, Paris, France
| | - Mehdi Touat
- Service de Neuro-oncologie, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, AP-HP, Sorbonne Université
- Institut du Cerveau, Paris Brain Institute (ICM), Inserm, CNRS, Sorbonne Université, AP-HP, SIRIC CURAMUS, Paris, France
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Hao J, Huang Z, Zhang S, Song K, Wang J, Gao C, Fang Z, Zhang N. Deciphering the multifaceted roles and clinical implications of 2-hydroxyglutarate in cancer. Pharmacol Res 2024; 209:107437. [PMID: 39349213 DOI: 10.1016/j.phrs.2024.107437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Increasing evidence indicates that 2-hydroxyglutarate (2HG) is an oncometabolite that drives tumour formation and progression. Due to mutations in isocitrate dehydrogenase (IDH) and the dysregulation of other enzymes, 2HG accumulates significantly in tumour cells. Due to its structural similarity to α-ketoglutarate (αKG), accumulated 2HG leads to the competitive inhibition of αKG-dependent dioxygenases (αKGDs), such as KDMs, TETs, and EGLNs. This inhibition results in epigenetic alterations in both tumour cells and the tumour microenvironment. This review comprehensively discusses the metabolic pathways of 2HG and the subsequent pathways influenced by elevated 2HG levels. We will delve into the molecular mechanisms by which 2HG exerts its oncogenic effects, particularly focusing on epigenetic modifications. This review will also explore the various methods available for the detection of 2HG, emphasising both current techniques and emerging technologies. Furthermore, 2HG shows promise as a biomarker for clinical diagnosis and treatment. By integrating these perspectives, this review aims to provide a comprehensive overview of the current understanding of 2HG in cancer biology, highlight the importance of ongoing research, and discuss future directions for translating these findings into clinical applications.
Collapse
Affiliation(s)
- Jie Hao
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Ziyi Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Siyue Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Kefan Song
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Juncheng Wang
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Ning Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
21
|
Noronha KJ, Lucas KN, Paradkar S, Edmonds J, Friedman S, Murray MA, Liu S, Sajed DP, Sachs C, Spurrier J, Raponi M, Liang J, Zeng H, Sundaram RK, Shuch B, Vasquez JC, Bindra RS. NAPRT Silencing in FH-Deficient Renal Cell Carcinoma Confers Therapeutic Vulnerabilities via NAD+ Depletion. Mol Cancer Res 2024; 22:973-988. [PMID: 38949523 PMCID: PMC11445649 DOI: 10.1158/1541-7786.mcr-23-1003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/10/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is caused by loss of function mutations in fumarate hydratase (FH) and results in an aggressive subtype of renal cell carcinoma with limited treatment options. Loss of FH leads to accumulation of fumarate, an oncometabolite that disrupts multiple cellular processes and drives tumor progression. High levels of fumarate inhibit alpha ketoglutarate-dependent dioxygenases, including the ten-eleven translocation (TET) enzymes, and can lead to global DNA hypermethylation. Here, we report patterns of hypermethylation in FH-mutant cell lines and tumor samples are associated with the silencing of nicotinate phosphoribosyl transferase (NAPRT), a rate-limiting enzyme in the Preiss-Handler pathway of NAD+ biosynthesis, in a subset of HLRCC cases. NAPRT is hypermethylated at a CpG island in the promoter in cell line models and patient samples, resulting in loss of NAPRT expression. We find that FH-deficient RCC models with loss of NAPRT expression, as well as other oncometabolite-producing cancer models that silence NAPRT, are extremely sensitive to nicotinamide phosphoribosyl transferase inhibitors (NAMPTi). NAPRT silencing was also associated with synergistic tumor cell killing with PARP inhibitors and NAMPTis, which was associated with effects on PAR-mediated DNA repair. Overall, our findings indicate that NAPRT silencing can be targeted in oncometabolite-producing cancers and elucidates how oncometabolite-associated hypermethylation can impact diverse cellular processes and lead to therapeutically relevant vulnerabilities in cancer cells. Implications: NAPRT is a novel biomarker for targeting NAD+ metabolism in FH-deficient HLRCCs with NAMPTis alone and targeting DNA repair processes with the combination of NAMPTis and PARP inhibitors.
Collapse
Affiliation(s)
- Katelyn J. Noronha
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.
| | - Karlie N. Lucas
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Sateja Paradkar
- Department of Experimental Pathology, Yale University, New Haven, Connecticut.
| | - Joseph Edmonds
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Sam Friedman
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Matthew A. Murray
- Department of Experimental Pathology, Yale University, New Haven, Connecticut.
| | - Samantha Liu
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Dipti P. Sajed
- Department of Pathology, University of California Los Angeles, Los Angeles, California.
| | - Chana Sachs
- Department of Pathology, University of California Los Angeles, Los Angeles, California.
| | | | | | - Jiayu Liang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Hao Zeng
- Department of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Ranjini K. Sundaram
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Brian Shuch
- Institute of Urologic Oncology, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California.
| | - Juan C. Vasquez
- Department of Pediatric Hematology and Oncology, Yale University, New Haven, Connecticut.
| | - Ranjit S. Bindra
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| |
Collapse
|
22
|
Li M, Liu J, Weng J, Dong G, Chen X, Cui Y, Ren X, Shen S, Jiang H, Zhang X, Zhao X, Li M, Wang X, Ren H, Li Q, Zhang Y, Cheng Q, Yu Y, Lin S. Unveiling hierarchy and spatial distribution of O 6-methylguanine-DNA methyltransferase promoter methylation in World Health Organization grade 2-3 gliomas. Cancer Sci 2024; 115:3403-3414. [PMID: 39101880 PMCID: PMC11447971 DOI: 10.1111/cas.16268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 08/06/2024] Open
Abstract
This study investigated the role of O6-methylguanine-DNA methyltransferase promoter (MGMTp) methylation hierarchy and heterogeneity in grade 2-3 gliomas, focusing on variations in chemotherapy benefits and resection dependency. A cohort of 668 newly diagnosed grade 2-3 gliomas, with comprehensive clinical, radiological, and molecular data, formed the basis of this analysis. The extent of resection was categorized into gross total resection (GTR ≥100%), subtotal resection (STR >90%), and partial resection (PR ≤90%). MGMTp methylation levels were examined using quantitative pyrosequencing. Our findings highlighted the critical role of GTR in improving the prognosis for astrocytomas (IDH1/2-mutant and 1p/19q non-codeleted), contrasting with its lesser significance for oligodendrogliomas (IDH1/2 mutation and 1p/19q codeletion). Oligodendrogliomas demonstrated the highest average MGMTp methylation levels (median: 28%), with a predominant percentage of methylated cases (average methylation levels >20%). Astrocytomas were more common in the low-methylated group (10%-20%), while IDH wild-type gliomas were mostly unmethylated (<10%). Spatial distribution analysis revealed a decrement in frontal lobe involvement from methylated, low-methylated to unmethylated cases (72.8%, 59.3%, and 47.8%, respectively). In contrast, low-methylated and unmethylated cases were more likely to invade the temporal-insular region (19.7%, 34.3%, and 40.4%, respectively). Astrocytomas with intermediate MGMTp methylation were notably associated with temporal-insular involvement, potentially indicating a moderate response to temozolomide and underscoring the importance of aggressive resection strategies. In conclusion, our study elucidates the complex interplay of MGMTp methylation hierarchy and heterogeneity among grade 2-3 gliomas, providing insights into why astrocytomas and IDH wild-type lower-grade glioma might derive less benefit from chemotherapy.
Collapse
Affiliation(s)
- Mingxiao Li
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiang Liu
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Jiancong Weng
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Gehong Dong
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuzhu Chen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Cui
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaohui Ren
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shaoping Shen
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Haihui Jiang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China
| | - Xiaokang Zhang
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xuzhe Zhao
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Ming Li
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xijie Wang
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Hongxiang Ren
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Qiang Li
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Yulian Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanbing Yu
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Song Lin
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Tufail M, Jiang CH, Li N. Altered metabolism in cancer: insights into energy pathways and therapeutic targets. Mol Cancer 2024; 23:203. [PMID: 39294640 PMCID: PMC11409553 DOI: 10.1186/s12943-024-02119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer cells undergo significant metabolic reprogramming to support their rapid growth and survival. This study examines important metabolic pathways like glycolysis, oxidative phosphorylation, glutaminolysis, and lipid metabolism, focusing on how they are regulated and their contributions to the development of tumors. The interplay between oncogenes, tumor suppressors, epigenetic modifications, and the tumor microenvironment in modulating these pathways is examined. Furthermore, we discuss the therapeutic potential of targeting cancer metabolism, presenting inhibitors of glycolysis, glutaminolysis, the TCA cycle, fatty acid oxidation, LDH, and glucose transport, alongside emerging strategies targeting oxidative phosphorylation and lipid synthesis. Despite the promise, challenges such as metabolic plasticity and the need for combination therapies and robust biomarkers persist, underscoring the necessity for continued research in this dynamic field.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
24
|
Tateishi K. Translational Research Platform for Malignant Central Nervous System Tumors. Neurol Med Chir (Tokyo) 2024; 64:323-329. [PMID: 39111869 PMCID: PMC11461184 DOI: 10.2176/jns-nmc.2024-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/12/2024] [Indexed: 09/18/2024] Open
Abstract
Some central nervous system (CNS) malignancies are highly aggressive and urgently need innovative treatment strategies to improve prognosis. A significant concern for therapeutic development is the time-consuming nature of developing treatments for CNS tumors. Therefore, a rapid and efficient translational approach is needed to address this problem. Translational and reverse translational research aims to bridge the gap between laboratory data and clinical applications and has been developed in the field of neuro-oncology. This study presents our translational platform systems for malignant CNS tumors, which combine an intraoperative integrated diagnostic system and comprehensive in vitro and in vivo assay systems. These laboratory systems may contribute to a better understanding of tumor biology and the development of novel therapeutic strategies for the poor prognosis of CNS tumors.
Collapse
Affiliation(s)
- Kensuke Tateishi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University
- Neurosurgical-Oncology Laboratory, Yokohama City University
| |
Collapse
|
25
|
He WM, Yang JY, Zhao ZY, Xiao W, Li WH, Zhao YJ. The Fluorinated NAD Precursors Enhance FK866 Cytotoxicity by Activating SARM1 in Glioblastoma Cells. BIOLOGY 2024; 13:649. [PMID: 39336077 PMCID: PMC11429243 DOI: 10.3390/biology13090649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024]
Abstract
Glioblastoma, a formidable brain tumor characterized by dysregulated NAD metabolism, poses a significant therapeutic challenge. The NAMPT inhibitor FK866, which induces NAD depletion, has shown promise in controlling tumor proliferation and modifying the tumor microenvironment. However, the clinical efficacy of FK866 as a single drug therapy for glioma is limited. In this study, we aim to disrupt NAD metabolism using fluorinated NAD precursors and explore their synergistic effect with FK866 in inducing cytotoxicity in glioblastoma cells. The synthesized analogue of nicotinamide riboside (NR), ara-F nicotinamide riboside (F-NR), inhibits nicotinamide ribose kinase (NRK) activity in vitro, reduces cellular NAD levels, and enhances FK866's cytotoxicity in U251 glioblastoma cells, indicating a collaborative impact on cell death. Metabolic analyses reveal that F-NR undergoes conversion to fluorinated nicotinamide mononucleotide (F-NMN) and other metabolites, highlighting the intact NAD metabolic pathway in glioma cells. The activation of SARM1 by F-NMN, a potent NAD-consuming enzyme, is supported by the synergistic effect of CZ-48, a cell-permeable SARM1 activator. Temporal analysis underscores the sequential nature of events, establishing NAD depletion as a precursor to ATP depletion and eventual massive cell death. This study not only elucidates the molecular intricacies of glioblastoma cell death but also proposes a promising strategy to enhance FK866 efficacy through fluorinated NAD precursors, offering potential avenues for innovative therapeutic interventions in the challenging landscape of glioblastoma treatment.
Collapse
Affiliation(s)
- Wei Ming He
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (W.M.H.); (Z.Y.Z.)
| | - Jian Yuan Yang
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China;
| | - Zhi Ying Zhao
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (W.M.H.); (Z.Y.Z.)
| | - Weimin Xiao
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518110, China;
| | - Wan Hua Li
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (W.M.H.); (Z.Y.Z.)
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China;
| | - Yong Juan Zhao
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (W.M.H.); (Z.Y.Z.)
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China;
| |
Collapse
|
26
|
Schiff D. Low-Grade Gliomas: A New Mutation, New Targeted Therapy, and Many Questions. Neurology 2024; 103:e209688. [PMID: 39008801 DOI: 10.1212/wnl.0000000000209688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
The discovery in 2008 that many adult gliomas harbor a hitherto unknown mutation in the metabolic gene isocitrate dehydrogenase (IDH) initiated revolutionary advances in our understanding of the biology, and correspondingly our classification, of gliomas. IDH mutations are found in most nonglioblastoma adult gliomas and portend a better prognosis. Massive efforts have unraveled many of the pleiotropic cellular effects of these mutations and spawned several lines of investigation to target the effect to therapeutic benefit. In this article are reviewed the implications of the IDH mutation in gliomas, in particular focusing on recent studies that have culminated in a rare positive phase 3 trial in these generally refractory tumors.
Collapse
Affiliation(s)
- David Schiff
- From the Departments of Neurology, Neurological Surgery, and Medicine, University of Virginia Health System
| |
Collapse
|
27
|
Rahman R, Shi DD, Reitman ZJ, Hamerlik P, de Groot JF, Haas-Kogan DA, D’Andrea AD, Sulman EP, Tanner K, Agar NYR, Sarkaria JN, Tinkle CL, Bindra RS, Mehta MP, Wen PY. DNA damage response in brain tumors: A Society for Neuro-Oncology consensus review on mechanisms and translational efforts in neuro-oncology. Neuro Oncol 2024; 26:1367-1387. [PMID: 38770568 PMCID: PMC11300028 DOI: 10.1093/neuonc/noae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
DNA damage response (DDR) mechanisms are critical to maintenance of overall genomic stability, and their dysfunction can contribute to oncogenesis. Significant advances in our understanding of DDR pathways have raised the possibility of developing therapies that exploit these processes. In this expert-driven consensus review, we examine mechanisms of response to DNA damage, progress in development of DDR inhibitors in IDH-wild-type glioblastoma and IDH-mutant gliomas, and other important considerations such as biomarker development, preclinical models, combination therapies, mechanisms of resistance and clinical trial design considerations.
Collapse
Affiliation(s)
- Rifaquat Rahman
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diana D Shi
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zachary J Reitman
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Petra Hamerlik
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - John F de Groot
- Division of Neuro-Oncology, University of California San Francisco, San Francisco, California, USA
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan D D’Andrea
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Erik P Sulman
- Department of Radiation Oncology, New York University, New York, New York, USA
| | - Kirk Tanner
- National Brain Tumor Society, Newton, Massachusetts, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Christopher L Tinkle
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut, USA
| | - Minesh P Mehta
- Miami Cancer Institute, Baptist Hospital, Miami, Florida, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Ozgencil F, Gunindi HB, Eren G. Dual-targeted NAMPT inhibitors as a progressive strategy for cancer therapy. Bioorg Chem 2024; 149:107509. [PMID: 38824699 DOI: 10.1016/j.bioorg.2024.107509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/29/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
In mammals, nicotinamide phosphoribosyltransferase (NAMPT) is a crucial enzyme in the nicotinamide adenine dinucleotide (NAD+) synthesis pathway catalyzing the condensation of nicotinamide (NAM) with 5-phosphoribosyl-1-pyrophosphate (PRPP) to produce nicotinamide mononucleotide (NMN). Given the pivotal role of NAD+ in a range of cellular functions, including DNA synthesis, redox reactions, cytokine generation, metabolism, and aging, NAMPT has become a promising target for many diseases, notably cancer. Therefore, various NAMPT inhibitors have been reported and classified as first and second-generation based on their chemical structures and design strategies, dual-targeted being one. However, most NAMPT inhibitors suffer from several limitations, such as dose-dependent toxicity and poor pharmacokinetic properties. Consequently, there is no clinically approved NAMPT inhibitor. Hence, research on discovering more effective and less toxic dual-targeted NAMPT inhibitors with desirable pharmacokinetic properties has drawn attention recently. This review summarizes the previously reported dual-targeted NAMPT inhibitors, focusing on their design strategies and advantages over the single-targeted therapies.
Collapse
Affiliation(s)
- Fikriye Ozgencil
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Habibe Beyza Gunindi
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Gokcen Eren
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye.
| |
Collapse
|
29
|
Murray MA, Noronha KJ, Wang Y, Friedman AP, Paradkar S, Suh HW, Sundaram RK, Brenner C, Saltzman W, Bindra RS. Exploiting Metabolic Defects in Glioma with Nanoparticle-Encapsulated NAMPT Inhibitors. Mol Cancer Ther 2024; 23:1176-1187. [PMID: 38691846 PMCID: PMC11292319 DOI: 10.1158/1535-7163.mct-24-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/24/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The treatment of primary central nervous system tumors is challenging due to the blood-brain barrier and complex mutational profiles, which is associated with low survival rates. However, recent studies have identified common mutations in gliomas [isocitrate dehydrogenase (IDH)-wild-type and mutant, WHO grades II-IV; with grade IV tumors referred to as glioblastomas (GBM)]. These mutations drive epigenetic changes, leading to promoter methylation at the nicotinic acid phosphoribosyl transferase (NAPRT) gene locus, which encodes an enzyme involved in generating NAD+. Importantly, NAPRT silencing introduces a therapeutic vulnerability to inhibitors targeting another NAD+ biogenesis enzyme, nicotinamide phosphoribosyl transferase (NAMPT), rationalizing a treatment for these malignancies. Multiple systemically administered NAMPT inhibitors (NAMPTi) have been developed and tested in clinical trials, but dose-limiting toxicities-including bone marrow suppression and retinal toxicity-have limited their efficacy. Here, we report a novel approach for the treatment of NAPRT-silenced GBMs using nanoparticle (NP)-encapsulated NAMPTis administered by convection-enhanced delivery (CED). We demonstrate that GMX1778 (a NAMPTi) can be formulated in degradable polymer NPs with retention of potency for NAMPT inhibition and anticancer activity in vitro, plus sustained drug release in vitro and in vivo. Direct injection of these drugs via CED into the brain is associated with reduced retinal toxicity compared with systemic administration. Finally, we show that CED of NP-encapsulated GMX1778 to NAPRT-silenced intracranial GBM xenografts in mice exhibit significant tumor growth delay and extends survival. These data support an approach to treat gliomas harboring defects in NAD+ metabolism using CED of NP-encapsulated NAMPTis to greatly improve the therapeutic index and treatment efficacy for this class of drugs.
Collapse
Affiliation(s)
- Matthew A. Murray
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
- Department of Experimental Pathology, Yale University, New Haven, Connecticut.
| | - Katelyn J. Noronha
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.
| | - Yazhe Wang
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut.
| | - Anna P. Friedman
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Sateja Paradkar
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
- Department of Experimental Pathology, Yale University, New Haven, Connecticut.
| | - Hee-Won Suh
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire.
| | - Ranjini K. Sundaram
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Charles Brenner
- Department of Diabetes and Cancer Metabolism, City of Hope, Duarte, California.
| | - W.M. Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut.
| | - Ranjit S. Bindra
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
- Department of Experimental Pathology, Yale University, New Haven, Connecticut.
| |
Collapse
|
30
|
Saville KM, Al-Rahahleh RQ, Siddiqui AH, Andrews ME, Roos WP, Koczor CA, Andrews JF, Hayat F, Migaud ME, Sobol RW. Oncometabolite 2-hydroxyglutarate suppresses basal protein levels of DNA polymerase beta that enhances alkylating agent and PARG inhibition induced cytotoxicity. DNA Repair (Amst) 2024; 140:103700. [PMID: 38897003 PMCID: PMC11239280 DOI: 10.1016/j.dnarep.2024.103700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Mutations in isocitrate dehydrogenase isoform 1 (IDH1) are primarily found in secondary glioblastoma (GBM) and low-grade glioma but are rare in primary GBM. The standard treatment for GBM includes radiation combined with temozolomide, an alkylating agent. Fortunately, IDH1 mutant gliomas are sensitive to this treatment, resulting in a more favorable prognosis. However, it's estimated that up to 75 % of IDH1 mutant gliomas will progress to WHO grade IV over time and develop resistance to alkylating agents. Therefore, understanding the mechanism(s) by which IDH1 mutant gliomas confer sensitivity to alkylating agents is crucial for developing targeted chemotherapeutic approaches. The base excision repair (BER) pathway is responsible for repairing most base damage induced by alkylating agents. Defects in this pathway can lead to hypersensitivity to these agents due to unresolved DNA damage. The coordinated assembly and disassembly of BER protein complexes are essential for cell survival and for maintaining genomic integrity following alkylating agent exposure. These complexes rely on poly-ADP-ribose formation, an NAD+-dependent post-translational modification synthesized by PARP1 and PARP2 during the BER process. At the lesion site, poly-ADP-ribose facilitates the recruitment of XRCC1. This scaffold protein helps assemble BER proteins like DNA polymerase beta (Polβ), a bifunctional DNA polymerase containing both DNA synthesis and 5'-deoxyribose-phosphate lyase (5'dRP lyase) activity. Here, we confirm that IDH1 mutant glioma cells have defective NAD+ metabolism, but still produce sufficient nuclear NAD+ for robust PARP1 activation and BER complex formation in response to DNA damage. However, the overproduction of 2-hydroxyglutarate, an oncometabolite produced by the IDH1 R132H mutant protein, suppresses BER capacity by reducing Polβ protein levels. This defines a novel mechanism by which the IDH1 mutation in gliomas confers cellular sensitivity to alkylating agents and to inhibitors of the poly-ADP-ribose glycohydrolase, PARG.
Collapse
Affiliation(s)
- Kate M Saville
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Rasha Q Al-Rahahleh
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Aisha H Siddiqui
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Morgan E Andrews
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Wynand P Roos
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Christopher A Koczor
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Joel F Andrews
- Department Biochemistry and Molecular Biology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Faisal Hayat
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Marie E Migaud
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Robert W Sobol
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
31
|
Lin MD, Tsai ACY, Abdullah KG, McBrayer SK, Shi DD. Treatment of IDH-mutant glioma in the INDIGO era. NPJ Precis Oncol 2024; 8:149. [PMID: 39025958 PMCID: PMC11258219 DOI: 10.1038/s41698-024-00646-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
Gliomas are the most common primary brain tumor and are uniformly lethal. Despite significant advancements in understanding the genetic landscape of gliomas, standard-of-care has remained largely unchanged. Subsets of gliomas are defined by gain-of-function mutations in the metabolic genes encoding isocitrate dehydrogenase (IDH). Efforts to exploit mutant IDH activity and/or directly inhibit it with mutant IDH inhibitors have been the focus of over a decade of research. The recently published INDIGO trial, demonstrating the benefit of the mutant IDH inhibitor vorasidenib in patients with low-grade IDH-mutant gliomas, introduces a new era of precision medicine in brain tumors that is poised to change standard-of-care. In this review, we highlight and contextualize the results of the INDIGO trial and introduce key questions whose answers will guide how mutant IDH inhibitors may be used in the clinic. We discuss possible combination therapies with mutant IDH inhibition and future directions for clinical and translational research.
Collapse
Affiliation(s)
- Mathew D Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Alexander C-Y Tsai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Kalil G Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Samuel K McBrayer
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Diana D Shi
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA.
| |
Collapse
|
32
|
Richardson TE, Walker JM, Hambardzumyan D, Brem S, Hatanpaa KJ, Viapiano MS, Pai B, Umphlett M, Becher OJ, Snuderl M, McBrayer SK, Abdullah KG, Tsankova NM. Genetic and epigenetic instability as an underlying driver of progression and aggressive behavior in IDH-mutant astrocytoma. Acta Neuropathol 2024; 148:5. [PMID: 39012509 PMCID: PMC11252228 DOI: 10.1007/s00401-024-02761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024]
Abstract
In recent years, the classification of adult-type diffuse gliomas has undergone a revolution, wherein specific molecular features now represent defining diagnostic criteria of IDH-wild-type glioblastomas, IDH-mutant astrocytomas, and IDH-mutant 1p/19q-codeleted oligodendrogliomas. With the introduction of the 2021 WHO CNS classification, additional molecular alterations are now integrated into the grading of these tumors, given equal weight to traditional histologic features. However, there remains a great deal of heterogeneity in patient outcome even within these established tumor subclassifications that is unexplained by currently codified molecular alterations, particularly in the IDH-mutant astrocytoma category. There is also significant intercellular genetic and epigenetic heterogeneity and plasticity with resulting phenotypic heterogeneity, making these tumors remarkably adaptable and robust, and presenting a significant barrier to the design of effective therapeutics. Herein, we review the mechanisms and consequences of genetic and epigenetic instability, including chromosomal instability (CIN), microsatellite instability (MSI)/mismatch repair (MMR) deficits, and epigenetic instability, in the underlying biology, tumorigenesis, and progression of IDH-mutant astrocytomas. We also discuss the contribution of recent high-resolution transcriptomics studies toward defining tumor heterogeneity with single-cell resolution. While intratumoral heterogeneity is a well-known feature of diffuse gliomas, the contribution of these various processes has only recently been considered as a potential driver of tumor aggressiveness. CIN has an independent, adverse effect on patient survival, similar to the effect of histologic grade and homozygous CDKN2A deletion, while MMR mutation is only associated with poor overall survival in univariate analysis but is highly correlated with higher histologic/molecular grade and other aggressive features. These forms of genomic instability, which may significantly affect the natural progression of these tumors, response to therapy, and ultimately clinical outcome for patients, are potentially measurable features which could aid in diagnosis, grading, prognosis, and development of personalized therapeutics.
Collapse
Affiliation(s)
- Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA.
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
- Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kimmo J Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mariano S Viapiano
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Balagopal Pai
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Melissa Umphlett
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
| | - Oren J Becher
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA
| | - Samuel K McBrayer
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kalil G Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, 200 Lothrop St, Pittsburgh, PA, 15213, USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Nadejda M Tsankova
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
33
|
Nasser AM, Melamed L, Wetzel EA, Chang JCC, Nagashima H, Kitagawa Y, Muzyka L, Wakimoto H, Cahill DP, Miller JJ. CDKN2A/B Homozygous Deletion Sensitizes IDH-Mutant Glioma to CDK4/6 Inhibition. Clin Cancer Res 2024; 30:2996-3005. [PMID: 38718141 PMCID: PMC11250907 DOI: 10.1158/1078-0432.ccr-24-0562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE Treatment paradigms for isocitrate dehydrogenase (IDH)-mutant gliomas are rapidly evolving. Although typically indolent and responsive to initial treatment, these tumors invariably recur at a higher grade and require salvage treatment. Homozygous deletion of the tumor suppressor gene CDKN2A/B frequently emerges at recurrence in these tumors, driving poor patient outcomes. We investigated the effect of CDK-Rb pathway blockade on IDH-mutant glioma growth in vitro and in vivo using CDK4/6 inhibitors (CDKi). EXPERIMENTAL DESIGN Cell viability, proliferation assays, and flow cytometry were used to examine the pharmacologic effect of two distinct CDKi, palbociclib and abemaciclib, in multiple patient-derived IDH-mutant glioma lines. Isogenic models were used to directly investigate the influence of CDKN2A/B status on CDKi sensitivity. Orthotopic xenograft tumor models were used to examine the efficacy and tolerability of CDKi in vivo. RESULTS CDKi treatment leads to decreased cell viability and proliferative capacity in patient-derived IDH-mutant glioma lines, coupled with enrichment of cells in the G1 phase. CDKN2A inactivation sensitizes IDH-mutant glioma to CDKi in both endogenous and isogenic models with engineered CDKN2A deletion. CDK4/6 inhibitor administration improves survival in orthotopically implanted IDH-mutant glioma models. CONCLUSIONS IDH-mutant gliomas with deletion of CDKN2A/B are sensitized to CDK4/6 inhibitors. These results support the investigation of the use of these agents in a clinical setting.
Collapse
Affiliation(s)
- Ali M. Nasser
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Lisa Melamed
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ethan A. Wetzel
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jenny Chia-Chen Chang
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Hiroaki Nagashima
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yosuke Kitagawa
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Logan Muzyka
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Hiroaki Wakimoto
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Daniel P. Cahill
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Julie J. Miller
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
34
|
Nguyen TTT, Gao Q, Mun JY, Zhu Z, Shu C, Naim A, Rogava M, Izar B, Westhoff MA, Karpel-Massler G, Siegelin MD. Suppressing PD-L1 Expression via AURKA Kinase Inhibition Enhances Natural Killer Cell-Mediated Cytotoxicity against Glioblastoma. Cells 2024; 13:1155. [PMID: 38995006 PMCID: PMC11240544 DOI: 10.3390/cells13131155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
Immunotherapies have shown significant promise as an impactful strategy in cancer treatment. However, in glioblastoma multiforme (GBM), the most prevalent primary brain tumor in adults, these therapies have demonstrated lower efficacy than initially anticipated. Consequently, there is an urgent need for strategies to enhance the effectiveness of immune treatments. AURKA has been identified as a potential drug target for GBM treatment. An analysis of the GBM cell transcriptome following AURKA inhibition revealed a potential influence on the immune system. Our research revealed that AURKA influenced PD-L1 levels in various GBM model systems in vitro and in vivo. Disrupting AURKA function genetically led to reduced PD-L1 levels and increased MHC-I expression in both established and patient-derived xenograft GBM cultures. This process involved both transcriptional and non-transcriptional pathways, partly implicating GSK3β. Interfering with AURKA also enhanced NK-cell-mediated elimination of GBM by reducing PD-L1 expression, as evidenced in rescue experiments. Furthermore, using a mouse model that mimics GBM with patient-derived cells demonstrated that Alisertib decreased PD-L1 expression in living organisms. Combination therapy involving anti-PD-1 treatment and Alisertib significantly prolonged overall survival compared to vehicle treatment. These findings suggest that targeting AURKA could have therapeutic implications for modulating the immune environment within GBM cells.
Collapse
Affiliation(s)
- Trang T. T. Nguyen
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; (T.T.T.N.); (Q.G.); (J.-Y.M.); (Z.Z.); (C.S.); (A.N.)
| | - Qiuqiang Gao
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; (T.T.T.N.); (Q.G.); (J.-Y.M.); (Z.Z.); (C.S.); (A.N.)
| | - Jeong-Yeon Mun
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; (T.T.T.N.); (Q.G.); (J.-Y.M.); (Z.Z.); (C.S.); (A.N.)
| | - Zhe Zhu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; (T.T.T.N.); (Q.G.); (J.-Y.M.); (Z.Z.); (C.S.); (A.N.)
| | - Chang Shu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; (T.T.T.N.); (Q.G.); (J.-Y.M.); (Z.Z.); (C.S.); (A.N.)
| | - Aaron Naim
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; (T.T.T.N.); (Q.G.); (J.-Y.M.); (Z.Z.); (C.S.); (A.N.)
| | - Meri Rogava
- Division of Hematology/Oncology and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; (M.R.); (B.I.)
| | - Benjamin Izar
- Division of Hematology/Oncology and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; (M.R.); (B.I.)
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89081 Ulm, Germany;
| | | | - Markus D. Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; (T.T.T.N.); (Q.G.); (J.-Y.M.); (Z.Z.); (C.S.); (A.N.)
| |
Collapse
|
35
|
He Z, Peng Y, Wang D, Yang C, Zhou C, Gong B, Song S, Wang Y. Single-cell transcriptomic analysis identifies downregulated phosphodiesterase 8B as a novel oncogene in IDH-mutant glioma. Front Immunol 2024; 15:1427200. [PMID: 38989284 PMCID: PMC11233524 DOI: 10.3389/fimmu.2024.1427200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/04/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Glioma, a prevalent and deadly brain tumor, is marked by significant cellular heterogeneity and metabolic alterations. However, the comprehensive cell-of-origin and metabolic landscape in high-grade (Glioblastoma Multiforme, WHO grade IV) and low-grade (Oligoastrocytoma, WHO grade II) gliomas remains elusive. Methods In this study, we undertook single-cell transcriptome sequencing of these glioma grades to elucidate their cellular and metabolic distinctions. Following the identification of cell types, we compared metabolic pathway activities and gene expressions between high-grade and low-grade gliomas. Results Notably, astrocytes and oligodendrocyte progenitor cells (OPCs) exhibited the most substantial differences in both metabolic pathways and gene expression, indicative of their distinct origins. The comprehensive analysis identified the most altered metabolic pathways (MCPs) and genes across all cell types, which were further validated against TCGA and CGGA datasets for clinical relevance. Discussion Crucially, the metabolic enzyme phosphodiesterase 8B (PDE8B) was found to be exclusively expressed and progressively downregulated in astrocytes and OPCs in higher-grade gliomas. This decreased expression identifies PDE8B as a metabolism-related oncogene in IDH-mutant glioma, marking its dual role as both a protective marker for glioma grading and prognosis and as a facilitator in glioma progression.
Collapse
Affiliation(s)
- Zongze He
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Peng
- Department of Academic Journal, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Duo Wang
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chen Yang
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chengzhi Zhou
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- Department of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| |
Collapse
|
36
|
Conti Nibali S, De Siervi S, Luchinat E, Magrì A, Messina A, Brocca L, Mantovani S, Oliviero B, Mondelli MU, De Pinto V, Turato C, Arrigoni C, Lolicato M. VDAC1-interacting molecules promote cell death in cancer organoids through mitochondrial-dependent metabolic interference. iScience 2024; 27:109853. [PMID: 38784007 PMCID: PMC11112339 DOI: 10.1016/j.isci.2024.109853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/06/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The voltage-dependent anion-selective channel isoform 1 (VDAC1) is a pivotal component in cellular metabolism and apoptosis with a prominent role in many cancer types, offering a unique therapeutic intervention point. Through an in-silico-to-in-vitro approach we identified a set of VA molecules (VDAC Antagonists) that selectively bind to VDAC1 and display specificity toward cancer cells. Biochemical characterization showed that VA molecules can directly interact with VDAC1 with micromolar affinity by competing with the endogenous ligand NADH for a partially shared binding site. NADH displacement results in mitochondrial distress and reduced cell proliferation, especially when compared to non-cancerous cells. Experiments performed on organoids derived from intrahepatic cholangiocarcinoma patients demonstrated a dose-dependent reduction in cell viability upon treatment with VA molecules with lower impact on healthy cells than conventional treatments like gemcitabine. VA molecules are chemical entities representing promising candidates for further optimization and development as cancer therapy strategies through precise metabolic interventions.
Collapse
Affiliation(s)
| | - Silvia De Siervi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Enrico Luchinat
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, 50019 Firenze, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine – CIRMMP, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Andrea Magrì
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Lorenza Brocca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Stefania Mantovani
- Research Department, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Barbara Oliviero
- Research Department, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mario U. Mondelli
- Research Department, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, Section of Biology & Genetics, University of Catania, Catania, Italy
| | - Cristian Turato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Marco Lolicato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
37
|
Zhu X, Li Y, Liu H, Wang Y, Sun R, Jiang Z, Hou C, Hou X, Huang S, Zhang H, Wang H, Jiang B, Yang X, Xu B, Fan G. NAMPT-targeting PROTAC and nicotinic acid co-administration elicit safe and robust anti-tumor efficacy in NAPRT-deficient pan-cancers. Cell Chem Biol 2024; 31:1203-1218.e17. [PMID: 38906111 DOI: 10.1016/j.chembiol.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/23/2024] [Accepted: 05/22/2024] [Indexed: 06/23/2024]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the biosynthesis of nicotinamide adenine dinucleotide (NAD+), making it a potential target for cancer therapy. Two challenges hinder its translation in the clinic: targeting the extracellular form of NAMPT (eNAMPT) remains insufficient, and side effects are observed in normal tissues. We previously utilized proteolysis-targeting chimera (PROTAC) to develop two compounds capable of simultaneously degrading iNAMPT and eNAMPT. Unfortunately, the pharmacokinetic properties were inadequate, and toxicities similar to those associated with traditional inhibitors arose. We have developed a next-generation PROTAC molecule 632005 to address these challenges, demonstrating exceptional target selectivity and bioavailability, improved in vivo exposure, extended half-life, and reduced clearance rate. When combined with nicotinic acid, 632005 exhibits safety and robust efficacy in treating NAPRT-deficient pan-cancers, including xenograft models with hematologic malignancy and prostate cancer and patient-derived xenograft (PDX) models with liver cancer. Our findings provide clinical references for patient selection and treatment strategies involving NAMPT-targeting PROTACs.
Collapse
Affiliation(s)
- Xiaotong Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ye Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Haixia Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuetong Wang
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Renhong Sun
- Gluetacs Therapeutics (Shanghai) Co, Ltd, Building 20, Lane 218, Haiji Road 6, Pudong District, Shanghai 201306, China
| | - Zhenzhou Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chun Hou
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xianyu Hou
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Suming Huang
- The International Peace Maternity & Child Health Hospital of China Welfare Institute, Shanghai 200030, China
| | - Huijuan Zhang
- The International Peace Maternity & Child Health Hospital of China Welfare Institute, Shanghai 200030, China
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Biao Jiang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaobao Yang
- Gluetacs Therapeutics (Shanghai) Co, Ltd, Building 20, Lane 218, Haiji Road 6, Pudong District, Shanghai 201306, China.
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China.
| |
Collapse
|
38
|
Wen F, Gui G, Wang X, Qin A, Ma T, Chen H, Li C, Zha X. Discovery of Novel Dual Inhibitors Targeting Mutant IDH1 and NAMPT for the Treatment of Glioma with IDH1Mutation. J Med Chem 2024; 67:8667-8692. [PMID: 38651495 DOI: 10.1021/acs.jmedchem.3c02482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The targeting of cancer cell intrinsic metabolism has emerged as a promising strategy for antitumor intervention. In the study, we identified the first-in-class small molecules that effectively inhibit both mutant isocitrate dehydrogenase 1 (mIDH1) and nicotinamide phosphoribosyltransferase (NAMPT), two crucial targets in cancer metabolism, through structure-based drug design. Notably, compound 23h exhibits excellent and balanced inhibitory activities against both mIDH1 (IC50 = 14.93 nM) and NAMPT (IC50 = 12.56 nM), leading to significant suppression of IDH1-mutated glioma cell (U87 MG-IDH1R132H) proliferation. Significantly, compound 23h has the ability to cross the blood-brain barrier (B/P ratio, 0.76) and demonstrates remarkable in vivo antitumor efficacy (20 mg/kg) in the U87 MG-IDH1R132H orthotopic transplantation mouse models without any notable toxicity. This proof-of-concept investigation substantiates the viability of discovering small molecules that concurrently target mIDH1 and NAMPT, providing valuable leads for the treatment of glioma and an efficient approach for the discovery of multitarget antitumor drugs.
Collapse
Affiliation(s)
- Fei Wen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Gang Gui
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xiaoyu Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Anqi Qin
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Tianfang Ma
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Hui Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Chunzheng Li
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xiaoming Zha
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
39
|
Perryman R, Chau TW, De-Felice J, O’Neill K, Syed N. Distinct Capabilities in NAD Metabolism Mediate Resistance to NAMPT Inhibition in Glioblastoma. Cancers (Basel) 2024; 16:2054. [PMID: 38893173 PMCID: PMC11171005 DOI: 10.3390/cancers16112054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma (GBM) cells require high levels of nicotinamide adenine dinucleotide (NAD) to fuel metabolic reactions, regulate their cell cycle and support DNA repair in response to chemotherapy and radiation. Inhibition of a key enzyme in NAD biosynthesis, NAMPT, has demonstrated significant anti-neoplastic activity. Here, we sought to characterise NAD biosynthetic pathways in GBM to determine resistance mechanisms to NAD inhibitors. GBM cells were treated with the NAMPT inhibitor FK866 with and without NAD precursors, and were analysed by qPCR, Western blot and proliferation assays (monolayer and spheroid). We also measured changes in the cell cycle, apoptosis, NAD/NADH levels and energy production. We performed orthoptic xenograft experiments in athymic nude mice to test the efficacy of FK866 in combination with temozolomide (TMZ). We show that the expression of key genes involved in NAD biosynthesis is highly variable across GBM tumours. FK866 inhibits proliferation, reduces NAD levels and limits oxidative metabolism, leading to G2/M cell cycle arrest; however, this can be reversed by supplementation with specific NAD precursors. Furthermore, FK866 potentiates the effects of radiation and TMZ in vitro and in vivo. NAMPT inhibitors should be considered for the treatment of GBM, with patients stratified based on their expression of key enzymes in other NAD biosynthetic pathways.
Collapse
Affiliation(s)
- Richard Perryman
- John Fulcher Neuro-Oncology Laboratory, Imperial College London, London W12 0NN, UK (K.O.)
| | | | | | | | - Nelofer Syed
- John Fulcher Neuro-Oncology Laboratory, Imperial College London, London W12 0NN, UK (K.O.)
| |
Collapse
|
40
|
Alberti G, Amico MD, Caruso Bavisotto C, Rappa F, Marino Gammazza A, Bucchieri F, Cappello F, Scalia F, Szychlinska MA. Speeding up Glioblastoma Cancer Research: Highlighting the Zebrafish Xenograft Model. Int J Mol Sci 2024; 25:5394. [PMID: 38791432 PMCID: PMC11121320 DOI: 10.3390/ijms25105394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a very aggressive and lethal primary brain cancer in adults. The multifaceted nature of GBM pathogenesis, rising from complex interactions between cells and the tumor microenvironment (TME), has posed great treatment challenges. Despite significant scientific efforts, the prognosis for GBM remains very poor, even after intensive treatment with surgery, radiation, and chemotherapy. Efficient GBM management still requires the invention of innovative treatment strategies. There is a strong necessity to complete cancer in vitro studies and in vivo studies to properly evaluate the mechanisms of tumor progression within the complex TME. In recent years, the animal models used to study GBM tumors have evolved, achieving highly invasive GBM models able to provide key information on the molecular mechanisms of GBM onset. At present, the most commonly used animal models in GBM research are represented by mammalian models, such as mouse and canine ones. However, the latter present several limitations, such as high cost and time-consuming management, making them inappropriate for large-scale anticancer drug evaluation. In recent years, the zebrafish (Danio rerio) model has emerged as a valuable tool for studying GBM. It has shown great promise in preclinical studies due to numerous advantages, such as its small size, its ability to generate a large cohort of genetically identical offspring, and its rapid development, permitting more time- and cost-effective management and high-throughput drug screening when compared to mammalian models. Moreover, due to its transparent nature in early developmental stages and genetic and anatomical similarities with humans, it allows for translatable brain cancer research and related genetic screening and drug discovery. For this reason, the aim of the present review is to highlight the potential of relevant transgenic and xenograft zebrafish models and to compare them to the traditionally used animal models in GBM research.
Collapse
Affiliation(s)
- Giusi Alberti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Maria Denise Amico
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
- The Institute of Translational Pharmacology, National Research Council of Italy (CNR), 90146 Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Federica Scalia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Marta Anna Szychlinska
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
41
|
Spitzer A, Gritsch S, Nomura M, Jucht A, Fortin J, Raviram R, Weisman HR, Gonzalez Castro LN, Druck N, Chanoch-Myers R, Lee JJY, Mylvaganam R, Lee Servis R, Fung JM, Lee CK, Nagashima H, Miller JJ, Arrillaga-Romany I, Louis DN, Wakimoto H, Pisano W, Wen PY, Mak TW, Sanson M, Touat M, Landau DA, Ligon KL, Cahill DP, Suvà ML, Tirosh I. Mutant IDH inhibitors induce lineage differentiation in IDH-mutant oligodendroglioma. Cancer Cell 2024; 42:904-914.e9. [PMID: 38579724 PMCID: PMC11096020 DOI: 10.1016/j.ccell.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 01/05/2024] [Accepted: 03/13/2024] [Indexed: 04/07/2024]
Abstract
A subset of patients with IDH-mutant glioma respond to inhibitors of mutant IDH (IDHi), yet the molecular underpinnings of such responses are not understood. Here, we profiled by single-cell or single-nucleus RNA-sequencing three IDH-mutant oligodendrogliomas from patients who derived clinical benefit from IDHi. Importantly, the tissues were sampled on-drug, four weeks from treatment initiation. We further integrate our findings with analysis of single-cell and bulk transcriptomes from independent cohorts and experimental models. We find that IDHi treatment induces a robust differentiation toward the astrocytic lineage, accompanied by a depletion of stem-like cells and a reduction of cell proliferation. Furthermore, mutations in NOTCH1 are associated with decreased astrocytic differentiation and may limit the response to IDHi. Our study highlights the differentiating potential of IDHi on the cellular hierarchies that drive oligodendrogliomas and suggests a genetic modifier that may improve patient stratification.
Collapse
Affiliation(s)
- Avishay Spitzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 761001, Israel; Department of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Simon Gritsch
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Masashi Nomura
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Alexander Jucht
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jerome Fortin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Ramya Raviram
- New York Genome Center, New York, NY, USA; Weill Cornell Medicine, New York, NY, USA
| | - Hannah R Weisman
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - L Nicolas Gonzalez Castro
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Nicholas Druck
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Rony Chanoch-Myers
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 761001, Israel
| | - John J Y Lee
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ravindra Mylvaganam
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Rachel Lee Servis
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jeremy Man Fung
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Christine K Lee
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hiroaki Nagashima
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Julie J Miller
- Pappas Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Isabel Arrillaga-Romany
- Departments of Neurology and Radiation Oncology, Division of Hematology/Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - David N Louis
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Will Pisano
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Tak W Mak
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China; Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Marc Sanson
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Mehdi Touat
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France; Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Dan A Landau
- New York Genome Center, New York, NY, USA; Weill Cornell Medicine, New York, NY, USA
| | - Keith L Ligon
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Mario L Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 761001, Israel.
| |
Collapse
|
42
|
Gunn K, Losman JA. Isocitrate Dehydrogenase Mutations in Cancer: Mechanisms of Transformation and Metabolic Liability. Cold Spring Harb Perspect Med 2024; 14:a041537. [PMID: 38191174 PMCID: PMC11065172 DOI: 10.1101/cshperspect.a041537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are metabolic enzymes that interconvert isocitrate and 2-oxoglutarate (2OG). Gain-of-function mutations in IDH1 and IDH2 occur in a number of cancers, including acute myeloid leukemia, glioma, cholangiocarcinoma, and chondrosarcoma. These mutations cripple the wild-type activity of IDH and cause the enzymes to catalyze a partial reverse reaction in which 2OG is reduced but not carboxylated, resulting in production of the (R)-enantiomer of 2-hydroxyglutarate ((R)-2HG). (R)-2HG accumulation in IDH-mutant tumors results in profound dysregulation of cellular metabolism. The most well-characterized oncogenic effects of (R)-2HG involve the dysregulation of 2OG-dependent epigenetic tumor-suppressor enzymes. However, (R)-2HG has many other effects in IDH-mutant cells, some that promote transformation and others that induce metabolic dependencies. Herein, we review how cancer-associated IDH mutations impact epigenetic regulation and cellular metabolism and discuss how these effects can potentially be leveraged to therapeutically target IDH-mutant tumors.
Collapse
Affiliation(s)
- Kathryn Gunn
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Julie-Aurore Losman
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
43
|
Kitagawa Y, Kobayashi A, Cahill DP, Wakimoto H, Tanaka S. Molecular biology and novel therapeutics for IDH mutant gliomas: The new era of IDH inhibitors. Biochim Biophys Acta Rev Cancer 2024; 1879:189102. [PMID: 38653436 DOI: 10.1016/j.bbcan.2024.189102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/25/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Gliomas with Isocitrate dehydrogenase (IDH) mutation represent a discrete category of primary brain tumors with distinct and unique characteristics, behaviors, and clinical disease outcomes. IDH mutations lead to aberrant high-level production of the oncometabolite D-2-hydroxyglutarate (D-2HG), which act as a competitive inhibitor of enzymes regulating epigenetics, signaling pathways, metabolism, and various other processes. This review summarizes the significance of IDH mutations, resulting upregulation of D-2HG and the associated molecular pathways in gliomagenesis. With the recent finding of clinically effective IDH inhibitors in these gliomas, this article offers a comprehensive overview of the new era of innovative therapeutic approaches based on mechanistic rationales, encompassing both completed and ongoing clinical trials targeting gliomas with IDH mutations.
Collapse
Affiliation(s)
- Yosuke Kitagawa
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 02114 Boston, MA, USA; Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, 02114 Boston, MA, USA; Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 1138655 Bunkyo-ku, Tokyo, Japan
| | - Ami Kobayashi
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 02115 Boston, MA, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 02114 Boston, MA, USA; Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, 02114 Boston, MA, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 02114 Boston, MA, USA; Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, 02114 Boston, MA, USA.
| | - Shota Tanaka
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 7008558, Okayama, Japan
| |
Collapse
|
44
|
Dowdy T, Larion M. Resolving Challenges in Detection and Quantification of D-2-hydroxyglutarate and L-2-hydroxyglutarate via LC/MS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591335. [PMID: 38903117 PMCID: PMC11188093 DOI: 10.1101/2024.04.26.591335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
D-2-Hydroxyglutarate and L-2-Hydroxyglutarate (D-2HG/L-2HG) are typically metabolites of non-specific enzymatic reactions that are kept in check by the housekeeping enzymes, D-2HG /L-2HG dehydrogenase (D-2HGDH/L-2HGDH). In certain disease states, such as D-2HG or L-2HG aciduria and cancers, accumulation of these biomarkers interferes with oxoglutarate-dependent enzymes that regulate bioenergetic metabolism, histone methylation, post-translational modification, protein expression and others. D-2HG has a complex role in tumorigenesis that drives metabolomics investigations. Meanwhile, L-2HG is produced by non-specific action of malate dehydrogenase and lactate dehydrogenase under acidic or hypoxic environments. Characterization of divergent effects of D-2HG/L-2HG on the activity of specific enzymes in diseased metabolism depends on their accurate quantification via mass spectrometry. Despite advancements in high-resolution quadrupole time-of-flight mass spectrometry (HR-QTOF-MS), challenges are typically encountered when attempting to resolve of isobaric and isomeric metabolites such as D-2HG/L-2HG for quantitative analysis. Herein, available D-2HG/L-2HG derivatization and liquid chromatography (LC) MS quantification methods were examined. The outcome led to the development of a robust, high-throughput HR-QTOF-LC/MS approach that permits concomitant quantification of the D-2HG and L-2HG enantiomers with the benefit to quantify the dysregulation of other intermediates within interconnecting pathways. Calibration curve was obtained over the linear range of 0.8-104 nmol/mL with r 2 ≥ 0.995 for each enantiomer. The LC/MS-based assay had an overall precision with intra-day CV % ≤ 8.0 and inter-day CV % ≤ 6.3 across the quality control level for commercial standard and pooled biological samples; relative error % ≤ 2.7 for accuracy; and resolution, R s = 1.6 between 2HG enantiomers (m/z 147.030), D-2HG and L-2HG (at retention time of 5.82 min and 4.75 min, respectively) following chiral derivatization with diacetyl-L-tartaric anhydride (DATAN). Our methodology was applied to disease relevant samples to illustrate the implications of proper enantioselective quantification of both D-2HG and L-2HG. The stability of the method allows scaling to large cohorts of clinical samples in the future.
Collapse
|
45
|
Grygoryev K, Lu H, Sørensen S, Talebi Varnosfaderani O, Georgel R, Li L, Burke R, Andersson-Engels S. Miniature, multi-dichroic instrument for measuring the concentration of multiple fluorophores. BIOMEDICAL OPTICS EXPRESS 2024; 15:2377-2391. [PMID: 38633072 PMCID: PMC11019676 DOI: 10.1364/boe.516574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
Identification of tumour margins during resection of the brain is critical for improving the post-operative outcomes. Due to the highly infiltrative nature of glioblastoma multiforme (GBM) and limited intraoperative visualization of the tumour margin, incomplete surgical resection has been observed to occur in up to 80 % of GBM cases, leading to nearly universal tumour recurrence and overall poor prognosis of 14.6 months median survival. This research presents a miniaturized, SiPMT-based optical system for simultaneous measurement of powerful DRS and weak auto-fluorescence for brain tumour detection. The miniaturisation of the optical elements confined the spatial separation of eight select wavelengths into footprint measuring 1.5 × 2 × 16 mm. The small footprint enables this technology to be integrated with existing surgical guidance instruments in the operating room. It's dynamic ability to subtract any background illumination and measure signal intensities across a broad range from pW to mWs make this design much more suitable for clinical environments as compared to spectrometer-based systems with limited dynamic ranges and high integration times. Measurements using optical tissue phantoms containing mixed fluorophores demonstrate correlation coefficients between the fitted response and actual concentration using PLS regression being 0.95, 0.87 and 0.97 for NADH, FAD and PpIX , respectively. These promising results indicate that our proposed miniaturized instrument could serve as an effective alternative in operating rooms, assisting surgeons in identifying brain tumours to achieving positive surgical outcomes for patients.
Collapse
Affiliation(s)
| | - Huihui Lu
- Tyndall National Institute, Lee Maltings Complex, Dyke Parade, Cork, Ireland
| | - Simon Sørensen
- Tyndall National Institute, Lee Maltings Complex, Dyke Parade, Cork, Ireland
| | | | - Rachel Georgel
- Tyndall National Institute, Lee Maltings Complex, Dyke Parade, Cork, Ireland
| | - Liyao Li
- Tyndall National Institute, Lee Maltings Complex, Dyke Parade, Cork, Ireland
| | - Ray Burke
- Tyndall National Institute, Lee Maltings Complex, Dyke Parade, Cork, Ireland
| | - Stefan Andersson-Engels
- Tyndall National Institute, Lee Maltings Complex, Dyke Parade, Cork, Ireland
- Department of Physics, University College Cork, College Road, Cork, Ireland
| |
Collapse
|
46
|
Hu D, Du J, Cheng Y, Xing Y, He R, Liang X, Li H, Yang Y. Comprehensive analysis of a NAD+ metabolism-derived gene signature to predict the prognosis and immune landscape in endometrial cancer. BIOMOLECULES & BIOMEDICINE 2024; 24:346-359. [PMID: 37688492 PMCID: PMC10950339 DOI: 10.17305/bb.2023.9489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023]
Abstract
As a crucial regulator influencing tumor progression, nicotinamide adenine dinucleotide (NAD+) is widely acknowledged. However, its role in endometrial cancer (EC) is not completely understood. In this study, we aimed to develop an NAD+metabolic-related genes (NMRGs) risk signature that could reflect the prognosis of EC patients and their responsiveness to immunotherapy and chemotherapy. Data from The Cancer Genome Atlas (TCGA) databases and the Molecular Signatures Database (MSigDB) confirmed two distinct NMRG subtypes in EC patients using consensus clustering, and a risk score was constructed utilizing an NAD+-related prognostic signature depending on the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Receiver operating characteristic (ROC) curves were employed to assess the model's precision. Additionally, we used Gene Set Enrichment Analysis (GSEA) to predict the biological signaling pathways that might be involved. We also explored the role of the risk score in immune cell infiltration, tumor mutation burden (TMB), immunotherapy, and chemotherapy. Our study established a prognostic risk signature based on six NMRGs, and we observed that the high-risk group was associated with a poorer prognosis. Furthermore, we identified a strong correlation between the high-risk group and several pathways, including DNA replication, cell cycle, and mismatch repair. Lastly, our findings highlighted the influence of NMRGs on the regulation of immune infiltration in EC. Therefore, this signature holds potential value in predicting the prognosis of EC patients and guiding their management, including decisions regarding immunotherapy and chemotherapy, ultimately improving the accuracy of EC patient care.
Collapse
Affiliation(s)
- Dan Hu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Key Laboratory for Gynecologic Oncology Gansu Province, Lanzhou, China
| | - JunHong Du
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Key Laboratory for Gynecologic Oncology Gansu Province, Lanzhou, China
| | - YueMei Cheng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Key Laboratory for Gynecologic Oncology Gansu Province, Lanzhou, China
| | - YiJuan Xing
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Key Laboratory for Gynecologic Oncology Gansu Province, Lanzhou, China
| | - RuiFen He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Key Laboratory for Gynecologic Oncology Gansu Province, Lanzhou, China
| | - XiaoLei Liang
- Department of Gynecology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gynecologic Oncology Gansu Province, Lanzhou, China
| | - HongLi Li
- Department of Gynecology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gynecologic Oncology Gansu Province, Lanzhou, China
| | - YongXiu Yang
- Department of Gynecology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gynecologic Oncology Gansu Province, Lanzhou, China
| |
Collapse
|
47
|
Ghanem MS, Caffa I, Monacelli F, Nencioni A. Inhibitors of NAD + Production in Cancer Treatment: State of the Art and Perspectives. Int J Mol Sci 2024; 25:2092. [PMID: 38396769 PMCID: PMC10889166 DOI: 10.3390/ijms25042092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The addiction of tumors to elevated nicotinamide adenine dinucleotide (NAD+) levels is a hallmark of cancer metabolism. Obstructing NAD+ biosynthesis in tumors is a new and promising antineoplastic strategy. Inhibitors developed against nicotinamide phosphoribosyltransferase (NAMPT), the main enzyme in NAD+ production from nicotinamide, elicited robust anticancer activity in preclinical models but not in patients, implying that other NAD+-biosynthetic pathways are also active in tumors and provide sufficient NAD+ amounts despite NAMPT obstruction. Recent studies show that NAD+ biosynthesis through the so-called "Preiss-Handler (PH) pathway", which utilizes nicotinate as a precursor, actively operates in many tumors and accounts for tumor resistance to NAMPT inhibitors. The PH pathway consists of three sequential enzymatic steps that are catalyzed by nicotinate phosphoribosyltransferase (NAPRT), nicotinamide mononucleotide adenylyltransferases (NMNATs), and NAD+ synthetase (NADSYN1). Here, we focus on these enzymes as emerging targets in cancer drug discovery, summarizing their reported inhibitors and describing their current or potential exploitation as anticancer agents. Finally, we also focus on additional NAD+-producing enzymes acting in alternative NAD+-producing routes that could also be relevant in tumors and thus become viable targets for drug discovery.
Collapse
Affiliation(s)
- Moustafa S. Ghanem
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
48
|
Cai M, Zhao J, Ding Q, Wei J. Oncometabolite 2-hydroxyglutarate regulates anti-tumor immunity. Heliyon 2024; 10:e24454. [PMID: 38293535 PMCID: PMC10826830 DOI: 10.1016/j.heliyon.2024.e24454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
"Oncometabolite" 2-hydroxyglutarate (2-HG) is an aberrant metabolite found in tumor cells, exerting a pivotal influence on tumor progression. Recent studies have unveiled its impact on the proliferation, activation, and differentiation of anti-tumor T cells. Moreover, 2-HG regulates the function of innate immune components, including macrophages, dendritic cells, natural killer cells, and the complement system. Elevated levels of 2-HG hinder α-KG-dependent dioxygenases (α-KGDDs), contributing to tumorigenesis by disrupting epigenetic regulation, genome integrity, hypoxia-inducible factors (HIF) signaling, and cellular metabolism. The chiral molecular structure of 2-HG produces two enantiomers: D-2-HG and L-2-HG, each with distinct origins and biological functions. Efforts to inhibit D-2-HG and leverage the potential of L-2-HG have demonstrated efficacy in cancer immunotherapy. This review delves into the metabolism, biological functions, and impacts on the tumor immune microenvironment (TIME) of 2-HG, providing a comprehensive exploration of the intricate relationship between 2-HG and antitumor immunity. Additionally, we examine the potential clinical applications of targeted therapy for 2-HG, highlighting recent breakthroughs as well as the existing challenges.
Collapse
Affiliation(s)
- Mengyuan Cai
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jianyi Zhao
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Qiang Ding
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jifu Wei
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
49
|
Hayashi T, Tateishi K, Matsuyama S, Iwashita H, Miyake Y, Oshima A, Honma H, Sasame J, Takabayashi K, Sugino K, Hirata E, Udaka N, Matsushita Y, Kato I, Hayashi H, Nakamura T, Ikegaya N, Takayama Y, Sonoda M, Oka C, Sato M, Isoda M, Kato M, Uchiyama K, Tanaka T, Muramatsu T, Miyake S, Suzuki R, Takadera M, Tatezuki J, Ayabe J, Suenaga J, Matsunaga S, Miyahara K, Manaka H, Murata H, Yokoyama T, Tanaka Y, Shuto T, Ichimura K, Kato S, Yamanaka S, Cahill DP, Fujii S, Shankar GM, Yamamoto T. Intraoperative Integrated Diagnostic System for Malignant Central Nervous System Tumors. Clin Cancer Res 2024; 30:116-126. [PMID: 37851071 DOI: 10.1158/1078-0432.ccr-23-1660] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/19/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023]
Abstract
PURPOSE The 2021 World Health Organization (WHO) classification of central nervous system (CNS) tumors uses an integrated approach involving histopathology and molecular profiling. Because majority of adult malignant brain tumors are gliomas and primary CNS lymphomas (PCNSL), rapid differentiation of these diseases is required for therapeutic decisions. In addition, diffuse gliomas require molecular information on single-nucleotide variants (SNV), such as IDH1/2. Here, we report an intraoperative integrated diagnostic (i-ID) system to classify CNS malignant tumors, which updates legacy frozen-section (FS) diagnosis through incorporation of a qPCR-based genotyping assay. EXPERIMENTAL DESIGN FS evaluation, including GFAP and CD20 rapid IHC, was performed on adult malignant CNS tumors. PCNSL was diagnosed through positive CD20 and negative GFAP immunostaining. For suspected glioma, genotyping for IDH1/2, TERT SNV, and CDKN2A copy-number alteration was routinely performed, whereas H3F3A and BRAF SNV were assessed for selected cases. i-ID was determined on the basis of the 2021 WHO classification and compared with the permanent integrated diagnosis (p-ID) to assess its reliability. RESULTS After retrospectively analyzing 153 cases, 101 cases were prospectively examined using the i-ID system. Assessment of IDH1/2, TERT, H3F3AK27M, BRAFV600E, and CDKN2A alterations with i-ID and permanent genomic analysis was concordant in 100%, 100%, 100%, 100%, and 96.4%, respectively. Combination with FS and intraoperative genotyping assay improved diagnostic accuracy in gliomas. Overall, i-ID matched with p-ID in 80/82 (97.6%) patients with glioma and 18/19 (94.7%) with PCNSL. CONCLUSIONS The i-ID system provides reliable integrated diagnosis of adult malignant CNS tumors.
Collapse
Affiliation(s)
- Takahiro Hayashi
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Kensuke Tateishi
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan
| | - Shinichiro Matsuyama
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Hiromichi Iwashita
- Department of Pathology, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Yohei Miyake
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Akito Oshima
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Hirokuni Honma
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Jo Sasame
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Katsuhiro Takabayashi
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Kyoka Sugino
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan
| | - Emi Hirata
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Naoko Udaka
- Department of Diagnostic Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Yuko Matsushita
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Ikuma Kato
- Department of Molecular Pathology, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Hiroaki Hayashi
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
- Department of Pediatrics, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Taishi Nakamura
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
- Department of Neurosurgery, Yokohama City University Medical Center, Yokohama, Japan
| | - Naoki Ikegaya
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Yutaro Takayama
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Masaki Sonoda
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Chihiro Oka
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Mitsuru Sato
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Masataka Isoda
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Miyui Kato
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan
| | - Kaho Uchiyama
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan
| | - Tamon Tanaka
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Toshiki Muramatsu
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Shigeta Miyake
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Ryosuke Suzuki
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Department of Neurosurgery, Odawara Municipal Hospital, Odawara, Japan
| | - Mutsumi Takadera
- Department of Neurosurgery, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
- Department of Neurosurgery, Yokosuka Kyosai Hospital, Yokosuka, Japan
| | - Junya Tatezuki
- Department of Neurosurgery, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Junichi Ayabe
- Department of Neurosurgery, Yokosuka Kyosai Hospital, Yokosuka, Japan
| | - Jun Suenaga
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Shigeo Matsunaga
- Department of Neurosurgery, Yokohama Rosai Hospital, Yokohama, Japan
| | - Kosuke Miyahara
- Department of Neurosurgery, National Hospital Organization Yokohama Medical Center, Yokohama, Japan
| | - Hiroshi Manaka
- Department of Neurosurgery, Yokohama Minami Kyosai Hospital, Yokohama, Japan
| | - Hidetoshi Murata
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | | | - Yoshihide Tanaka
- Department of Neurosurgery, Yokosuka Kyosai Hospital, Yokosuka, Japan
| | - Takashi Shuto
- Department of Neurosurgery, Yokohama Rosai Hospital, Yokohama, Japan
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Shingo Kato
- Department of Clinical Cancer Genomics, Yokohama City University, Yokohama, Japan
| | - Shoji Yamanaka
- Department of Diagnostic Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Satoshi Fujii
- Department of Diagnostic Pathology, Yokohama City University Hospital, Yokohama, Japan
- Department of Molecular Pathology, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Ganesh M Shankar
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
50
|
Pang Y, Li Q, Sergi Z, Yu G, Sang X, Kim O, Wang H, Ranjan A, Merchant M, Oudit B, Robey RW, Soheilian F, Tran B, Núñez FJ, Zhang M, Song H, Zhang W, Davis D, Gilbert MR, Gottesman MM, Liu Z, Khan J, Thomas CJ, Castro MG, Gujral TS, Wu J. Exploiting the therapeutic vulnerability of IDH-mutant gliomas with zotiraciclib. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.29.547143. [PMID: 37786680 PMCID: PMC10541587 DOI: 10.1101/2023.06.29.547143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Isocitrate dehydrogenase (IDH)-mutant gliomas have distinctive metabolic and biological traits that may render them susceptible to targeted treatments. Here, by conducting a high-throughput drug screen, we pinpointed a specific susceptibility of IDH-mutant gliomas to zotiraciclib (ZTR). ZTR exhibited selective growth inhibition across multiple IDH-mutant glioma in vitro and in vivo models. Mechanistically, ZTR at low doses suppressed CDK9 and RNA Pol II phosphorylation in IDH-mutant cells, disrupting mitochondrial function and NAD+ production, causing oxidative stress. Integrated biochemical profiling of ZTR kinase targets and transcriptomics unveiled that ZTR-induced bioenergetic failure was linked to the suppression of PIM kinase activity. We posit that the combination of mitochondrial dysfunction and an inability to adapt to oxidative stress resulted in significant cell death upon ZTR treatment, ultimately increasing the therapeutic vulnerability of IDH-mutant gliomas. These findings prompted a clinical trial evaluating ZTR in IDH-mutant gliomas towards precision medicine ( NCT05588141 ). Highlights Zotiraciclib (ZTR), a CDK9 inhibitor, hinders IDH-mutant glioma growth in vitro and in vivo . ZTR halts cell cycle, disrupts respiration, and induces oxidative stress in IDH-mutant cells.ZTR unexpectedly inhibits PIM kinases, impacting mitochondria and causing bioenergetic failure.These findings led to the clinical trial NCT05588141, evaluating ZTR for IDH-mutant gliomas.
Collapse
|