1
|
Barros D, Ferreira BH, Garcia-Gonzalez P, Carbone F, Luka M, Leite-Pinheiro F, Machado MD, Nikolaou T, Pilotti A, Goguet E, Antas P, Mendes A, Zhang L, Cresci M, Galliot L, Gigan JP, Reverendo M, Su B, Narita M, Paton AW, Paton JC, Rocchi S, Rieux-Laucat F, Argüello RJ, Nal B, Liang Y, Ménager M, Gatti E, Almeida CR, Pierre P. Induction of the ISR by AB5 subtilase cytotoxin drives type-I IFN expression in pDCs via STING activation. Proc Natl Acad Sci U S A 2025; 122:e2421258122. [PMID: 40388626 DOI: 10.1073/pnas.2421258122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 04/17/2025] [Indexed: 05/21/2025] Open
Abstract
We demonstrate that exposure to the AB5 subtilase cytotoxin (SubAB) induces the unfolded protein response (UPR) in human peripheral blood mononuclear cells, concomitant with a proinflammatory response across distinct cell subsets. Notably, SubAB selectively induces type-I interferon (IFN) expression in plasmacytoid dendritic cells, acting synergistically with Toll-like receptor 7 stimulation. The induction of type-I IFN in response to SubAB relies on stimulator of interferon genes (STING) activation, coupled with protein synthesis inhibition mediated by protein kinase R-like endoplasmic reticulum kinase (PERK) and phosphorylation of the eukaryotic translation initiation factor 2 subunit-alpha. By impeding mRNA translation through the integrated stress response, SubAB precipitates the downregulation of the negative innate signaling feedback regulator Tax1-binding protein 1. This downregulation is necessary to unleash TANK-binding kinase 1 signaling associated with STING activation. These findings shed light on how UPR-inducing conditions may regulate the immune system during infection or pathogenesis.
Collapse
Affiliation(s)
- Daniela Barros
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), U2, UMR7280 and U1104, Marseille 13288 Cedex 9, France
| | - Beatriz H Ferreira
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
- Centre for Research in Ceramics and Composite Materials (CICECO)-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Paulina Garcia-Gonzalez
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), U2, UMR7280 and U1104, Marseille 13288 Cedex 9, France
| | - Francesco Carbone
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM U1163, Paris F-75015, France
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM, Paris F-75015, France
| | - Marine Luka
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM U1163, Paris F-75015, France
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM, Paris F-75015, France
| | - Fátima Leite-Pinheiro
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Mariana D Machado
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Theopisti Nikolaou
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), U2, UMR7280 and U1104, Marseille 13288 Cedex 9, France
| | - Angelo Pilotti
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), U2, UMR7280 and U1104, Marseille 13288 Cedex 9, France
| | - Eliot Goguet
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), U2, UMR7280 and U1104, Marseille 13288 Cedex 9, France
| | - Paulo Antas
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Andreia Mendes
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), U2, UMR7280 and U1104, Marseille 13288 Cedex 9, France
| | - Lichen Zhang
- School of Medical Technology, Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang 453003, People's Republic of China
| | - Marina Cresci
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), U2, UMR7280 and U1104, Marseille 13288 Cedex 9, France
| | - Lou Galliot
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), U2, UMR7280 and U1104, Marseille 13288 Cedex 9, France
| | - Julien P Gigan
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), U2, UMR7280 and U1104, Marseille 13288 Cedex 9, France
| | - Marisa Reverendo
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Bing Su
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Miwako Narita
- Laboratory of Hematology and Oncology, Graduate School of Health Sciences, Niigata University, Niigata 951-8518, Japan
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | | | - Frédéric Rieux-Laucat
- Université de Paris Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Paris 75015, France
| | - Rafael J Argüello
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), U2, UMR7280 and U1104, Marseille 13288 Cedex 9, France
| | - Béatrice Nal
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), U2, UMR7280 and U1104, Marseille 13288 Cedex 9, France
| | - Yinming Liang
- School of Medical Technology, Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang 453003, People's Republic of China
| | - Mickaël Ménager
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM U1163, Paris F-75015, France
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM, Paris F-75015, France
| | - Evelina Gatti
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), U2, UMR7280 and U1104, Marseille 13288 Cedex 9, France
| | - Catarina R Almeida
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Philippe Pierre
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), U2, UMR7280 and U1104, Marseille 13288 Cedex 9, France
- School of Medical Technology, Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang 453003, People's Republic of China
| |
Collapse
|
2
|
Grytsai O, Hamouda-Tekaya N, Gonçalves LCP, Bardovskyi R, Abbe P, Benhida R, Rocchi S, Ronco C. Optimised arylbiamidine derivative as potent in vivo antimelanoma agent: Drug-to-target approach reveals nanomolar GSK3β inhibition. Bioorg Chem 2025; 158:108315. [PMID: 40048875 DOI: 10.1016/j.bioorg.2025.108315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/13/2025] [Accepted: 02/23/2025] [Indexed: 03/19/2025]
Abstract
Melanoma, particularly in its metastatic form, remains highly lethal. Despite advancements in treatment, nearly half of melanoma patients experience therapeutic failure due to resistance. Consequently, the development of new antimelanoma drugs is critical for those unresponsive to current therapies. Here, we report the discovery of a potent antimelanoma scaffold and a promising inhibitor of glycogen synthase kinase 3 beta (GSK3β) through a drug-to-target approach. A phenotypic screening of arylbiamidine derivatives identified lead compound 35, N-(N-(benzo[d]thiazol-2-yl)carbamimidoyl)pyrazine-2-carboximidamide, which exhibited the highest in vitro potency against melanoma cell lines and nanomolar inhibition of oncogenic GSK3β (IC50 = 73.8 nM). Moreover, compound 35 demonstrated a favourable pharmacological profile, significantly reducing tumour growth in vivo in an A375 xenograft mouse model.
Collapse
Affiliation(s)
- Oleksandr Grytsai
- Institut de Chimie de Nice, CNRS UMR7272, Université Côte d'Azur, 28 avenue Valrose, Nice, France
| | - Nedra Hamouda-Tekaya
- Centre Méditerranéen de Médecine Moléculaire, INSERM U1065, Université Côte d'Azur, 151 route Saint Antoine de Ginestière, Nice, France
| | | | - Rostyslav Bardovskyi
- Institut de Chimie de Nice, CNRS UMR7272, Université Côte d'Azur, 28 avenue Valrose, Nice, France
| | - Patricia Abbe
- Centre Méditerranéen de Médecine Moléculaire, INSERM U1065, Université Côte d'Azur, 151 route Saint Antoine de Ginestière, Nice, France
| | - Rachid Benhida
- Institut de Chimie de Nice, CNRS UMR7272, Université Côte d'Azur, 28 avenue Valrose, Nice, France; Mohamed VI Polytechnic University, UM6P, Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Stéphane Rocchi
- Centre Méditerranéen de Médecine Moléculaire, INSERM U1065, Université Côte d'Azur, 151 route Saint Antoine de Ginestière, Nice, France
| | - Cyril Ronco
- Institut de Chimie de Nice, CNRS UMR7272, Université Côte d'Azur, 28 avenue Valrose, Nice, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France.
| |
Collapse
|
3
|
Lipchick B, Guterres AN, Chen HY, Zundell DM, Del Aguila S, Reyes-Uribe PI, Tirado Y, Basu S, Yin X, Kossenkov AV, Lu Y, Mills GB, Liu Q, Goldman AR, Murphy ME, Speicher DW, Villanueva J. Selective abrogation of S6K2 identifies lipid homeostasis as a survival vulnerability in MAPK inhibitor-resistant NRAS-mutant melanoma. Sci Transl Med 2025; 17:eadp8913. [PMID: 39908352 DOI: 10.1126/scitranslmed.adp8913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/17/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025]
Abstract
Although oncogenic NRAS activates mitogen-activated protein kinase (MAPK) signaling, inhibition of the MAPK pathway is not therapeutically efficacious in NRAS-mutant (NRASMUT) tumors. Here, we report that selectively silencing the ribosomal protein S6 kinase 2 (S6K2) while preserving the activity of S6K1 perturbs lipid metabolism, enhances fatty acid unsaturation, and triggers lethal lipid peroxidation in NRASMUT melanoma cells that are resistant to MAPK inhibition. S6K2 depletion induces endoplasmic reticulum stress and peroxisome proliferator-activated receptor α (PPARα) activation, triggering cell death selectively in MAPK inhibitor-resistant melanoma. We found that combining PPARα agonists and polyunsaturated fatty acids phenocopied the effects of S6K2 abrogation, blocking tumor growth in both patient-derived xenografts and immunocompetent murine melanoma models. Collectively, our study establishes S6K2 and its effector subnetwork as promising targets for NRASMUT melanomas that are resistant to global MAPK pathway inhibitors.
Collapse
Affiliation(s)
- Brittany Lipchick
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Adam N Guterres
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Hsin-Yi Chen
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Delaine M Zundell
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Segundo Del Aguila
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Patricia I Reyes-Uribe
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Yulissa Tirado
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Subhasree Basu
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Xiangfan Yin
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Andrew V Kossenkov
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Yiling Lu
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gordon B Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Sciences University, Portland, OR 97239, USA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Aaron R Goldman
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
- Proteomics and Metabolomics Core Facility, Wistar Institute, Philadelphia, PA 19104 USA
| | - Maureen E Murphy
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - David W Speicher
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Jessie Villanueva
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Lin M, Mo Y, Li CM, Liu YZ, Feng XP. GRP78 as a potential therapeutic target in cancer treatment: an updated review of its role in chemoradiotherapy resistance of cancer cells. Med Oncol 2025; 42:49. [PMID: 39827214 DOI: 10.1007/s12032-024-02586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
GRP78 (Glucose-related protein 78, BiP/HSPA5) is commonly overexpressed in cancer cells. Acting as an activator of endoplasmic reticulum stress, GRP78 is involved in the resistance of cancer cells to injury. Current evidence suggests that GRP78 plays a significant role in the radiotherapy resistance and chemotherapy resistance of cancers, which is accomplished through a variety of complex pathways. These include the promotion of tumor stemness, inhibition of apoptosis, regulation of autophagy, maintenance of tumor microenvironment homeostasis, protection of dormant cells, evasion of senescence, counteraction of autoantibodies against GRP78, facilitation of DNA damage repair, suppression of ferroptosis, and modulation of metabolic reprogramming in tumor cells. Importantly, chemoradiotherapy resistance in cancers are the main reasons for treatment failure in patients, severely affecting their survival. Investigating the mechanisms of GRP78 in tumor therapeutic resistance is essential. In this article, we review the mechanisms by which GRP78 mediates cell survival and chemoradiotherapy resistance in cancers and provide an overview of clinical trials targeting GRP78 therapy.
Collapse
Affiliation(s)
- Min Lin
- Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yan Mo
- Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Cheng-Min Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Ying-Zhe Liu
- Xiangya International Medical Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Xue-Ping Feng
- Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
5
|
Muchtar A, Onomura D, Ding D, Nishitsuji H, Shimotohno K, Okada S, Ueda K, Watashi K, Wakita T, Iida K, Yoshiyama H, Iizasa H. MicroRNA-3145 as a potential therapeutic target for hepatitis B virus: inhibition of viral replication via downregulation of HBS and HBX. Front Microbiol 2025; 15:1499216. [PMID: 39834379 PMCID: PMC11743939 DOI: 10.3389/fmicb.2024.1499216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025] Open
Abstract
Current treatments for hepatitis B virus (HBV), such as interferons and nucleic acid analogs, have limitations due to side effects like depression and the development of drug-resistant mutants, highlighting the need for new therapeutic approaches. In this study, we identified microRNA-3145 (miR-3145) as a host-derived miRNA with antiviral activity that is upregulated in primary hepatocytes during HBV infection. The expression of its precursor, pri-miR-3145, increased in response to the the virus infection, and miR-3145 downregulated the hepatitis B virus S (HBS) antigen and hepatitis B virus X (HBX), thereby inhibiting viral replication. The binding site for miR-3145 was located in the HBV polymerase (pol) region, as experimentally confirmed. Moreover, overexpression of HBS and HBX induced pri-miR-3145 expression through endoplasmic reticulum stress. The expression of pri-miR-3145 showed a strong correlation with the Nance-Horan syndrome-like 1 (NHSL1) gene, as it is encoded within an intron of NHSL1, and higher NHSL1 expression in hepatocellular carcinoma patients with HBV infection was associated with better prognosis. These findings suggest that miR-3145-3p, along with small molecules targeting its binding sites, holds promise as a potential therapeutic candidate for HBV treatment.
Collapse
Affiliation(s)
- Amrizal Muchtar
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo, Japan
- Faculty of Medicine, Universitas Muslim Indonesia, Makassar, Indonesia
| | - Daichi Onomura
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo, Japan
- Division of Virology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Japan
| | - Dan Ding
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo, Japan
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hironori Nishitsuji
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kunitada Shimotohno
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Shunpei Okada
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Keiji Ueda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kei Iida
- Faculty of Science and Engineering, Kindai University, Higashiōsaka, Japan
- Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hironori Yoshiyama
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Hisashi Iizasa
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo, Japan
| |
Collapse
|
6
|
Liao H, Liu S, Ma Q, Huang H, Goel A, Torabian P, Mohan CD, Duan C. Endoplasmic reticulum stress induced autophagy in cancer and its potential interactions with apoptosis and ferroptosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119869. [PMID: 39490702 DOI: 10.1016/j.bbamcr.2024.119869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle that is a site of the synthesis of proteins and lipids, contributing to the regulation of proteostasis, lipid metabolism, redox balance, and calcium storage/-dependent signaling events. The disruption of ER homeostasis due to the accumulation of misfolded proteins in the ER causes ER stress which activates the unfolded protein response (UPR) system through the activation of IRE1, PERK, and ATF6. Activation of UPR is observed in various cancers and therefore, its association with process of carcinogenesis has been of importance. Tumor cells effectively utilize the UPR system to overcome ER stress. Moreover, ER stress and autophagy are the stress response mechanisms operating together to maintain cellular homeostasis. In human cancers, ER stress-driven autophagy can function as either pro-survival or pro-death in a context-dependent manner. ER stress-mediated autophagy can have crosstalk with other types of cell death pathways including apoptosis and ferroptosis. In this connection, the present review has evaluated the role of ER stress in the regulation of autophagy-mediated tumorigenesis and its interactions with other cell death mechanisms such as apoptosis and ferroptosis. We have also comprehensively discussed the effect of ER stress-mediated autophagy on cancer progression and chemotherapeutic resistance.
Collapse
Affiliation(s)
- Haitang Liao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Department of Intensive Care Unit, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Shuang Liu
- Department of Ultrasound, Chongqing Health Center for Women and Children/Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Qiang Ma
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Arul Goel
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Pedram Torabian
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Medical Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Chakrabhavi Dhananjaya Mohan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
7
|
Xu W, Wang Z, Liu T, Ma X, Jiao M, Zhao W, Yu L, Hua Y, Cai Z, Li J, Zhang T. Eurycomanone inhibits osteosarcoma growth and metastasis by suppressing GRP78 expression. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118709. [PMID: 39163893 DOI: 10.1016/j.jep.2024.118709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Osteosarcoma (OS) is characterized by rapid growth and frequent pulmonary metastasis. Eurycoma longifolia Jack, a flowering plant primarily found in Southeast Asian countries, is commonly used in traditional herbal medicine. Its root extract is mainly used for against cancer, malaria, parasites and other conditions. The active compound in its root extract, eurycomanone (EUR), has been proven to inhibit lung and liver cancer proliferation. AIM OF THE STUDY Our research aimed to investigate the inhibitory effect and underlying molecular mechanism of EUR on OS growth and metastasis. MATERIALS AND METHODS In vitro experiments: western blotting (WB) screened 41 compounds that inhibited GRP78 expression and evaluated the protein levels of GRP78, PARP, cleaved-PARP, MMP2, and MMP9. Cell proliferation was evaluated using CCK-8, EdU, colony formation assay, and cell apoptosis was assessed by flow cytometry. Transwell, wound healing, and tube formation assays were performed to determine the effect of EUR on tumor invasion, migration, and angiogenesis, respectively. Quantitative real-time polymerase chain (qRT-PCR) and dual-luciferase activity assays detected GRP78 mRNA stability and transcription levels post-EUR and thapsigargin treatment. RNA-Seq identified signaling pathways inhibited by EUR. In vivo experiments: effects of EUR in mice were evaluated by H&E staining to detect lung metastasis and potential toxic effects in tissues. Immunohistochemical (IHC) staining detected the expression of Ki-67, CD31, and cleaved caspase-3 in tumors. RESULTS GRP78 is highly expressed in OS and correlated with poor prognosis. In vitro, eurycomanone (EUR) significantly downregulated GRP78 expression, inhibited cell proliferation, migration, invasion, tube formation, and induced apoptosis. Moreover, it enhanced trichostatin A (TSA) sensitivity and exhibited inhibitory effects on other cancer types. Mechanistically, EUR decreased GRP78 mRNA stability and transcription. In vivo, EUR inhibited proliferation and invasion in tibial and PDX models. CONCLUSIONS Our study demonstrated that EUR inhibits the growth and metastasis of OS by reducing GRP78 mRNA stability and inhibiting its transcription, which offers a novel approach for clinical treatment of OS.
Collapse
Affiliation(s)
- Wenyuan Xu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhuoying Wang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Tongtong Liu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xinglong Ma
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ming Jiao
- Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Weisong Zhao
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Lingfeng Yu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Jingjie Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Tao Zhang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
8
|
Mishra T, Dubey N, Basu S. Small molecules for impairing endoplasmic reticulum in cancer. Org Biomol Chem 2024; 22:8689-8699. [PMID: 39373910 DOI: 10.1039/d4ob01238k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The endoplasmic reticulum plays an important role in maintaining the protein homeostasis of cells as well as regulating Ca2+ storage. An increased load of unfolded proteins in the endoplasmic reticulum due to alterations in the cell's metabolic pathway leads to the activation of the unfolded protein response, also known as ER stress. ER stress plays a major role in maintaining the growth and survival of various cancer cells, but persistent ER stress can also lead to cell death and hence can be a therapeutic pathway in the treatment of cancer. In this review, we focus on different types of small molecules that impair different ER stress sensors, the protein degradation machinery, and chaperone proteins. We also review the metal complexes and other miscellaneous compounds inducing ER stress through multiple mechanisms. Finally, we discuss the challenges in this emerging area of research and the potential direction of research to overcome them towards next-generation ER-targeted cancer therapy.
Collapse
Affiliation(s)
- Tripti Mishra
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| | - Navneet Dubey
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
9
|
Wang H, Zhang S, Wang M, Wang C, Xu J, Jiang M, Han X, Yang X, Zhang L, Chen B, Liu A. Joint Analysis of CCAAT/Enhancer-Binding Protein Beta and Interleukin 1 Beta in the Treatment and Prognosis of Diffuse Large B-Cell Lymphoma. FRONT BIOSCI-LANDMRK 2024; 29:372. [PMID: 39614427 DOI: 10.31083/j.fbl2911372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 12/01/2024]
Abstract
OBJECTIVE The purpose of this study is to investigate the correlation between elevated levels of CCAAT/enhancer-binding protein beta (CEBPB) gene expression and unfavorable outcomes in diffuse large B-cell lymphoma (DLBCL). The goal is to elucidate potential therapeutic targets associated with this relationship. METHODS Differential expression and survival analyses were conducted using data from the Gene Expression Omnibus (GEO) database. The functions of CEBPB in DLBCL cells were investigated through cell culture, RNA extraction, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. In addition, a weighted gene co-expression network analysis (WGCNA) was performed to pinpoint gene modules associated with CEBPB. Furthermore, experimental validation was carried out to explore the interaction between CEBPB and interleukin 1 beta (IL1B). RESULTS High levels of CEBPB expression are prominently observed in DLBCL, with its overabundance significantly linked to the diagnosis of DLBCL. Survival analysis reveals that patients exhibiting elevated CEBPB expression tend to experience a poorer prognosis. Further validation confirmed CEBPB's role in promoting DLBCL cell proliferation and cell cycle progression. WGCNA identified CEBPB-related gene modules, with IL1B identified as a potential regulatory gene of CEBPB. The presence of high levels of IL1B has been correlated with an unfavorable prognosis in individuals diagnosed with DLBCL. Experiments demonstrate that IL1B promotes DLBCL cell proliferation through CEBPB. CONCLUSIONS This study reveals the significant roles of CEBPB and IL1B in DLBCL, providing new theoretical foundations and potential molecular targets for the treatment and prognosis of DLBCL.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- CCAAT-Enhancer-Binding Protein-beta/metabolism
- CCAAT-Enhancer-Binding Protein-beta/genetics
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Prognosis
- Gene Expression Regulation, Neoplastic
- Cell Line, Tumor
- Cell Proliferation/genetics
- Survival Analysis
- Gene Expression Profiling/methods
- Gene Regulatory Networks
Collapse
Affiliation(s)
- Hongmin Wang
- Department of Haemolymph, Harbin Medical University Cancer Hospital, 150001 Harbin, Heilongjiang, China
- Department of Hematology, The First Hospital of Qiqihar, 161005 Qiqihar, Heilongjiang, China
| | - Shuo Zhang
- Shenshan Medical Center, SunYat-sen Memorial Hospital, Sun Yat-sen University, 516621 Shanwei, Guangdong, China
| | - Mengmeng Wang
- Department of Integrated TCM and Western Medicine, The First Hospital of Qiqihar, 161005 Qiqihar, Heilongjiang, China
| | - Chaozhong Wang
- Qiqihar Center for Drug Control, 161006 Qiqihar, Heilongjiang, China
| | - Jihong Xu
- Department of Hematology, The First Hospital of Qiqihar, 161005 Qiqihar, Heilongjiang, China
| | - Ming Jiang
- Department of Hematology, The First Hospital of Qiqihar, 161005 Qiqihar, Heilongjiang, China
| | - Xue Han
- Department of Hematology, The First Hospital of Qiqihar, 161005 Qiqihar, Heilongjiang, China
| | - Xiaotong Yang
- Department of Hematology, The First Hospital of Qiqihar, 161005 Qiqihar, Heilongjiang, China
| | - Liping Zhang
- Department of Hematology, The First Hospital of Qiqihar, 161005 Qiqihar, Heilongjiang, China
| | - Baotong Chen
- Department of Hematology, The First Hospital of Qiqihar, 161005 Qiqihar, Heilongjiang, China
| | - Aichun Liu
- Department of Haemolymph, Harbin Medical University Cancer Hospital, 150001 Harbin, Heilongjiang, China
| |
Collapse
|
10
|
Najarro G, Brackett K, Woosley H, Dorman LC, Turon-Lagot V, Khadka S, Faeldonea C, Moreno OK, Negron AR, Love C, Ward R, Langelier C, McCarthy F, Gonzalez C, Elias JE, Gardner BM, Arias C. BiP/GRP78 is a pro-viral factor for diverse dsDNA viruses that promotes the survival and proliferation of cells upon KSHV infection. PLoS Pathog 2024; 20:e1012660. [PMID: 39471213 PMCID: PMC11548844 DOI: 10.1371/journal.ppat.1012660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/08/2024] [Accepted: 10/11/2024] [Indexed: 11/01/2024] Open
Abstract
The Endoplasmic Reticulum (ER)-resident HSP70 chaperone BiP (HSPA5) plays a crucial role in maintaining and restoring protein folding homeostasis in the ER. BiP's function is often dysregulated in cancer and virus-infected cells, conferring pro-oncogenic and pro-viral advantages. We explored BiP's functions during infection by the Kaposi's sarcoma-associated herpesvirus (KSHV), an oncogenic gamma-herpesvirus associated with cancers of immunocompromised patients. Our findings reveal that BiP protein levels are upregulated in infected epithelial cells during the lytic phase of KSHV infection. This upregulation occurs independently of the unfolded protein response (UPR), a major signaling pathway that regulates BiP availability. Genetic and pharmacological inhibition of BiP halts KSHV viral replication and reduces the proliferation and survival of KSHV-infected cells. Notably, inhibition of BiP limits the spread of other alpha- and beta-herpesviruses and poxviruses with minimal toxicity for normal cells. Our work suggests that BiP is a potential target for developing broad-spectrum antiviral therapies against double-stranded DNA viruses and a promising candidate for therapeutic intervention in KSHV-related malignancies.
Collapse
Affiliation(s)
- Guillermo Najarro
- University of California, Santa Barbara, California, United States of America
| | - Kevin Brackett
- University of California, Santa Barbara, California, United States of America
| | - Hunter Woosley
- Chan Zuckerberg BioHub, San Francisco, California, United States of America
| | - Leah C. Dorman
- Chan Zuckerberg BioHub, San Francisco, California, United States of America
| | | | - Sudip Khadka
- Chan Zuckerberg BioHub, San Francisco, California, United States of America
| | - Catya Faeldonea
- University of California, Santa Barbara, California, United States of America
| | | | | | - Christina Love
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Ryan Ward
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Charles Langelier
- Chan Zuckerberg BioHub, San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Frank McCarthy
- Chan Zuckerberg BioHub, San Francisco, California, United States of America
| | - Carlos Gonzalez
- Chan Zuckerberg BioHub, San Francisco, California, United States of America
| | - Joshua E. Elias
- Chan Zuckerberg BioHub, San Francisco, California, United States of America
| | - Brooke M. Gardner
- University of California, Santa Barbara, California, United States of America
| | - Carolina Arias
- University of California, Santa Barbara, California, United States of America
- Chan Zuckerberg BioHub, San Francisco, California, United States of America
| |
Collapse
|
11
|
Ha DP, Shin WJ, Liu Z, Doche ME, Lau R, Leli NM, Conn CS, Russo M, Lorenzato A, Koumenis C, Yu M, Mumenthaler SM, Lee AS. Targeting stress induction of GRP78 by cardiac glycoside oleandrin dually suppresses cancer and COVID-19. Cell Biosci 2024; 14:115. [PMID: 39238058 PMCID: PMC11378597 DOI: 10.1186/s13578-024-01297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Despite recent therapeutic advances, combating cancer resistance remains a formidable challenge. The 78-kilodalton glucose-regulated protein (GRP78), a key stress-inducible endoplasmic reticulum (ER) chaperone, plays a crucial role in both cancer cell survival and stress adaptation. GRP78 is also upregulated during SARS-CoV-2 infection and acts as a critical host factor. Recently, we discovered cardiac glycosides (CGs) as novel suppressors of GRP78 stress induction through a high-throughput screen of clinically relevant compound libraries. This study aims to test the possibility that agents capable of blocking stress induction of GRP78 could dually suppress cancer and COVID-19. RESULTS Here we report that oleandrin (OLN), is the most potent among the CGs in inhibiting acute stress induction of total GRP78, which also results in reduced cell surface and nuclear forms of GRP78 in stressed cells. The inhibition of stress induction of GRP78 is at the post-transcriptional level, independent of protein degradation and autophagy and may involve translational control as OLN blocks stress-induced loading of ribosomes onto GRP78 mRNAs. Moreover, the human Na+/K+-ATPase α3 isoform is critical for OLN suppression of GRP78 stress induction. OLN, in nanomolar range, enhances apoptosis, sensitizes colorectal cancer cells to chemotherapeutic agents, and reduces the viability of patient-derived colon cancer organoids. Likewise, OLN, suppresses GRP78 expression and impedes tumor growth in an orthotopic breast cancer xenograft model. Furthermore, OLN blocks infection by SARS-CoV-2 and its variants and enhances existing anti-viral therapies. Notably, GRP78 overexpression mitigates OLN-mediated cancer cell apoptotic onset and suppression of virus release. CONCLUSION Our findings validate GRP78 as a target of OLN anti-cancer and anti-viral activities. These proof-of-principle studies support further investigation of OLN as a readily accessible compound to dually combat cancer and COVID-19.
Collapse
Affiliation(s)
- Dat P Ha
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Woo-Jin Shin
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, 34987, USA
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Ze Liu
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Michael E Doche
- Ellison Institute of Technology, Los Angeles, CA, 90064, USA
| | - Roy Lau
- Ellison Institute of Technology, Los Angeles, CA, 90064, USA
| | - Nektaria Maria Leli
- Department of Radiation Oncology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Crystal S Conn
- Department of Radiation Oncology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mariangela Russo
- Dipartimento di Oncologia, Molecular Biotechnology Center, Università di Torino, Turin, Italy
| | - Annalisa Lorenzato
- Dipartimento di Oncologia, Molecular Biotechnology Center, Università di Torino, Turin, Italy
| | - Constantinos Koumenis
- Department of Radiation Oncology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Min Yu
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shannon M Mumenthaler
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Ellison Institute of Technology, Los Angeles, CA, 90064, USA
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
12
|
Yamamoto V, Ha DP, Liu Z, Huang M, Samanta S, Neamati N, Lee AS. GRP78 inhibitor YUM70 upregulates 4E-BP1 and suppresses c-MYC expression and viability of oncogenic c-MYC tumors. Neoplasia 2024; 55:101020. [PMID: 38991376 PMCID: PMC11294750 DOI: 10.1016/j.neo.2024.101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
The 78-kDa glucose regulated protein (GRP78) commonly upregulated in a wide variety of tumors is an important prognostic marker and a promising target for suppressing tumorigenesis and treatment resistance. While GRP78 is well established as a major endoplasmic reticulum (ER) chaperone with anti-apoptotic properties and a master regulator of the unfolded protein response, its new role as a regulator of oncoprotein expression is just emerging. MYC is dysregulated in about 70 % of human cancers and is the most commonly activated oncoprotein. However, despite recent advances, therapeutic targeting of MYC remains challenging. Here we identify GRP78 as a new target for suppression of MYC expression. Using multiple MYC-dependent cancer models including head and neck squamous cell carcinoma and their cisplatin-resistant clones, breast and pancreatic adenocarcinoma, our studies revealed that GRP78 knockdown by siRNA or inhibition of its activity by small molecule inhibitors (YUM70 or HA15) reduced c-MYC expression, leading to onset of apoptosis and loss of cell viability. This was observed in 2D cell culture, 3D spheroid and in xenograft models. Mechanistically, we determined that the suppression of c-MYC is at the post-transcriptional level and that YUM70 and HA15 treatment potently upregulated the eukaryotic translation inhibitor 4E-BP1, which targets eIF4E critical for c-MYC translation initiation. Furthermore, knock-down of 4E-BP1 via siRNA rescued YUM70-mediated c-MYC suppression. As YUM70 is also capable of suppressing N-MYC expression, this study offers a new approach to suppress MYC protein expression through knockdown or inhibition of GRP78.
Collapse
Affiliation(s)
- Vicky Yamamoto
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Dat P Ha
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Ze Liu
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Miller Huang
- Department of Pediatrics, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Soma Samanta
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States.
| |
Collapse
|
13
|
Liu Y, Xu C, Gu R, Han R, Li Z, Xu X. Endoplasmic reticulum stress in diseases. MedComm (Beijing) 2024; 5:e701. [PMID: 39188936 PMCID: PMC11345536 DOI: 10.1002/mco2.701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
The endoplasmic reticulum (ER) is a key organelle in eukaryotic cells, responsible for a wide range of vital functions, including the modification, folding, and trafficking of proteins, as well as the biosynthesis of lipids and the maintenance of intracellular calcium homeostasis. A variety of factors can disrupt the function of the ER, leading to the aggregation of unfolded and misfolded proteins within its confines and the induction of ER stress. A conserved cascade of signaling events known as the unfolded protein response (UPR) has evolved to relieve the burden within the ER and restore ER homeostasis. However, these processes can culminate in cell death while ER stress is sustained over an extended period and at elevated levels. This review summarizes the potential role of ER stress and the UPR in determining cell fate and function in various diseases, including cardiovascular diseases, neurodegenerative diseases, metabolic diseases, autoimmune diseases, fibrotic diseases, viral infections, and cancer. It also puts forward that the manipulation of this intricate signaling pathway may represent a novel target for drug discovery and innovative therapeutic strategies in the context of human diseases.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Aviation Clinical Medicine, Air Force Medical CenterPLABeijingChina
| | - Chunling Xu
- School of Pharmaceutical SciencesTsinghua UniversityBeijingChina
| | - Renjun Gu
- School of Chinese MedicineNanjing University of Chinese MedicineNanjingChina
- Department of Gastroenterology and HepatologyJinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Ruiqin Han
- State Key Laboratory of Medical Molecular BiologyDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ziyu Li
- School of Acupuncture and TuinaSchool of Regimen and RehabilitationNanjing University of Chinese MedicineNanjingChina
| | - Xianrong Xu
- Department of Aviation Clinical Medicine, Air Force Medical CenterPLABeijingChina
| |
Collapse
|
14
|
Khan I, Kashani-Sabet M. Bromodomain inhibition targeting BPTF in the treatment of melanoma and other solid tumors. Clin Exp Metastasis 2024; 41:509-515. [PMID: 38683257 DOI: 10.1007/s10585-024-10265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/06/2024] [Indexed: 05/01/2024]
Abstract
Epigenetic mechanisms have been shown to play an important role in the development of cancer. These include the activation of chromatin remodeling factors in various malignancies, including bromodomain plant homeodomain (PHD) finger transcription factor (BPTF), the largest component of the human nucleosome remodeling factor (NURF). In the last few years, BPTF has been identified as a pro-tumorigenic factor in melanoma, stimulated by research into the molecular mechanisms underlying BPTF function. Developing therapy targeting the BPTF bromodomain would represent a significant advance. Melanoma therapy has been revolutionized by the efficacy of immunotherapeutic and targeted strategies, but the development of drug resistance calls for alternative therapeutic approaches. Recent work has shown both a biomarker as well as functional role for BPTF in melanoma progression and as a possible target for its therapy. BPTF was shown to stimulate the mitogen-activated protein kinase pathway, which is targeted by selective BRAF inhibitors. The advent of small molecule inhibitors that target bromodomain motifs has shown that bromodomains are druggable. By combining the bromodomain inhibitor bromosporine with existing treatments that target mutant BRAF, BPTF targeting has emerged as a novel and promising therapeutic approach for metastatic melanoma. This article summarizes the functional role of BPTF in tumor progression, reviews the clinical experience to date with bromodomain inhibitors, and discusses the promise of BPTF targeting in melanoma and other solid tumors.
Collapse
Affiliation(s)
- Imran Khan
- California Pacific Medical Center Research Institute, 475 Brannan St, Suite 130, San Francisco, CA, 94107, USA
| | - Mohammed Kashani-Sabet
- California Pacific Medical Center Research Institute, 475 Brannan St, Suite 130, San Francisco, CA, 94107, USA.
| |
Collapse
|
15
|
Cappabianca L, Ruggieri M, Sebastiano M, Sbaffone M, Martelli I, Ruggeri P, Di Padova M, Farina AR, Mackay AR. Molecular Characterization and Inhibition of a Novel Stress-Induced Mitochondrial Protecting Role for Misfolded TrkAIII in Human SH-SY5Y Neuroblastoma Cells. Int J Mol Sci 2024; 25:5475. [PMID: 38791513 PMCID: PMC11122047 DOI: 10.3390/ijms25105475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Pediatric neuroblastomas (NBs) are heterogeneous, aggressive, therapy-resistant embryonal tumors that originate from cells of neural crest origin committed to the sympathoadrenal progenitor cell lineage. Stress- and drug-resistance mechanisms drive post-therapeutic relapse and metastatic progression, the characterization and inhibition of which are major goals in improving therapeutic responses. Stress- and drug-resistance mechanisms in NBs include alternative TrkAIII splicing of the neurotrophin receptor tropomyosin-related kinase A (NTRK1/TrkA), which correlates with post-therapeutic relapse and advanced-stage metastatic disease. The TrkAIII receptor variant exerts oncogenic activity in NB models by mechanisms that include stress-induced mitochondrial importation and activation. In this study, we characterize novel targetable and non-targetable participants in this pro-survival mechanism in TrkAIII-expressing SH-SY5Y NB cells, using dithiothreitol (DTT) as an activator and a variety of inhibitors by regular and immunoprecipitation Western blotting of purified mitochondria and IncuCyte cytotoxicity assays. We report that stress-induced TrkAIII misfolding initiates this mechanism, resulting in Grp78, Ca2+-calmodulin, adenosine ribosylating factor (Arf) and Hsp90-regulated mitochondrial importation. TrkAIII imported into inner mitochondrial membranes is cleaved by Omi/high temperature requirement protein A2 (HtrA2) then activated by a mechanism dependent upon calmodulin kinase II (CaMKII), alpha serine/threonine kinase (Akt), mitochondrial Ca2+ uniporter and reactive oxygen species (ROS), involving inhibitory mitochondrial protein tyrosine phosphatase (PTPase) oxidation, resulting in phosphoinositide 3 kinase (PI3K) activation of mitochondrial Akt, which enhances stress resistance. This novel pro-survival function for misfolded TrkAIII mitigates the cytotoxicity of mitochondrial Ca2+ homeostasis disrupted during integrated stress responses, and is prevented by clinically approved Trk and Akt inhibitors and also by inhibitors of 78kDa glucose regulated protein (Grp78), heat shock protein 90 (Hsp90), Ca2+-calmodulin and PI3K. This identifies Grp78, Ca2+-calmodulin, Hsp90, PI3K and Akt as novel targetable participants in this mechanism, in addition to TrkAIII, the inhibition of which has the potential to enhance the stress-induced elimination of TrkAIII-expressing NB cells, with the potential to improve therapeutic outcomes in NBs that exhibit TrkAIII expression and activation.
Collapse
|
16
|
Sornjai W, Promma P, Priewkhiew S, Ramphan S, Jaratsittisin J, Jinagool P, Wikan N, Greenwood M, Murphy D, Smith DR. The interaction of GRP78 and Zika virus E and NS1 proteins occurs in a chaperone-client manner. Sci Rep 2024; 14:10407. [PMID: 38710792 PMCID: PMC11074156 DOI: 10.1038/s41598-024-61195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
Glucose regulated protein 78 (GRP78) is a chaperone protein that is a central mediator of the unfolded protein response, a key cellular stress response pathway. GRP78 has been shown to be critically required for infection and replication of a number of flaviviruses, and to interact with both non-structural (NS) and structural flavivirus proteins. However, the nature of the specific interaction between GRP78 and viral proteins remains largely unknown. This study aimed to characterize the binding domain and critical amino acid residues that mediate the interaction of GRP78 to ZIKV E and NS1 proteins. Recombinant EGFP fused GRP78 and individual subdomains (the nucleotide binding domain (NBD) and the substrate binding domain (SBD)) were used as a bait protein and co-expressed with full length or truncated ZIKV E and NS1 proteins in HEK293T/17 cells. Protein-protein interactions were determined by a co-immunoprecipitation assay. From the results, both the NBD and the SBD of GRP78 were crucial for an effective interaction. Single amino acid substitutions in the SBD showed that R492E and T518A mutants significantly reduced the binding affinity of GRP78 to ZIKV E and NS1 proteins. Notably, the interaction of GRP78 with ZIKV E was stably maintained against various single amino acid substitutions on ZIKV E domain III and with all truncated ZIKV E and NS1 proteins. Collectively, the results suggest that the principal binding between GRP78 and viral proteins is mainly a classic canonical chaperone protein-client interaction. The blocking of GRP78 chaperone function effectively inhibited ZIKV infection and replication in neuronal progenitor cells. Our findings reveal that GRP78 is a potential host target for anti-ZIKV therapeutics.
Collapse
Affiliation(s)
- Wannapa Sornjai
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Ploenphit Promma
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Suphansa Priewkhiew
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Suwipa Ramphan
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Janejira Jaratsittisin
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Pailin Jinagool
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Nitwara Wikan
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Michael Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Duncan R Smith
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
17
|
Hu X, Li J, Yu L, Ifejola J, Guo Y, Zhang D, Khosravi Z, Zhang K, Cui H. Screening of anti-melanoma compounds from Morus alba L.: Sanggenon C promotes melanoma cell apoptosis by disrupting intracellular Ca 2+ homeostasis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117759. [PMID: 38219884 DOI: 10.1016/j.jep.2024.117759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Morus alba L. is a widespread plant that has long been considered to have remarkable medical values, including anti-inflammation in Traditional Chinese Medicine (TCM). The components of Morus Alba L. constituents have been extensively studied and have been shown to have high prospects for cancer therapy. However, limited investigations have been done on the bioactive compounds in Morus alba L. AIM OF THE STUDY This study aimed to systematically examine the anticancer properties of 28 commercially available compounds from Morus alba L. against melanoma cells in vitro. Additionally, the anticancer mechanisms of the bioactive compound exhibiting the most significant potential were further studied. MATERIALS AND METHODS The anti-proliferative effects of Morus alba L.-derived compounds on melanoma cells were determined by colony formation assays. Their effects on cell viability and apoptosis were determined using the CCK8 assay and flow cytometry, respectively. The binding affinity of identified Morus alba L. compounds with anticancer activities towards melanoma targets was analyzed via molecular docking. The molecular mechanism of Sanggenon C was explored using soft agar assays, EdU incorporation assays, flow cytometry, western blotting, transcriptome analysis, and xenograft assays. RESULTS Based on colony formation assays, 11 compounds at 20 μM significantly inhibited colony growth on a panel of melanoma cells. These compounds displayed IC50 values (half maximal inhibitory concentrations) ranging from 5 μM to 30 μM. Importantly, six compounds were identified as novel anti-melanoma agents, including Sanggenon C, 3'-Geranyl-3-prenyl-2',4',5,7-tetrahydroxyflavone, Moracin P, Moracin O, Kuwanon A, and Kuwanon E. Among them, Sanggenon C showed the most potent effects, with an IC50 of about 5 μM, significantly reducing proliferation and inducing apoptosis in melanoma cells. Based on the xenograft model assay, Sanggenon C significantly inhibited melanoma cell proliferation in vivo. Sanggenon C triggered ER stress in a dose-dependent manner, which further disrupted cellular calcium ion (Ca2+) homeostasis. The Ca2+ chelator BAPTA partially restored cell apoptosis induced by Sanggenon C, confirming that Ca2+ signaling contributed to the anticancer activity of Sanggenon C against melanoma. CONCLUSIONS In our study, 11 compounds demonstrated anti-melanoma properties. Notably, Sanggenon C was found to promote apoptosis by disrupting the intracellular calcium homeostasis in melanoma cells. This study provides valuable information for the future development of novel cancer therapeutic agents from Morus alba L.
Collapse
Affiliation(s)
- Xin Hu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China; Jinfeng Laboratory, Chongqing, 401329, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
| | - Jing Li
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China; Jinfeng Laboratory, Chongqing, 401329, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
| | - Lang Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China; Jinfeng Laboratory, Chongqing, 401329, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
| | - Jemirade Ifejola
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
| | - Yan Guo
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China; Jinfeng Laboratory, Chongqing, 401329, China.
| | - Dandan Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China; Jinfeng Laboratory, Chongqing, 401329, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
| | - Zahra Khosravi
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
| | - Kui Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China; Jinfeng Laboratory, Chongqing, 401329, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China; Jinfeng Laboratory, Chongqing, 401329, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
| |
Collapse
|
18
|
Fateeva A, Eddy K, Chen S. Current State of Melanoma Therapy and Next Steps: Battling Therapeutic Resistance. Cancers (Basel) 2024; 16:1571. [PMID: 38672652 PMCID: PMC11049326 DOI: 10.3390/cancers16081571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Melanoma is the most aggressive and deadly form of skin cancer due to its high propensity to metastasize to distant organs. Significant progress has been made in the last few decades in melanoma therapeutics, most notably in targeted therapy and immunotherapy. These approaches have greatly improved treatment response outcomes; however, they remain limited in their abilities to hinder disease progression due, in part, to the onset of acquired resistance. In parallel, intrinsic resistance to therapy remains an issue to be resolved. In this review, we summarize currently available therapeutic options for melanoma treatment and focus on possible mechanisms that drive therapeutic resistance. A better understanding of therapy resistance will provide improved rational strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Anna Fateeva
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Kevinn Eddy
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- U.S. Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ 07018, USA
| |
Collapse
|
19
|
Yuan S, She D, Jiang S, Deng N, Peng J, Ma L. Endoplasmic reticulum stress and therapeutic strategies in metabolic, neurodegenerative diseases and cancer. Mol Med 2024; 30:40. [PMID: 38509524 PMCID: PMC10956371 DOI: 10.1186/s10020-024-00808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
The accumulation of unfolded or misfolded proteins within the endoplasmic reticulum (ER), due to genetic determinants and extrinsic environmental factors, leads to endoplasmic reticulum stress (ER stress). As ER stress ensues, the unfolded protein response (UPR), comprising three signaling pathways-inositol-requiring enzyme 1, protein kinase R-like endoplasmic reticulum kinase, and activating transcription factor 6 promptly activates to enhance the ER's protein-folding capacity and restore ER homeostasis. However, prolonged ER stress levels propels the UPR towards cellular demise and the subsequent inflammatory cascade, contributing to the development of human diseases, including cancer, neurodegenerative disorders, and diabetes. Notably, increased expression of all three UPR signaling pathways has been observed in these pathologies, and reduction in signaling molecule expression correlates with decreased proliferation of disease-associated target cells. Consequently, therapeutic strategies targeting ER stress-related interventions have attracted significant research interest. In this review, we elucidate the critical role of ER stress in cancer, metabolic, and neurodegenerative diseases, offering novel therapeutic approaches for these conditions.
Collapse
Affiliation(s)
- Siqi Yuan
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Dan She
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Shangming Jiang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Nan Deng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Jiayi Peng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Ling Ma
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
20
|
Ryu S, Long H, Zheng XL, Song YY, Wang Y, Zhou YJ, Quan XJ, Li LY, Zhang ZS. Pentapeptide PYRAE triggers ER stress-mediated apoptosis of breast cancer cells in mice by targeting RHBDF1-BiP interaction. Acta Pharmacol Sin 2024; 45:378-390. [PMID: 37798352 PMCID: PMC10789821 DOI: 10.1038/s41401-023-01163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023]
Abstract
Reinforced cellular responses to endoplasmic reticulum (ER) stress are caused by a variety of pathological conditions including cancers. Human rhomboid family-1 protein (RHBDF1), a multiple transmembrane protein located mainly on the ER, has been shown to promote cancer development, while the binding immunoglobulin protein (BiP) is a key regulator of cellular unfolded protein response (UPR) for the maintenance of ER protein homeostasis. In this study, we investigated the role of RHBDF1 in maintaining ER protein homeostasis in breast cancer cells. We showed that deleting or silencing RHBDF1 in breast cancer cell lines MCF-7 and MDA-MB-231 caused marked aggregation of unfolded proteins in proximity to the ER. We demonstrated that RHBDF1 directly interacted with BiP, and this interaction had a stabilizing effect on the BiP protein. Based on the primary structural motifs of RHBDF1 involved in BiP binding, we found a pentapeptide (PE5) targeted BiP and inhibited BiP ATPase activity. SPR assay revealed a binding affinity of PE5 toward BiP (Kd = 57.7 μM). PE5 (50, 100, 200 μM) dose-dependently promoted ER protein aggregation and ER stress-mediated cell apoptosis in MCF-7 and MDA-MB-231 cells. In mouse 4T1 breast cancer xenograft model, injection of PE5 (10 mg/kg, s.c., every 2 days for 2 weeks) significantly inhibited the tumor growth with markedly increased ER stress and apoptosis-related proteins in tumor tissues. Our results suggest that the ability of RHBDF1 to maintain BiP protein stability is critical to ER protein homeostasis in breast cancer cells, and that the pentapeptide PE5 may serve as a scaffold for the development of a new class of anti-BiP inhibitors.
Collapse
Affiliation(s)
- SungJu Ryu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, 300350, China
- Institute of Microbiology, State Academy of Sciences, Pyongyang, Democratic People's Republic of Korea
| | - Hui Long
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, 300350, China
| | - Xin-Ling Zheng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, 300350, China
| | - Yuan-Yuan Song
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, 300350, China
| | - Yan Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, 300350, China
| | - Yu-Jie Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, 300350, China
| | - Xiao-Jing Quan
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, 300350, China
| | - Lu-Yuan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, 300350, China.
| | - Zhi-Song Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, 300350, China.
| |
Collapse
|
21
|
Yang Y, Wang S, Wang XX, Guo S, Wang H, Shi Q, Tian Y, Wang H, Zhao T, Zhang H, Zhang B, Gao T, Li C, Yi X, Guo W. Tumorous IRE1α facilitates CD8 +T cells-dependent anti-tumor immunity and improves immunotherapy efficacy in melanoma. Cell Commun Signal 2024; 22:83. [PMID: 38291473 PMCID: PMC10826282 DOI: 10.1186/s12964-024-01470-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Tumor cells frequently suffer from endoplasmic reticulum (ER) stress. Previous studies have extensively elucidated the role of tumorous unfolded protein response in melanoma cells, whereas the effect on tumor immunology and the underlying mechanism remain elusive. METHODS Bioinformatics, biochemical assays and pre-clinical mice model were employed to demonstrate the role of tumorous inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α) in anti-tumor immunity and the underlying mechanism. RESULTS We firstly found that IRE1α signaling activation was positively associated with the feature of tumor-infiltrating lymphocytes. Then, pharmacological ER stress induction by HA15 exerted prominent anti-tumor effect in immunocompetent mice and was highly dependent on CD8+T cells, paralleled with the reshape of immune cells in tumor microenvironment via tumorous IRE1α-XBP1 signal. Subsequently, tumorous IRE1α facilitated the expression and secretion of multiple chemokines and cytokines via XBP1-NF-κB axis, leading to increased infiltration and anti-tumor capacity of CD8+T cells. Ultimately, pharmacological induction of tumorous ER stress by HA15 brought potentiated therapeutic effect along with anti-PD-1 antibody on melanoma in vivo. CONCLUSIONS Tumorous IRE1α facilitates CD8+T cells-dependent anti-tumor immunity and improves immunotherapy efficacy by regulating chemokines and cytokines via XBP1-NF-κB axis. The combination of ER stress inducer and anti-PD-1 antibody could be promising for increasing the efficacy of melanoma immunotherapy.
Collapse
Affiliation(s)
- Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sijia Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiang-Xu Wang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yangzi Tian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hao Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tao Zhao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hengxiang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Baolu Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
22
|
Chen W, Liao Y, Sun P, Tu J, Zou Y, Fang J, Chen Z, Li H, Chen J, Peng Y, Wen L, Xie X. Construction of an ER stress-related prognostic signature for predicting prognosis and screening the effective anti-tumor drug in osteosarcoma. J Transl Med 2024; 22:66. [PMID: 38229155 PMCID: PMC10792867 DOI: 10.1186/s12967-023-04794-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/09/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Osteosarcoma is the most common malignant primary bone tumor in infants and adolescents. The lack of understanding of the molecular mechanisms underlying osteosarcoma progression and metastasis has contributed to a plateau in the development of current therapies. Endoplasmic reticulum (ER) stress has emerged as a significant contributor to the malignant progression of tumors, but its potential regulatory mechanisms in osteosarcoma progression remain unknown. METHODS In this study, we collected RNA sequencing and clinical data of osteosarcoma from The TCGA, GSE21257, and GSE33382 cohorts. Differentially expressed analysis and the least absolute shrinkage and selection operator regression analysis were conducted to identify prognostic genes and construct an ER stress-related prognostic signature (ERSRPS). Survival analysis and time dependent ROC analysis were performed to evaluate the predictive performance of the constructed prognostic signature. The "ESTIMATE" package and ssGSEA algorithm were utilized to evaluate the differences in immune cells infiltration between the groups. Cell-based assays, including CCK-8, colony formation, and transwell assays and co-culture system were performed to assess the effects of the target gene and small molecular drug in osteosarcoma. Animal models were employed to assess the anti-osteosarcoma effects of small molecular drug. RESULTS Five genes (BLC2, MAGEA3, MAP3K5, STC2, TXNDC12) were identified to construct an ERSRPS. The ER stress-related gene Stanniocalcin 2 (STC2) was identified as a risk gene in this signature. Additionally, STC2 knockdown significantly inhibited osteosarcoma cell proliferation, migration, and invasion. Furthermore, the ER stress-related gene STC2 was found to downregulate the expression of MHC-I molecules in osteosarcoma cells, and mediate immune responses through influencing the infiltration and modulating the function of CD8+ T cells. Patients categorized by risk scores showed distinct immune status, and immunotherapy response. ISOX was subsequently identified and validated as an effective anti-osteosarcoma drug through a combination of CMap database screening and in vitro and in vivo experiments. CONCLUSION The ERSRPS may guide personalized treatment decisions for osteosarcoma, and ISOX holds promise for repurposing in osteosarcoma treatment.
Collapse
Affiliation(s)
- Weidong Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yan Liao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Pengxiao Sun
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jian Tu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yutong Zou
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ji Fang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ziyun Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hongbo Li
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Junkai Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yuzhong Peng
- Macau University of Science and Technology, Macau, 999078, China
| | - Lili Wen
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
23
|
Pinto AF, Nunes JS, Severino Martins JE, Leal AC, Silva CCVC, da Silva AJFS, da Cruz Olímpio DS, da Silva ETN, Campos TA, Lima Leite AC. Thiazole, Isatin and Phthalimide Derivatives Tested in vivo against Cancer Models: A Literature Review of the Last Six Years. Curr Med Chem 2024; 31:2991-3032. [PMID: 37170994 DOI: 10.2174/0929867330666230426154055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Cancer is a disease characterized by the abnormal multiplication of cells and is the second leading cause of death in the world. The search for new effective and safe anticancer compounds is ongoing due to factors such as low selectivity, high toxicity, and multidrug resistance. Thus, heterocyclic compounds derived from isatin, thiazole and phthalimide that have achieved promising in vitro anticancer activity have been tested in vivo and in clinical trials. OBJECTIVE This review focused on the compilation of promising data from thiazole, isatin, and phthalimide derivatives, reported in the literature between 2015 and 2022, with in vivo anticancer activity and clinical trials. METHODS A bibliographic search was carried out in the PUBMED, MEDLINE, ELSEVIER, and CAPES PERIODIC databases, selecting relevant works for each pharmacophoric group with in vivo antitumor activity in the last 6 years. RESULTS In our study, 68 articles that fit the scope were selected and critically analyzed. These articles were organized considering the type of antitumor activity and their year of publication. Some compounds reported here demonstrated potent antitumor activity against several tumor types. CONCLUSION This review allowed us to highlight works that reported promising structures for the treatment of various cancer types and also demonstrated that the privileged structures thiazole, isatin and phthalimide are important in the design of new syntheses and molecular optimization of compounds with antitumor activity.
Collapse
Affiliation(s)
- Aline Ferreira Pinto
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Janine Siqueira Nunes
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - José Eduardo Severino Martins
- Regulatory Affairs Advisory, Empresa Brasileira de Hemoderivados e Biotecnologia (HEMOBRAS), CEP 51021-410, Recife, PE, Brazil
| | - Amanda Calazans Leal
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Carla Cauanny Vieira Costa Silva
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Anderson José Firmino Santos da Silva
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Daiane Santiago da Cruz Olímpio
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Elineide Tayse Noberto da Silva
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Thiers Araújo Campos
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Ana Cristina Lima Leite
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| |
Collapse
|
24
|
Joyce R, Pascual R, Heitink L, Capaldo BD, Vaillant F, Christie M, Tsai M, Surgenor E, Anttila CJA, Rajasekhar P, Jackling FC, Trussart M, Milevskiy MJG, Song X, Li M, Teh CE, Gray DHD, Smyth GK, Chen Y, Lindeman GJ, Visvader JE. Identification of aberrant luminal progenitors and mTORC1 as a potential breast cancer prevention target in BRCA2 mutation carriers. Nat Cell Biol 2024; 26:138-152. [PMID: 38216737 DOI: 10.1038/s41556-023-01315-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/15/2023] [Indexed: 01/14/2024]
Abstract
Inheritance of a BRCA2 pathogenic variant conveys a substantial life-time risk of breast cancer. Identification of the cell(s)-of-origin of BRCA2-mutant breast cancer and targetable perturbations that contribute to transformation remains an unmet need for these individuals who frequently undergo prophylactic mastectomy. Using preneoplastic specimens from age-matched, premenopausal females, here we show broad dysregulation across the luminal compartment in BRCA2mut/+ tissue, including expansion of aberrant ERBB3lo luminal progenitor and mature cells, and the presence of atypical oestrogen receptor (ER)-positive lesions. Transcriptional profiling and functional assays revealed perturbed proteostasis and translation in ERBB3lo progenitors in BRCA2mut/+ breast tissue, independent of ageing. Similar molecular perturbations marked tumours bearing BRCA2-truncating mutations. ERBB3lo progenitors could generate both ER+ and ER- cells, potentially serving as cells-of-origin for ER-positive or triple-negative cancers. Short-term treatment with an mTORC1 inhibitor substantially curtailed tumorigenesis in a preclinical model of BRCA2-deficient breast cancer, thus uncovering a potential prevention strategy for BRCA2 mutation carriers.
Collapse
Affiliation(s)
- Rachel Joyce
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Rosa Pascual
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Luuk Heitink
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Bianca D Capaldo
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - François Vaillant
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Christie
- Department of Anatomical Pathology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Minhsuang Tsai
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Elliot Surgenor
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Casey J A Anttila
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Pradeep Rajasekhar
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Felicity C Jackling
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Marie Trussart
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Michael J G Milevskiy
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Xiaoyu Song
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Mengbo Li
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Charis E Teh
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Daniel H D Gray
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Gordon K Smyth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Yunshun Chen
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Geoffrey J Lindeman
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.
- Parkville Familial Cancer Centre and Department of Medical Oncology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, Victoria, Australia.
| | - Jane E Visvader
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
25
|
Park JH, Kim MS, Yun DH, Kim YC. Apoptosis/Necroptosis Inducing Thiazole-Containing Artificial Polypeptide for Immunogenic Cell Death of Cancer. ACS APPLIED BIO MATERIALS 2023; 6:5290-5300. [PMID: 38044569 DOI: 10.1021/acsabm.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Immunogenic cell death (ICD) has emerged as a promising approach to cancer immunotherapy. During ICD, cancer cell death and the release of damage-associated molecular pattern (DAMP) signals occur simultaneously. Increased production of reactive oxygen species (ROS) and severe endoplasmic reticulum stress are necessary for enhanced ICD. Furthermore, the levels of ROS and reduced glutathione (GSH) are involved in various cell death mechanisms. The thiazole ring structure has gained considerable interest as a functional moiety for anticancer agents. This study designed and synthesized a positively charged cell-penetrating polypeptide with a thiazole functional moiety (NS). The NS internalizes into the cancer cells through direct penetration and endo-lysosomal escape. The NS induces mitochondrial depolarization and ER stress in a concentration-dependent manner, leading to a significant ROS production and GSH depletion. Consequently, the ICD of cancer cells is activated, resulting in the release of DAMP signals. Furthermore, NS causes a shift in the cell death pathway from apoptosis to necroptosis as the concentration increases. In this study, we confirmed the possibility of NS as a promising ICD inducer that can be used while varying the concentration according to the cancer type.
Collapse
Affiliation(s)
- Jeong Ho Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Mun Sik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Do Hyun Yun
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
26
|
Mendes EA, Tang Y, Jiang G. The integrated stress response signaling during the persistent HIV infection. iScience 2023; 26:108418. [PMID: 38058309 PMCID: PMC10696111 DOI: 10.1016/j.isci.2023.108418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Human immunodeficiency virus-1 (HIV) infection is a chronic disease under antiretroviral therapy (ART), during which active HIV replication is effectively suppressed. Stable viral reservoirs are established early in infection and cannot be eradicated in people with HIV (PWH) by ART alone, which features residual immune inflammation with disease-associated secondary comorbidities. Mammalian cells are equipped with integrated stress response (ISR) machinery to detect intrinsic and extrinsic stresses such as heme deficiency, nutrient fluctuation, the accumulation of unfolded proteins, and viral infection. ISR is the part of the innate immunity that defends against pathogen infection or environmental alteration, thereby maintaining homeostasis to avoid diseases. Here, we describe how this machinery responds to the off-target effects of ART and persistent HIV infection in both the peripheral compartments and the brain. The latter may be important for us to better understand the mechanisms of stable HIV reservoirs and HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Erica A. Mendes
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7042, USA
| | - Yuyang Tang
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7042, USA
| | - Guochun Jiang
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases and the Department of Biochemistry and Biophysics, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599- 7042, USA
| |
Collapse
|
27
|
Ingle J, Tirkey A, Pandey S, Basu S. Small-Molecule Endoplasmic Reticulum Stress Inducer Triggers Apoptosis in Cancer Cells. ChemMedChem 2023; 18:e202300433. [PMID: 37964696 DOI: 10.1002/cmdc.202300433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/06/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Endoplasmic reticulum (ER) is highly critical for the sub-cellular protein synthesis, post-translational modifications and myriads of signalling pathways to maintain cellular homeostasis. Consequently, dysregulation in the ER functions leads to the ER stress in different pathological situations including cancer. Hence, exploring small molecules to induce ER stress emerged as one of the unorthodox strategies for future cancer therapeutics. However, development of ER targeted novel small molecules remains elusive due to the dearth of ER targeting moieties. Herein we have synthesized a small library of 3-methoxy-pyrrole-enamine through a concise strategy. Screening of this library in cervical (HeLa), colon (HCT-116), breast (MCF7) and lung cancer (A549) cells identified a novel small molecule which localized into the ER of the HeLa cervical cancer cells within 3 h, induced ER stress through the increased expression of ER stress markers (CHOP, IRE1α, PERK, BiP and Cas-12) and triggered the programmed cell death (apoptosis) leading to remarkable HeLa cell killing. This novel small molecule can be explored further as a tool to understand the chemical biology of ER towards the development of ER targeted cancer therapeutics.
Collapse
Affiliation(s)
- Jaypalsing Ingle
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gandhinagar, Gujarat, India
| | - Anjana Tirkey
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gandhinagar, Gujarat, India
| | - Shalini Pandey
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gandhinagar, Gujarat, India
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gandhinagar, Gujarat, India
| |
Collapse
|
28
|
Di Gregorio J, Appignani M, Flati V. Role of the Mitochondrial E3 Ubiquitin Ligases as Possible Therapeutic Targets in Cancer Therapy. Int J Mol Sci 2023; 24:17176. [PMID: 38139010 PMCID: PMC10743160 DOI: 10.3390/ijms242417176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Ubiquitination is a post-translational modification that targets specific proteins on their lysine residues. Depending on the type of ubiquitination, this modification ultimately regulates the stability or degradation of the targeted proteins. Ubiquitination is mediated by three different classes of enzymes: the E1 ubiquitin-activating enzymes, the E2 ubiquitin-conjugating enzymes and, most importantly, the E3 ubiquitin ligases. E3 ligases are responsible for the final step of the ubiquitin cascade, interacting directly with the target proteins. E3 ligases can also be involved in DNA repair, cell cycle regulation and response to stress; alteration in their levels can be involved in oncogenic transformation and cancer progression. Of all the six hundred E3 ligases of the human genome, only three of them are specific to the mitochondrion: MARCH5, RNF185 and MUL1. Their alterations (that reflect on the alteration of the mitochondria functions) can be related to cancer progression, as underlined by the increasing research performed in recent years on these three mitochondrial enzymes. This review will focus on the function and mechanisms of the mitochondrial E3 ubiquitin ligases, as well as their important targets, in cancer development and progression, also highlighting their potential use for cancer therapy.
Collapse
Affiliation(s)
| | | | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (J.D.G.); (M.A.)
| |
Collapse
|
29
|
Guo W, Wang M, Yang Z, Liu D, Ma B, Zhao Y, Chen Y, Hu Y. Recent advances in small molecule and peptide inhibitors of glucose-regulated protein 78 for cancer therapy. Eur J Med Chem 2023; 261:115792. [PMID: 37690265 DOI: 10.1016/j.ejmech.2023.115792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Glucose-regulated protein 78 (GRP78) is one of key endoplasmic reticulum (ER) chaperone proteins that regulates the unfolded protein response (UPR) to maintain ER homeostasis. As a core factor in the regulation of the UPR, GRP78 takes a critical part in the cellular processes required for tumorigenesis, such as proliferation, metastasis, anti-apoptosis, immune escape and chemoresistance. Overexpression of GRP78 is closely correlated with tumorigenesis and poor prognosis in various malignant tumors. Targeting GRP78 is regarded as a potentially promising therapeutic strategy for cancer therapy. Although none of the GRP78 inhibitors have been approved to date, there have been several studies of GRP78 inhibitors. Herein, we comprehensively review the structure, physiological functions of GRP78 and the recent progress of GRP78 inhibitors, and discuss the structures, in vitro and in vivo efficacies, and merits and demerits of these inhibitors to inspire further research. Additionally, the feasibility of GRP78-targeting proteolysis-targeting chimeras (PROTACs), disrupting GRP78 cochaperone interactions, or covalent inhibition are also discussed as novel strategies for drugs discovery targeting GRP78, with the hope that these strategies can provide new opportunities for targeted GRP78 antitumor therapy.
Collapse
Affiliation(s)
- Weikai Guo
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Manjie Wang
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Zhengfan Yang
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Danyang Liu
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Borui Ma
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Yanqun Zhao
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Yihua Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Yanzhong Hu
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
30
|
Heo G, Lee SH, Kim JD, Lee GH, Sim JM, Zhou D, Guo J, Cui XS. GRP78 acts as a cAMP/PKA signaling modulator through the MC4R pathway in porcine embryonic development. FASEB J 2023; 37:e23274. [PMID: 37917004 DOI: 10.1096/fj.202301356r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/23/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023]
Abstract
Glucose-regulated protein 78 (GRP78) binds to and stabilizes melanocortin 4 receptor (MC4R), which activates protein kinase A (PKA) by regulating G proteins. GRP78 is primarily used as a marker for endoplasmic reticulum stress; however, its other functions have not been well studied. Therefore, in this study, we aimed to investigate the function of GRP78 during porcine embryonic development. The developmental quality of porcine embryos, expression of cell cycle proteins, and function of mitochondria were evaluated by inhibiting the function of GRP78. Porcine oocytes were activated to undergo parthenogenesis, and blastocysts were obtained after 7 days of in vitro culture. GRP78 function was inhibited by adding 20 μM HA15 to the in vitro culture medium. The inhibition in GRP78 function led to a decrease in G proteins release, which subsequently downregulated the cyclic adenosine monophosphate (cAMP)/PKA pathway. Ultimately, inhibition of GRP78 function induced the inhibition of CDK1 and cyclin B expression and disruption of the cell cycle. In addition, inhibition of GRP78 function regulated DRP1 and SIRT1 expression, resulting in mitochondrial dysfunction. This study provides new insights into the role of GRP78 in porcine embryonic development, particularly its involvement in the regulation of the MC4R pathway and downstream cAMP/PKA signaling. The results suggest that the inhibition of GRP78 function in porcine embryos by HA15 treatment may have negative effects on embryo quality and development. This study also demonstrated that GRP78 plays a crucial role in the functioning of MC4R, which releases the G protein during porcine embryonic development.
Collapse
Affiliation(s)
- Geun Heo
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Ji-Dam Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Gyu-Hyun Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Jae-Min Sim
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjie Zhou
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Jing Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
31
|
Yu H, Zhou L, Loong JHC, Lam KH, Wong TL, Ng KY, Tong M, Ma VWS, Wang Y, Zhang X, Lee TK, Yun JP, Yu J, Ma S. SERPINA12 promotes the tumorigenic capacity of HCC stem cells through hyperactivation of AKT/β-catenin signaling. Hepatology 2023; 78:1711-1726. [PMID: 36630996 DOI: 10.1097/hep.0000000000000269] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 12/01/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIMS HCC is an aggressive disease with poor clinical outcome. Understanding the mechanisms that drive cancer stemness, which we now know is the root cause of therapy failure and tumor recurrence, is fundamental for designing improved therapeutic strategies. This study aims to identify molecular players specific to CD133 + HCC to better design drugs that can precisely interfere with cancer stem cells but not normal stem cell function. APPROACH AND RESULTS Transcriptome profiling comparison of epithelial-specific "normal" CD133 + cells isolated from fetal and regenerating liver against "HCC" CD133 + cells isolated from proto-oncogene-driven and inflammation-associated HCC revealed preferential overexpression of SERPINA12 in HCC but not fetal and regenerating liver CD133 + cells. SERPINA12 upregulation in HCC is tightly associated with aggressive clinical and stemness features, including survival, tumor stage, cirrhosis, and stemness signatures. Enrichment of SERPINA12 in HCC is mediated by promoter binding of the well-recognized β-catenin effector TCF7L2 to drive SERPINA12 transcriptional activity. Functional characterization identified a unique and novel role of endogenous SERPINA12 in promoting self-renewal, therapy resistance, and metastatic abilities. Mechanistically, SERPINA12 functioned through binding to GRP78, resulting in a hyperactivated AKT/GSK3β/β-catenin signaling cascade, forming a positive feed-forward loop. Intravenous administration of rAAV8-shSERPINA12 sensitized HCC cells to sorafenib and impeded the cancer stem cell subset in an immunocompetent HCC mouse model. CONCLUSIONS Collectively, our findings revealed that SERPINA12 is preferentially overexpressed in epithelial HCC CD133 + cells and is a key contributor to HCC initiation and progression by driving an AKT/β-catenin feed-forward loop.
Collapse
Affiliation(s)
- Huajian Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Lei Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jane H C Loong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Ka-Hei Lam
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Tin-Lok Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Kai-Yu Ng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Man Tong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Victor W S Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Yanyan Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Terence K Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong
| | - Jing-Ping Yun
- Department of Pathology, Sun Yat-Sen University Cancer Centre, Guangzhou, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| |
Collapse
|
32
|
Ferretti LP, Böhi F, Leslie Pedrioli DM, Cheng PF, Ferrari E, Baumgaertner P, Alvarado-Diaz A, Sella F, Cereghetti A, Turko P, Wright RH, De Bock K, Speiser DE, Ferrari R, Levesque MP, Hottiger MO. Combinatorial Treatment with PARP and MAPK Inhibitors Overcomes Phenotype Switch-Driven Drug Resistance in Advanced Melanoma. Cancer Res 2023; 83:3974-3988. [PMID: 37729428 DOI: 10.1158/0008-5472.can-23-0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Metastatic melanoma is either intrinsically resistant or rapidly acquires resistance to targeted therapy treatments, such as MAPK inhibitors (MAPKi). A leading cause of resistance to targeted therapy is a dynamic transition of melanoma cells from a proliferative to a highly invasive state, a phenomenon called phenotype switching. Mechanisms regulating phenotype switching represent potential targets for improving treatment of patients with melanoma. Using a drug screen targeting chromatin regulators in patient-derived three-dimensional MAPKi-resistant melanoma cell cultures, we discovered that PARP inhibitors (PARPi) restore sensitivity to MAPKis, independent of DNA damage repair pathways. Integrated transcriptomic, proteomic, and epigenomic analyses demonstrated that PARPis induce lysosomal autophagic cell death, accompanied by enhanced mitochondrial lipid metabolism that ultimately increases antigen presentation and sensitivity to T-cell cytotoxicity. Moreover, transcriptomic and epigenetic rearrangements induced by PARP inhibition reversed epithelial-mesenchymal transition-like phenotype switching, which redirected melanoma cells toward a proliferative and MAPKi-sensitive state. The combination of PARP and MAPKis synergistically induced cancer cell death both in vitro and in vivo in patient-derived xenograft models. Therefore, this study provides a scientific rationale for treating patients with melanoma with PARPis in combination with MAPKis to abrogate acquired therapy resistance. SIGNIFICANCE PARP inhibitors can overcome resistance to MAPK inhibitors by activating autophagic cell death and reversing phenotype switching, suggesting that this synergistic combination could help improve the prognosis of patients with melanoma.
Collapse
Affiliation(s)
- Lorenza P Ferretti
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Flurina Böhi
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | | | - Phil F Cheng
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Elena Ferrari
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Petra Baumgaertner
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Abdiel Alvarado-Diaz
- Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Federica Sella
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Alessandra Cereghetti
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Patrick Turko
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Roni H Wright
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Barcelona
| | - Katrien De Bock
- Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Daniel E Speiser
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Roberto Ferrari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
Gurri S, Siegenthaler B, Cangkrama M, Restivo G, Huber M, Saliba J, Dummer R, Blank V, Hohl D, Werner S. NRF3 suppresses squamous carcinogenesis, involving the unfolded protein response regulator HSPA5. EMBO Mol Med 2023; 15:e17761. [PMID: 37807968 PMCID: PMC10630885 DOI: 10.15252/emmm.202317761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
Epithelial skin cancers are extremely common, but the mechanisms underlying their malignant progression are still poorly defined. Here, we identify the NRF3 transcription factor as a tumor suppressor in the skin. NRF3 protein expression is strongly downregulated or even absent in invasively growing cancer cells of patients with basal and squamous cell carcinomas (BCC and SCC). NRF3 deficiency promoted malignant conversion of chemically induced skin tumors in immunocompetent mice, clonogenic growth and migration of human SCC cells, their invasiveness in 3D cultures, and xenograft tumor formation. Mechanistically, the tumor-suppressive effect of NRF3 involves HSPA5, a key regulator of the unfolded protein response, which we identified as a potential NRF3 interactor. HSPA5 levels increased in the absence of NRF3, thereby promoting cancer cell survival and migration. Pharmacological inhibition or knock-down of HSPA5 rescued the malignant features of NRF3-deficient SCC cells in vitro and in preclinical mouse models. Together with the strong expression of HSPA5 in NRF3-deficient cancer cells of SCC patients, these results suggest HSPA5 inhibition as a treatment strategy for these malignancies in stratified cancer patients.
Collapse
Affiliation(s)
- Selina Gurri
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Beat Siegenthaler
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Michael Cangkrama
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Gaetana Restivo
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Marcel Huber
- Service of Dermatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - James Saliba
- Lady Davis Institute for Medical Research, McGill University, Montreal, Canada
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Volker Blank
- Lady Davis Institute for Medical Research, McGill University, Montreal, Canada
| | - Daniel Hohl
- Service of Dermatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Hounye AH, Hu B, Wang Z, Wang J, Cao C, Zhang J, Hou M, Qi M. Evaluation of drug sensitivity, immunological characteristics, and prognosis in melanoma patients using an endoplasmic reticulum stress-associated signature based on bioinformatics and pan-cancer analysis. J Mol Med (Berl) 2023; 101:1267-1287. [PMID: 37653150 DOI: 10.1007/s00109-023-02365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 05/27/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
We aimed to develop endoplasmic reticulum (ER) stress-related risk signature to predict the prognosis of melanoma and elucidate the immune characteristics and benefit of immunotherapy in ER-related risk score-defined subgroups of melanoma based on a machine learning algorithm. Based on The Cancer Genome Atlas (TCGA) melanoma dataset (n = 471) and GTEx database (n = 813), 365 differentially expressed ER-associated genes were selected using the univariate Cox model and LASSO penalty Cox model. Ten genes impacting OS were identified to construct an ER-related signature by using the multivariate Cox regression method and validated with the Gene Expression Omnibus (GEO) dataset. Thereafter, the immune features, CNV, methylation, drug sensitivity, and the clinical benefit of anticancer immune checkpoint inhibitor (ICI) therapy in risk score subgroups, were analyzed. We further validated the gene signature using pan-cancer analysis by comparing it to other tumor types. The ER-related risk score was constructed based on the ARNTL, AGO1, TXN, SORL1, CHD7, EGFR, KIT, HLA-DRB1 KCNA2, and EDNRB genes. The high ER stress-related risk score group patients had a poorer overall survival (OS) than the low-risk score group patients, consistent with the results in the GEO cohort. The combined results suggested that a high ER stress-related risk score was associated with cell adhesion, gamma phagocytosis, cation transport, cell surface cell adhesion, KRAS signalling, CD4 T cells, M1 macrophages, naive B cells, natural killer (NK) cells, and eosinophils and less benefitted from ICI therapy. Based on the expression patterns of ER stress-related genes, we created an appropriate predictive model, which can also help distinguish the immune characteristics, CNV, methylation, and the clinical benefit of ICI therapy. KEY MESSAGES: Melanoma is the cutaneous tumor with a high degree of malignancy, the highest fatality rate, and extremely poor prognosis. Model usefulness should be considered when using models that contained more features. We constructed the Endoplasmic Reticulum stress-associated signature using TCGA and GEO database based on machine learning algorithm. ER stress-associated signature has excellent ability for predicting prognosis for melanoma.
Collapse
Affiliation(s)
| | - Bingqian Hu
- Department of Dermatology, Xiangya Hospital of Central South University, Changsha, 410000, China
| | - Zheng Wang
- School of Computer Science, Hunan First Normal University, Changsha, 410205, China
| | - Jiaoju Wang
- School of Mathematics and Statistics, Central South University, Changsha, 410083, China
| | - Cong Cao
- School of Mathematics and Statistics, Central South University, Changsha, 410083, China
| | - Jianglin Zhang
- Department of Dermatology, The Second Clinical Medical College, Shenzhen People's Hospital Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, China
| | - Muzhou Hou
- School of Mathematics and Statistics, Central South University, Changsha, 410083, China.
| | - Min Qi
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
35
|
Hu X, Pan G, Luo J, Gao X, Mu Y, Wang Z, Hu X, Li C, Abbas MN, Zhang K, Zheng Y, Cui H. Kuwanon H Inhibits Melanoma Growth through Cytotoxic Endoplasmic Reticulum Stress and Impaired Autophagy Flux. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13768-13782. [PMID: 37672659 DOI: 10.1021/acs.jafc.3c02257] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Although great progress has been made recently in targeted and immune-based therapies, additional treatments are needed for most melanoma patients due to acquired chemoresistance, recurrence, or metastasis. Elevated autophagy is required for the pathogenesis of melanoma to attenuate metabolic stress, protecting cancer cells from chemotherapeutics or radiation. Thus, intervention with autophagy is a promising strategy for melanoma treatment. Here, we examined a novel antimelanoma natural compound named kuwanon H (KuH), which significantly inhibited melanoma cell growth in vitro/vivo. Mechanistically, KuH induced cytotoxic endoplasmic reticulum (ER) stress, which inhibited cell viability and induced apoptosis. Meanwhile, KuH-induced ER stress mediated autophagysome formation through the ATF4-DDIT3-TRIB3-AKT-MTOR axis. Importantly, KuH impaired autophagy flux, which contributed to the anticancer effects of KuH. Finally, our results showed that KuH enhanced the sensitivity of melanoma cells to cisplatin, both in vitro and in vivo, by impairing autophagy degradation of reactive oxygen species and damaged mitochondria. Our findings indicate that KuH is a promising candidate anticancer natural product for melanoma therapy.
Collapse
Affiliation(s)
- Xin Hu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Guangzhao Pan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Jili Luo
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Xinyue Gao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Yuhang Mu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Zhi Wang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Xiaosong Hu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Chongyang Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Kui Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Ying Zheng
- The Ninth People's Hospital of Chongqing, Chongqing 400700, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
36
|
Zhang L, Lu X, Xu Y, La X, Tian J, Li A, Li H, Wu C, Xi Y, Song G, Zhou Z, Bai W, An L, Li Z. Tumor-associated macrophages confer colorectal cancer 5-fluorouracil resistance by promoting MRP1 membrane translocation via an intercellular CXCL17/CXCL22-CCR4-ATF6-GRP78 axis. Cell Death Dis 2023; 14:582. [PMID: 37658050 PMCID: PMC10474093 DOI: 10.1038/s41419-023-06108-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Chemotherapy represents a major type of clinical treatment against colorectal cancer (CRC). Aberrant drug efflux mediated by transporters acts as a key approach for tumor cells to acquire chemotherapy resistance. Increasing evidence implies that tumor-associated macrophages (TAMs) play a pivotal role in both tumorigenesis and drug resistance. Nevertheless, the specific mechanism through which TAMs regulate drug efflux remains elusive. Here, we discovered that TAMs endow CRC cells with resistance to 5-fluorouracil (5-FU) treatment via a cell-cell interaction-mediated MRP1-dependent drug efflux process. Mechanistically, TAM-secreted C-C motif chemokine ligand 17 (CCL17) and CCL22, via membrane receptor CCR4, activated the PI3K/AKT pathway in CRC tumor cells. Specifically, phosphorylation of AKT inactivated IP3R and induced calcium aggregation in the ER, resulting in the activation of ATF6 and upregulation of GRP78. Accordingly, excessive GRP78 can interact with MRP1 and promote its translocation to the cell membrane, causing TAM-induced 5-FU efflux. Taken together, our results demonstrated that TAMs promote CRC chemotherapy resistance via elevating the expression of GRP78 to promote the membrane translocation of MRP1 and drug efflux, providing direct proof for TAM-induced drug resistance.
Collapse
Affiliation(s)
- Lichao Zhang
- Institutes of Biomedical Sciences, Shanxi University, 030006, Taiyuan, China
| | - Xiaoqing Lu
- Institutes of Biomedical Sciences, Shanxi University, 030006, Taiyuan, China
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital of Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, 200072, Shanghai, China
| | - Xiaoqin La
- Institutes of Biomedical Sciences, Shanxi University, 030006, Taiyuan, China
| | - Jinmiao Tian
- Institute of Biotechnology, Shanxi University, 030006, Taiyuan, China
| | - Aiping Li
- Modern Research Center for traditional Chinese medicine, Shanxi University, 030006, Taiyuan, China
| | - Hanqing Li
- School of Life Science, Shanxi University, 030006, Taiyuan, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 030006, Taiyuan, China
| | - Yanfeng Xi
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital of Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Guisheng Song
- Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Wenqi Bai
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital of Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| | - Liwei An
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, 200072, Shanghai, China.
| | - Zhuoyu Li
- Institutes of Biomedical Sciences, Shanxi University, 030006, Taiyuan, China.
- Institute of Biotechnology, Shanxi University, 030006, Taiyuan, China.
| |
Collapse
|
37
|
Liu Z, Liu G, Ha DP, Wang J, Xiong M, Lee AS. ER chaperone GRP78/BiP translocates to the nucleus under stress and acts as a transcriptional regulator. Proc Natl Acad Sci U S A 2023; 120:e2303448120. [PMID: 37487081 PMCID: PMC10400976 DOI: 10.1073/pnas.2303448120] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/08/2023] [Indexed: 07/26/2023] Open
Abstract
Cancer cells are commonly subjected to endoplasmic reticulum (ER) stress. To gain survival advantage, cancer cells exploit the adaptive aspects of the unfolded protein response such as upregulation of the ER luminal chaperone GRP78. The finding that when overexpressed, GRP78 can escape to other cellular compartments to gain new functions regulating homeostasis and tumorigenesis represents a paradigm shift. Here, toward deciphering the mechanisms whereby GRP78 knockdown suppresses EGFR transcription, we find that nuclear GRP78 is prominent in cancer and stressed cells and uncover a nuclear localization signal critical for its translocation and nuclear activity. Furthermore, nuclear GRP78 can regulate expression of genes and pathways, notably those important for cell migration and invasion, by interacting with and inhibiting the activity of the transcriptional repressor ID2. Our study reveals a mechanism for cancer cells to respond to ER stress via transcriptional regulation mediated by nuclear GRP78 to adopt an invasive phenotype.
Collapse
Affiliation(s)
- Ze Liu
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA90033
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Guanlin Liu
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA90033
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Dat P. Ha
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA90033
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Justin Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA92037
| | - Min Xiong
- Department of System Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| | - Amy S. Lee
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA90033
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| |
Collapse
|
38
|
Shao X, Meng C, Song W, Zhang T, Chen Q. Subcellular visualization: Organelle-specific targeted drug delivery and discovery. Adv Drug Deliv Rev 2023; 199:114977. [PMID: 37391014 DOI: 10.1016/j.addr.2023.114977] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Organelles perform critical biological functions due to their distinct molecular composition and internal environment. Disorders in organelles or their interacting networks have been linked to the incidence of numerous diseases, and the research of pharmacological actions at the organelle level has sparked pharmacists' interest. Currently, cell imaging has evolved into a critical tool for drug delivery, drug discovery, and pharmacological research. The introduction of advanced imaging techniques in recent years has provided researchers with richer biological information for viewing and studying the ultrastructure of organelles, protein interactions, and gene transcription activities, leading to the design and delivery of precision-targeted drugs. Therefore, this reviews the research on organelles-targeted drugs based upon imaging technologies and development of fluorescent molecules for medicinal purposes. We also give a thorough analysis of a number of subcellular-level elements of drug development, including subcellular research instruments and methods, organelle biological event investigation, subcellular target and drug identification, and design of subcellular delivery systems. This review will make it possible to promote drug research from the individual/cellular level to the subcellular level, as well as give a new focus based on newly found organelle activities.
Collapse
Affiliation(s)
- Xintian Shao
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Caicai Meng
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Wenjing Song
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China; School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Tao Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province 250014, PR China
| | - Qixin Chen
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| |
Collapse
|
39
|
Zhou C, Liu Y, Wei Q, Chen Y, Yang S, Cheng A, Zhang G. HSPA5 Promotes Attachment and Internalization of Porcine Epidemic Diarrhea Virus through Interaction with the Spike Protein and the Endo-/Lysosomal Pathway. J Virol 2023; 97:e0054923. [PMID: 37222617 PMCID: PMC10308931 DOI: 10.1128/jvi.00549-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/25/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) has caused huge economic losses to the global pig industry. The swine enteric coronavirus spike (S) protein recognizes various cell surface molecules to regulate viral infection. In this study, we identified 211 host membrane proteins related to the S1 protein by pulldown combined with liquid-chromatography tandem mass spectrometry (LC-MS/MS) analysis. Among these, heat shock protein family A member 5 (HSPA5) was identified through screening as having a specific interaction with the PEDV S protein, and positive regulation of PEDV infection was validated by knockdown and overexpression tests. Further studies verified the role of HSPA5 in viral attachment and internalization. In addition, we found that HSPA5 interacts with S proteins through its nucleotide-binding structural domain (NBD) and that polyclonal antibodies can block viral infection. In detail, HSPA5 was found to be involved in viral trafficking via the endo-/lysosomal pathway. Inhibition of HSPA5 activity during internalization would reduce the subcellular colocalization of PEDV with lysosomes in the endo-/lysosomal pathway. Together, these findings show that HSPA5 is a novel PEDV potential target for the creation of therapeutic drugs. IMPORTANCE PEDV infection causes severe piglet mortality and threatens the global pig industry. However, the complex invasion mechanism of PEDV makes its prevention and control difficult. Here, we determined that HSPA5 is a novel target for PEDV which interacts with its S protein and is involved in viral attachment and internalization, influencing its transport via the endo-/lysosomal pathway. Our work extends knowledge about the relationship between the PEDV S and host proteins and provides a new therapeutic target against PEDV infection.
Collapse
Affiliation(s)
- Chuanjie Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Suzhen Yang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Anchun Cheng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
40
|
Li J, Xiao W, Wei W, Wu M, Xiong K, Lyu J, Li Y. HSPA5, as a ferroptosis regulator, may serve as a potential therapeutic for head and neck squamous cell carcinoma. Mol Immunol 2023; 158:79-90. [PMID: 37172353 DOI: 10.1016/j.molimm.2023.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/09/2023] [Accepted: 05/04/2023] [Indexed: 05/14/2023]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a ferroptosis sensitive tumor type with high mortality rate. However, it remains largely unknown whether ferroptosis influences the tumor cell in HNSCC. MATERIALS AND METHODS To investigate how ferroptosis regulators were differentially expressed between normal and tumor tissue, data related to HNSCC was downloaded from The Cancer Genome Atlas. The expression levels of key factors in HNSCC and the relationship between key factors and ferroptosis in HNSCC were conducted in vitro, and then analyzed to correlate with the differences in prognosis and survival. This was then combined with TNM staging data, and the migration effects of key factors in HNSCC were verified by scratch test and transwell test. RESULTS In this study, gene expression analysis and correlation studies between genes showed that HSPA5 was a potentially key associated ferroptosis regulator in HNSCC. Bioinformatics analysis showed that high expression of HSPA5 in HNSCC was positively correlated with poor prognosis and distal metastasis of HNSCC. In vitro immunohistochemistry and western blot tests confirmed that HSPA5 was highly expressed in HNSCC tissues and cell lines. In vitro inhibition of HSPA5 reduced the viability of HNSCC cells and increased ferroptosis. The results of scratch, transwell, and immunofluorescence tests showed that HSPA5 was related to the migration of HNSCC. In addition, a pan-cancer analysis showed that HSPA5 was also overexpressed in many types of cancer with poor prognoses. CONCLUSION In total, our study demonstrates the critical role of ferroptosis regulators in HNSCC and that HSPA5, as a ferroptosis regulator, can be regarded as a key molecular target for designing new therapeutic regimens to control HNSCC metastasis and progression.
Collapse
Affiliation(s)
- Jia Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenke Xiao
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Wei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Miaomiao Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Kaixin Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jinglu Lyu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
41
|
Ha DP, Shin WJ, Hernandez JC, Neamati N, Dubeau L, Machida K, Lee AS. GRP78 Inhibitor YUM70 Suppresses SARS-CoV-2 Viral Entry, Spike Protein Production and Ameliorates Lung Damage. Viruses 2023; 15:v15051118. [PMID: 37243204 DOI: 10.3390/v15051118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID-19 pandemic, has given rise to many new variants with increased transmissibility and the ability to evade vaccine protection. The 78-kDa glucose-regulated protein (GRP78) is a major endoplasmic reticulum (ER) chaperone that has been recently implicated as an essential host factor for SARS-CoV-2 entry and infection. In this study, we investigated the efficacy of YUM70, a small molecule inhibitor of GRP78, to block SARS-CoV-2 viral entry and infection in vitro and in vivo. Using human lung epithelial cells and pseudoviral particles carrying spike proteins from different SARS-CoV-2 variants, we found that YUM70 was equally effective at blocking viral entry mediated by original and variant spike proteins. Furthermore, YUM70 reduced SARS-CoV-2 infection without impacting cell viability in vitro and suppressed viral protein production following SARS-CoV-2 infection. Additionally, YUM70 rescued the cell viability of multi-cellular human lung and liver 3D organoids transfected with a SARS-CoV-2 replicon. Importantly, YUM70 treatment ameliorated lung damage in transgenic mice infected with SARS-CoV-2, which correlated with reduced weight loss and longer survival. Thus, GRP78 inhibition may be a promising approach to augment existing therapies to block SARS-CoV-2, its variants, and other viruses that utilize GRP78 for entry and infection.
Collapse
Affiliation(s)
- Dat P Ha
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Woo-Jin Shin
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Juan Carlos Hernandez
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Louis Dubeau
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Keigo Machida
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
42
|
Luo H, Wang L, Zhang D, Sun Y, Wang S, Song S, Ge H. HA15 inhibits binding immunoglobulin protein and enhances the efficacy of radiation therapy in esophageal squamous cell carcinoma. Cancer Sci 2023; 114:1697-1709. [PMID: 36582172 PMCID: PMC10067410 DOI: 10.1111/cas.15712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Proteomic profiling is a promising approach to identify novel predictors of radiation response. The present study aimed to identify potential biomarkers of radiation response by serum proteomics in esophageal squamous cell carcinoma (ESCC) patients and find efficacious therapeutic drugs to enhance the efficacy of radiation therapy (RT). Serum binding immunoglobulin protein (BIP) was identified and validated as a treatment response predictor in ESCC patients treated with RT. Novel BIP inhibitor HA15 showed antitumor activity in ESCC cells by viability assay. Tumor cell colony formation and apoptosis assay revealed targeting BIP was associated with significant improvements of radiation sensitivity. Further analyses revealed that HA15 enhanced radiation-induced endoplasmic reticulum (ER) stress and immunogenic cell death (ICD) in ESCC. Clinical data indicated that high expression of BIP was associated with poor survival in patients of ESCC. In conclusion, proteomics analysis suggested BIP was a promising predictor of radiation response in locally advanced ESCC. The BIP inhibitor HA15 acted as an ER stress inducer and ICD stimulator; RT combined with HA15 was effective in suppressing the growth of ESCC in vitro and in vivo. Pretreatment BIP was an essential prognostic biomarker in locally advanced ESCC patients treated with RT.
Collapse
Affiliation(s)
- Hui Luo
- Department of Radiation OncologyThe Affiliated Cancer Hospital of Zhengzhou UniversityZhengzhouChina
| | - Liuxiang Wang
- Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
| | - Deju Zhang
- Food and Nutritional SciencesSchool of Biological Sciences, The University of Hong KongHong KongChina
| | - Yanan Sun
- Department of Radiation OncologyThe Affiliated Cancer Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shujuan Wang
- Department of Radiation OncologyThe Affiliated Cancer Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shuai Song
- Department of Radiation OncologyThe Affiliated Cancer Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hong Ge
- Department of Radiation OncologyThe Affiliated Cancer Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
43
|
Zhao K, Zhou G, Liu Y, Zhang J, Chen Y, Liu L, Zhang G. HSP70 Family in Cancer: Signaling Mechanisms and Therapeutic Advances. Biomolecules 2023; 13:601. [PMID: 37189349 PMCID: PMC10136146 DOI: 10.3390/biom13040601] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
The 70 kDa heat shock proteins (HSP70s) are a group of highly conserved and inducible heat shock proteins. One of the main functions of HSP70s is to act as molecular chaperones that are involved in a large variety of cellular protein folding and remodeling processes. HSP70s are found to be over-expressed and may serve as prognostic markers in many types of cancers. HSP70s are also involved in most of the molecular processes of cancer hallmarks as well as the growth and survival of cancer cells. In fact, many effects of HSP70s on cancer cells are not only related to their chaperone activities but rather to their roles in regulating cancer cell signaling. Therefore, a number of drugs directly or indirectly targeting HSP70s, and their co-chaperones have been developed aiming to treat cancer. In this review, we summarized HSP70-related cancer signaling pathways and corresponding key proteins regulated by the family of HSP70s. In addition, we also summarized various treatment approaches and progress of anti-tumor therapy based on targeting HSP70 family proteins.
Collapse
Affiliation(s)
- Kejia Zhao
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
| | - Guanyu Zhou
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
- Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Liu
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong 999077, China
| | - Jian Zhang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
| | - Yaohui Chen
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
| | - Lunxu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
| | - Gao Zhang
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong 999077, China
| |
Collapse
|
44
|
Yi X, Wang H, Yang Y, Wang H, Zhang H, Guo S, Chen J, Du J, Tian Y, Ma J, Zhang B, Wu L, Shi Q, Gao T, Guo W, Li C. SIRT7 orchestrates melanoma progression by simultaneously promoting cell survival and immune evasion via UPR activation. Signal Transduct Target Ther 2023; 8:107. [PMID: 36918544 PMCID: PMC10015075 DOI: 10.1038/s41392-023-01314-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/17/2022] [Accepted: 01/09/2023] [Indexed: 03/16/2023] Open
Abstract
Melanoma is the most lethal type of skin cancer, originating from the malignant transformation of melanocyte. While the development of targeted therapy and immunotherapy has gained revolutionary advances in potentiating the therapeutic effect, the prognosis of patients with melanoma is still suboptimal. During tumor progression, melanoma frequently encounters stress from both endogenous and exogenous sources in tumor microenvironment. SIRT7 is a nuclear-localized deacetylase of which the activity is highly dependent on intracellular nicotinamide adenine dinucleotide (NAD+), with versatile biological functions in maintaining cell homeostasis. Nevertheless, whether SIRT7 regulates tumor cell biology and tumor immunology in melanoma under stressful tumor microenvironment remains elusive. Herein, we reported that SIRT7 orchestrates melanoma progression by simultaneously promoting tumor cell survival and immune evasion via the activation of unfolded protein response. We first identified that SIRT7 expression was the most significantly increased one in sirtuins family upon stress. Then, we proved that the deficiency of SIRT7 potentiated tumor cell death under stress in vitro and suppressed melanoma growth in vivo. Mechanistically, SIRT7 selectively activated the IRE1α-XBP1 axis to potentiate the pro-survival ERK signal pathway and the secretion of tumor-promoting cytokines. SIRT7 directly de-acetylated SMAD4 to antagonize the TGF-β-SMAD4 signal, which relieved the transcriptional repression on IRE1α and induced the activation of the IRE1α-XBP1 axis. Moreover, SIRT7 up-regulation eradicated anti-tumor immunity by promoting PD-L1 expression via the IRE1α-XBP1 axis. Additionally, the synergized therapeutic effect of SIRT7 suppression and anti-PD-1 immune checkpoint blockade was also investigated. Taken together, SIRT7 can be employed as a promising target to restrain tumor growth and increase the effect of melanoma immunotherapy.
Collapse
Affiliation(s)
- Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Hao Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Hengxiang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Jianru Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Juan Du
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Yangzi Tian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Jingjing Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Baolu Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Lili Wu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China.
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
45
|
Nitzsche B, Höpfner M, Biersack B. Synthetic Small Molecule Modulators of Hsp70 and Hsp40 Chaperones as Promising Anticancer Agents. Int J Mol Sci 2023; 24:4083. [PMID: 36835501 PMCID: PMC9964478 DOI: 10.3390/ijms24044083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
A class of chaperones dubbed heat shock protein 70 (Hsp70) possesses high relevance in cancer diseases due to its cooperative activity with the well-established anticancer target Hsp90. However, Hsp70 is closely connected with a smaller heat shock protein, Hsp40, forming a formidable Hsp70-Hsp40 axis in various cancers, which serves as a suitable target for anticancer drug design. This review summarizes the current state and the recent developments in the field of (semi-)synthetic small molecule inhibitors directed against Hsp70 and Hsp40. The medicinal chemistry and anticancer potential of pertinent inhibitors are discussed. Since Hsp90 inhibitors have entered clinical trials but have exhibited severe adverse effects and drug resistance formation, potent Hsp70 and Hsp40 inhibitors may play a significant role in overcoming the drawbacks of Hsp90 inhibitors and other approved anticancer drugs.
Collapse
Affiliation(s)
- Bianca Nitzsche
- Institute for Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Michael Höpfner
- Institute for Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Bernhard Biersack
- Organische Chemie 1, Universität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
46
|
Hellauer K, Oskolkova OV, Gesslbauer B, Bochkov V. Pharmacological heat-shock protein inducers and chemical chaperones inhibit upregulation of interleukin-8 by oxidized phospholipids. Inflammopharmacology 2023; 31:1319-1327. [PMID: 36692663 DOI: 10.1007/s10787-022-01124-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/17/2022] [Indexed: 01/25/2023]
Abstract
Oxidised phospholipids such as oxidised palmitoyl-arachidonoyl-phosphatidylcholine (OxPAPC) are increasingly recognised as danger-associated molecular patterns (DAMPs) inducing cyto- and chemokines. The pathological impact of oxidised phosphatidylcholine in vivo has been demonstrated in several animal models, as well as in human association studies. In this work, we have tested a number of small molecules with known or potential anti-inflammatory properties for their ability to inhibit secretion of interleukin-8 by OxPAPC-treated endothelial cells. Six compounds capable of inhibiting the induction of IL-8 were selected. Analysis of gene expression has shown that all these substances reduced the OxPAPC-induced elevation of IL-8 mRNA but potentiated induction of heat-shock proteins (HSPs). We further found that drug-like HSP inducers also prevented the induction of IL-8 by OxPAPC. Similar inhibitory action was demonstrated by two chemical chaperones, which stabilise proteins through physicochemical mechanisms thus mimicking effects of HSPs. Our data suggest that proteostatic stress plays an important mechanistic role in the pro-inflammatory effects of OxPAPC and that stabilisation of proteome by overexpression of HSPs or by chemical chaperones can reduce the pro-inflammatory effects of OxPLs.
Collapse
Affiliation(s)
- Klara Hellauer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria
| | - Olga V Oskolkova
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria
| | - Bernd Gesslbauer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria
| | - Valery Bochkov
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria. .,Field of Excellence BioHealth, University of Graz, Graz, Austria.
| |
Collapse
|
47
|
Depletion of HIV reservoir by activation of ISR signaling in resting CD4 +T cells. iScience 2023; 26:105743. [PMID: 36590168 PMCID: PMC9800255 DOI: 10.1016/j.isci.2022.105743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/21/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
HIV reservoirs are extremely stable and pose a tremendous challenge to clear HIV infection. Here, we demonstrate that activation of ISR/ATF4 signaling reverses HIV latency, which also selectively eliminates HIV+ cells in primary CD4+T cell model of latency without effect on HIV-negative CD4+T cells. The reduction of HIV+ cells is associated with apoptosis enhancement, but surprisingly is largely seen in HIV-infected cells in which gag-pol RNA transcripts are detected in HIV RNA-induced ATF4/IFIT signaling. In resting CD4+ (rCD4+) T cells isolated from people living with HIV on antiretroviral therapy, induction of ISR/ATF4 signaling reduced HIV reservoirs by depletion of replication-competent HIV without global reduction in the rCD4+ T cell population. These findings suggest that compromised ISR/ATF4 signaling maintains stable and quiescent HIV reservoirs whereas activation of ISR/ATF4 signaling results in the disruption of latent HIV and clearance of persistently infected CD4+T cells.
Collapse
|
48
|
Ambrose AJ, Sivinski J, Zerio CJ, Zhu X, Godek J, Kumirov VK, Coma Brujas T, Torra Garcia J, Annadurai A, Schmidlin CJ, Werner A, Shi T, Zavareh RB, Lairson L, Zhang DD, Chapman E. Discovery and Development of a Selective Inhibitor of the ER Resident Chaperone Grp78. J Med Chem 2023; 66:677-694. [PMID: 36516003 DOI: 10.1021/acs.jmedchem.2c01631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A recent study illustrated that a fluorescence polarization assay can be used to identify substrate-competitive Hsp70 inhibitors that can be isoform-selective. Herein, we use that assay in a moderate-throughput screen and report the discovery of a druglike amino-acid-based inhibitor with reasonable specificity for the endoplasmic reticular Hsp70, Grp78. Using traditional medicinal chemistry approaches, the potency and selectivity were further optimized through structure-activity relationship (SAR) studies in parallel assays for six of the human Hsp70 isoforms. The top compounds were all tested against a panel of cancer cell lines and disappointingly showed little effect. The top-performing compound, 8, was retested using a series of endoplasmic reticulum (ER) stress-inducing agents and found to synergize with these agents. Finally, 8 was tested in a spheroid tumor model and found to be more potent than in two-dimensional models. The optimized Grp78 inhibitors are the first reported isoform-selective small-molecule-competitive inhibitors of an Hsp70-substrate interaction.
Collapse
Affiliation(s)
- Andrew J Ambrose
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - Jared Sivinski
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - Christopher J Zerio
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - Xiaoyi Zhu
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - Jack Godek
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - Vlad K Kumirov
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona85719, United States
| | - Teresa Coma Brujas
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - Joan Torra Garcia
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - Anandhan Annadurai
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - Cody J Schmidlin
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - Alyssa Werner
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - Taoda Shi
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - Reza Beheshti Zavareh
- Department of Chemistry, The Scripps Research Institute, La Jolla, California92037, United States
| | - Luke Lairson
- Department of Chemistry, The Scripps Research Institute, La Jolla, California92037, United States
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - Eli Chapman
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| |
Collapse
|
49
|
Costa MFD, Höglinger GU, Rösler TW. Development of a cell-free screening assay for the identification of direct PERK activators. PLoS One 2023; 18:e0283943. [PMID: 37200357 DOI: 10.1371/journal.pone.0283943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/21/2023] [Indexed: 05/20/2023] Open
Abstract
The activation of the unfolded protein response, particularly via the PERK pathway, has been suggested as a promising therapeutic approach in tauopathies, a group of neurodegenerative disorders characterized by the abnormal phosphorylation and aggregation of tau protein. So far, a shortage of available direct PERK activators has been limiting the progresses in this field. Our study aimed at the development of a cell-free screening assay enabling the detection of novel direct PERK activators. By applying the catalytic domain of recombinant human PERK, we initially determined ideal conditions of the kinase assay reaction, including parameters such as optimal kinase concentration, temperature, and reaction time. Instead of using PERK's natural substrate proteins, eIF2α and NRF2, we applied SMAD3 as phosphorylation-accepting protein and successfully detected cell-free PERK activation and inhibition by selected modulators (e.g., calcineurin-B, GSK2606414). The developed assay revealed to be sufficiently stable and robust to assess an activating EC50-value. Additionally, our results suggested that PERK activation may take place independent of the active site which can be blocked by a kinase inhibitor. Finally, we confirmed the applicability of the assay by measuring PERK activation by MK-28, a recently described PERK activator. Overall, our data show that a cell-free luciferase-based assay with the recombinant human PERK kinase domain and SMAD3 as substrate protein is capable of detecting PERK activation, which enables to screen large compound libraries for direct PERK activators, in a high-throughput-based approach. These activators will be useful for deepening our understanding of the PERK signaling pathway, and may also lead to the identification of new therapeutic drug candidates for neurodegenerative tauopathies.
Collapse
Affiliation(s)
- Márcia F D Costa
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases, Munich, Germany
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Günter U Höglinger
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases, Munich, Germany
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Department of Neurology, Ludwig-Maximilians University, Munich, Germany
| | - Thomas W Rösler
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases, Munich, Germany
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
50
|
Pan D, Yang Y, Nong A, Tang Z, Li QX. GRP78 Activity Moderation as a Therapeutic Treatment against Obesity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15965. [PMID: 36498048 PMCID: PMC9739731 DOI: 10.3390/ijerph192315965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Glucose-regulated protein 78 (GRP78), a molecular chaperone, is overexpressed in patients suffering from obesity, fatty liver, hyperlipidemia and diabetes. GRP78, therefore, can be not only a biomarker to predict the progression and prognosis of obesity and metabolic diseases but also a potential therapeutic target for anti-obesity treatment. In this paper, GRP78 inhibitors targeting its ATPase domain have been reviewed. Small molecules and proteins that directly bind GRP78 have been described. Putative mechanisms of GRP78 in regulating lipid metabolism were also summarized so as to investigate the role of GRP78 in obesity and other related diseases and provide a theoretical basis for the development and design of anti-obesity drugs targeting GRP78.
Collapse
Affiliation(s)
- Dongjin Pan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yunzhu Yang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Aihua Nong
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhenzhou Tang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Qing X. Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|