1
|
Boudia F, Baille M, Babin L, Aid Z, Robert E, Rivière J, Galant K, Alonso-Pérez V, Anselmi L, Arkoun B, Abermil N, Marzac C, Bertuccio SN, de Prémesnil A, Lopez CK, Eeckhoutte A, Naimo A, Leite B, Catelain C, Metereau C, Gonin P, Gaspar N, Schwaller J, Bernard OA, Raslova H, Gaudry M, Marchais A, Lapillonne H, Petit A, Pflumio F, Arcangeli ML, Brunet E, Mercher T. Progressive chromatin rewiring by ETO2::GLIS2 revealed in a genome-edited human iPSC model of pediatric leukemia initiation. Blood 2025; 145:1510-1525. [PMID: 39656971 DOI: 10.1182/blood.2024024505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 12/17/2024] Open
Abstract
ABSTRACT Pediatric acute myeloid leukemia frequently harbors fusion oncogenes associated with poor prognosis, including KMT2A, NUP98, and GLIS2 rearrangements. Although murine models have demonstrated their leukemogenic activities, the steps from a normal human cell to leukemic blasts remain unclear. Here, we precisely reproduced the inversion of chromosome 16 resulting in the ETO2::GLIS2 fusion in human induced pluripotent stem cells (iPSCs). iPSC-derived ETO2::GLIS2-expressing hematopoietic cells showed differentiation alterations in vitro and efficiently induced in vivo development of leukemia that closely phenocopied human acute megakaryoblastic leukemia (AMKL), reflected by flow cytometry and single-cell transcriptomes. Comparison of iPS-derived cells with patient-derived cells revealed altered chromatin accessibility at early and later bona fide leukemia stages, with aberrantly higher accessibility and expression of the osteogenic homeobox factor DLX3 that preceded increased accessibility to ETS factors. DLX3 overexpression in normal CD34+ cells increased accessibility to ETS motifs and reduced accessibility to GATA motifs. A DLX3 transcriptional module was globally enriched in both ETO2::GLIS2 AMKL and some aggressive pediatric osteosarcoma. Importantly, DLX3 knockout abrogated leukemia initiation in this ETO2::GLIS2 iPSC model. Collectively, the characterization of a novel human iPSC-derived AMKL model revealed that hijacking of the osteogenic homeobox transcription factor DLX3 is an essential early step in chromatin changes and leukemogenesis driven by the ETO2::GLIS2 fusion oncogene.
Collapse
MESH Headings
- Humans
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/pathology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Chromatin/metabolism
- Chromatin/genetics
- Animals
- Mice
- Gene Editing
- Child
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Leukemia, Megakaryoblastic, Acute/genetics
- Leukemia, Megakaryoblastic, Acute/pathology
- Leukemia, Megakaryoblastic, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Fabien Boudia
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
- Université Paris Cité, Paris, France
| | - Marie Baille
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
- Université Paris Cité, Paris, France
| | - Loélia Babin
- Laboratory of the Genome Dynamics in the Immune System, Institut Imagine, Université de Paris, Université Paris Saclay, INSERM UMR 1163, Paris, France
| | - Zakia Aid
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Elie Robert
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Julie Rivière
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Klaudia Galant
- UMR-E008, Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université de Paris-Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Verónica Alonso-Pérez
- UMR-E008, Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université de Paris-Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Laura Anselmi
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- University of Bologna, Bologna, Italy
| | - Brahim Arkoun
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Gustave Roussy, INSERM U1287, Université Paris-Saclay, Équipe Labellisée La Ligue Contre Le Cancer, Villejuif, France
| | - Nassera Abermil
- Laboratoire d'Hématologie Biologique, Hôpital Universitaire Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Christophe Marzac
- Department of Hematology, Leukemia Interception Program, Personalized Cancer Prevention Center, Gustave Roussy, Villejuif, France
| | | | - Alexia de Prémesnil
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Université Paris Cité, Paris, France
| | - Cécile K Lopez
- Department of Haematology, University of Cambridge, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Alexandre Eeckhoutte
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Audrey Naimo
- Gustave Roussy, Genomic Platform, Université Paris-Saclay, Unité Mixte de Service AMMICA, INSERM US23, Centre National de la Recherche Scientifique UMS 3655, Villejuif, France
| | - Betty Leite
- Gustave Roussy, Genomic Platform, Université Paris-Saclay, Unité Mixte de Service AMMICA, INSERM US23, Centre National de la Recherche Scientifique UMS 3655, Villejuif, France
| | - Cyril Catelain
- Gustave Roussy, Plateforme Imagerie et Cytométrie, Université Paris-Saclay, Unité Mixte de Service AMMICA, INSERM US23, Centre National de la Recherche Scientifique UMS 3655, Villejuif, France
| | - Christophe Metereau
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Patrick Gonin
- Gustave Roussy Cancer Center, Université Paris-Saclay, UMS AMMICA, Villejuif, France
| | - Nathalie Gaspar
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Jürg Schwaller
- University Children's Hospital Beider Basel and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Olivier A Bernard
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Hana Raslova
- Gustave Roussy, INSERM U1287, Université Paris-Saclay, Équipe Labellisée La Ligue Contre Le Cancer, Villejuif, France
| | - Muriel Gaudry
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Antonin Marchais
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Hélène Lapillonne
- Department of Pediatric Hematology and Oncology, Laboratory of Hematology, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Sorbonne Université, INSERM, UMRS_938, Centre de Recherche Saint-Antoine, Paris, France
| | - Arnaud Petit
- Department of Pediatric Hematology and Oncology, Laboratory of Hematology, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Sorbonne Université, INSERM, UMRS_938, Centre de Recherche Saint-Antoine, Paris, France
- OPALE Carnot Institute, Paris, France
| | - Françoise Pflumio
- UMR-E008, Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université de Paris-Université Paris-Saclay, Fontenay-aux-Roses, France
- OPALE Carnot Institute, Paris, France
| | - Marie-Laure Arcangeli
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Erika Brunet
- Equipe labellisée Ligue Contre le Cancer, Paris, France
- Université Paris Cité, Paris, France
- Laboratory of the Genome Dynamics in the Immune System, Institut Imagine, Université de Paris, Université Paris Saclay, INSERM UMR 1163, Paris, France
| | - Thomas Mercher
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
- OPALE Carnot Institute, Paris, France
| |
Collapse
|
2
|
Luo X, Cheng CK, Chan HY, Leung KT, Li CK, Chung NYF, Pitts HA, Tian K, Kam YF, Ng MH. G3BP1::CSF1R: a new and actionable gene fusion in acute megakaryoblastic leukemia. Blood Adv 2025; 9:1286-1292. [PMID: 39705539 PMCID: PMC11950762 DOI: 10.1182/bloodadvances.2024014354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/25/2024] [Accepted: 11/21/2024] [Indexed: 12/22/2024] Open
Affiliation(s)
- Xi Luo
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi-Keung Cheng
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Hoi-Yun Chan
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi-Kong Li
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Nellie Yuk-Fei Chung
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Herbert Augustus Pitts
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Ke Tian
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuet-Fong Kam
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Margaret H.L. Ng
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Malik F, Eldomery MK, Wang W, Gheorghe G, Khanlari M. Myeloid sarcomas with CBFA2T3 : GLIS2 fusion: clinicopathologic characterization of 4 cases mimicking small round cell tumors. Am J Clin Pathol 2025; 163:377-387. [PMID: 39418128 DOI: 10.1093/ajcp/aqae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVES Acute myeloid leukemia with CBFA2T3::GLIS2 fusion can initially present as extramedullary lesions (myeloid sarcoma), leading to a misdiagnosis of nonhematologic pediatric solid tumors. METHODS We characterized the clinicopathologic features of 4 cases of CBFA2T3::GLIS2 fusion-positive myeloid sarcoma in pediatric patients where the sarcoma presented either without leukemic involvement (isolated myeloid sarcoma; 3/4 [75%]) or had concurrent leukemic disease (1/4 [25%]). RESULTS All cases mimicked nonhematopoietic tumors at morphologic and immunophenotypic levels, so the initial evaluation did not raise suspicion for acute myeloid leukemia/myeloid sarcoma. After extensive workup, however, including molecular studies, the diagnosis of myeloid sarcoma with CBFA2T3::GLIS2 fusion was rendered. CONCLUSIONS This study highlights the need for a high suspicion index of GLIS2-rearranged myeloid sarcoma in the differential diagnosis of pediatric small round cell tumors in tissue biopsies and the application of adequate workup to avoid misdiagnosing this entity.
Collapse
MESH Headings
- Humans
- Sarcoma, Myeloid/genetics
- Sarcoma, Myeloid/pathology
- Sarcoma, Myeloid/diagnosis
- Diagnosis, Differential
- Female
- Male
- Child
- Oncogene Proteins, Fusion/genetics
- Child, Preschool
- Adolescent
- Sarcoma, Small Cell/diagnosis
- Sarcoma, Small Cell/genetics
- Sarcoma, Small Cell/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/pathology
Collapse
Affiliation(s)
- Faizan Malik
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, US
| | - Mohammad K Eldomery
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, US
| | - Wei Wang
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, US
| | - Gabriela Gheorghe
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, US
| | - Mahsa Khanlari
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, US
| |
Collapse
|
4
|
Zhu B, Yang C, Hua S, Li K, Shang P, Li Z, Qian W, Xue S, Zhi Q, Hua Z. Decoding the Implications of Zinc in the Development and Therapy of Leukemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412225. [PMID: 39887881 PMCID: PMC11884550 DOI: 10.1002/advs.202412225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/04/2025] [Indexed: 02/01/2025]
Abstract
Zinc plays a central role in the hematological development. Therapeutic interventions with zinc are shown to improve the health status of patients with malignancies by stimulating the immune system and reducing side effects. Despite the abnormal zinc homeostasis in leukemia, the role and mechanisms of zinc signaling in leukemia development remain poorly understood. Recently, some important breakthroughs are made in laboratory and clinical studies of zinc in leukemia, such as the role of zinc in regulating ferroptosis and the effects of zinc in immunotherapy. Zinc-based strategies are urgently needed to refine the current zinc intervention regimen for side-effect free therapy in chemotherapy-intolerant patients. This review provides a comprehensive overview of the role of zinc homeostasis in leukemia patients and focuses on the therapeutic potential of zinc signaling modulation in leukemia.
Collapse
Affiliation(s)
- Bo Zhu
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
| | - Chunhao Yang
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
| | - Siqi Hua
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
- Changzhou High‐tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.Changzhou213164China
| | - Kaiqiang Li
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
- Changzhou High‐tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.Changzhou213164China
| | - Pengyou Shang
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
- Changzhou High‐tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.Changzhou213164China
| | - Zhonghua Li
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
| | - Wei Qian
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
| | - Shunkang Xue
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
| | - Qi Zhi
- Department of RadiologyAffiliated Hospital of Nanjing University of Chinese MedicineNanjing210029China
| | - Zichun Hua
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
- Changzhou High‐tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.Changzhou213164China
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjing210023China
- Faculty of Pharmaceutical SciencesXinxiang Medical UniversityXinxiang453003China
| |
Collapse
|
5
|
Ji Y, Li B, Lin R, Yuan J, Han Y, Du Y, Zhao Y. Super-enhancers in tumors: unraveling recent advances in their role in Oncogenesis and the emergence of targeted therapies. J Transl Med 2025; 23:98. [PMID: 39838405 PMCID: PMC11753147 DOI: 10.1186/s12967-025-06098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Super enhancers are a unique class of enhancers that possess a distinct structure and mechanism, which enable them to exhibit stronger gene transcription regulatory function than classical enhancers, thereby regulating cellular activities. In tumor samples, super enhancers have been identified as crucial players in the development and progression of tumor cells, opening up new avenues for cancer research and treatment. This review provides a concise overview of various models regarding super enhancer assembly and activation, examining the mechanisms through which tumor cells acquire or activate these enhancers and regulate carcinogenic transcription programs. Furthermore, we discuss the current landscape and challenges in developing cancer therapeutic drugs that target super enhancers.
Collapse
Affiliation(s)
- Yumeng Ji
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Baixue Li
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Rongjin Lin
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing Yuan
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yang Han
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuping Du
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
- , No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, P.R. China.
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
- , No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, P.R. China.
| |
Collapse
|
6
|
Garfinkle EAR, Nallagatla P, Sahoo B, Dang J, Balood M, Cotton A, Franke C, Mitchell S, Wilson T, Gruber TA. CBFA2T3-GLIS2 mediates transcriptional regulation of developmental pathways through a gene regulatory network. Nat Commun 2024; 15:8747. [PMID: 39384814 PMCID: PMC11464917 DOI: 10.1038/s41467-024-53158-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/03/2024] [Indexed: 10/11/2024] Open
Abstract
CBFA2T3-GLIS2 is a fusion oncogene found in pediatric acute megakaryoblastic leukemia that is associated with a poor prognosis. We establish a model of CBFA2T3-GLIS2 driven acute megakaryoblastic leukemia that allows the distinction of fusion specific changes from those that reflect the megakaryoblast lineage of this leukemia. Using this model, we map fusion genome wide binding that in turn imparts the characteristic transcriptional signature. A network of transcription factor genes bound and upregulated by the fusion are found to have downstream effects that result in dysregulated signaling of developmental pathways including NOTCH, Hedgehog, TGFβ, and WNT. Transcriptional regulation is mediated by homo-dimerization and binding of the ETO transcription factor through the nervy homology region 2. Loss of nerve homology region 2 abrogated the development of leukemia, leading to downregulation of JAK/STAT, Hedgehog, and NOTCH transcriptional signatures. These data contribute to the understanding of CBFA2T3-GLIS2 mediated leukemogenesis and identify potential therapeutic vulnerabilities for future studies.
Collapse
Affiliation(s)
| | - Pratima Nallagatla
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Binay Sahoo
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jinjun Dang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Mohammad Balood
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Anitria Cotton
- Division of Experimental Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Camryn Franke
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sharnise Mitchell
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Taylor Wilson
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tanja A Gruber
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
7
|
Alonso-Pérez V, Galant K, Boudia F, Robert E, Aid Z, Renou L, Barroca V, Devanand S, Babin L, Rouiller-Fabre V, Moison D, Busso D, Piton G, Metereau C, Abermil N, Ballerini P, Hirsch P, Haddad R, Martinovic J, Petit A, Lapillonne H, Brunet E, Mercher T, Pflumio F. Developmental interplay between transcriptional alterations and a targetable cytokine signaling dependency in pediatric ETO2::GLIS2 leukemia. Mol Cancer 2024; 23:204. [PMID: 39304903 DOI: 10.1186/s12943-024-02110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Several fusion oncogenes showing a higher incidence in pediatric acute myeloid leukemia (AML) are associated with heterogeneous megakaryoblastic and other myeloid features. Here we addressed how developmental mechanisms influence human leukemogenesis by ETO2::GLIS2, associated with dismal prognosis. METHODS We created novel ETO2::GLIS2 models of leukemogenesis through lentiviral transduction and CRISPR-Cas9 gene editing of human fetal and post-natal hematopoietic stem/progenitor cells (HSPCs), performed in-depth characterization of ETO2::GLIS2 transformed cells through multiple omics and compared them to patient samples. This led to a preclinical assay using patient-derived-xenograft models to test a combination of two clinically-relevant molecules. RESULTS We showed that ETO2::GLIS2 expression in primary human fetal CD34+ hematopoietic cells led to more efficient in vivo leukemia development than expression in post-natal cells. Moreover, cord blood-derived leukemogenesis has a major dependency on the presence of human cytokines, including IL3 and SCF. Single cell transcriptomes revealed that this cytokine environment controlled two ETO2::GLIS2-transformed states that were also observed in primary patient cells. Importantly, this cytokine sensitivity may be therapeutically-exploited as combined MEK and BCL2 inhibition showed higher efficiency than individual molecules to reduce leukemia progression in vivo. CONCLUSIONS Our study uncovers an interplay between the cytokine milieu and transcriptional programs that extends a developmental window of permissiveness to transformation by the ETO2::GLIS2 AML fusion oncogene, controls the intratumoral cellular heterogeneity, and offers a ground-breaking therapeutical opportunity by a targeted combination strategy.
Collapse
Affiliation(s)
- Verónica Alonso-Pérez
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Laboratoire Des Cellules Souches Hématopoïétiques Et Des Leucémies, Équipe Labellisée Ligue Contre Le Cancer, Equipe Niche Et Cancer Dans L'Hématopoïèse, Unité Mixte de Recherche (UMR) 1274 INSERM, CEA, 18 route du panorama, Fontenay-Aux Roses, F-92265, France
| | - Klaudia Galant
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Laboratoire Des Cellules Souches Hématopoïétiques Et Des Leucémies, Équipe Labellisée Ligue Contre Le Cancer, Equipe Niche Et Cancer Dans L'Hématopoïèse, Unité Mixte de Recherche (UMR) 1274 INSERM, CEA, 18 route du panorama, Fontenay-Aux Roses, F-92265, France
| | - Fabien Boudia
- INSERM U1170, Gustave Roussy, Université Paris-Saclay, PEDIAC Program, Equipe Labellisée Ligue Contre Le Cancer, Villejuif, France
| | - Elie Robert
- INSERM U1170, Gustave Roussy, Université Paris-Saclay, PEDIAC Program, Equipe Labellisée Ligue Contre Le Cancer, Villejuif, France
| | - Zakia Aid
- INSERM U1170, Gustave Roussy, Université Paris-Saclay, PEDIAC Program, Equipe Labellisée Ligue Contre Le Cancer, Villejuif, France
| | - Laurent Renou
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Laboratoire Des Cellules Souches Hématopoïétiques Et Des Leucémies, Équipe Labellisée Ligue Contre Le Cancer, Equipe Niche Et Cancer Dans L'Hématopoïèse, Unité Mixte de Recherche (UMR) 1274 INSERM, CEA, 18 route du panorama, Fontenay-Aux Roses, F-92265, France
| | - Vilma Barroca
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Animal Experimentation Platform, IRCM, CEA, Fontenay-Aux-Roses, F-92260, France
| | - Saryiami Devanand
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Animal Experimentation Platform, IRCM, CEA, Fontenay-Aux-Roses, F-92260, France
| | - Loélia Babin
- Laboratory of theGenome Dynamics in the Immune System, Équipe Labellisée Ligue Contre Le Cancer, Université Paris Cité, Université Paris-Saclay, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Virginie Rouiller-Fabre
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
| | - Delphine Moison
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
| | - Didier Busso
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Cigex Molecular Platform, IRCM, CEA, IBFJ, Fontenay-Aux-Roses, France
| | - Guillaume Piton
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Cigex Molecular Platform, IRCM, CEA, IBFJ, Fontenay-Aux-Roses, France
| | - Christophe Metereau
- INSERM U1170, Gustave Roussy, Université Paris-Saclay, PEDIAC Program, Equipe Labellisée Ligue Contre Le Cancer, Villejuif, France
| | - Nassera Abermil
- Centre de Recherche Saint-Antoine, CRSA, SIRIC CURAMUS, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Sorbonne Université, 75012, Paris, France
| | - Paola Ballerini
- Department of Pediatric Hematology-Oncology, Hôpital Armand Trousseau, AP-HP, Paris, France
| | - Pierre Hirsch
- Centre de Recherche Saint-Antoine, CRSA, SIRIC CURAMUS, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Sorbonne Université, 75012, Paris, France
| | - Rima Haddad
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Laboratoire Des Cellules Souches Hématopoïétiques Et Des Leucémies, Équipe Labellisée Ligue Contre Le Cancer, Equipe Niche Et Cancer Dans L'Hématopoïèse, Unité Mixte de Recherche (UMR) 1274 INSERM, CEA, 18 route du panorama, Fontenay-Aux Roses, F-92265, France
| | - Jelena Martinovic
- Unit of Fetal Pathology, Hôpital Antoine Beclère, AP-HP, Clamart, France
| | - Arnaud Petit
- Department of Pediatric Hematology-Oncology, Hôpital Armand Trousseau, AP-HP, Paris, France
| | - Hélène Lapillonne
- Department of Pediatric Hematology-Oncology, Hôpital Armand Trousseau, AP-HP, Paris, France
| | - Erika Brunet
- Laboratory of theGenome Dynamics in the Immune System, Équipe Labellisée Ligue Contre Le Cancer, Université Paris Cité, Université Paris-Saclay, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Thomas Mercher
- INSERM U1170, Gustave Roussy, Université Paris-Saclay, PEDIAC Program, Equipe Labellisée Ligue Contre Le Cancer, Villejuif, France.
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Paris, France.
| | - Françoise Pflumio
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France.
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France.
- Laboratoire Des Cellules Souches Hématopoïétiques Et Des Leucémies, Équipe Labellisée Ligue Contre Le Cancer, Equipe Niche Et Cancer Dans L'Hématopoïèse, Unité Mixte de Recherche (UMR) 1274 INSERM, CEA, 18 route du panorama, Fontenay-Aux Roses, F-92265, France.
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Paris, France.
| |
Collapse
|
8
|
Mestareehi A. Global Gene Expression Profiling and Bioinformatics Analysis Reveal Downregulated Biomarkers as Potential Indicators for Hepatocellular Carcinoma. ACS OMEGA 2024; 9:26075-26096. [PMID: 38911766 PMCID: PMC11191119 DOI: 10.1021/acsomega.4c01496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Objective: The study aimed to elucidate the significance of CLEC4G, CAMK2β, SLC22A1, CBFA2T3, and STAB2 in the prognosis of hepatocellular carcinoma (HCC) patients and their associated molecular biological characteristics. Additionally, the research sought to identify new potential biomarkers with therapeutic and diagnostic relevance for clinical applications. Methods and Materials: We utilized a publicly available high throughput phosphoproteomics and proteomics data set of HCC to focus on the analysis of 12 downregulated phosphoproteins in HCC. Our approach integrates bioinformatic analysis with pathway analysis, encompassing gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and the construction of a protein-protein interaction (PPI) network. Results: In total, we quantified 11547 phosphorylation sites associated with 4043 phosphoproteins from a cohort of 159 HCC patients. Within this extensive data set, our specific focus was on 19 phosphorylation sites displaying significant downregulation (log2 FC ≤ -2 with p-values < 0.0001). Remarkably, our investigation revealed distinct pathways exhibiting differential regulation across multiple dimensions, including the genomic, transcriptomic, proteomic, and phosphoproteomic levels. These pathways encompass a wide range of critical cellular processes, including cellular component organization, cell cycle control, signaling pathways, transcriptional and translational control, and metabolism. Furthermore, our bioinformatics analysis unveiled noteworthy insights into the subcellular localizations, biological processes, and molecular functions associated with these proteins and phosphoproteins. Within the context of the PPI network, we identified 12 key genes CLEC4G, STAB2, ADH1A, ADH1B, CAMK2B, ADH4, CHGB, PYGL, ADH1C, AKAP12, CBFA2T3, and SLC22A1 as the top highly interconnected hub genes. Conclusions: The findings related to CLEC4G, ADH1B, SLC22A1, CAMK2β, CBFA2T3, and STAB2 indicate their reduced expression in HCC, which is associated with an unfavorable prognosis. Furthermore, the results of KEGG and GO pathway analyses suggest that these genes may impact liver cancer by engaging various targets and pathways, ultimately promoting the progression of hepatocellular carcinoma. These results underscore the significant potential of CLEC4G, ADH1B, SLC22A1, CAMK2β, CBFA2T3, and STAB2 as key contributors to HCC development and advancement. This insight holds promise for identifying therapeutic targets and charting research avenues to enhance our understanding of the intricate molecular mechanisms underlying hepatocellular carcinoma.
Collapse
Affiliation(s)
- Aktham Mestareehi
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Isra University, P.O. Box 22, Amman 11622, Jordan
- School
of Medicine, The Ohio State University, Columbus, Ohio 43202, United States
- Department
of Pharmaceutical Sciences, School of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| |
Collapse
|
9
|
Fagnan A, Aid Z, Baille M, Drakul A, Robert E, Lopez CK, Thirant C, Lecluse Y, Rivière J, Ignacimouttou C, Salmoiraghi S, Anguita E, Naimo A, Marzac C, Pflumio F, Malinge S, Wichmann C, Huang Y, Lobry C, Chaumeil J, Soler E, Bourquin J, Nerlov C, Bernard OA, Schwaller J, Mercher T. The ETO2 transcriptional cofactor maintains acute leukemia by driving a MYB/EP300-dependent stemness program. Hemasphere 2024; 8:e90. [PMID: 38903535 PMCID: PMC11187848 DOI: 10.1002/hem3.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/13/2024] [Accepted: 05/01/2024] [Indexed: 06/22/2024] Open
Abstract
Transcriptional cofactors of the ETO family are recurrent fusion partners in acute leukemia. We characterized the ETO2 regulome by integrating transcriptomic and chromatin binding analyses in human erythroleukemia xenografts and controlled ETO2 depletion models. We demonstrate that beyond its well-established repressive activity, ETO2 directly activates transcription of MYB, among other genes. The ETO2-activated signature is associated with a poorer prognosis in erythroleukemia but also in other acute myeloid and lymphoid leukemia subtypes. Mechanistically, ETO2 colocalizes with EP300 and MYB at enhancers supporting the existence of an ETO2/MYB feedforward transcription activation loop (e.g., on MYB itself). Both small-molecule and PROTAC-mediated inhibition of EP300 acetyltransferases strongly reduced ETO2 protein, chromatin binding, and ETO2-activated transcripts. Taken together, our data show that ETO2 positively enforces a leukemia maintenance program that is mediated in part by the MYB transcription factor and that relies on acetyltransferase cofactors to stabilize ETO2 scaffolding activity.
Collapse
Affiliation(s)
- Alexandre Fagnan
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Zakia Aid
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Marie Baille
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Aneta Drakul
- Division of Oncology and Children's Research CentreUniversity Children's Hospital ZurichZurichSwitzerland
| | - Elie Robert
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Cécile K. Lopez
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Cécile Thirant
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Yann Lecluse
- Gustave Roussy, Plateforme Imagerie et Cytométrie, Université Paris‐Saclay, UMS AMMICA, INSERM US23, CNRS UMS 3655VillejuifFrance
| | - Julie Rivière
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Cathy Ignacimouttou
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Silvia Salmoiraghi
- Department of Oncology and HematologyAzienda Socio Sanitaria Territoriale Papa Giovanni XXIII, FROM Research Foundation, Papa Giovanni XXIII HospitalBergamoItaly
| | - Eduardo Anguita
- Hematology Department, Hospital Clínico San Carlos (HCSC), IML, IdISSC, Department of MedicineUniversidad Complutense de Madrid (UCM)MadridSpain
| | - Audrey Naimo
- Gustave Roussy, Genomic PlatformUniversité Paris‐Saclay, UMS AMMICA, INSERM US23, CNRS UMS 3655VillejuifFrance
| | - Christophe Marzac
- Department of HematologyLeukemia Interception Program, Personalized Cancer Prevention Center, Gustave RoussyVillejuifFrance
| | - Françoise Pflumio
- Equipe Labellisée Ligue Contre le CancerParisFrance
- Unité de Recherche (UMR)‐E008 Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Université de Paris‐Université Paris‐SaclayFontenay‐aux‐RosesFrance
- OPALE Carnot Institute, The Organization for Partnerships in LeukemiaParisFrance
| | - Sébastien Malinge
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Telethon Kids Institute, Perth Children's HospitalNedlandsAustralia
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and HaemostasisLudwig‐Maximilians‐University of MunichMunichGermany
| | - Yun Huang
- Division of Oncology and Children's Research CentreUniversity Children's Hospital ZurichZurichSwitzerland
| | - Camille Lobry
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- INSERM U944, CNRS UMR7212Institut de Recherche Saint Louis and Université de ParisParisFrance
| | - Julie Chaumeil
- Université de Paris, Institut Cochin, INSERM, CNRSParisFrance
| | - Eric Soler
- IGMM, University of Montpellier, CNRS, Montpellier, France & Université de Paris, Laboratory of Excellence GR‐ExParisFrance
| | - Jean‐Pierre Bourquin
- Division of Oncology and Children's Research CentreUniversity Children's Hospital ZurichZurichSwitzerland
| | - Claus Nerlov
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | | | - Juerg Schwaller
- Department of BiomedicineUniversity Children's Hospital Beider Basel (UKBB), University of BaselBaselSwitzerland
| | - Thomas Mercher
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
- OPALE Carnot Institute, The Organization for Partnerships in LeukemiaParisFrance
| |
Collapse
|
10
|
Du Y, Yang L, Qi S, Chen Z, Sun M, Wu M, Wu B, Tao F, Xiong H. Clinical Analysis of Pediatric Acute Megakaryocytic Leukemia With CBFA2T3-GLIS2 Fusion Gene. J Pediatr Hematol Oncol 2024; 46:96-103. [PMID: 38315896 PMCID: PMC10898546 DOI: 10.1097/mph.0000000000002822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024]
Abstract
CBFA2T3-GLIS2 is the most frequent chimeric oncogene identified to date in non-Down syndrome acute megakaryocytic leukemia (AMKL), which is associated with extremely poor clinical outcome. The presence of this fusion gene is associated with resistance to high-intensity chemotherapy, including hematopoietic stem cell transplantation (HSCT), and a high cumulative incidence of relapse frequency. The clinical features and clinical effects of China Children's Leukemia Group-acute myeloid leukemia (AML) 2015/2019 regimens and haploidentical HSCT (haplo-HSCT) for treatment of 6 children harboring the CBFA2T3-GLIS2 fusion gene between January 2019 and December 2021 were retrospectively analyzed. The 6 patients included 4 boys and 2 girls with a median disease-onset age of 19.5 months (range: 6-67 mo) who were diagnosed with AMKL. Flow cytometry demonstrated CD41a, CD42b, and CD56 expression and lack of HLA-DR expression in all 6 patients. All the children were negative for common leukemia fusion genes by reverse transcription polymerase chain reaction, but positive for the CBFA2T3-GLIS2 fusion gene by next-generation sequencing and RNA sequencing. All patients received chemotherapy according to China Children's Leukemia Group-AML 2015/2019 regimens, and 4 achieved complete remission. Four children underwent haplo-HSCT with posttransplant cyclophosphamide-based conditioning; 3 had minimal residual disease negative (minimal residual disease <0.1%) confirmed by flow cytometry at the end of the follow-up, with the remaining patient experiencing relapse at 12 months after transplantation. Transcriptome RNA sequencing is required for the detection of the CBFA2T3-GLIS2 fusion gene and for proper risk-based allocation of pediatric patients with AML in future clinical strategies. Haplo-HSCT with posttransplant cyclophosphamide-based conditioning may improve survival in children with AMKL harboring the fusion gene.
Collapse
MESH Headings
- Male
- Female
- Child
- Humans
- Infant
- Child, Preschool
- Leukemia, Megakaryoblastic, Acute/genetics
- Leukemia, Megakaryoblastic, Acute/therapy
- Leukemia, Megakaryoblastic, Acute/diagnosis
- Retrospective Studies
- Neoplasm, Residual
- Leukemia, Myeloid, Acute/therapy
- Hematopoietic Stem Cell Transplantation
- Cyclophosphamide
- Recurrence
- Repressor Proteins
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
Collapse
Affiliation(s)
- Yu Du
- Department of Hematology and Oncology
| | - Li Yang
- Pediatric Hematological Tumor Disease Laboratory, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanshan Qi
- Pediatric Hematological Tumor Disease Laboratory, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhi Chen
- Department of Hematology and Oncology
| | - Ming Sun
- Pediatric Hematological Tumor Disease Laboratory, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Wu
- Pediatric Hematological Tumor Disease Laboratory, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Wu
- Department of Hematology and Oncology
| | - Fang Tao
- Department of Hematology and Oncology
| | - Hao Xiong
- Department of Hematology and Oncology
| |
Collapse
|
11
|
Gress V, Roussy M, Boulianne L, Bilodeau M, Cardin S, El-Hachem N, Lisi V, Khakipoor B, Rouette A, Farah A, Théret L, Aubert L, Fatima F, Audemard É, Thibault P, Bonneil É, Chagraoui J, Laramée L, Gendron P, Jouan L, Jammali S, Paré B, Simpson SM, Tran TH, Duval M, Teira P, Bittencourt H, Santiago R, Barabé F, Sauvageau G, Smith MA, Hébert J, Roux PP, Gruber TA, Lavallée VP, Wilhelm BT, Cellot S. CBFA2T3::GLIS2 pediatric acute megakaryoblastic leukemia is sensitive to BCL-XL inhibition by navitoclax and DT2216. Blood Adv 2024; 8:112-129. [PMID: 37729615 PMCID: PMC10787250 DOI: 10.1182/bloodadvances.2022008899] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/25/2023] [Accepted: 09/02/2023] [Indexed: 09/22/2023] Open
Abstract
ABSTRACT Acute megakaryoblastic leukemia (AMKL) is a rare, developmentally restricted, and highly lethal cancer of early childhood. The paucity and hypocellularity (due to myelofibrosis) of primary patient samples hamper the discovery of cell- and genotype-specific treatments. AMKL is driven by mutually exclusive chimeric fusion oncogenes in two-thirds of the cases, with CBFA2T3::GLIS2 (CG2) and NUP98 fusions (NUP98r) representing the highest-fatality subgroups. We established CD34+ cord blood-derived CG2 models (n = 6) that sustain serial transplantation and recapitulate human leukemia regarding immunophenotype, leukemia-initiating cell frequencies, comutational landscape, and gene expression signature, with distinct upregulation of the prosurvival factor B-cell lymphoma 2 (BCL2). Cell membrane proteomic analyses highlighted CG2 surface markers preferentially expressed on leukemic cells compared with CD34+ cells (eg, NCAM1 and CD151). AMKL differentiation block in the mega-erythroid progenitor space was confirmed by single-cell profiling. Although CG2 cells were rather resistant to BCL2 genetic knockdown or selective pharmacological inhibition with venetoclax, they were vulnerable to strategies that target the megakaryocytic prosurvival factor BCL-XL (BCL2L1), including in vitro and in vivo treatment with BCL2/BCL-XL/BCL-W inhibitor navitoclax and DT2216, a selective BCL-XL proteolysis-targeting chimera degrader developed to limit thrombocytopenia in patients. NUP98r AMKL were also sensitive to BCL-XL inhibition but not the NUP98r monocytic leukemia, pointing to a lineage-specific dependency. Navitoclax or DT2216 treatment in combination with low-dose cytarabine further reduced leukemic burden in mice. This work extends the cellular and molecular diversity set of human AMKL models and uncovers BCL-XL as a therapeutic vulnerability in CG2 and NUP98r AMKL.
Collapse
Affiliation(s)
- Verena Gress
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Mathieu Roussy
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Luc Boulianne
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Pathology, McGill University, Montréal, QC, Canada
| | - Mélanie Bilodeau
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Sophie Cardin
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Nehme El-Hachem
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Véronique Lisi
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Banafsheh Khakipoor
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Alexandre Rouette
- Molecular Diagnostic Laboratory, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
| | - Azer Farah
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Louis Théret
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Léo Aubert
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Furat Fatima
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Pathology, McGill University, Montréal, QC, Canada
| | - Éric Audemard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Éric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Jalila Chagraoui
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, Montréal, Québec, Canada
| | - Louise Laramée
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Patrick Gendron
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Loubna Jouan
- Molecular Diagnostic Laboratory, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
| | - Safa Jammali
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Bastien Paré
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Shawn M Simpson
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Thai Hoa Tran
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Michel Duval
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Pierre Teira
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Henrique Bittencourt
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Raoul Santiago
- Division of Hematology-Oncology, Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QC, Canada
| | - Frédéric Barabé
- Centre de recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Guy Sauvageau
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, Montréal, Québec, Canada
- Division of Hematology, Maisonneuve-Rosemont Hospital, Montréal, QC, Canada
| | - Martin A Smith
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Josée Hébert
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Division of Hematology-Oncology and Quebec Leukemia Cell Bank, Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Philippe P Roux
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Tanja A Gruber
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Vincent-Philippe Lavallée
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Brian T Wilhelm
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Sonia Cellot
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
12
|
Neault M, Lebert-Ghali CÉ, Fournier M, Capdevielle C, Garfinkle EAR, Obermayer A, Cotton A, Boulay K, Sawchyn C, St-Amand S, Nguyen KH, Assaf B, Mercier FE, Delisle JS, Drobetsky EA, Hulea L, Shaw TI, Zuber J, Gruber TA, Melichar HJ, Mallette FA. CBFA2T3-GLIS2-dependent pediatric acute megakaryoblastic leukemia is driven by GLIS2 and sensitive to navitoclax. Cell Rep 2023; 42:113084. [PMID: 37716355 DOI: 10.1016/j.celrep.2023.113084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/11/2023] [Accepted: 08/18/2023] [Indexed: 09/18/2023] Open
Abstract
Pediatric acute megakaryoblastic leukemia (AMKL) is an aggressive blood cancer associated with poor therapeutic response and high mortality. Here we describe the development of CBFA2T3-GLIS2-driven mouse models of AMKL that recapitulate the phenotypic and transcriptional signatures of the human disease. We show that an activating Ras mutation that occurs in human AMKL increases the penetrance and decreases the latency of CBF2AT3-GLIS2-driven AMKL. CBFA2T3-GLIS2 and GLIS2 modulate similar transcriptional networks. We identify the dominant oncogenic properties of GLIS2 that trigger AMKL in cooperation with oncogenic Ras. We find that both CBFA2T3-GLIS2 and GLIS2 alter the expression of a number of BH3-only proteins, causing AMKL cell sensitivity to the BCL2 inhibitor navitoclax both in vitro and in vivo, suggesting a potential therapeutic option for pediatric patients suffering from CBFA2T3-GLIS2-driven AMKL.
Collapse
Affiliation(s)
- Mathieu Neault
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Charles-Étienne Lebert-Ghali
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Marilaine Fournier
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada
| | - Caroline Capdevielle
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Elizabeth A R Garfinkle
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Alyssa Obermayer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | - Karine Boulay
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Christina Sawchyn
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Sarah St-Amand
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Kamy H Nguyen
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada
| | - Béatrice Assaf
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada
| | | | - Jean-Sébastien Delisle
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Elliot A Drobetsky
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Laura Hulea
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Timothy I Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Johannes Zuber
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Tanja A Gruber
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada.
| | - Frédérick A Mallette
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
13
|
Kugler E, Madiwale S, Yong D, Thoms JAI, Birger Y, Sykes DB, Schmoellerl J, Drakul A, Priebe V, Yassin M, Aqaqe N, Rein A, Fishman H, Geron I, Chen CW, Raught B, Liu Q, Ogana H, Liedke E, Bourquin JP, Zuber J, Milyavsky M, Pimanda J, Privé GG, Izraeli S. The NCOR-HDAC3 co-repressive complex modulates the leukemogenic potential of the transcription factor ERG. Nat Commun 2023; 14:5871. [PMID: 37735473 PMCID: PMC10514085 DOI: 10.1038/s41467-023-41067-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
The ERG (ETS-related gene) transcription factor is linked to various types of cancer, including leukemia. However, the specific ERG domains and co-factors contributing to leukemogenesis are poorly understood. Drug targeting a transcription factor such as ERG is challenging. Our study reveals the critical role of a conserved amino acid, proline, at position 199, located at the 3' end of the PNT (pointed) domain, in ERG's ability to induce leukemia. P199 is necessary for ERG to promote self-renewal, prevent myeloid differentiation in hematopoietic progenitor cells, and initiate leukemia in mouse models. Here we show that P199 facilitates ERG's interaction with the NCoR-HDAC3 co-repressor complex. Inhibiting HDAC3 reduces the growth of ERG-dependent leukemic and prostate cancer cells, indicating that the interaction between ERG and the NCoR-HDAC3 co-repressor complex is crucial for its oncogenic activity. Thus, targeting this interaction may offer a potential therapeutic intervention.
Collapse
Affiliation(s)
- Eitan Kugler
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Shreyas Madiwale
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Darren Yong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Julie A I Thoms
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Yehudit Birger
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA & Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Johannes Schmoellerl
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Aneta Drakul
- Division of Pediatric Oncology, and Children Research Center, University Children's Hospital, Zurich, Switzerland
| | - Valdemar Priebe
- Division of Pediatric Oncology, and Children Research Center, University Children's Hospital, Zurich, Switzerland
| | - Muhammad Yassin
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nasma Aqaqe
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avigail Rein
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Hila Fishman
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Ifat Geron
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Qiao Liu
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Heather Ogana
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Elisabeth Liedke
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Jean-Pierre Bourquin
- Division of Pediatric Oncology, and Children Research Center, University Children's Hospital, Zurich, Switzerland
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - John Pimanda
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Gilbert G Privé
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| | - Shai Izraeli
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel.
| |
Collapse
|
14
|
Kaonis S, Smith JL, Katiyar N, Merrill M, Hyelkma T, Namciu S, Le Q, Babaeva E, Ishida T, Morris SM, Girard E, Furuyama S, Ries R, Bernstein I, Meshinchi S, Henikoff S, Meers M, Hadland B, Sarthy JF. Chromatin Profiling of CBFA2T3-GLIS2 AMLs Identifies Key Transcription Factor Dependencies and BRG1 Inhibition as a Novel Therapeutic Strategy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555598. [PMID: 37693371 PMCID: PMC10491196 DOI: 10.1101/2023.08.30.555598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Oncogenic fusions involving transcription factors are present in the majority of pediatric leukemias; however, the context-specific mechanisms they employ to drive cancer remain poorly understood. CBFA2T3-GLIS2 (C/G) fusions occur in treatment-refractory acute myeloid leukemias and are restricted to young children. To understand how the C/G fusion drives oncogenesis we applied CUT&RUN chromatin profiling to an umbilical cord blood/endothelial cell (EC) co-culture model of C/G AML that recapitulates the biology of this malignancy. We find C/G fusion binding is mediated by its zinc finger domains. Integration of fusion binding sites in C/G- transduced cells with Polycomb Repressive Complex 2 (PRC2) sites in control cord blood cells identifies MYCN, ZFPM1, ZBTB16 and LMO2 as direct C/G targets. Transcriptomic analysis of a large pediatric AML cohort shows that these genes are upregulated in C/G patient samples. Single cell RNA-sequencing of umbilical cord blood identifies a population of megakaryocyte precursors that already express many of these genes despite lacking the fusion. By integrating CUT&RUN data with CRISPR dependency screens we identify BRG1/SMARCA4 as a vulnerability in C/G AML. BRG1 profiling in C/G patient-derived cell lines shows that the CBFA2T3 locus is a binding site, and treatment with clinically-available BRG1 inhibitors reduces fusion levels and downstream C/G targets including N-MYC, resulting in C/G leukemia cell death and extending survival in a murine xenograft model.
Collapse
|
15
|
Khanlari M, Wang L, Bolen CY, Otanez FSB, Furtado LV, Key L, Irwin L, Wang W, Klco JM. CBFA2T3::GLIS2-positive acute leukemia with RAM and mixed T/megakaryocytic phenotype. EJHAEM 2023; 4:765-769. [PMID: 37601875 PMCID: PMC10435670 DOI: 10.1002/jha2.741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 08/22/2023]
Abstract
Herein, we present a rare case of acute myeloid leukemia (AML) with CBFA2T3-rearrangement and the expression of megakaryocytic and lymphoid markers, highlighting the need for a high suspicion index in differential diagnosis and applying adequate workup to avoid misdiagnosing this entity. CBFA2T3::GLIS2-positive AML is primarily found in infants with non-down syndrome acute megakaryoblastic leukemia (non-DSAMKL). Flow cytometry immunophenotyping plays an important role in recognizing the unique immunophenotype of bright CD56 expression with dim/negative expression of HLA-DR, CD38, and CD45 termed the RAM immunophenotype in this entity. Still, CBFA2T3::GLIS2-positive acute leukemia with T/megakaryocytic markers could be misdiagnosed as T-lymphoblastic leukemia/lymphoma, early T-cell precursor acute lymphoblastic leukemia/lymphoma, NK lymphoblastic leukemia, AML with minimal differentiation, or AML with myelodysplasia-related changes.
Collapse
Affiliation(s)
- Mahsa Khanlari
- Department of PathologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Lu Wang
- Department of PathologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Christine Y Bolen
- Department of OncologyNovant Health Presbyterian Medical CenterCharlotteNorth CarolinaUSA
| | | | - Larissa V. Furtado
- Department of PathologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Laura Key
- Department of PathologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Lisa Irwin
- Department of PathologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Wei Wang
- Department of HematopathologyMD Anderson Cancer CenterHoustonTexasUSA
| | - Jeffery M. Klco
- Department of PathologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| |
Collapse
|
16
|
Bertrums EJM, Smith JL, Harmon L, Ries RE, Wang YCJ, Alonzo TA, Menssen AJ, Chisholm KM, Leonti AR, Tarlock K, Ostronoff F, Pogosova-Agadjanyan EL, Kaspers GJL, Hasle H, Dworzak M, Walter C, Muhlegger N, Morerio C, Pardo L, Hirsch B, Raimondi S, Cooper TM, Aplenc R, Gamis AS, Kolb EA, Farrar JE, Stirewalt D, Ma X, Shaw TI, Furlan SN, Brodersen LE, Loken MR, Van den Heuvel-Eibrink MM, Zwaan CM, Triche TJ, Goemans BF, Meshinchi S. Comprehensive molecular and clinical characterization of NUP98 fusions in pediatric acute myeloid leukemia. Haematologica 2023; 108:2044-2058. [PMID: 36815378 PMCID: PMC10388277 DOI: 10.3324/haematol.2022.281653] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
NUP98 fusions comprise a family of rare recurrent alterations in AML, associated with adverse outcomes. In order to define the underlying biology and clinical implications of this family of fusions, we performed comprehensive transcriptome, epigenome, and immunophenotypic profiling of 2,235 children and young adults with AML and identified 160 NUP98 rearrangements (7.2%), including 108 NUP98-NSD1 (4.8%), 32 NUP98-KDM5A (1.4%) and 20 NUP98-X cases (0.9%) with 13 different fusion partners. Fusion partners defined disease characteristics and biology; patients with NUP98-NSD1 or NUP98-KDM5A had distinct immunophenotypic, transcriptomic, and epigenomic profiles. Unlike the two most prevalent NUP98 fusions, NUP98-X variants are typically not cryptic. Furthermore, NUP98-X cases are associated with WT1 mutations, and have epigenomic profiles that resemble either NUP98-NSD1 or NUP98-KDM5A. Cooperating FLT3-ITD and WT1 mutations define NUP98-NSD1, and chromosome 13 aberrations are highly enriched in NUP98-KDM5A. Importantly, we demonstrate that NUP98 fusions portend dismal overall survival, with the noteworthy exception of patients bearing abnormal chromosome 13 (clinicaltrials gov. Identifiers: NCT00002798, NCT00070174, NCT00372593, NCT01371981).
Collapse
Affiliation(s)
- Eline J M Bertrums
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, the Netherlands; Oncode Institute, Utrecht.
| | - Jenny L Smith
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA
| | - Lauren Harmon
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI
| | - Rhonda E Ries
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA
| | - Yi-Cheng J Wang
- Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA; Children's Oncology Group, Monrovia, CA
| | - Todd A Alonzo
- Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA; Children's Oncology Group, Monrovia, CA
| | | | - Karen M Chisholm
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA
| | - Amanda R Leonti
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA
| | - Katherine Tarlock
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA; Division of Hematology and Oncology, Seattle Children's Hospital, Seattle, WA
| | - Fabiana Ostronoff
- Intermountain Blood and Marrow Transplant and Acute Leukemia Program, Intermountain Healthcare, Salt Lake City, UT
| | | | - Gertjan J L Kaspers
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands; Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, The Netherlands; Dutch Childhood Oncology Group
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Dworzak
- Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria; St. Anna Kinderspital, Department of Pediatrics, Medical University of Vienna, Vienna
| | - Christiane Walter
- Department of Pediatric Hematology and Oncology, University Hospital Essen, Essen
| | - Nora Muhlegger
- Children's Cancer Research Institute, Medical University of Vienna, Vienna
| | - Cristina Morerio
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genoa
| | | | - Betsy Hirsch
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Susana Raimondi
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Todd M Cooper
- Division of Hematology and Oncology, Seattle Children's Hospital, Seattle, WA
| | - Richard Aplenc
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Alan S Gamis
- Division of Hematology/Oncology, Children's Mercy Kansas City, Kansas City, MO
| | - Edward A Kolb
- Nemours Alfred I. duPont Hospital for Children, Wilmington, DE
| | - Jason E Farrar
- Arkansas Children's Research Institute and Department of Pediatrics, Hematology/Oncology Section, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Derek Stirewalt
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA
| | - Xiaotu Ma
- Computational Biology Department, St. Jude Children's Research Hospital, Memphis, TN
| | - Tim I Shaw
- Computational Biology Department, St. Jude Children's Research Hospital, Memphis, TN
| | - Scott N Furlan
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA
| | | | | | | | - C Michel Zwaan
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, the Netherlands; Dutch Childhood Oncology Group
| | - Timothy J Triche
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA; Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA; Department of Pediatrics, Michigan State University College of Human Medicine, Grand Rapids, MI
| | | | - Soheil Meshinchi
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA; Children's Oncology Group, Monrovia, CA, USA; Division of Hematology and Oncology, Seattle Children's Hospital, Seattle, WA.
| |
Collapse
|
17
|
Zhou RW, Parsons RE. Etiology of super-enhancer reprogramming and activation in cancer. Epigenetics Chromatin 2023; 16:29. [PMID: 37415185 DOI: 10.1186/s13072-023-00502-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
Super-enhancers are large, densely concentrated swaths of enhancers that regulate genes critical for cell identity. Tumorigenesis is accompanied by changes in the super-enhancer landscape. These aberrant super-enhancers commonly form to activate proto-oncogenes, or other genes upon which cancer cells depend, that initiate tumorigenesis, promote tumor proliferation, and increase the fitness of cancer cells to survive in the tumor microenvironment. These include well-recognized master regulators of proliferation in the setting of cancer, such as the transcription factor MYC which is under the control of numerous super-enhancers gained in cancer compared to normal tissues. This Review will cover the expanding cell-intrinsic and cell-extrinsic etiology of these super-enhancer changes in cancer, including somatic mutations, copy number variation, fusion events, extrachromosomal DNA, and 3D chromatin architecture, as well as those activated by inflammation, extra-cellular signaling, and the tumor microenvironment.
Collapse
Affiliation(s)
- Royce W Zhou
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Molecular Medicine Program, University of California San Francisco Internal Medicine Residency, San Francisco, CA, USA
| | - Ramon E Parsons
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
18
|
Li J, Kalev‐Zylinska ML. Advances in molecular characterization of pediatric acute megakaryoblastic leukemia not associated with Down syndrome; impact on therapy development. Front Cell Dev Biol 2023; 11:1170622. [PMID: 37325571 PMCID: PMC10267407 DOI: 10.3389/fcell.2023.1170622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Acute megakaryoblastic leukemia (AMKL) is a rare subtype of acute myeloid leukemia (AML) in which leukemic blasts have megakaryocytic features. AMKL makes up 4%-15% of newly diagnosed pediatric AML, typically affecting young children (less than 2 years old). AMKL associated with Down syndrome (DS) shows GATA1 mutations and has a favorable prognosis. In contrast, AMKL in children without DS is often associated with recurrent and mutually exclusive chimeric fusion genes and has an unfavorable prognosis. This review mainly summarizes the unique features of pediatric non-DS AMKL and highlights the development of novel therapies for high-risk patients. Due to the rarity of pediatric AMKL, large-scale multi-center studies are needed to progress molecular characterization of this disease. Better disease models are also required to test leukemogenic mechanisms and emerging therapies.
Collapse
Affiliation(s)
- Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, China
| | - Maggie L. Kalev‐Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
19
|
Salma M, Andrieu-Soler C, Deleuze V, Soler E. High-throughput methods for the analysis of transcription factors and chromatin modifications: Low input, single cell and spatial genomic technologies. Blood Cells Mol Dis 2023; 101:102745. [PMID: 37121019 DOI: 10.1016/j.bcmd.2023.102745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
Genome-wide analysis of transcription factors and epigenomic features is instrumental to shed light on DNA-templated regulatory processes such as transcription, cellular differentiation or to monitor cellular responses to environmental cues. Two decades of technological developments have led to a rich set of approaches progressively pushing the limits of epigenetic profiling towards single cells. More recently, disruptive technologies using innovative biochemistry came into play. Assays such as CUT&RUN, CUT&Tag and variations thereof show considerable potential to survey multiple TFs or histone modifications in parallel from a single experiment and in native conditions. These are in the path to become the dominant assays for genome-wide analysis of TFs and chromatin modifications in bulk, single-cell, and spatial genomic applications. The principles together with pros and cons are discussed.
Collapse
Affiliation(s)
- Mohammad Salma
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France
| | - Charlotte Andrieu-Soler
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France
| | - Virginie Deleuze
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France
| | - Eric Soler
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France.
| |
Collapse
|
20
|
Aid Z, Robert E, Lopez CK, Bourgoin M, Boudia F, Le Mene M, Riviere J, Baille M, Benbarche S, Renou L, Fagnan A, Thirant C, Federici L, Touchard L, Lecluse Y, Jetten A, Geoerger B, Lapillonne H, Solary E, Gaudry M, Meshinchi S, Pflumio F, Auberger P, Lobry C, Petit A, Jacquel A, Mercher T. High caspase 3 and vulnerability to dual BCL2 family inhibition define ETO2::GLIS2 pediatric leukemia. Leukemia 2023; 37:571-579. [PMID: 36585521 PMCID: PMC10583253 DOI: 10.1038/s41375-022-01800-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022]
Abstract
Pediatric acute myeloid leukemia expressing the ETO2::GLIS2 fusion oncogene is associated with dismal prognosis. Previous studies have shown that ETO2::GLIS2 can efficiently induce leukemia development associated with strong transcriptional changes but those amenable to pharmacological targeting remained to be identified. By studying an inducible ETO2::GLIS2 cellular model, we uncovered that de novo ETO2::GLIS2 expression in human cells led to increased CASP3 transcription, CASP3 activation, and cell death. Patient-derived ETO2::GLIS2+ leukemic cells expressed both high CASP3 and high BCL2. While BCL2 inhibition partly inhibited ETO2::GLIS2+ leukemic cell proliferation, BH3 profiling revealed that it also sensitized these cells to MCL1 inhibition indicating a functional redundancy between BCL2 and MCL1. We further show that combined inhibition of BCL2 and MCL1 is mandatory to abrogate disease progression using in vivo patient-derived xenograft models. These data reveal that a transcriptional consequence of ETO2::GLIS2 expression includes a positive regulation of the pro-apoptotic CASP3 and associates with a vulnerability to combined targeting of two BCL2 family members providing a novel therapeutic perspective for this aggressive pediatric AML subgroup.
Collapse
Affiliation(s)
- Zakia Aid
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Elie Robert
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Cécile K Lopez
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France.
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France.
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Maxence Bourgoin
- Team "Myeloid Malignancies and Multiple Myeloma", Université Côte d'Azur, INSERM U1065/C3M, 06204, Nice, France
| | - Fabien Boudia
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Melchior Le Mene
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Julie Riviere
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Marie Baille
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Salima Benbarche
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
| | - Laurent Renou
- Unité de Recherche (UMR)-E008 Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université de Paris-Université Paris-Saclay, Fontenay-aux-Roses, 92260, France
| | - Alexandre Fagnan
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Cécile Thirant
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Laetitia Federici
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Laure Touchard
- Unité Mixte de Service - Analyse Moléculaire Modélisation et Imagerie de la maladie Cancéreuse (UMS AMMICA), Gustave Roussy Cancer Campus, 94800, Villejuif, France
| | - Yann Lecluse
- Unité Mixte de Service - Analyse Moléculaire Modélisation et Imagerie de la maladie Cancéreuse (UMS AMMICA), Gustave Roussy Cancer Campus, 94800, Villejuif, France
| | - Anton Jetten
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Birgit Geoerger
- Gustave Roussy Cancer Campus, Pediatric and Adolescent Oncology Department, INSERM U1015, Université Paris Saclay, 94800, Villejuif, France
| | - Hélène Lapillonne
- Pediatric Hematology and Oncology Department, Armand Trousseau Hospital, AP-HP, Sorbonne University, UMRS_938, CONECT-AML, 75012, Paris, France
| | - Eric Solary
- INSERM U1287, Gustave Roussy Cancer Campus, 94800, Villejuif, France
| | - Muriel Gaudry
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Françoise Pflumio
- Unité de Recherche (UMR)-E008 Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université de Paris-Université Paris-Saclay, Fontenay-aux-Roses, 92260, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, 75010, Paris, France
| | - Patrick Auberger
- Team "Myeloid Malignancies and Multiple Myeloma", Université Côte d'Azur, INSERM U1065/C3M, 06204, Nice, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, 75010, Paris, France
| | - Camille Lobry
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, 75010, Paris, France
| | - Arnaud Petit
- Gustave Roussy Cancer Campus, Pediatric and Adolescent Oncology Department, INSERM U1015, Université Paris Saclay, 94800, Villejuif, France
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Arnaud Jacquel
- Team "Myeloid Malignancies and Multiple Myeloma", Université Côte d'Azur, INSERM U1065/C3M, 06204, Nice, France.
| | - Thomas Mercher
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France.
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France.
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, 75010, Paris, France.
| |
Collapse
|
21
|
EVI1 drives leukemogenesis through aberrant ERG activation. Blood 2023; 141:453-466. [PMID: 36095844 DOI: 10.1182/blood.2022016592] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/10/2022] [Accepted: 08/28/2022] [Indexed: 02/07/2023] Open
Abstract
Chromosomal rearrangements involving the MDS1 and EVI1 complex locus (MECOM) on chromosome 3q26 define an aggressive subtype of acute myeloid leukemia (AML) that is associated with chemotherapy resistance and dismal prognosis. Established treatment regimens commonly fail in these patients, therefore, there is an urgent need for new therapeutic concepts that will require a better understanding of the molecular and cellular functions of the ecotropic viral integration site 1 (EVI1) oncogene. To characterize gene regulatory functions of EVI1 and associated dependencies in AML, we developed experimentally tractable human and murine disease models, investigated the transcriptional consequences of EVI1 withdrawal in vitro and in vivo, and performed the first genome-wide CRISPR screens in EVI1-dependent AML. By integrating conserved transcriptional targets with genetic dependency data, we identified and characterized the ETS transcription factor ERG as a direct transcriptional target of EVI1 that is aberrantly expressed and selectively required in both human and murine EVI1-driven AML. EVI1 controls the expression of ERG and occupies a conserved intragenic enhancer region in AML cell lines and samples from patients with primary AML. Suppression of ERG induces terminal differentiation of EVI1-driven AML cells, whereas ectopic expression of ERG abrogates their dependence on EVI1, indicating that the major oncogenic functions of EVI1 are mediated through aberrant transcriptional activation of ERG. Interfering with this regulatory axis may provide entry points for the development of rational targeted therapies.
Collapse
|
22
|
Chen Wongworawat Y, Eskandari G, Gaikwad A, Marcogliese AN, Ferguson LS, Brackett J, Punia JN, Elghetany MT, Kulkarni R, Rao PH, Ringrose J, Lopez-Terrada DH, Roy A, Curry CV, Fisher KE. Frequent detection of CBFA2T3::GLIS2 fusion and RAM-phenotype in pediatric non-Down syndrome acute megakaryoblastic leukemia: a possible novel relationship with aberrant cytoplasmic CD3 expression. Leuk Lymphoma 2023; 64:462-467. [PMID: 36346368 DOI: 10.1080/10428194.2022.2140285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yan Chen Wongworawat
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Ghazaleh Eskandari
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Amos Gaikwad
- Texas Children's Cancer Center Laboratories, Texas Children's Hospital, Houston, TX, USA
| | - Andrea N Marcogliese
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | | | - Julienne Brackett
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Jyotinder N Punia
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - M Tarek Elghetany
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Reshma Kulkarni
- Texas Children's Cancer Center Laboratories, Texas Children's Hospital, Houston, TX, USA
| | - Pulivarthi H Rao
- Texas Children's Cancer Center Laboratories, Texas Children's Hospital, Houston, TX, USA
| | - Jo Ringrose
- Texas Children's Cancer Center Laboratories, Texas Children's Hospital, Houston, TX, USA
| | - Dolores H Lopez-Terrada
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, Houston, TX, USA.,Texas Children's Cancer Center Laboratories, Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Angshumoy Roy
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Choladda V Curry
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Kevin E Fisher
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
23
|
Kassouri C, Rodriguez Torres S, Gonzalez Suarez N, Duhamel S, Annabi B. EGCG Prevents the Transcriptional Reprogramming of an Inflammatory and Immune-Suppressive Molecular Signature in Macrophage-like Differentiated Human HL60 Promyelocytic Leukemia Cells. Cancers (Basel) 2022; 14:5065. [PMID: 36291849 PMCID: PMC9599716 DOI: 10.3390/cancers14205065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The promyelocytic leukemia cell differentiation process enables recapitulation of the polarized M1 or M2 macrophage-like phenotype with inflammatory and immune-suppressive properties. While evidence supports the anti-inflammatory effect of dietary-derived epigallocatechin-3-gallate (EGCG), its impact on the onset of immune phenotype molecular signature remains unclear. METHODS Human HL60 promyelocytic cells grown in suspension were differentiated into CD11bHigh/CD14Low adherent macrophages with phorbol 12-myristate 13-acetate (PMA). Gelatin zymography was used to assess the levels of matrix metalloproteinase (MMP)-9, and total RNA was isolated for RNAseq and RT-qPCR assessment of differentially expressed gene levels involved in inflammation and immunity. Protein lysates were used to assess the phosphorylation status of signaling intermediates involved in macrophage-like cell differentiation. RESULTS Cell adhesion and induction of MMP-9 were indicative of HL60 cell differentiation into a macrophage-like phenotype. The extracellular signal-regulated kinase (ERK), glycogen synthase kinase (GSK)-3, p90 ribosomal S6 kinases (RSK), and cAMP-response-element-binding protein (CREB) were all phosphorylated, and EGCG reduced such phosphorylation status. Increases in inflammation and immunity genes included, among others, CCL22, CSF1, CSF2, IL1B, and TNF, which inductions were prevented by EGCG. This was corroborated by unbiased transcriptomic analysis which further highlighted the capacity of EGCG to downregulate the hematopoietic stem cell regulator CBFA2T3. CONCLUSION EGCG inhibits inflammatory signaling crosstalk and prevents the onset of an immune phenotype in macrophage-like differentiated cells.
Collapse
Affiliation(s)
- Celia Kassouri
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H2X 2J6, Canada
| | - Sahily Rodriguez Torres
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H2X 2J6, Canada
| | - Narjara Gonzalez Suarez
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H2X 2J6, Canada
| | - Stéphanie Duhamel
- Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Borhane Annabi
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H2X 2J6, Canada
| |
Collapse
|
24
|
Zhang YF, Wang XL, Xu CH, Liu N, Zhang L, Zhang YM, Xie YY, Zhang YL, Huang QH, Wang L, Chen Z, Chen SJ, Roeder RG, Shen S, Xue K, Sun XJ. A direct comparison between AML1-ETO and ETO2-GLIS2 leukemia fusion proteins reveals context-dependent binding and regulation of target genes and opposite functions in cell differentiation. Front Cell Dev Biol 2022; 10:992714. [PMID: 36158200 PMCID: PMC9490184 DOI: 10.3389/fcell.2022.992714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
The ETO-family transcriptional corepressors, including ETO, ETO2, and MTGR1, are all involved in leukemia-causing chromosomal translocations. In every case, an ETO-family corepressor acquires a DNA-binding domain (DBD) to form a typical transcription factor—the DBD binds to DNA, while the ETO moiety manifests transcriptional activity. A directly comparative study of these “homologous” fusion transcription factors may clarify their similarities and differences in regulating transcription and leukemogenesis. Here, we performed a side-by-side comparison between AML1-ETO and ETO2-GLIS2, the most common fusion proteins in M2-and M7-subtypes of acute myeloid leukemia, respectively, by inducible expression of them in U937 leukemia cells. We found that, although AML1-ETO and ETO2-GLIS2 can use their own DBDs to bind DNA, they share a large proportion of genome-wide binding regions dependent on other cooperative transcription factors, including the ETS-, bZIP- and bHLH-family proteins. AML1-ETO acts as either transcriptional repressor or activator, whereas ETO2-GLIS2 mainly acts as activator. The repressor-versus-activator functions of AML1-ETO might be determined by the abundance of cooperative transcription factors/cofactors on the target genes. Importantly, AML1-ETO and ETO2-GLIS2 differentially regulate key transcription factors in myeloid differentiation including PU.1 and C/EBPβ. Consequently, AML1-ETO inhibits, but ETO2-GLIS2 facilitates, myeloid differentiation of U937 cells. This function of ETO2-GLIS2 is reminiscent of a similar effect of MLL-AF9 as previously reported. Taken together, this directly comparative study between AML1-ETO and ETO2-GLIS2 in the same cellular context provides insights into context-dependent transcription regulatory mechanisms that may underlie how these seemingly “homologous” fusion transcription factors exert distinct functions to drive different subtypes of leukemia.
Collapse
|
25
|
Su N, Li Z, Yang J, Fu Y, Zhu X, Miao H, Yu Y, Jiang W, Le J, Qian X, Wang H, Qian M, Zhai X. Revealing the intratumoral heterogeneity of non-DS acute megakaryoblastic leukemia in single-cell resolution. Front Oncol 2022; 12:915833. [PMID: 36003795 PMCID: PMC9394455 DOI: 10.3389/fonc.2022.915833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
Pediatric acute megakaryoblastic leukemia (AMKL) is a subtype of acute myeloid leukemia (AML) characterized by abnormal megakaryoblasts, and it is divided into the AMKL patients with Down syndrome (DS-AMKL) and AMKL patients without DS (non-DS-AMKL). Pediatric non-DS-AMKL is a heterogeneous disease with extremely poor outcome. We performed single-cell RNA sequencing (scRNA-seq) of the bone marrow from two CBFA2T3-GLIS2 fusion-positive and one RBM15-MKL1 fusion-positive non-DS-AMKL children. Meanwhile, we downloaded the scRNA-seq data of normal megakaryocyte (MK) cells of the fetal liver and bone marrow from healthy donors as normal controls. We conducted cell clustering, cell-type identification, inferCNV analysis, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and Monocle2 analysis to investigate the intratumoral heterogeneity of AMKL. Using canonical markers, we identified and characterized the abnormal blasts and other normal immune cells from three AMKL samples. We found intratumoral heterogeneity of AMKL in various cell-type proportions, malignant cells’ diverse copy number variations (CNVs), maturities, significant genes expressions, and enriched pathways. We also identified potential markers for pediatric AMKL, namely, RACK1, ELOB, TRIR, NOP53, SELENOH, and CD81. Our work offered insight into the heterogeneity of pediatric acute megakaryoblastic leukemia and established the single-cell transcriptomic landscape of AMKL for the first time.
Collapse
Affiliation(s)
- Narun Su
- Department of Hematology and Oncology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Zifeng Li
- Department of Hematology and Oncology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Jiapeng Yang
- Department of Hematology and Oncology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Yang Fu
- Department of Hematology and Oncology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Xiaohua Zhu
- Department of Hematology and Oncology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Hui Miao
- Department of Hematology and Oncology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Yi Yu
- Department of Hematology and Oncology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Wenjin Jiang
- Department of Hematology and Oncology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Jun Le
- Department of Hematology and Oncology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Xiaowen Qian
- Department of Hematology and Oncology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Hongsheng Wang
- Department of Hematology and Oncology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
- *Correspondence: Xiaowen Zhai, ; Maoxiang Qian, ; Hongsheng Wang,
| | - Maoxiang Qian
- National Children’s Medical Center and the Shanghai Key Laboratory of Medical Epigenetics, Institute of Pediatrics, Institutes of Biomedical Sciences, Children’s Hospital of Fudan University, Fudan University, Shanghai, China
- *Correspondence: Xiaowen Zhai, ; Maoxiang Qian, ; Hongsheng Wang,
| | - Xiaowen Zhai
- Department of Hematology and Oncology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
- *Correspondence: Xiaowen Zhai, ; Maoxiang Qian, ; Hongsheng Wang,
| |
Collapse
|
26
|
GLIS1-3: Links to Primary Cilium, Reprogramming, Stem Cell Renewal, and Disease. Cells 2022; 11:cells11111833. [PMID: 35681527 PMCID: PMC9180737 DOI: 10.3390/cells11111833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
The GLI-Similar 1-3 (GLIS1-3) genes, in addition to encoding GLIS1-3 Krüppel-like zinc finger transcription factors, also generate circular GLIS (circGLIS) RNAs. GLIS1-3 regulate gene transcription by binding to GLIS binding sites in target genes, whereas circGLIS RNAs largely act as miRNA sponges. GLIS1-3 play a critical role in the regulation of many biological processes and have been implicated in various pathologies. GLIS protein activities appear to be regulated by primary cilium-dependent and -independent signaling pathways that via post-translational modifications may cause changes in the subcellular localization, proteolytic processing, and protein interactions. These modifications can affect the transcriptional activity of GLIS proteins and, consequently, the biological functions they regulate as well as their roles in disease. Recent studies have implicated GLIS1-3 proteins and circGLIS RNAs in the regulation of stemness, self-renewal, epithelial-mesenchymal transition (EMT), cell reprogramming, lineage determination, and differentiation. These biological processes are interconnected and play a critical role in embryonic development, tissue homeostasis, and cell plasticity. Dysregulation of these processes are part of many pathologies. This review provides an update on our current knowledge of the roles GLIS proteins and circGLIS RNAs in the control of these biological processes in relation to their regulation of normal physiological functions and disease.
Collapse
|
27
|
Yoshino S, Suzuki HI. The molecular understanding of super-enhancer dysregulation in cancer. NAGOYA JOURNAL OF MEDICAL SCIENCE 2022; 84:216-229. [PMID: 35967935 PMCID: PMC9350580 DOI: 10.18999/nagjms.84.2.216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/20/2022] [Indexed: 11/30/2022]
Abstract
Abnormalities in the regulation of gene expression are associated with various pathological conditions. Among the distal regulatory elements in the genome, the activation of target genes by enhancers plays a central role in the formation of cell type-specific gene expression patterns. Super-enhancers are a subclass of enhancers that frequently contain multiple enhancer-like elements and are characterized by dense binding of master transcription factors and Mediator complexes and high signals of active histone marks. Super-enhancers have been studied in detail as important regulatory regions that control cell identity and contribute to the pathogenesis of diverse diseases. In cancer, super-enhancers have multifaceted roles by activating various oncogenes and other cancer-related genes and shaping characteristic gene expression patterns in cancer cells. Alterations in super-enhancer activities in cancer involve multiple mechanisms, including the dysregulation of transcription factors and the super-enhancer-associated genomic abnormalities. The study of super-enhancers could contribute to the identification of effective biomarkers and the development of cancer therapeutics targeting transcriptional addiction. In this review, we summarize the roles of super-enhancers in cancer biology, with a particular focus on hematopoietic malignancies, in which multiple super-enhancer alteration mechanisms have been reported.
Collapse
Affiliation(s)
- Seiko Yoshino
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Hiroshi I. Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
,Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
28
|
Benbarche S, Lopez CK, Salataj E, Aid Z, Thirant C, Laiguillon MC, Lecourt S, Belloucif Y, Vaganay C, Antonini M, Hu J, da Silva Babinet A, Ndiaye-Lobry D, Pardieu B, Petit A, Puissant A, Chaumeil J, Mercher T, Lobry C. Screening of ETO2-GLIS2-induced Super Enhancers identifies targetable cooperative dependencies in acute megakaryoblastic leukemia. SCIENCE ADVANCES 2022; 8:eabg9455. [PMID: 35138899 PMCID: PMC8827662 DOI: 10.1126/sciadv.abg9455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Super Enhancers (SEs) are clusters of regulatory elements associated with cell identity and disease. However, whether these elements are induced by oncogenes and can regulate gene modules cooperating for cancer cell transformation or maintenance remains elusive. To address this question, we conducted a genome-wide CRISPRi-based screening of SEs in ETO2-GLIS2+ acute megakaryoblastic leukemia. This approach revealed SEs essential for leukemic cell growth and survival that are induced by ETO2-GLIS2 expression. In particular, we identified a de novo SE specific of this leukemia subtype and regulating expression of tyrosine kinase-associated receptors KIT and PDGFRA. Combined expression of these two receptors was required for leukemic cell growth, and CRISPRi-mediated inhibition of this SE or treatment with tyrosine kinase inhibitors impaired progression of leukemia in vivo in patient-derived xenografts experiments. Our results show that fusion oncogenes, such as ETO2-GLIS2, can induce activation of SEs regulating essential gene modules synergizing for leukemia progression.
Collapse
Affiliation(s)
- Salima Benbarche
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
| | - Cécile K. Lopez
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris F-75013, France
| | - Eralda Salataj
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris F-75014, France
| | - Zakia Aid
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris F-75013, France
| | - Cécile Thirant
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris F-75013, France
| | | | - Séverine Lecourt
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
| | - Yannis Belloucif
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, Paris F-75010, France
| | - Camille Vaganay
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, Paris F-75010, France
| | - Marion Antonini
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
| | - Jiang Hu
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, Paris F-75010, France
| | | | | | - Bryann Pardieu
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, Paris F-75010, France
| | - Arnaud Petit
- Hôpital Trousseau, Sorbonne Université, Assistance Publique - Hôpitaux de Paris CONECT-AML, Paris F-75012, France
| | - Alexandre Puissant
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, Paris F-75010, France
| | - Julie Chaumeil
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris F-75014, France
| | - Thomas Mercher
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris F-75013, France
- Corresponding author. (C.L.); (T.M.)
| | - Camille Lobry
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, Paris F-75010, France
- Corresponding author. (C.L.); (T.M.)
| |
Collapse
|
29
|
Belloucif Y, Lobry C. Super-Enhancers Dysregulations in Hematological Malignancies. Cells 2022; 11:196. [PMID: 35053311 PMCID: PMC8774084 DOI: 10.3390/cells11020196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 01/27/2023] Open
Abstract
Hematological malignancies affecting either the lymphoid or the myeloid lineages involve epigenetic mutations or dysregulation in the majority of cases. These epigenetic abnormalities can affect regulatory elements in the genome and, particularly, enhancers. Recently, large regulatory elements known as super-enhancers, initially identified for their critical roles in cell-type specific expression regulation of genes controlling cell identity, have been shown to also be involved in tumorigenesis in many cancer types and hematological malignancies via the regulation of numerous oncogenes, including MYC. In this review, we highlight the existing links between super-enhancers and hematological malignancies, with a particular focus on acute myeloid leukemia, a clonal hematopoietic neoplasm with dismal outcomes, resulting in an uncontrolled proliferation of myeloblasts, abnormally blocked during differentiation and accumulating within the patient's bone marrow. We report recent works, performed during the last few years, treating this subject and consider the possibility of targeting oncogenic regulatory elements, as well as the effectiveness and limitations reported so far for such strategies.
Collapse
Affiliation(s)
| | - Camille Lobry
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France;
| |
Collapse
|
30
|
Li J, Shen Z, Wang Z, Chao H, Xu Y, Zeng Z, Bian X, Zhang J, Pan J, Miao W, Wu W, Yao L, Chen S, Wen L. CTCF: A novel fusion partner of ETO2 in a multiple relapsed acute myeloid leukemia patient. J Leukoc Biol 2021; 111:981-987. [PMID: 34622967 DOI: 10.1002/jlb.2a0720-441rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
ETO2 is a nuclear co-repressor, which plays a critical role in the regulation of the cell cycle, self-renewal capacity, and differentiation of hematopoietic progenitor cells. We identified novel fusion transcripts involving ETO2 and CTCF by RNA-seq in a multiple relapsed AML case. The CTCF-ETO2 and ETO2-CTCF chimeric genes were validated by RT-PCR and Sanger sequencing. In addition, both transcripts apparently promoted cell proliferation via JAK/STAT3 pathway that is sensitive to STAT3 inhibitors. The novel fusions may have prognostic value and pathogenic mechanisms in acute myeloid leukemia.
Collapse
Affiliation(s)
- Jiao Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China.,Hematology Department, Yixing People's Hospital of Jiangsu Province, Yixing, Wuxi, P. R. China
| | - Zhen Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Zheng Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China.,Suzhou Jsuniwell Medical Laboratory, Suzhou, P. R. China
| | - Hongying Chao
- Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Yi Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Zhao Zeng
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Xiaosen Bian
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Jun Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Jinlan Pan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Weiwei Miao
- Changshu No.1 People's Hospital, Suzhou, P. R. China
| | - Wenzhong Wu
- Hematology Department, Yixing People's Hospital of Jiangsu Province, Yixing, Wuxi, P. R. China
| | - Li Yao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Lijun Wen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| |
Collapse
|
31
|
Tao M, Luo J, Gu T, Yu X, Song Z, Jun Y, Gu H, Han K, Huang X, Yu W, Sun S, Zhang Z, Liu L, Chen X, Zhang L, Luo C, Wang Q. LPCAT1 reprogramming cholesterol metabolism promotes the progression of esophageal squamous cell carcinoma. Cell Death Dis 2021; 12:845. [PMID: 34518524 PMCID: PMC8438019 DOI: 10.1038/s41419-021-04132-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022]
Abstract
Tumor cells require high levels of cholesterol for membrane biogenesis for rapid proliferation during development. Beyond the acquired cholesterol from low-density lipoprotein (LDL) taken up from circulation, tumor cells can also biosynthesize cholesterol. The molecular mechanism underlying cholesterol anabolism in esophageal squamous cell carcinoma (ESCC) and its effect on patient prognosis are unclear. Dysregulation of lipid metabolism is common in cancer. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) has been implicated in various cancer types; however, its role in esophageal squamous cell carcinoma (ESCC) remains unclear. In this study, we identified that LPCAT1 is highly expressed in ESCC and that LPCAT1 reprograms cholesterol metabolism in ESCC. LPCAT1 expression was negatively correlated with patient prognosis. Cholesterol synthesis in ESCC cells was significantly inhibited following LPCAT1 knockdown; cell proliferation, invasion, and migration were significantly reduced, along with the growth of xenograft subcutaneous tumors. LPCAT1 could regulate the expression of the cholesterol synthesis enzyme, SQLE, by promoting the activation of PI3K, thereby regulating the entry of SP1/SREBPF2 into the nucleus. LPCAT1 also activates EGFR leading to the downregulation of INSIG-1 expression, facilitating the entry of SREBP-1 into the nucleus to promote cholesterol synthesis. Taken together, LPCAT1 reprograms tumor cell cholesterol metabolism in ESCC and can be used as a potential treatment target against ESCC.
Collapse
Affiliation(s)
- Mingyue Tao
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China
- Department of Clinical Oncology, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huaian, P.R. China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430000, Wuhan, China
| | - Tong Gu
- Department of Clinical Oncology, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huaian, P.R. China
| | - Xiaojuan Yu
- Department of Clinical Oncology, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huaian, P.R. China
| | - Zhen Song
- Molecular Bioinformatics Group, Faculty of Computer Science and Mathematics, Institute of Computer Science, Frankfurt am Main, Germany
| | - Yali Jun
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China
| | - Hao Gu
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China
| | - Kairong Han
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China
| | - Xiujuan Huang
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China
| | - Weiyong Yu
- Department of Clinical Oncology, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huaian, P.R. China
| | - Su'an Sun
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China
| | - Zhengwei Zhang
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China
| | - Lu Liu
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China
| | - Xiaofei Chen
- Department of Clinical Oncology, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huaian, P.R. China
| | - Li Zhang
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China.
- Biological Sample Bank of Esophageal Cancer, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China.
| | - Chao Luo
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China.
- Biological Sample Bank of Esophageal Cancer, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China.
| | - Qilong Wang
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China.
- Biological Sample Bank of Esophageal Cancer, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China.
| |
Collapse
|
32
|
Wertheim G. Infant Acute Leukemia. Clin Lab Med 2021; 41:541-550. [PMID: 34304781 DOI: 10.1016/j.cll.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Infant acute leukemia is a rare but aggressive disease. Although infant acute leukemia is cytologically and histologically similar to acute leukemia seen in older children and adults, it displays unique and characteristic clinical and genetic characteristics. The features, as well as the extremely young age of the patients, present multiple challenges for treatment. This review focuses on the unique pathology of acute leukemia of infancy, including the genetic characteristics that are specific for these diseases.
Collapse
Affiliation(s)
- Gerald Wertheim
- Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 5199b Main Building, 3401 Civic Center Boulevard, Philadelphia, PA 19104-4399, USA.
| |
Collapse
|
33
|
Wheat JC, Steidl U. Gene expression at a single-molecule level: implications for myelodysplastic syndromes and acute myeloid leukemia. Blood 2021; 138:625-636. [PMID: 34436525 PMCID: PMC8394909 DOI: 10.1182/blood.2019004261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Nongenetic heterogeneity, or gene expression stochasticity, is an important source of variability in biological systems. With the advent and improvement of single molecule resolution technologies, it has been shown that transcription dynamics and resultant transcript number fluctuations generate significant cell-to-cell variability that has important biological effects and may contribute substantially to both tissue homeostasis and disease. In this respect, the pathophysiology of stem cell-derived malignancies such as acute myeloid leukemia and myelodysplastic syndromes, which has historically been studied at the ensemble level, may require reevaluation. To that end, it is our aim in this review to highlight the results of recent single-molecule, biophysical, and systems studies of gene expression dynamics, with the explicit purpose of demonstrating how the insights from these basic science studies may help inform and progress the field of leukemia biology and, ultimately, research into novel therapies.
Collapse
Affiliation(s)
- Justin C Wheat
- Albert Einstein College of Medicine - Montefiore Health System, Bronx, NY
| | - Ulrich Steidl
- Albert Einstein College of Medicine - Montefiore Health System, Bronx, NY
| |
Collapse
|
34
|
Peneder P, Stütz AM, Surdez D, Krumbholz M, Semper S, Chicard M, Sheffield NC, Pierron G, Lapouble E, Tötzl M, Ergüner B, Barreca D, Rendeiro AF, Agaimy A, Boztug H, Engstler G, Dworzak M, Bernkopf M, Taschner-Mandl S, Ambros IM, Myklebost O, Marec-Bérard P, Burchill SA, Brennan B, Strauss SJ, Whelan J, Schleiermacher G, Schaefer C, Dirksen U, Hutter C, Boye K, Ambros PF, Delattre O, Metzler M, Bock C, Tomazou EM. Multimodal analysis of cell-free DNA whole-genome sequencing for pediatric cancers with low mutational burden. Nat Commun 2021; 12:3230. [PMID: 34050156 PMCID: PMC8163828 DOI: 10.1038/s41467-021-23445-w] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/29/2021] [Indexed: 12/19/2022] Open
Abstract
Sequencing of cell-free DNA in the blood of cancer patients (liquid biopsy) provides attractive opportunities for early diagnosis, assessment of treatment response, and minimally invasive disease monitoring. To unlock liquid biopsy analysis for pediatric tumors with few genetic aberrations, we introduce an integrated genetic/epigenetic analysis method and demonstrate its utility on 241 deep whole-genome sequencing profiles of 95 patients with Ewing sarcoma and 31 patients with other pediatric sarcomas. Our method achieves sensitive detection and classification of circulating tumor DNA in peripheral blood independent of any genetic alterations. Moreover, we benchmark different metrics for cell-free DNA fragmentation analysis, and we introduce the LIQUORICE algorithm for detecting circulating tumor DNA based on cancer-specific chromatin signatures. Finally, we combine several fragmentation-based metrics into an integrated machine learning classifier for liquid biopsy analysis that exploits widespread epigenetic deregulation and is tailored to cancers with low mutation rates. Clinical associations highlight the potential value of cfDNA fragmentation patterns as prognostic biomarkers in Ewing sarcoma. In summary, our study provides a comprehensive analysis of circulating tumor DNA beyond recurrent genetic aberrations, and it renders the benefits of liquid biopsy more readily accessible for childhood cancers.
Collapse
Affiliation(s)
- Peter Peneder
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Adrian M Stütz
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Didier Surdez
- INSERM U830, Équipe Labellisée LNCC, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, Paris, France
- Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Manuela Krumbholz
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - Sabine Semper
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - Mathieu Chicard
- INSERM U830, Équipe Labellisée LNCC, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, Paris, France
| | - Nathan C Sheffield
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Gaelle Pierron
- Unité de Génétique Somatique, Service d'oncogénétique, Institut Curie, Centre Hospitalier, Paris, France
| | - Eve Lapouble
- Unité de Génétique Somatique, Service d'oncogénétique, Institut Curie, Centre Hospitalier, Paris, France
| | - Marcus Tötzl
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Bekir Ergüner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Daniele Barreca
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - André F Rendeiro
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen, Erlangen, Germany
| | - Heidrun Boztug
- St. Anna Kinderspital, Department of Pediatrics, Medical University, Vienna, Austria
| | - Gernot Engstler
- St. Anna Kinderspital, Department of Pediatrics, Medical University, Vienna, Austria
| | - Michael Dworzak
- St. Anna Kinderspital, Department of Pediatrics, Medical University, Vienna, Austria
| | - Marie Bernkopf
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | | | - Inge M Ambros
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Ola Myklebost
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Perrine Marec-Bérard
- Pediatric Department, Hematology and Oncology Pediatric Institute, Centre Léon Bérard, Lyon, France
| | - Susan Ann Burchill
- Children's Cancer Research Group, Leeds Institute of Medical Research, St. James's University Hospital, Leeds, UK
| | - Bernadette Brennan
- Department of Pediatric Oncology, Royal Manchester Children's Hospital, Manchester, UK
| | - Sandra J Strauss
- Department of Oncology, UCL Cancer Institute, London, UK
- Department of Oncology, University College London Hospital, London, UK
| | - Jeremy Whelan
- Department of Oncology, University College London Hospital, London, UK
| | - Gudrun Schleiermacher
- INSERM U830, Équipe Labellisée LNCC, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, Paris, France
| | - Christiane Schaefer
- University Hospital Essen, Pediatrics III, West German Cancer Centre, Essen, Germany
| | - Uta Dirksen
- University Hospital Essen, Pediatrics III, West German Cancer Centre, Essen, Germany
| | - Caroline Hutter
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- St. Anna Kinderspital, Department of Pediatrics, Medical University, Vienna, Austria
| | - Kjetil Boye
- Department of Oncology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Peter F Ambros
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Olivier Delattre
- INSERM U830, Équipe Labellisée LNCC, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, Paris, France
- Unité de Génétique Somatique, Service d'oncogénétique, Institut Curie, Centre Hospitalier, Paris, France
| | - Markus Metzler
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Institute of Artificial Intelligence, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.
| | - Eleni M Tomazou
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
| |
Collapse
|
35
|
Abstract
Malignancies of the erythroid lineage are rare but aggressive diseases. Notably, the first insights into their biology emerged over half a century ago from avian and murine tumor viruses-induced erythroleukemia models providing the rationale for several transgenic mouse models that unraveled the transforming potential of signaling effectors and transcription factors in the erythroid lineage. More recently, genetic roadmaps have fueled efforts to establish models that are based on the epigenomic lesions observed in patients with erythroid malignancies. These models, together with often unexpected erythroid phenotypes in genetically modified mice, provided further insights into the molecular mechanisms of disease initiation and maintenance. Here, we review how the increasing knowledge of human erythroleukemia genetics combined with those from various mouse models indicate that the pathogenesis of the disease is based on the interplay between signaling mutations, impaired TP53 function, and altered chromatin organization. These alterations lead to aberrant activity of erythroid transcriptional master regulators like GATA1, indicating that erythroleukemia will most likely require combinatorial targeting for efficient therapeutic interventions.
Collapse
|
36
|
Swart LE, Heidenreich O. The RUNX1/RUNX1T1 network: translating insights into therapeutic options. Exp Hematol 2021; 94:1-10. [PMID: 33217477 PMCID: PMC7854360 DOI: 10.1016/j.exphem.2020.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022]
Abstract
RUNX1/RUNX1T1 is the most common fusion gene found in acute myeloid leukemia. Seminal contributions by many different research groups have revealed a complex regulatory network promoting leukemic self-renewal and propagation. Perturbation of RUNX1/RUNX1T1 levels and its DNA binding affects chromatin accessibility and transcription factor occupation at multiple gene loci associated with changes in gene expression levels. Exploration of this transcriptional program by targeted RNAi screens uncovered a crucial role of RUNX1/RUNX1T1 in cell cycle progression by regulating CCND2. This dependency results in a high vulnerability toward inhibitors of CDK4 and CDK6 and suggests new avenues for therapeutic intervention against acute myeloid leukemia.
Collapse
MESH Headings
- Animals
- Cell Cycle
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Gene Expression Regulation, Leukemic
- Gene Regulatory Networks
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Protein Interaction Maps
- RUNX1 Translocation Partner 1 Protein/genetics
- RUNX1 Translocation Partner 1 Protein/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Laura E Swart
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Olaf Heidenreich
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
37
|
Guo X, Plank-Bazinet J, Krivega I, Dale RK, Dean A. Embryonic erythropoiesis and hemoglobin switching require transcriptional repressor ETO2 to modulate chromatin organization. Nucleic Acids Res 2020; 48:10226-10240. [PMID: 32960220 DOI: 10.1093/nar/gkaa736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/19/2020] [Accepted: 09/18/2020] [Indexed: 11/14/2022] Open
Abstract
The underlying mechanism of transcriptional co-repressor ETO2 during early erythropoiesis and hemoglobin switching is unclear. We find that absence of ETO2 in mice interferes with down-regulation of PU.1 and GATA2 in the fetal liver, impeding a key step required for commitment to erythroid maturation. In human β-globin transgenic Eto2 null mice and in human CD34+ erythroid progenitor cells with reduced ETO2, loss of ETO2 results in ineffective silencing of embryonic/fetal globin gene expression, impeding hemoglobin switching during erythroid differentiation. ETO2 occupancy genome-wide occurs virtually exclusively at LDB1-complex binding sites in enhancers and ETO2 loss leads to increased enhancer activity and expression of target genes. ETO2 recruits the NuRD nucleosome remodeling and deacetylation complex to regulate histone acetylation and nucleosome occupancy in the β-globin locus control region and γ-globin gene. Loss of ETO2 elevates LDB1, MED1 and Pol II in the locus and facilitates fetal γ-globin/LCR looping and γ-globin transcription. Absence of the ETO2 hydrophobic heptad repeat region impairs ETO2-NuRD interaction and function in antagonizing γ-globin/LCR looping. Our results reveal a pivotal role for ETO2 in erythropoiesis and globin gene switching through its repressive role in the LDB1 complex, affecting the transcription factor and epigenetic environment and ultimately restructuring chromatin organization.
Collapse
Affiliation(s)
- Xiang Guo
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Jennifer Plank-Bazinet
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Ryan K Dale
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| |
Collapse
|
38
|
Abstract
Acute myeloid leukemia (AML) is a clinically, morphologically, and genetically heterogeneous disorder. Like many malignancies, the genomic landscape of pediatric AML has been mapped recently through sequencing of large cohorts of patients. Much has been learned about the biology of AML through studies of specific recurrent genetic lesions. Further, genetic lesions have been linked to specific clinical features, response to therapy, and outcome, leading to improvements in risk stratification. Lastly, targeted therapeutic approaches have been developed for the treatment of specific genetic lesions, some of which are already having a positive impact on outcomes. While the advances made based on the discoveries of sequencing studies are significant, much work is left. The biologic, clinical, and prognostic impact of a number of genetic lesions, including several seemingly unique to pediatric patients, remains undefined. While targeted approaches are being explored, for most, the efficacy and tolerability when incorporated into standard therapy is yet to be determined. Furthermore, the challenge of how to study small subpopulations with rare genetic lesions in an already rare disease will have to be considered. In all, while questions and challenges remain, precisely defining the genomic landscape of AML, holds great promise for ultimately leading to improved outcomes for affected patients.
Collapse
Affiliation(s)
- Shannon E Conneely
- Division of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, 1102 Bates Avenue, Feigin Tower, Suite 1025, Houston, TX, 77030, USA
| | - Rachel E Rau
- Division of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, 1102 Bates Avenue, Feigin Tower, Suite 1025, Houston, TX, 77030, USA.
| |
Collapse
|
39
|
Masetti R, Bertuccio SN, Guidi V, Cerasi S, Lonetti A, Pession A. Uncommon cytogenetic abnormalities identifying high-risk acute myeloid leukemia in children. Future Oncol 2020; 16:2747-2762. [DOI: 10.2217/fon-2020-0505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pediatric acute myeloid leukemia (AML) represents an aggressive disease and is the leading cause of childhood leukemic mortality. The genomic landscape of pediatric AML has been recently mapped and redefined thanks to large-scale sequencing efforts. Today, understanding how to incorporate the growing list of genetic lesions into a risk stratification algorithm for pediatric AML is increasingly challenging given the uncertainty regarding the prognostic impact of rare lesions. Here we review some uncommon cytogenetic lesions to be considered for inclusion in the high-risk groups of the next pediatric AML treatment protocols. We describe their main clinical characteristics, biological background and outcome. We also provide some suggestions for the management of these rare but challenging patients and some novel targeted therapeutic options.
Collapse
Affiliation(s)
- Riccardo Masetti
- Pediatric Hematology-Oncology Unit, Department of Medical & Surgical Sciences DIMEC, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Salvatore Nicola Bertuccio
- Pediatric Hematology-Oncology Unit, Department of Medical & Surgical Sciences DIMEC, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Vanessa Guidi
- Pediatric Hematology-Oncology Unit, Department of Medical & Surgical Sciences DIMEC, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Sara Cerasi
- Pediatric Hematology-Oncology Unit, Department of Medical & Surgical Sciences DIMEC, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Annalisa Lonetti
- Giorgio Prodi Interdepartmental Cancer Research Centre, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Andrea Pession
- Pediatric Hematology-Oncology Unit, Department of Medical & Surgical Sciences DIMEC, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
- Giorgio Prodi Interdepartmental Cancer Research Centre, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| |
Collapse
|
40
|
Circular RNA GLIS2 promotes colorectal cancer cell motility via activation of the NF-κB pathway. Cell Death Dis 2020; 11:788. [PMID: 32968054 PMCID: PMC7511409 DOI: 10.1038/s41419-020-02989-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) are a newly discovered type of biological molecule that belongs to the noncoding RNA family. Abundant evidence has shown that circRNAs are involved in the progression of various cancers. However, the particular functions of circRNAs in colorectal cancer (CRC) remain elusive. In this study, we investigated the differentially expressed circRNAs in three pairs of cancer tissue and adjacent normal tissue of CRC. We revealed that circGLIS2 expression was higher in CRC tissue and cell lines. Gain-and-loss function assays showed that circGLIS2 was involved in the regulation of cell migration. Moreover, overexpressing circGLIS2 in CRC cells activated the NF-κB pathway and induced pro-inflammatory chemokine production, which evoked tumor-associated inflammation through recruiting leukocytes. In turn, when the cancer cells were exposed to the supernatant of circGLIS2 overexpressed cancer cells, they were endowed with the ability of migration and chemokines production. Furthermore, the rescue assay confirmed that circGLIS2 activated NF-κB signaling and promoted cell migration by sponging miR-671. Overall, our study reveals that circGLIS2, acting as a potential oncogene, maintains the abnormal activation state of the NF-κB signaling pathway via the miR-671 sponge mechanism in CRC cells. This study provides a scientific basis for targeting circGLIS2 in colorectal cancer interventions.
Collapse
|
41
|
Fagnan A, Bagger FO, Piqué-Borràs MR, Ignacimouttou C, Caulier A, Lopez CK, Robert E, Uzan B, Gelsi-Boyer V, Aid Z, Thirant C, Moll U, Tauchmann S, Kurtovic-Kozaric A, Maciejewski J, Dierks C, Spinelli O, Salmoiraghi S, Pabst T, Shimoda K, Deleuze V, Lapillonne H, Sweeney C, De Mas V, Leite B, Kadri Z, Malinge S, de Botton S, Micol JB, Kile B, Carmichael CL, Iacobucci I, Mullighan CG, Carroll M, Valent P, Bernard OA, Delabesse E, Vyas P, Birnbaum D, Anguita E, Garçon L, Soler E, Schwaller J, Mercher T. Human erythroleukemia genetics and transcriptomes identify master transcription factors as functional disease drivers. Blood 2020; 136:698-714. [PMID: 32350520 PMCID: PMC8215330 DOI: 10.1182/blood.2019003062] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
Acute erythroleukemia (AEL or acute myeloid leukemia [AML]-M6) is a rare but aggressive hematologic malignancy. Previous studies showed that AEL leukemic cells often carry complex karyotypes and mutations in known AML-associated oncogenes. To better define the underlying molecular mechanisms driving the erythroid phenotype, we studied a series of 33 AEL samples representing 3 genetic AEL subgroups including TP53-mutated, epigenetic regulator-mutated (eg, DNMT3A, TET2, or IDH2), and undefined cases with low mutational burden. We established an erythroid vs myeloid transcriptome-based space in which, independently of the molecular subgroup, the majority of the AEL samples exhibited a unique mapping different from both non-M6 AML and myelodysplastic syndrome samples. Notably, >25% of AEL patients, including in the genetically undefined subgroup, showed aberrant expression of key transcriptional regulators, including SKI, ERG, and ETO2. Ectopic expression of these factors in murine erythroid progenitors blocked in vitro erythroid differentiation and led to immortalization associated with decreased chromatin accessibility at GATA1-binding sites and functional interference with GATA1 activity. In vivo models showed development of lethal erythroid, mixed erythroid/myeloid, or other malignancies depending on the cell population in which AEL-associated alterations were expressed. Collectively, our data indicate that AEL is a molecularly heterogeneous disease with an erythroid identity that results in part from the aberrant activity of key erythroid transcription factors in hematopoietic stem or progenitor cells.
Collapse
Affiliation(s)
- Alexandre Fagnan
- Unité 1170 (U1170), INSERM, Gustave Roussy, Université Paris Diderot, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Frederik Otzen Bagger
- University Children's Hospital Beider Basel (UKBB), Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Center for Genomic Medicine, Copenhagen University Hospital, Copenhagen, Denmark
- Swiss Institute of Bioinformatics, Basel, Basel, Switzerland
| | - Maria-Riera Piqué-Borràs
- University Children's Hospital Beider Basel (UKBB), Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Cathy Ignacimouttou
- Unité 1170 (U1170), INSERM, Gustave Roussy, Université Paris Diderot, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Alexis Caulier
- Equipe d'Accueil (EA) 4666, Hématopoïèse et Immunologie (HEMATIM), Université de Picardie Jules Verne (UPJV), Amiens, France
- Service Hématologie Biologique, Centre Hospitalier Universitaire (CHU) Amiens, Amiens, France
| | - Cécile K Lopez
- Unité 1170 (U1170), INSERM, Gustave Roussy, Université Paris Diderot, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Elie Robert
- Unité 1170 (U1170), INSERM, Gustave Roussy, Université Paris Diderot, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Benjamin Uzan
- Unité Mixte de Recherche 967 (UMR 967), INSERM-Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA)/Direction de la Recherche Fondamentale (DRF)/Institut de Biologie François Jacob (IBFJ)/Institut de Radiobiologie Cellulaire et Moléculaire (IRCM)/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL)-Université Paris-Diderot-Université Paris-Sud, Fontenay-aux-Roses, France
| | - Véronique Gelsi-Boyer
- U1068 and
- UMR7258, Centre de Recherche en Cancérologie de Marseille, Centre National de la Recherche Scientifique (CNRS)/INSERM/Institut Paoli Calmettes/Aix-Marseille Université, Marseille, France
| | - Zakia Aid
- Unité 1170 (U1170), INSERM, Gustave Roussy, Université Paris Diderot, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Cécile Thirant
- Unité 1170 (U1170), INSERM, Gustave Roussy, Université Paris Diderot, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Ute Moll
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
- Department of Pathology, Stony Brook University, Stony Brook, NY
| | - Samantha Tauchmann
- University Children's Hospital Beider Basel (UKBB), Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Amina Kurtovic-Kozaric
- Clinical Center of the University of Sarajevo, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Jaroslaw Maciejewski
- Department of Translational Hematology and Oncologic Research, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH
| | - Christine Dierks
- Hämatologie, Onkologie und Stammzelltransplantation, Klinik für Innere Medizin I, Freiburg, Germany
| | - Orietta Spinelli
- UOC Ematologia, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Silvia Salmoiraghi
- UOC Ematologia, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII Hospital, Bergamo, Italy
- FROM Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Thomas Pabst
- Department of Oncology, Inselspital, University Hospital Bern/University of Bern, Bern, Switzerland
| | - Kazuya Shimoda
- Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Virginie Deleuze
- IGMM, University of Montpellier, CNRS, Montpellier, France
- Université de Paris, Laboratory of Excellence GR-Ex, Paris, France
| | - Hélène Lapillonne
- Centre de Recherche Saint Antoine (CRSA)-Unité INSERM, Sorbonne Université/Assistance Publique-Hôpitaux de Paris (AP-HP)/Hôpital Trousseau, Paris, France
| | - Connor Sweeney
- Medical Research Council Molecular Haematology Unit (MRC MHU), Biomedical Research Centre (BRC) Hematology Theme, Oxford Biomedical Research Centre, Oxford Centre for Haematology, Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Véronique De Mas
- Team 16, Hematology Laboratory, Center of Research of Cancerology of Toulouse, U1037, INSERM/Institut Universitaire du Cancer de Toulouse (IUCT) Oncopole, Toulouse, France
| | - Betty Leite
- Genomic Platform, Unité Mixte de Service - Analyse Moléculaire, Modélisation et Imagerie de la maladie Cancéreuse (UMS AMMICA), Gustave Roussy/Université Paris-Saclay, Villejuif, France
| | - Zahra Kadri
- Division of Innovative Therapies, UMR-1184, Immunologie des Maladies Virales, Auto-immunes, Hématologiques et Bactériennes (IMVA-HB) and Infectious Disease Models and Innovative Therapies (IDMIT) Center, CEA/INSERM/Paris-Saclay University, Fontenay-aux-Roses, France
| | - Sébastien Malinge
- Unité 1170 (U1170), INSERM, Gustave Roussy, Université Paris Diderot, Villejuif, France
- Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA, Australia
| | - Stéphane de Botton
- Unité 1170 (U1170), INSERM, Gustave Roussy, Université Paris Diderot, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Jean-Baptiste Micol
- Unité 1170 (U1170), INSERM, Gustave Roussy, Université Paris Diderot, Villejuif, France
| | - Benjamin Kile
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | | | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
| | - Martin Carroll
- Division of Hematology and Oncology, University of Pennsylvania, PA
| | - Peter Valent
- Division of Hematology and Hemostaseology, Department of Internal Medicine I and
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Olivier A Bernard
- Unité 1170 (U1170), INSERM, Gustave Roussy, Université Paris Diderot, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Eric Delabesse
- Team 16, Hematology Laboratory, Center of Research of Cancerology of Toulouse, U1037, INSERM/Institut Universitaire du Cancer de Toulouse (IUCT) Oncopole, Toulouse, France
| | - Paresh Vyas
- Medical Research Council Molecular Haematology Unit (MRC MHU), Biomedical Research Centre (BRC) Hematology Theme, Oxford Biomedical Research Centre, Oxford Centre for Haematology, Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Daniel Birnbaum
- U1068 and
- UMR7258, Centre de Recherche en Cancérologie de Marseille, Centre National de la Recherche Scientifique (CNRS)/INSERM/Institut Paoli Calmettes/Aix-Marseille Université, Marseille, France
| | - Eduardo Anguita
- Hematology Department
- Instituto de Medicina de Laboratorio (IML), and
- Instituto de Investigación Sanitaria San Carlos, (IdISSC), Hospital Clínico San Carlos (HCSC), Madrid, Spain; and
- Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Loïc Garçon
- Equipe d'Accueil (EA) 4666, Hématopoïèse et Immunologie (HEMATIM), Université de Picardie Jules Verne (UPJV), Amiens, France
- Service Hématologie Biologique, Centre Hospitalier Universitaire (CHU) Amiens, Amiens, France
| | - Eric Soler
- IGMM, University of Montpellier, CNRS, Montpellier, France
- Université de Paris, Laboratory of Excellence GR-Ex, Paris, France
| | - Juerg Schwaller
- University Children's Hospital Beider Basel (UKBB), Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Thomas Mercher
- Unité 1170 (U1170), INSERM, Gustave Roussy, Université Paris Diderot, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
42
|
Abstract
The GLIS 1-3 genes belong to a family of transcription factors, the Krüppel-like zinc finger proteins. The GLIS proteins function primarily as activators of transcription (GLIS 1 and 3), while GLIS 2 functions as a repressor. Collectively, the GLIS proteins are involved in a variety of diseases in several organs ranging from Alzheimer's disease, facial dysmorphism, neonatal diabetes mellitus, breast and colon cancers and leukaemia. In particular, loss-of-function mutations in GLIS2 are responsible for an autosomal recessive cystic kidney disease called nephronophthisis, which is characterised by tubular atrophy, interstitial fibrosis and corticomedullary cysts.Of diagnostic value in current practice are the presence of GLIS 3 and 1 fusions with PAX8 in almost 100% of hyalinising trabecular tumours of the thyroid gland. This enables its separation from papillary thyroid cancer.
Collapse
Affiliation(s)
- Karen Pinto
- Pathology, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Runjan Chetty
- Department of Histopathology, Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
| |
Collapse
|
43
|
Steinauer N, Guo C, Zhang J. The transcriptional corepressor CBFA2T3 inhibits all- trans-retinoic acid-induced myeloid gene expression and differentiation in acute myeloid leukemia. J Biol Chem 2020; 295:8887-8900. [PMID: 32434928 PMCID: PMC7335779 DOI: 10.1074/jbc.ra120.013042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/17/2020] [Indexed: 01/10/2023] Open
Abstract
CBFA2/RUNX1 partner transcriptional co-repressor 3 (CBFA2T3, also known as MTG16 or ETO2) is a myeloid translocation gene family protein that functions as a master transcriptional corepressor in hematopoiesis. Recently, it has been shown that CBFA2T3 maintains leukemia stem cell gene expression and promotes relapse in acute myeloid leukemia (AML). However, a role for CBFA2T3 in myeloid differentiation of AML has not been reported. Here, we show that CBFA2T3 represses retinoic acid receptor (RAR) target gene expression and inhibits all-trans-retinoic acid (ATRA)-induced myeloid differentiation of AML cells. ChIP-Seq revealed that CBFA2T3 targets the RARα/RXRα cistrome in U937 AML cells, predominantly at myeloid-specific enhancers associated with terminal differentiation. CRISPR/Cas9-mediated abrogation of CBFA2T3 resulted in spontaneous and ATRA-induced activation of myeloid-specific genes in a manner correlated with myeloid differentiation. Importantly, these effects were reversed by CBFA2T3 re-expression. Mechanistic studies showed that CBFA2T3 inhibits RAR target gene transcription by acting at an early step to regulate histone acetyltransferase recruitment, histone acetylation, and chromatin accessibility at RARα target sites, independently of the downstream, RAR-mediated steps of transcription. Finally, we validated the inhibitory effect of CBFA2T3 on RAR in multiple AML subtypes and patient samples. To our knowledge, this is the first study to show that CBFA2T3 down-regulation is both necessary and sufficient for enhancing ATRA-induced myeloid gene expression and differentiation of AML cells. Our findings suggest that CBFA2T3 can serve as a potential target for enhancing AML responsiveness to ATRA differentiation therapies.
Collapse
Affiliation(s)
- Nickolas Steinauer
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Chun Guo
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
44
|
Abstract
Acute megakaryoblastic leukemia (AMKL) is a rare malignancy affecting megakaryocytes, platelet-producing cells that reside in the bone marrow. Children with Down syndrome (DS) are particularly prone to developing the disease and have a different age of onset, distinct genetic mutations, and better prognosis as compared with individuals without DS who develop the disease. Here, we discuss the contributions of chromosome 21 genes and other genetic mutations to AMKL, the clinical features of the disease, and the differing features of DS- and non-DS-AMKL. Further studies elucidating the role of chromosome 21 genes in this disease may aid our understanding of how they function in other types of leukemia, in which they are frequently mutated or differentially expressed. Although researchers have made many insights into understanding AMKL, much more remains to be learned about its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Maureen McNulty
- Northwestern University, Division of Hematology/Oncology, Chicago, Illinois 60611, USA
| | - John D Crispino
- Northwestern University, Division of Hematology/Oncology, Chicago, Illinois 60611, USA
| |
Collapse
|
45
|
Amano K, Takasugi N, Kubota Y, Mitani Y, Sekiguchi M, Watanabe K, Fujimura J, Oka A, Takita J, Hiwatari M. CBFA2T3-GLIS2-positive acute megakaryoblastic leukemia in a patient with Down syndrome. Pediatr Blood Cancer 2020; 67:e28055. [PMID: 31736254 DOI: 10.1002/pbc.28055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Kenichi Amano
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nao Takasugi
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuo Kubota
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuichi Mitani
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahiro Sekiguchi
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Watanabe
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junya Fujimura
- Department of Pediatrics and Adolescent Medicine, Juntendo University, Tokyo, Japan
| | - Akira Oka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuteru Hiwatari
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Cell Therapy and Transplantation Medicine, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
46
|
Smith JL, Ries RE, Hylkema T, Alonzo TA, Gerbing RB, Santaguida MT, Eidenschink Brodersen L, Pardo L, Cummings CL, Loeb KR, Le Q, Imren S, Leonti AR, Gamis AS, Aplenc R, Kolb EA, Farrar JE, Triche TJ, Nguyen C, Meerzaman D, Loken MR, Oehler VG, Bolouri H, Meshinchi S. Comprehensive Transcriptome Profiling of Cryptic CBFA2T3-GLIS2 Fusion-Positive AML Defines Novel Therapeutic Options: A COG and TARGET Pediatric AML Study. Clin Cancer Res 2020; 26:726-737. [PMID: 31719049 PMCID: PMC7002196 DOI: 10.1158/1078-0432.ccr-19-1800] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/09/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE A cryptic inv(16)(p13.3q24.3) encoding the CBFA2T3-GLIS2 fusion is associated with poor outcome in infants with acute megakaryocytic leukemia. We aimed to broaden our understanding of the pathogenesis of this fusion through transcriptome profiling. EXPERIMENTAL DESIGN Available RNA from children and young adults with de novo acute myeloid leukemia (AML; N = 1,049) underwent transcriptome sequencing (mRNA and miRNA). Transcriptome profiles for those with the CBFA2T3-GLIS2 fusion (N = 24) and without (N = 1,025) were contrasted to define fusion-specific miRNAs, genes, and pathways. Clinical annotations defined distinct fusion-associated disease characteristics and outcomes. RESULTS The CBFA2T3-GLIS2 fusion was restricted to infants <3 years old (P < 0.001), and the presence of this fusion was highly associated with adverse outcome (P < 0.001) across all morphologic classifications. Further, there was a striking paucity of recurrent cooperating mutations, and transduction of cord blood stem cells with this fusion was sufficient for malignant transformation. CBFA2T3-GLIS2 positive cases displayed marked upregulation of genes with cell membrane/extracellular matrix localization potential, including NCAM1 and GABRE. Additionally, miRNA profiling revealed significant overexpression of mature miR-224 and miR-452, which are intronic miRNAs transcribed from the GABRE locus. Gene-set enrichment identified dysregulated Hippo, TGFβ, and hedgehog signaling, as well as NCAM1 (CD56) interaction pathways. Therapeutic targeting of fusion-positive leukemic cells with CD56-directed antibody-drug conjugate caused significant cytotoxicity in leukemic blasts. CONCLUSIONS The CBFA2T3-GLIS2 fusion defines a highly refractory entity limited to infants that appears to be sufficient for malignant transformation. Transcriptome profiling elucidated several highly targetable genes and pathways, including the identification of CD56, providing a highly plausible target for therapeutic intervention.
Collapse
MESH Headings
- Adult
- Biomarkers, Tumor/genetics
- CD56 Antigen/genetics
- Child, Preschool
- Female
- Follow-Up Studies
- Gene Expression Profiling
- Humans
- Infant
- Infant, Newborn
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Male
- MicroRNAs/genetics
- Middle Aged
- Mutation
- Oncogene Proteins, Fusion/genetics
- Prognosis
- RNA, Messenger
- Receptors, GABA-A/genetics
- Young Adult
Collapse
Affiliation(s)
- Jenny L Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Tiffany Hylkema
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Todd A Alonzo
- Children's Oncology Group, Monrovia, California
- Division of Biostatistics, University of Southern California, Los Angeles, California
- Children's Oncology Group, Department of Preventive Medicine, University of Southern California, Monrovia, California
| | | | | | | | - Laura Pardo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Hematologics Inc, Seattle, Washington
| | - Carrie L Cummings
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Keith R Loeb
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Quy Le
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Suzan Imren
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Amanda R Leonti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Alan S Gamis
- Children's Mercy Cancer Center, Kansas City, Missouri
| | - Richard Aplenc
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - E Anders Kolb
- Nemours Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Jason E Farrar
- UAMS, Arkansas Children's Hospital, Little Rock, Arkansas
| | | | - Cu Nguyen
- Center for Biomedical Informatics and Information Technology, NCI, Rockville, Maryland
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, NCI, Rockville, Maryland
| | | | - Vivian G Oehler
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Hamid Bolouri
- Informatics and Computational Biology, Allen Institute, Seattle, Washington
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
- Children's Oncology Group, Monrovia, California
- Department of Pediatrics, University of Washington, Seattle, Washington
| |
Collapse
|
47
|
The Pediatric Acute Leukemia Fusion Oncogene ETO2-GLIS2 Increases Self-Renewal and Alters Differentiation in a Human Induced Pluripotent Stem Cells-Derived Model. Hemasphere 2020; 4:e319. [PMID: 32072139 PMCID: PMC7000481 DOI: 10.1097/hs9.0000000000000319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/08/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
|
48
|
Huang Y, Mouttet B, Warnatz HJ, Risch T, Rietmann F, Frommelt F, Ngo QA, Dobay MP, Marovca B, Jenni S, Tsai YC, Matzk S, Amstislavskiy V, Schrappe M, Stanulla M, Gstaiger M, Bornhauser B, Yaspo ML, Bourquin JP. The Leukemogenic TCF3-HLF Complex Rewires Enhancers Driving Cellular Identity and Self-Renewal Conferring EP300 Vulnerability. Cancer Cell 2019; 36:630-644.e9. [PMID: 31735627 DOI: 10.1016/j.ccell.2019.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/18/2019] [Accepted: 10/14/2019] [Indexed: 01/08/2023]
Abstract
The chimeric transcription factor TCF3-HLF defines an incurable acute lymphoblastic leukemia subtype. Here we decipher the regulome of endogenous TCF3-HLF and dissect its essential transcriptional components and targets by functional genomics. We demonstrate that TCF3-HLF recruits HLF binding sites at hematopoietic stem cell/myeloid lineage associated (super-) enhancers to drive lineage identity and self-renewal. Among direct targets, hijacking an HLF binding site in a MYC enhancer cluster by TCF3-HLF activates a conserved MYC-driven transformation program crucial for leukemia propagation in vivo. TCF3-HLF pioneers the cooperation with ERG and recruits histone acetyltransferase p300 (EP300), conferring susceptibility to EP300 inhibition. Our study provides a framework for targeting driving transcriptional dependencies in this fatal leukemia.
Collapse
Affiliation(s)
- Yun Huang
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Brice Mouttet
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Hans-Jörg Warnatz
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Thomas Risch
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Fabian Rietmann
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Fabian Frommelt
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Quy A Ngo
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Maria Pamela Dobay
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Blerim Marovca
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Silvia Jenni
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Yi-Chien Tsai
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Sören Matzk
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Vyacheslav Amstislavskiy
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Martin Schrappe
- Department of Pediatrics, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Beat Bornhauser
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Marie-Laure Yaspo
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Jean-Pierre Bourquin
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland.
| |
Collapse
|
49
|
Lopez CK, Noguera E, Stavropoulou V, Robert E, Aid Z, Ballerini P, Bilhou-Nabera C, Lapillonne H, Boudia F, Thirant C, Fagnan A, Arcangeli ML, Kinston SJ, Diop M, Job B, Lecluse Y, Brunet E, Babin L, Villeval JL, Delabesse E, Peters AHFM, Vainchenker W, Gaudry M, Masetti R, Locatelli F, Malinge S, Nerlov C, Droin N, Lobry C, Godin I, Bernard OA, Göttgens B, Petit A, Pflumio F, Schwaller J, Mercher T. Ontogenic Changes in Hematopoietic Hierarchy Determine Pediatric Specificity and Disease Phenotype in Fusion Oncogene-Driven Myeloid Leukemia. Cancer Discov 2019; 9:1736-1753. [PMID: 31662298 DOI: 10.1158/2159-8290.cd-18-1463] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 08/05/2019] [Accepted: 09/23/2019] [Indexed: 01/18/2023]
Abstract
Fusion oncogenes are prevalent in several pediatric cancers, yet little is known about the specific associations between age and phenotype. We observed that fusion oncogenes, such as ETO2-GLIS2, are associated with acute megakaryoblastic or other myeloid leukemia subtypes in an age-dependent manner. Analysis of a novel inducible transgenic mouse model showed that ETO2-GLIS2 expression in fetal hematopoietic stem cells induced rapid megakaryoblastic leukemia whereas expression in adult bone marrow hematopoietic stem cells resulted in a shift toward myeloid transformation with a strikingly delayed in vivo leukemogenic potential. Chromatin accessibility and single-cell transcriptome analyses indicate ontogeny-dependent intrinsic and ETO2-GLIS2-induced differences in the activities of key transcription factors, including ERG, SPI1, GATA1, and CEBPA. Importantly, switching off the fusion oncogene restored terminal differentiation of the leukemic blasts. Together, these data show that aggressiveness and phenotypes in pediatric acute myeloid leukemia result from an ontogeny-related differential susceptibility to transformation by fusion oncogenes. SIGNIFICANCE: This work demonstrates that the clinical phenotype of pediatric acute myeloid leukemia is determined by ontogeny-dependent susceptibility for transformation by oncogenic fusion genes. The phenotype is maintained by potentially reversible alteration of key transcription factors, indicating that targeting of the fusions may overcome the differentiation blockage and revert the leukemic state.See related commentary by Cruz Hernandez and Vyas, p. 1653.This article is highlighted in the In This Issue feature, p. 1631.
Collapse
Affiliation(s)
- Cécile K Lopez
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Esteve Noguera
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Vaia Stavropoulou
- University Children's Hospital Beider Basel (UKBB) and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Elie Robert
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Zakia Aid
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | | | | | | | - Fabien Boudia
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
- Université Paris Diderot, Paris, France
| | - Cécile Thirant
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Alexandre Fagnan
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
- Université Paris Diderot, Paris, France
| | - Marie-Laure Arcangeli
- Unité Mixte de Recherche 967 INSERM, CEA/DRF/IBFJ/IRCM/LSHL, Université Paris-Diderot-Université Paris-Sud, Equipe labellisée Association Recherche Contre le Cancer, Fontenay-aux-roses, France
| | - Sarah J Kinston
- Wellcome and MRC Cambridge Stem Cell Institute and the Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | - Erika Brunet
- Genome Dynamics in the Immune System Laboratory, Institut Imagine, INSERM, Université Paris Descartes, Sorbonne Paris Cité, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Loélia Babin
- Genome Dynamics in the Immune System Laboratory, Institut Imagine, INSERM, Université Paris Descartes, Sorbonne Paris Cité, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Jean Luc Villeval
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Eric Delabesse
- INSERM U1037, Team 16, Center of Research of Cancerology of Toulouse, Hematology Laboratory, IUCT-Oncopole, France
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - William Vainchenker
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Muriel Gaudry
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Riccardo Masetti
- Department of Pediatrics, "Lalla Seràgnoli," Hematology-Oncology Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Franco Locatelli
- Department of Pediatrics, Sapienza, University of Rome, Rome, Italy
- Hematology-Oncology-IRCCS Ospedale Bambino Gesù, Rome, Italy
| | - Sébastien Malinge
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Claus Nerlov
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | - Isabelle Godin
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Olivier A Bernard
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Berthold Göttgens
- Wellcome and MRC Cambridge Stem Cell Institute and the Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | | - Françoise Pflumio
- Unité Mixte de Recherche 967 INSERM, CEA/DRF/IBFJ/IRCM/LSHL, Université Paris-Diderot-Université Paris-Sud, Equipe labellisée Association Recherche Contre le Cancer, Fontenay-aux-roses, France
| | - Juerg Schwaller
- University Children's Hospital Beider Basel (UKBB) and Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Thomas Mercher
- INSERM U1170, Gustave Roussy, Villejuif, France.
- Gustave Roussy, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
- Université Paris Diderot, Paris, France
| |
Collapse
|
50
|
Jetten AM. Emerging Roles of GLI-Similar Krüppel-like Zinc Finger Transcription Factors in Leukemia and Other Cancers. Trends Cancer 2019; 5:547-557. [PMID: 31474360 DOI: 10.1016/j.trecan.2019.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 01/22/2023]
Abstract
GLI-similar 1-3 (GLIS1-3), a subfamily of Krüppel-like zinc finger transcription factors, function as key regulators of several biological processes important to oncogenesis, including control of cell proliferation, differentiation, self-renewal, and epithelial-mesenchymal transition. This review provides a short overview of the critical roles genetic changes in GLIS1-3 play in the development of several malignancies. This includes intrachromosomal translocations involving GLIS2 and ETO2/CBFA2T3 in the development of pediatric non-Down's syndrome (DS), acute megakaryoblastic leukemia (AMKL), a malignancy with poor prognosis, and an association of interchromosomal translocations between GLIS3, GLIS1, and PAX8, and between GLIS3 and CLPTM1L with hyalinizing trabecular tumors (HTTs) and fibrolamellar hepatocellular carcinoma (FHCC), respectively. Targeting upstream signaling pathways that regulate GLIS signaling may offer new therapeutic strategies in the management of cancer.
Collapse
Affiliation(s)
- Anton M Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|