1
|
Zhang Z, Wu X, Bao S, Sun X, Yang F, Zhang Y, Yang Z, Zhang L, Chen R, Xing P, Li J, Zhou M, Yang L. Proteogenomic Characterization of High-Grade Lung Neuroendocrine Carcinoma Deciphers Molecular Diversity and Potential Biomarkers of Different Histological Subtypes in Chinese Population. RESEARCH (WASHINGTON, D.C.) 2025; 8:0671. [PMID: 40230612 PMCID: PMC11994885 DOI: 10.34133/research.0671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/18/2025] [Accepted: 03/22/2025] [Indexed: 04/16/2025]
Abstract
High-grade lung neuroendocrine carcinomas (Lu-NECs) are clinically refractory malignancies with poor prognosis and limited therapeutic advances. The biological and molecular features underlying the histological heterogeneity of Lu-NECs are not fully understood. In this study, we present a multi-omics integration of whole-exome sequencing and deep proteomic profiling in 93 Chinese Lu-NECs to establish the first comprehensive proteogenomic atlas of this disease spectrum. Our analyses revealed a high degree of mutational concordance among the subtypes at the genomic level; however, distinct proteomic profiles enabled a clear differentiation of histological subtypes, unveiling subtype-specific molecular and biological features related to tumor metabolism, immunity, and proliferation. Furthermore, RB1 mutations confer divergent prognostic effects through subtype-specific cis- and trans-proteomic regulation. In addition, we identified potential protein biomarkers for histological subtype classification and risk stratification, which were validated by immunohistochemistry in an independent cohort. This study provides a valuable proteogenomic resource and insight into Lu-NEC heterogeneity.
Collapse
Affiliation(s)
- Zicheng Zhang
- School of Biomedical Engineering,
Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Xi Wu
- Department of Comprehensive Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China
| | - Siqi Bao
- School of Biomedical Engineering,
Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Xujie Sun
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China
| | - Fan Yang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China
| | - Yibo Zhang
- School of Biomedical Engineering,
Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Zijian Yang
- School of Biomedical Engineering,
Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Liujin Zhang
- School of Biomedical Engineering,
Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Ruanqi Chen
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China
| | - Puyuan Xing
- Department of Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China
| | - Junling Li
- Department of Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China
| | - Meng Zhou
- School of Biomedical Engineering,
Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Lin Yang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China
| |
Collapse
|
2
|
Huerta-Yepez S, Chen PC, Kaur K, Jain Y, Singh T, Esedebe F, Liao YJ, DiBernardo G, Moatamed NA, Mei A, Malarkannan S, Graeber TG, Memarzadeh S, Jewett A. Supercharged NK cells, unlike primary activated NK cells, effectively target ovarian cancer cells irrespective of MHC-class I expression. BMJ ONCOLOGY 2025; 4:e000618. [PMID: 40196236 PMCID: PMC11973776 DOI: 10.1136/bmjonc-2024-000618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/07/2025] [Indexed: 04/09/2025]
Abstract
Objective To demonstrate the significance of supercharged natural killer (sNK) cells to target aggressive gynecological tumours. Methods and analysis We used cell cultures of peripheral blood-derived mononuclear cells (PBMCs) and purified NK cells alone and in the presence of tumours. MHC-class gene expression assessments of ovarian tumours were performed using gene set enrichment analysis (GSEA). Secretion and expression levels of cytokines in PBMCs and NK cells were determined using ELISA and scRNA seq analysis, respectively. A flow cytometer was used for surface marker analysis. 51Cr and eSight were used to determine the killing activity of NK cells. Results We have observed a significant decrease in the numbers and functions of NK cells in patients with ovarian cancer. GSEA revealed differently expressed genes, decreased differentiation- and immune-related genes, and increased genes for cell cycle analysis in recurrent tumours compared with chemo-naive ovarian tumours. Increased gene expression as well as secretion of interferon-γ and tumour necrosis factor-α and increased avidity in binding to tumour cells by sNK cells was observed. Unlike primary interleukin (IL)-2-activated NK cells, sNK cells effectively lysed OVCAR8 ovarian poorly differentiated cancer stem-like cells (PDCSCs) and well-differentiated OVCAR4 tumours. Primary ovarian tumours with lower MHC-class I expression were highly susceptible to both primary IL-2-activated NK and sNK cells, whereas the well-differentiated tumours with high expression of MHC-class I were only susceptible to sNK cells. Conclusion The use of sNK cells in immunotherapy emerges as a potentially effective strategy to target and eliminate the majority of ovarian tumour clones, thereby providing a potential therapeutic opportunity in preventing the recurrence of the disease.
Collapse
Affiliation(s)
- Sara Huerta-Yepez
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, Le Conte Ave, Los Angeles, USA
- Oncology Research Unit, Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico
| | - Po-Chun Chen
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, Le Conte Ave, Los Angeles, USA
| | - Kawaljit Kaur
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, Le Conte Ave, Los Angeles, USA
| | - Yash Jain
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, Le Conte Ave, Los Angeles, USA
| | - Tanya Singh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California, USA
| | - Favour Esedebe
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, California, USA
| | - Yi Jou Liao
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, California, USA
| | - Gabriella DiBernardo
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California, USA
| | - Neda A Moatamed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Ao Mei
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, USA
| | - Subramaniam Malarkannan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States, Milwaukee, Wisconsin, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, California, USA
- The Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
- Crump Institute for Molecular Imaging, Medical laboratory in Los Angeles, Los Angeles, California, USA
| | - Sanaz Memarzadeh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- The Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA
- The VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, Le Conte Ave, Los Angeles, USA
- The Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
3
|
Lee J, Lee Y. The role of transcription factors in prostate cancer progression. Mol Cells 2025; 48:100193. [PMID: 39938868 PMCID: PMC11907451 DOI: 10.1016/j.mocell.2025.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/23/2024] [Accepted: 02/04/2025] [Indexed: 02/14/2025] Open
Abstract
Prostate cancer is one of the most common malignancies in men, with most cases initially responding to androgen deprivation therapy. However, a significant number of patients eventually develop castration-resistant prostate cancer, an aggressive form of the disease. Although androgen receptor (AR) pathway inhibitors target AR signaling, and have extended survival in patients with castration-resistant prostate cancer, prolonged treatment can lead to the emergence of neuroendocrine prostate cancer (NEPC), a lethal subtype characterized by the expression of neuroendocrine markers and reduced AR activity. The transition from adenocarcinoma to NEPC is driven by lineage plasticity, wherein cancer cells adopt a neuroendocrine phenotype to evade treatment. Consequently, NEPC patients face poor clinical outcomes and limited effective treatment options. To improve outcomes, it is crucial to understand the molecular mechanisms driving NEPC development. In this review, we highlight the role of transcription factors in this process and explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jongeun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
4
|
Oluloro A, Wells DL, Childers CK, Luu T, Eaton KD, Urban RR, Konnick EQ, Paulson VA, Banda K. Revealing neuroendocrine transformation in gynecological cancers through genomic analysis. NPJ Precis Oncol 2025; 9:77. [PMID: 40108436 PMCID: PMC11923128 DOI: 10.1038/s41698-025-00861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 02/28/2025] [Indexed: 03/22/2025] Open
Abstract
Neuroendocrine transformation (NT) in cancers, typically observed under the selective pressure of targeted therapies, involves lineage plasticity where adenocarcinomas adopt neuroendocrine characteristics while retaining the molecular alterations of their original histology. This phenomenon, well-documented in prostate and lung cancers, has not been observed in gynecological malignancies until now. We present two pivotal cases involving primary ovarian and uterine cancers that developed neuroendocrine carcinomas post-treatment. Initially presumed to be independent primaries, comprehensive next-generation sequencing technologies, including UW-OncoPlex and BROCA panels, were used to establish a clonal relationship between the primary tumors and their respective neuroendocrine metastases. This report provides the first documented instances of NT in gynecological cancers, indicating that it may be a more widespread resistance mechanism than previously recognized. Routine re-biopsy and early integration of advanced molecular diagnostics into clinical practice will identify NT and provide insights into pathogenesis and eventual therapeutic options.
Collapse
Affiliation(s)
- Ann Oluloro
- Division of Gynecological Oncology, University of Washington, Seattle, WA, USA
| | - David L Wells
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Charles K Childers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Tiffany Luu
- Division of Gynecological Oncology, University of Washington, Seattle, WA, USA
| | - Keith D Eaton
- Clinical Research Division, Fred Hutchison Cancer Center, Seattle, WA, USA
- Division of Medical Oncology, University of Washington, Seattle, WA, USA
| | - Renata R Urban
- Division of Gynecological Oncology, University of Washington, Seattle, WA, USA
| | - Eric Q Konnick
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Vera A Paulson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Kalyan Banda
- Clinical Research Division, Fred Hutchison Cancer Center, Seattle, WA, USA.
- Division of Medical Oncology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Li S, Song K, Sun H, Tao Y, Huang A, Bhatia V, Hanratty B, Patel RA, Long HW, Morrissey C, Haffner MC, Nelson PS, Graeber TG, Lee JK. Defined cellular reprogramming of androgen receptor-active prostate cancer to neuroendocrine prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637904. [PMID: 40027790 PMCID: PMC11870442 DOI: 10.1101/2025.02.12.637904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Neuroendocrine prostate cancer (NEPC) arises primarily through neuroendocrine transdifferentiation (NEtD) as an adaptive mechanism of therapeutic resistance. Models to define the functional effects of putative drivers of this process on androgen receptor (AR) signaling and NE cancer lineage programs are lacking. We adapted a genetically defined strategy from the field of cellular reprogramming to directly convert AR-active prostate cancer (ARPC) to AR-independent NEPC using candidate factors. We delineated critical roles of the pioneer factors ASCL1 and NeuroD1 in NEtD and uncovered their abilities to silence AR expression and signaling by remodeling chromatin at the somatically acquired AR enhancer and global AR binding sites with enhancer activity. We also elucidated the dynamic temporal changes in the transcriptomic and epigenomic landscapes of cells undergoing acute lineage conversion from ARPC to NEPC which should inform future therapeutic development. Further, we distinguished the activities of ASCL1 and NeuroD1 from the inactivation of RE-1 silencing transcription factor (REST), a master suppressor of a major neuronal gene program, in establishing a NEPC lineage state and in modulating the expression of genes associated with major histocompatibility complex class I (MHC I) antigen processing and presentation. These findings provide important, clinically relevant insights into the biological processes driving NEtD of prostate cancer.
Collapse
Affiliation(s)
- Shan Li
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Kai Song
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Huiyun Sun
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, 98195, USA
| | - Yong Tao
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Arthur Huang
- Department of Urology, University of Washington, Seattle, WA, 98195, USA
| | - Vipul Bhatia
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Brian Hanratty
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Radhika A Patel
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Center for Functional Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, 98195, USA
| | - Michael C Haffner
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA. 98195, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Peter S Nelson
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA. 98195, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Division of Medical Oncology, University of Washington, Seattle, WA, 98195, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - John K Lee
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Institute of Urologic Oncology, Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
6
|
Fernandez-Cuesta L, Alcala N, Mathian E, Derks J, Thirlwell C, Dayton T, Marinoni I, Perren A, Walter T, Foll M. Basic science and translational implications of current knowledge on neuroendocrine tumors. J Clin Invest 2025; 135:e186702. [PMID: 40026252 PMCID: PMC11870734 DOI: 10.1172/jci186702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Neuroendocrine tumors (NETs) are a diverse group of malignancies that can occur in various organs, with a notable prevalence in the lungs and gastrointestinal tract, which are the focus of this Review. Although NETs are rare in individual organs, their incidence has increased over recent decades, highlighting the urgent need for current classification systems to evolve by incorporating recent advances in the understanding of NET biology. Several omics studies have revealed molecular subtypes, which, when integrated into existing classification frameworks, may provide more clinically relevant insights for patients with NETs. This Review examines recent progress in elucidating the biology of NETs, with a particular emphasis on the tumor microenvironment and cells of origin. The existence of different cells of origin, which may contribute to distinct molecular groups, along with profiles of immune infiltration - despite being generally low - could explain the emergence of more aggressive cases and the potential for metastatic progression. Given the molecular heterogeneity of NETs and the diversity of their microenvironments and different cells of origin, there is an urgent need to develop morphomolecular classification systems. Such systems would make it possible to better characterize tumor progression, identify new therapeutic targets, and, ultimately, guide the development of personalized therapies.
Collapse
Affiliation(s)
- Lynnette Fernandez-Cuesta
- Computational Cancer Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Nicolas Alcala
- Computational Cancer Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Emilie Mathian
- Computational Cancer Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Jules Derks
- Department of Pulmonary Medicine, Erasmus MC Cancer institute, University Medical Center, Rotterdam, Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Talya Dayton
- European Molecular Biology Laboratory Barcelona, Tissue Biology and Disease Modeling, Barcelona, Spain
| | - Ilaria Marinoni
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Aurel Perren
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Thomas Walter
- Service d’Oncologie Médicale, Groupement Hospitalier Centre, Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France
| | - Matthieu Foll
- Computational Cancer Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| |
Collapse
|
7
|
Peinado P, Stazi M, Ballabio C, Margineanu MB, Li Z, Colón CI, Hsieh MS, Pal Choudhuri S, Stastny V, Hamilton S, Le Marois A, Collingridge J, Conrad L, Chen Y, Ng SR, Magendantz M, Bhutkar A, Chen JS, Sahai E, Drapkin BJ, Jacks T, Vander Heiden MG, Kopanitsa MV, Robinson HPC, Li L. Intrinsic electrical activity drives small-cell lung cancer progression. Nature 2025; 639:765-775. [PMID: 39939778 PMCID: PMC11922742 DOI: 10.1038/s41586-024-08575-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/23/2024] [Indexed: 02/14/2025]
Abstract
Elevated or ectopic expression of neuronal receptors promotes tumour progression in many cancer types1,2; neuroendocrine (NE) transformation of adenocarcinomas has also been associated with increased aggressiveness3. Whether the defining neuronal feature, namely electrical excitability, exists in cancer cells and impacts cancer progression remains mostly unexplored. Small-cell lung cancer (SCLC) is an archetypal example of a highly aggressive NE cancer and comprises two major distinct subpopulations: NE cells and non-NE cells4,5. Here we show that NE cells, but not non-NE cells, are excitable, and their action potential firing directly promotes SCLC malignancy. However, the resultant high ATP demand leads to an unusual dependency on oxidative phosphorylation in NE cells. This finding contrasts with the properties of most cancer cells reported in the literature, which are non-excitable and rely heavily on aerobic glycolysis. Additionally, we found that non-NE cells metabolically support NE cells, a process akin to the astrocyte-neuron metabolite shuttle6. Finally, we observed drastic changes in the innervation landscape during SCLC progression, which coincided with increased intratumoural heterogeneity and elevated neuronal features in SCLC cells, suggesting an induction of a tumour-autonomous vicious cycle, driven by cancer cell-intrinsic electrical activity, which confers long-term tumorigenic capability and metastatic potential.
Collapse
Affiliation(s)
- Paola Peinado
- Cancer Neuroscience Laboratory, Francis Crick Institute, London, UK
| | - Marco Stazi
- Cancer Neuroscience Laboratory, Francis Crick Institute, London, UK
| | - Claudio Ballabio
- Cancer Neuroscience Laboratory, Francis Crick Institute, London, UK
| | | | - Zhaoqi Li
- Koch Institute of Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caterina I Colón
- Koch Institute of Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shreoshi Pal Choudhuri
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Victor Stastny
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Seth Hamilton
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Alix Le Marois
- Tumour Cell Biology Laboratory, Francis Crick Institute, London, UK
| | - Jodie Collingridge
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Linus Conrad
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Yinxing Chen
- Koch Institute of Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sheng Rong Ng
- Koch Institute of Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Margaret Magendantz
- Koch Institute of Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arjun Bhutkar
- Koch Institute of Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jin-Shing Chen
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Erik Sahai
- Tumour Cell Biology Laboratory, Francis Crick Institute, London, UK
| | - Benjamin J Drapkin
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Tyler Jacks
- Koch Institute of Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute of Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Maksym V Kopanitsa
- Cancer Neuroscience Laboratory, Francis Crick Institute, London, UK
- Charles River Discovery Services, Portishead, UK
| | - Hugh P C Robinson
- Cancer Neuroscience Laboratory, Francis Crick Institute, London, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Leanne Li
- Cancer Neuroscience Laboratory, Francis Crick Institute, London, UK.
- Koch Institute of Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
8
|
Hinz F, Friedel D, Korshunov A, Ippen FM, Bogumil H, Banan R, Brandner S, Hasselblatt M, Boldt HB, Dirse V, Dohmen H, Aronica E, Brodhun M, Broekman MLD, Capper D, Cherkezov A, Deng MY, van Dis V, Felsberg J, Frank S, French PJ, Gerlach R, Göbel K, Goold E, Hench J, Kantelhardt S, Kohlhof-Meinecke P, Krieg S, Mawrin C, Morrison G, Mühlebner A, Ozduman K, Pfister SM, Poliani PL, Prinz M, Reifenberger G, Riemenschneider MJ, Sankowski R, Schrimpf D, Sill M, Snuderl M, Verdijk RM, Voisin MR, Wesseling P, Wick W, Reuss DE, von Deimling A, Sahm F, Maas SLN, Suwala AK. IDH-mutant astrocytomas with primitive neuronal component have a distinct methylation profile and a higher risk of leptomeningeal spread. Acta Neuropathol 2025; 149:12. [PMID: 39899075 PMCID: PMC11790679 DOI: 10.1007/s00401-025-02849-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/04/2025]
Abstract
IDH-mutant astrocytomas are diffuse gliomas that are defined by characteristic mutations in IDH1 or IDH2 and do not have complete 1p/19q co-deletion. The established grading criteria include histological features of brisk mitotic activity (grade 3) and necrosis and/or microvascular proliferation (grade 4). In addition, homozygous deletion of the CDKN2A/B locus has recently been implemented as a molecular marker for grade 4 IDH-mutant astrocytomas. Here, we describe a subgroup of high-grade IDH-mutant astrocytomas characterised by a primitive neuronal component based on histology and a distinct DNA methylation profile (n = 51, ASTRO PNC). Misinterpretation as carcinoma metastasis was common, since GFAP expression was absent in the primitive neuronal component, whereas TTF-1 expression was detected in 15/19 cases (79%) based on immunohistochemistry. Apart from mutations in IDH1, TP53, and ATRX, we observed enrichment for alterations in RB1 (n = 19/51, 37%) and MYCN (n = 14/51, 27%). Homozygous CDKN2A/B deletion (n = 1/51, 2%) and CDK4 amplification (n = 3/51, 6%) were relatively rare events. Clinical (n = 31 patients) and survival data (n = 23 patients) indicate a clinical behaviour similar to other CNS WHO grade 4 IDH-mutant astrocytomas, however with an increased risk for leptomeningeal (n = 7) and extra-axial (n = 2) spread. Taken together, ASTRO PNC is defined by a distinct molecular and histological appearance that can mimic metastatic disease and typically follows an aggressive clinical course.
Collapse
Affiliation(s)
- Felix Hinz
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dennis Friedel
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Franziska M Ippen
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Henri Bogumil
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rouzbeh Banan
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Sebastian Brandner
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Henning B Boldt
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Vaidas Dirse
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Hildegard Dohmen
- Institute of Neuropathology, Justus-Liebig University Giessen, Giessen, Germany
| | - Eleonora Aronica
- Department of Pathology, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Michael Brodhun
- Department of Neurosurgery, Helios Clinic Erfurt, Erfurt, Health and Medical University, Erfurt, Germany
- Department of Pathology and Neuropathology, Helios Clinic Erfurt, Erfurt, Health and Medical University, Erfurt, Germany
| | - Marike L D Broekman
- Department of Neurosurgery, Haaglanden Medical Center and Leiden University Medical Center, Leiden, The Netherlands
| | - David Capper
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Asan Cherkezov
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Maximilian Y Deng
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Translational Pediatric Radiation Oncology, Hopp Children's Cancer Center (KITZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Vera van Dis
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jörg Felsberg
- Institute of Neuropathology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Stephan Frank
- Institute of Pathology, Division of Neuropathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Pim J French
- Department of Neurology, Brain Tumor Center at ErasmusMC Cancer Institute, Rotterdam, The Netherlands
| | - Rüdiger Gerlach
- Department of Neurosurgery, Helios Clinic Erfurt, Erfurt, Health and Medical University, Erfurt, Germany
| | - Kirsten Göbel
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eric Goold
- Institute for Experimental Pathology, ARUP Laboratories, Salt Lake City, UT, USA
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT, USA
| | - Jürgen Hench
- Institute of Pathology, Division of Neuropathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sven Kantelhardt
- Department of Neurosurgery, Vivantes Klinikum im Friedrichshain, Berlin, Germany
| | | | - Sandro Krieg
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Mawrin
- Department of Neuropathology and Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-University Magdeburg, and Center of Behavioral Brain Science, Magdeburg, Germany
| | - Gillian Morrison
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Angelika Mühlebner
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Koray Ozduman
- Department of Neurosurgery, School of Medicine, Acibadem University, 34752, Istanbul, Turkey
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Pietro Luigi Poliani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Marco Prinz
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | | | - Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Schrimpf
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Sill
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Robert M Verdijk
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mathew R Voisin
- Princess Margaret Cancer Centre, MacFeeters Hamilton Neuro-Oncology Program, University Health Network and University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam and Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Wolfgang Wick
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David E Reuss
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Sybren L N Maas
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Abigail K Suwala
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
9
|
Rekhtman N, Tischfield SE, Febres-Aldana CA, Lee JJK, Chang JC, Herzberg BO, Selenica P, Woo HJ, Vanderbilt CM, Yang SR, Xu F, Bowman AS, da Silva EM, Noronha AM, Mandelker DL, Mehine M, Mukherjee S, Blanco-Heredia J, Orgera JJ, Nanjangud GJ, Baine MK, Aly RG, Sauter JL, Travis WD, Savari O, Moreira AL, Falcon CJ, Bodd FM, Wilson CE, Sienty JV, Manoj P, Sridhar H, Wang L, Choudhury NJ, Offin M, Yu HA, Quintanal-Villalonga A, Berger MF, Ladanyi M, Donoghue MT, Reis-Filho JS, Rudin CM. Chromothripsis-Mediated Small Cell Lung Carcinoma. Cancer Discov 2025; 15:83-104. [PMID: 39185963 PMCID: PMC11726019 DOI: 10.1158/2159-8290.cd-24-0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/13/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Small cell lung carcinoma (SCLC) is a highly aggressive malignancy that is typically associated with tobacco exposure and inactivation of RB1 and TP53 genes. Here, we performed detailed clinicopathologic, genomic, and transcriptomic profiling of an atypical subset of SCLC that lacked RB1 and TP53 co-inactivation and arose in never/light smokers. We found that most cases were associated with chromothripsis-massive, localized chromosome shattering-recurrently involving chromosome 11 or 12 and resulting in extrachromosomal amplification of CCND1 or co-amplification of CCND2/CDK4/MDM2, respectively. Uniquely, these clinically aggressive tumors exhibited genomic and pathologic links to pulmonary carcinoids, suggesting a previously uncharacterized mode of SCLC pathogenesis via transformation from lower-grade neuroendocrine tumors or their progenitors. Conversely, SCLC in never-smokers harboring inactivated RB1 and TP53 exhibited hallmarks of adenocarcinoma-to-SCLC derivation, supporting two distinct pathways of plasticity-mediated pathogenesis of SCLC in never-smokers. Significance: Here, we provide the first detailed description of a unique SCLC subset lacking RB1/TP53 alterations and identify extensive chromothripsis and pathogenetic links to pulmonary carcinoids as its hallmark features. This work defines atypical SCLC as a novel entity among lung cancers, highlighting its exceptional histogenesis, clinicopathologic characteristics, and therapeutic vulnerabilities. See related commentary by Nadeem and Drapkin, p. 8.
Collapse
Affiliation(s)
- Natasha Rekhtman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sam E. Tischfield
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christopher A. Febres-Aldana
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jake June-Koo Lee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason C. Chang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Benjamin O. Herzberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center and the Herbert Irving Comprehensive Cancer Center, New York, New York
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hyung Jun Woo
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chad M. Vanderbilt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Soo-Ryum Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fei Xu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anita S. Bowman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Edaise M. da Silva
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anne Marie Noronha
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Diana L. Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Miika Mehine
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Semanti Mukherjee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Juan Blanco-Heredia
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John J. Orgera
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gouri J. Nanjangud
- Department of Molecular Cytogenetics Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marina K. Baine
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rania G. Aly
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jennifer L. Sauter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William D. Travis
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Omid Savari
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, University Hospitals Cleveland Medical Center- Case Western Reserve University, Cleveland, Ohio
| | - Andre L. Moreira
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Christina J. Falcon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Francis M. Bodd
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christina E. Wilson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jacklynn V. Sienty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Division of Biostatistics Research Scientists, New York University, New York, New York
| | - Parvathy Manoj
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Harsha Sridhar
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lu Wang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Noura J. Choudhury
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Michael Offin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Helena A. Yu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | | | - Michael F. Berger
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark T.A. Donoghue
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jorge S. Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles M. Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
10
|
Hao Y, Li M, Liu W, Ma Z, Liu Z. Autophagic flux modulates tumor heterogeneity and lineage plasticity in SCLC. Front Oncol 2025; 14:1509183. [PMID: 39850810 PMCID: PMC11754400 DOI: 10.3389/fonc.2024.1509183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/12/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction Small cell lung cancer (SCLC) is characterized by significant heterogeneity and plasticity, contributing to its aggressive progression and therapy resistance. Autophagy, a conserved cellular process, is implicated in many cancers, but its role in SCLC remains unclear. Methods Using a genetically engineered mouse model (Rb1fl/fl ; Trp53fl/fl ; GFP-LC3-RFP-LC3△G), we tracked autophagic flux in vivo to investigate its effects on SCLC biology. Additional in vitro experiments were conducted to modulate autophagic flux in NE and non-NE SCLC cell lines. Results Tumor subpopulations with high autophagic flux displayed increased proliferation, enhanced metastatic potential, and neuroendocrine (NE) characteristics. Conversely, low-autophagic flux subpopulations exhibited immune-related signals and non-NE traits. In vitro, increasing autophagy induced NE features in non-NE cell lines, while autophagy inhibition in NE cell lines promoted non-NE characteristics. Discussion This study provides a novel model for investigating autophagy in vivo and underscores its critical role in driving SCLC heterogeneity and plasticity, offering potential therapeutic insights.
Collapse
Affiliation(s)
- Yujie Hao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mingchen Li
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wenxu Liu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Zhenyi Ma
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Zhe Liu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Chen X, Wang K, Liao X, Zheng X, Yang S, Han C, Lu C, Wang X, Jin L, Kang H, Han Y, Wei J, Fan L, Zhang Z, Kong W. Single-Cell RNA Sequencing Reveals the Cellular Origin and Evolution of Small-Cell Neuroendocrine Carcinoma of the Cervix. J Med Virol 2025; 97:e70183. [PMID: 39831355 DOI: 10.1002/jmv.70183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/14/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Small-cell neuroendocrine cancer (SCNEC) of the uterine cervix is an exceedingly rare, highly aggressive tumor with an extremely poor prognosis. The cellular heterogeneity, origin, and tumorigenesis trajectories of SCNEC of the cervix remain largely unclear. We performed single-cell RNA sequencing and whole-exome sequencing on tumor tissues and adjacent normal cervical tissues from two patients diagnosed with SCNEC of the cervix. Here, we provide the first comprehensive insights into the cellular composition, HPV infection-related features, and gene expression profiles of SCNEC of the cervix at single-cell resolution. Correlation analyses suggested that SCNEC of the cervix may originate from squamous epithelial cells, and this observation was validated with bulk RNA-seq data from external cervical neuroendocrine cancer. Furthermore, sex-determining region Y-box 2 (SOX2), a key transcription factor that functions in direct neural differentiation, was located in the copy number gain region and highly expressed in neuroendocrine tumor cells from both patients. Notable, the distributions of the HPV-infected epithelium and SOX2 highly expressed epithelium were consistent with each other. Therefore, we supposed that high-risk HPV infection and amplification of SOX2 in the squamous epithelium may contribute to the progression of small-cell neuroendocrine tumorigenesis in the cervix.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Kunyu Wang
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Xingyu Liao
- Familial & Hereditary Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Xingzheng Zheng
- Department of Pathology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Shuli Yang
- Department of Gynecology Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Chao Han
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Chang Lu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Xiaodan Wang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Lingge Jin
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Haili Kang
- Department of Gynecology Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Yiding Han
- Department of Pathology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Jiacong Wei
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Linyuan Fan
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Zhan Zhang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Weimin Kong
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| |
Collapse
|
12
|
Senatorov IS, Bowman J, Jansson KH, Alilin AN, Capaldo BJ, Lake R, Riba M, Abbey YC, Mcknight C, Zhang X, Raj S, Beshiri ML, Shinn P, Nguyen H, Thomas CJ, Corey E, Kelly K. Castrate-resistant prostate cancer response to taxane is determined by an HNF1-dependent apoptosis resistance circuit. Cell Rep Med 2024; 5:101868. [PMID: 39657662 PMCID: PMC11722106 DOI: 10.1016/j.xcrm.2024.101868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/09/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Metastatic castrate-resistant prostate cancer (mCRPC) is a genetically and phenotypically heterogeneous cancer where advancements are needed in biomarker discovery and targeted therapy. A critical and often effective component of treatment includes taxanes. We perform a high-throughput screen across a cohort of 30 diverse patient-derived castrate-resistant prostate cancer (CRPC) organoids to a library of 78 drugs. Combining quantitative response measures with transcriptomic analyses demonstrates that HNF1 homeobox A (HNF1A) drives a transcriptional program of taxane resistance, commonly dependent upon cellular inhibitor of apoptosis protein 2 (cIAP2). Monotherapy with cIAP2 inhibitor LCL161 is sufficient to treat HNF1A+ models of mCRPC previously resistant to docetaxel. These data may be useful in future clinical trial designs.
Collapse
Affiliation(s)
- Ilya S Senatorov
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Joel Bowman
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Keith H Jansson
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Aian Neil Alilin
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Brian J Capaldo
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ross Lake
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Morgan Riba
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yasmine C Abbey
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Crystal Mcknight
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Sonam Raj
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michael L Beshiri
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Paul Shinn
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Holly Nguyen
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA; Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Bethesda, MD, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
13
|
Varuzhanyan G, Chen CC, Freeland J, He T, Tran W, Song K, Wang L, Cheng D, Xu S, Dibernardo GA, Esedebe FN, Bhatia V, Han M, Abt ER, Park JW, Memarzadeh S, Shackelford DB, Lee JK, Graeber TG, Shirihai OS, Witte ON. PGC-1α drives small cell neuroendocrine cancer progression toward an ASCL1-expressing subtype with increased mitochondrial capacity. Proc Natl Acad Sci U S A 2024; 121:e2416882121. [PMID: 39589879 PMCID: PMC11626175 DOI: 10.1073/pnas.2416882121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Adenocarcinomas from multiple tissues can converge to treatment-resistant small cell neuroendocrine (SCN) cancers composed of ASCL1, POU2F3, NEUROD1, and YAP1 subtypes. We investigated how mitochondrial metabolism influences SCN cancer (SCNC) progression. Extensive bioinformatics analyses encompassing thousands of patient tumors and human cancer cell lines uncovered enhanced expression of proliferator-activatedreceptor gamma coactivator 1-alpha (PGC-1α), a potent regulator of mitochondrial oxidative phosphorylation (OXPHOS), across several SCNCs. PGC-1α correlated tightly with increased expression of the lineage marker Achaete-scute homolog 1, (ASCL1) through a positive feedback mechanism. Analyses using a human prostate tissue-based SCN transformation system showed that the ASCL1 subtype has heightened PGC-1α expression and OXPHOS activity. PGC-1α inhibition diminished OXPHOS, reduced SCNC cell proliferation, and blocked SCN prostate tumor formation. Conversely, PGC-1α overexpression enhanced OXPHOS, validated by small-animal Positron Emission Tomography mitochondrial imaging, tripled the SCN prostate tumor formation rate, and promoted commitment to the ASCL1 lineage. These results establish PGC-1α as a driver of SCNC progression and subtype determination, highlighting metabolic vulnerabilities in SCNCs across different tissues.
Collapse
Affiliation(s)
- Grigor Varuzhanyan
- Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Chia-Chun Chen
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
| | - Jack Freeland
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, CA90095
| | - Tian He
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
| | - Wendy Tran
- Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Kai Song
- Department of Bioengineering, University of California, Los Angeles, CA90095
| | - Liang Wang
- Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Donghui Cheng
- Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
| | - Shili Xu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, the David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Gabriella A. Dibernardo
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Favour N. Esedebe
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA90095
| | - Vipul Bhatia
- Division of Hematology/Oncology, Department of Medicine University of California Los Angeles Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Mingqi Han
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Evan R. Abt
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
| | - Jung Wook Park
- Department of Pathology, Duke University School of Medicine, Durham, NC27710
| | - Sanaz Memarzadeh
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, the David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- The Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA90073
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| | - David B. Shackelford
- Jonsson Comprehensive Cancer Center, the David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - John K. Lee
- Division of Hematology/Oncology, Department of Medicine University of California Los Angeles Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Thomas G. Graeber
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, the David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA90095
- California NanoSystems Institute, University of California, Los Angeles, CA90095
- UCLA Metabolomics Center, University of California, Los Angeles, CA90095
| | - Orian S. Shirihai
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, CA90095
- University of California Los Angeles Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Clinical Biochemistry, School of Medicine, Ben Gurion University of The Negev, Beer-Sheva8410501, Israel
| | - Owen N. Witte
- Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, the David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, CA90095
| |
Collapse
|
14
|
Perez LM, Venugopal SV, Martin AS, Freedland SJ, Di Vizio D, Freeman MR. Mechanisms governing lineage plasticity and metabolic reprogramming in cancer. Trends Cancer 2024; 10:1009-1022. [PMID: 39218770 DOI: 10.1016/j.trecan.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Dynamic alterations in cellular phenotypes during cancer progression are attributed to a phenomenon known as 'lineage plasticity'. This process is associated with therapeutic resistance and involves concurrent shifts in metabolic states that facilitate adaptation to various stressors inherent in malignant growth. Certain metabolites also serve as synthetic reservoirs for chromatin modification, thus linking metabolic states with epigenetic regulation. There remains a critical need to understand the mechanisms that converge on lineage plasticity and metabolic reprogramming to prevent the emergence of lethal disease. This review attempts to offer an overview of our current understanding of the interplay between metabolic reprogramming and lineage plasticity in the context of cancer, highlighting the intersecting drivers of cancer hallmarks, with an emphasis on solid tumors.
Collapse
Affiliation(s)
- Lillian M Perez
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Smrruthi V Venugopal
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anna St Martin
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stephen J Freedland
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dolores Di Vizio
- Department of Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael R Freeman
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
15
|
Iżycka-Świeszewska E, Gulczyński J, Sejda A, Kitlińska J, Galli S, Rogowski W, Sigorski D. Remarks on Selected Morphological Aspects of Cancer Neuroscience: A Microscopic Photo Review. Biomedicines 2024; 12:2335. [PMID: 39457647 PMCID: PMC11505290 DOI: 10.3390/biomedicines12102335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND This short review and pictorial essay presents a morphological insight into cancer neuroscience, which is a complex and dynamic area of the pathobiology of tumors. METHODS We discuss the different methods and issues connected with structural research on tumor innervation, interactions between neoplastic cells and the nervous system, and dysregulated neural influence on cancer phenotypes. RESULTS Perineural invasion (PNI), the most-visible cancer-nerve relation, is briefly presented, focusing on its pathophysiology and structural diversity as well as its clinical significance. The morphological approach to cancer neurobiology further includes the analysis of neural density/axonogenesis, neural network topographic distribution, and composition of fiber types and size. Next, the diverse range of neurotransmitters and neuropeptides and the neuroendocrine differentiation of cancer cells are reviewed. Another morphological area of cancer neuroscience is spatial or quantitative neural-related marker expression analysis through different detection, description, and visualization methods, also on experimental animal or cellular models. CONCLUSIONS Morphological studies with systematic methodologies provide a necessary insight into the structure and function of the multifaceted tumor neural microenvironment and in context of possible new therapeutic neural-based oncological solutions.
Collapse
Affiliation(s)
- Ewa Iżycka-Świeszewska
- Department of Pathology and Neuropathology, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Department of Pathomorphology, Copernicus Hospital, 80-803 Gdansk, Poland
| | - Jacek Gulczyński
- Department of Pathology and Neuropathology, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Department of Pathomorphology, Copernicus Hospital, 80-803 Gdansk, Poland
| | - Aleksandra Sejda
- Department of Pathomorphology an Forensic Medicine, Collegium Medicum, University of Warmia and Mazury, 10-561 Olsztyn, Poland
| | - Joanna Kitlińska
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA; (J.K.); (S.G.)
| | - Susana Galli
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA; (J.K.); (S.G.)
| | - Wojciech Rogowski
- Institute of Health Sciences, Pomeranian University, 70-204 Slupsk, Poland
| | - Dawid Sigorski
- Department of Oncology, Collegium Medicum, University of Warmia and Mazury, 10-228 Olsztyn, Poland
| |
Collapse
|
16
|
Song F, Wang CG, Wang TL, Tao YC, Mao JZ, Hu CW, Zhang Y, Tang PJ, Lu CL, Qing HL, Han L, Chen Z. Enhancement of gemcitabine sensitivity in intrahepatic cholangiocarcinoma through Saikosaponin-a mediated modulation of the p-AKT/BCL-6/ABCA1 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155944. [PMID: 39146879 DOI: 10.1016/j.phymed.2024.155944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) remains a significant challenge in cancer therapy, especially due to its resistance to established treatments like Gemcitabine, necessitating novel therapeutic approaches. METHODS This study utilized Gemcitabine-resistant cell lines, patient-derived organotypic tumor spheroids (PDOTs), and patient-derived xenografts (PDX) to evaluate the effects of Saikosaponin-a (SSA) on ICC cellular proliferation, migration, apoptosis, and its potential synergistic interaction with Gemcitabine. Techniques such as transcriptome sequencing, Luciferase reporter assays, and molecular docking were employed to unravel the molecular mechanisms. RESULTS SSA exhibited antitumor effects in both in vitro and PDX models, indicating its considerable potential for ICC treatment. SSA markedly inhibited ICC progression by reducing cellular proliferation, enhancing apoptosis, and decreasing migration and invasion. Crucially, it augmented Gemcitabine's efficacy by targeting the p-AKT/BCL6/ABCA1 signaling pathway. This modulation led to the downregulation of p-AKT and suppression of BCL6 transcriptional activity, ultimately reducing ABCA1 expression and enhancing chemosensitivity to Gemcitabine. Additionally, ABCA1 was validated as a predictive biomarker for drug resistance, with a direct correlation between ABCA1 expression levels and the IC50 values of various small molecule drugs in ICC gene profiles. CONCLUSION This study highlights the synergistic potential of SSA combined with Gemcitabine in enhancing therapeutic efficacy against ICC and identifies ABCA1 as a key biomarker for drug responsiveness. Furthermore, the introduction of the novel PDOTs microfluidic model provides enhanced insights into ICC research. This combination strategy may provide a novel approach to overcoming treatment challenges in ICC.
Collapse
Affiliation(s)
- Fei Song
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China
| | - Cheng-Gui Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China
| | - Tian-Lun Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China
| | - Yi-Chao Tao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China
| | - Jia-Zhen Mao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China
| | - Chen-Wei Hu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China
| | - Yu Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China
| | - Peng-Ju Tang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China
| | - Chang-Liang Lu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China
| | - Huan-Long Qing
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China
| | - Lu Han
- Jiangsu Vocational College of Medicine, Yancheng 224054, PR China
| | - Zhong Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China.
| |
Collapse
|
17
|
Jiang J, Han D, Wang J, Wen W, Zhang R, Qin W. Neuroendocrine transdifferentiation in human cancer: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e761. [PMID: 39372390 PMCID: PMC11450264 DOI: 10.1002/mco2.761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024] Open
Abstract
Neuroendocrine transdifferentiation (NEtD), also commonly referred to as lineage plasticity, emerges as an acquired resistance mechanism to molecular targeted therapies in multiple cancer types, predominately occurs in metastatic epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer treated with EGFR tyrosine kinase inhibitors and metastatic castration-resistant prostate cancer treated with androgen receptor targeting therapies. NEtD tumors are the lethal cancer histologic subtype with unfavorable prognosis and limited treatment. A comprehensive understanding of molecular mechanism underlying targeted-induced plasticity could greatly facilitate the development of novel therapies. In the past few years, increasingly elegant studies indicated that NEtD tumors share key the convergent genomic and phenotypic characteristics irrespective of their site of origin, but also embrace distinct change and function of molecular mechanisms. In this review, we provide a comprehensive overview of the current understanding of molecular mechanism in regulating the NEtD, including genetic alterations, DNA methylation, histone modifications, dysregulated noncoding RNA, lineage-specific transcription factors regulation, and other proteomic alterations. We also provide the current management of targeted therapies in clinical and preclinical practice.
Collapse
Affiliation(s)
- Jun Jiang
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
- Department of Health Service, Base of Health ServiceAir Force Medical UniversityXi'anChina
| | - Donghui Han
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| | - Jiawei Wang
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, and National Translational Science Center for Molecular MedicineAir Force Medical UniversityXi'anChina
| | - Weihong Wen
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
| | - Rui Zhang
- State Key Laboratory of Cancer BiologyDepartment of ImmunologyAir Force Medical UniversityXi'anChina
| | - Weijun Qin
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
18
|
Marshall CH, Teply BA, Lu J, Oliveira L, Wang H, Mao SS, Kelly WK, Paller CJ, Markowski MC, Denmeade SR, King S, Sullivan R, Davicioni E, Proudfoot JA, Eisenberger MA, Carducci MA, Lotan TL, Antonarakis ES. Olaparib Without Androgen Deprivation for High-Risk Biochemically Recurrent Prostate Cancer Following Prostatectomy: A Nonrandomized Controlled Trial. JAMA Oncol 2024; 10:1400-1408. [PMID: 39172479 PMCID: PMC11342218 DOI: 10.1001/jamaoncol.2024.3074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/24/2024] [Indexed: 08/23/2024]
Abstract
Importance Olaparib is a poly(adenosine diphosphate-ribose) polymerase inhibitor that provides benefit in combination with hormonal therapies in patients with metastatic prostate cancer who harbor homologous recombination repair (HRR) alterations. Its efficacy in the absence of androgen deprivation therapy has not been tested. Objective To determine the activity of olaparib monotherapy among patients with high-risk biochemically recurrent (BCR) prostate cancer after radical prostatectomy. Design, Setting, and Participants This phase 2, single-arm nonrandomized controlled trial enrolled genetically unselected patients across 4 sites in the US from May 2017 to November 2022. Eligible patients had BCR disease following radical prostatectomy, a prostate-specific antigen (PSA) doubling time of 6 months or shorter, an absolute PSA value of 1.0 ng/mL or higher, and a testosterone level of 150 ng/dL or higher. Intervention Treatment was with olaparib, 300 mg, by mouth twice daily until doubling of the baseline PSA, clinical or radiographic progression, or unacceptable toxic effects. Main Outcome and Measure The primary end point was a confirmed 50% or higher decline in PSA from baseline (PSA50). Key secondary end points were outcomes by HRR alteration status, as well as safety and tolerability. Results Of the 51 male patients enrolled (mean [SD] age, 63.8 [6.8] years), 13 participants (26%) had a PSA50 response, all within the HRR-positive group (13 of 27 participants [48%]). All 11 participants with BRCA2 alterations experienced a PSA50 response. Common adverse events were fatigue in 32 participants (63%), nausea in 28 (55%), and leukopenia in 22 (43%), and were consistent with known adverse effects of olaparib. Conclusions and Relevance In this nonrandomized controlled trial, olaparib monotherapy led to high and durable PSA50 response rates in patients with BRCA2 alterations. Olaparib warrants further study as a treatment strategy for some patients with BCR prostate cancer but does not have sufficient activity in those without HRR alterations and should not be considered for those patients. Trial Registration ClinicalTrials.gov Identifier: NCT03047135.
Collapse
Affiliation(s)
| | | | - Jiayun Lu
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lia Oliveira
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hao Wang
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shifeng S. Mao
- Allegheny Health Network Cancer Institute, Pittsburgh, Pennsylvania
| | - W. Kevin Kelly
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | | | | | | | - Serina King
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rana Sullivan
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | - Tamara L. Lotan
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
19
|
Miyahira AK, Soule HR. The 30th Annual Prostate Cancer Foundation Scientific Retreat Report. Prostate 2024; 84:1271-1289. [PMID: 39021296 DOI: 10.1002/pros.24768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND The 30th Annual Prostate Cancer Foundation (PCF) Scientific Retreat was held at the Omni La Costa Resort in Carlsbad, CA, from October 26 to 28, 2023. A hybrid component was included for virtual attendees. METHODS The Annual PCF Scientific Retreat is a leading international scientific conference focused on pioneering, unpublished, and impactful studies across the spectrum of basic through clinical prostate cancer research, as well as research from related fields with significant potential for improving prostate cancer research and patient outcomes. RESULTS The 2023 PCF Retreat concentrated on key areas of research, including: (i) the biology of cancer stem cells and prostate cancer lineage plasticity; (ii) mechanisms of treatment resistance; (iii) emerging AI applications in diagnostic medicine; (iv) analytical and computational biology approaches in cancer research; (v) the role of nerves in prostate cancer; (vi) the biology of prostate cancer bone metastases; (vii) the contribution of ancestry and genomics to prostate cancer disparities; (viii) prostate cancer 3D genomics; (ix) progress in new targets and treatments for prostate cancer; (x) the biology and translational applications of tumor extracellular vesicles; (xi) updates from PCF TACTICAL Award teams; (xii) novel platforms for small molecule molecular glues and binding inhibitors; and (xiii) diversity, equity and inclusion strategies for advancing cancer care equity. CONCLUSIONS This meeting report summarizes the presentations and discussions from the 2023 PCF Scientific Retreat. We hope that sharing this information will deepen our understanding of current and emerging research and drive future advancements in prostate cancer patient care.
Collapse
Affiliation(s)
- Andrea K Miyahira
- Department of Science, Prostate Cancer Foundation, Santa Monica, California, USA
| | - Howard R Soule
- Department of Science, Prostate Cancer Foundation, Santa Monica, California, USA
| |
Collapse
|
20
|
Forbes AN, Xu D, Cohen S, Pancholi P, Khurana E. Discovery of therapeutic targets in cancer using chromatin accessibility and transcriptomic data. Cell Syst 2024; 15:824-837.e6. [PMID: 39236711 PMCID: PMC11415227 DOI: 10.1016/j.cels.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/22/2023] [Accepted: 08/08/2024] [Indexed: 09/07/2024]
Abstract
Most cancer types lack targeted therapeutic options, and when first-line targeted therapies are available, treatment resistance is a huge challenge. Recent technological advances enable the use of assay for transposase-accessible chromatin with sequencing (ATAC-seq) and RNA sequencing (RNA-seq) on patient tissue in a high-throughput manner. Here, we present a computational approach that leverages these datasets to identify drug targets based on tumor lineage. We constructed gene regulatory networks for 371 patients of 22 cancer types using machine learning approaches trained with three-dimensional genomic data for enhancer-to-promoter contacts. Next, we identified the key transcription factors (TFs) in these networks, which are used to find therapeutic vulnerabilities, by direct targeting of either TFs or the proteins that they interact with. We validated four candidates identified for neuroendocrine, liver, and renal cancers, which have a dismal prognosis with current therapeutic options.
Collapse
Affiliation(s)
- Andre Neil Forbes
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Duo Xu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sandra Cohen
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Priya Pancholi
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ekta Khurana
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
21
|
Niu X, Liu W, Zhang Y, Liu J, Zhang J, Li B, Qiu Y, Zhao P, Wang Z, Wang Z. Cancer plasticity in therapy resistance: Mechanisms and novel strategies. Drug Resist Updat 2024; 76:101114. [PMID: 38924995 DOI: 10.1016/j.drup.2024.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Therapy resistance poses a significant obstacle to effective cancer treatment. Recent insights into cell plasticity as a new paradigm for understanding resistance to treatment: as cancer progresses, cancer cells experience phenotypic and molecular alterations, corporately known as cell plasticity. These alterations are caused by microenvironment factors, stochastic genetic and epigenetic changes, and/or selective pressure engendered by treatment, resulting in tumor heterogeneity and therapy resistance. Increasing evidence suggests that cancer cells display remarkable intrinsic plasticity and reversibly adapt to dynamic microenvironment conditions. Dynamic interactions between cell states and with the surrounding microenvironment form a flexible tumor ecosystem, which is able to quickly adapt to external pressure, especially treatment. Here, this review delineates the formation of cancer cell plasticity (CCP) as well as its manipulation of cancer escape from treatment. Furthermore, the intrinsic and extrinsic mechanisms driving CCP that promote the development of therapy resistance is summarized. Novel treatment strategies, e.g., inhibiting or reversing CCP is also proposed. Moreover, the review discusses the multiple lines of ongoing clinical trials globally aimed at ameliorating therapy resistance. Such advances provide directions for the development of new treatment modalities and combination therapies against CCP in the context of therapy resistance.
Collapse
Affiliation(s)
- Xing Niu
- China Medical University, Shenyang, Liaoning 110122, China; Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, 999077, Hong Kong, China
| | - Wenjing Liu
- Medical Oncology Department of Thoracic Cancer (2), Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yinling Zhang
- Department of Oncology Radiotherapy 1, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266042, China
| | - Jing Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jianjun Zhang
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Bo Li
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Yue Qiu
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Peng Zhao
- Department of Medical Imaging, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Zhongmiao Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Zhe Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| |
Collapse
|
22
|
Duplaquet L, So K, Ying AW, Pal Choudhuri S, Li X, Xu GD, Li Y, Qiu X, Li R, Singh S, Wu XS, Hamilton S, Chien VD, Liu Q, Qi J, Somerville TDD, Heiling HM, Mazzola E, Lee Y, Zoller T, Vakoc CR, Doench JG, Forrester WC, Abrams T, Long HW, Niederst MJ, Drapkin BJ, Kadoch C, Oser MG. Mammalian SWI/SNF complex activity regulates POU2F3 and constitutes a targetable dependency in small cell lung cancer. Cancer Cell 2024; 42:1352-1369.e13. [PMID: 39029464 PMCID: PMC11494612 DOI: 10.1016/j.ccell.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/22/2024] [Accepted: 06/21/2024] [Indexed: 07/21/2024]
Abstract
Small cell lung cancers (SCLCs) are composed of heterogeneous subtypes marked by lineage-specific transcription factors, including ASCL1, NEUROD1, and POU2F3. POU2F3-positive SCLCs, ∼12% of all cases, are uniquely dependent on POU2F3 itself; as such, approaches to attenuate POU2F3 expression may represent new therapeutic opportunities. Here using genome-scale screens for regulators of POU2F3 expression and SCLC proliferation, we define mSWI/SNF complexes as top dependencies specific to POU2F3-positive SCLC. Notably, chemical disruption of mSWI/SNF ATPase activity attenuates proliferation of all POU2F3-positive SCLCs, while disruption of non-canonical BAF (ncBAF) via BRD9 degradation is effective in pure non-neuroendocrine POU2F3-SCLCs. mSWI/SNF targets to and maintains accessibility over gene loci central to POU2F3-mediated gene regulatory networks. Finally, clinical-grade pharmacologic disruption of SMARCA4/2 ATPases and BRD9 decreases POU2F3-SCLC tumor growth and increases survival in vivo. These results demonstrate mSWI/SNF-mediated governance of the POU2F3 oncogenic program and suggest mSWI/SNF inhibition as a therapeutic strategy for POU2F3-positive SCLCs.
Collapse
Affiliation(s)
- Leslie Duplaquet
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Kevin So
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Biological and Biomedical Sciences Graduate Program, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander W Ying
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shreoshi Pal Choudhuri
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xinyue Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Grace D Xu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Yixiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Rong Li
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shilpa Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Xiaoli S Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| | - Seth Hamilton
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Victor D Chien
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qi Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Hillary M Heiling
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Emanuele Mazzola
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yenarae Lee
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thomas Zoller
- Novartis BioMedical Research, Cambridge, MA 02139, USA
| | | | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Tinya Abrams
- Novartis BioMedical Research, Cambridge, MA 02139, USA
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Benjamin J Drapkin
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Sen T, Takahashi N, Chakraborty S, Takebe N, Nassar AH, Karim NA, Puri S, Naqash AR. Emerging advances in defining the molecular and therapeutic landscape of small-cell lung cancer. Nat Rev Clin Oncol 2024; 21:610-627. [PMID: 38965396 PMCID: PMC11875021 DOI: 10.1038/s41571-024-00914-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
Small-cell lung cancer (SCLC) has traditionally been considered a recalcitrant cancer with a dismal prognosis, with only modest advances in therapeutic strategies over the past several decades. Comprehensive genomic assessments of SCLC have revealed that most of these tumours harbour deletions of the tumour-suppressor genes TP53 and RB1 but, in contrast to non-small-cell lung cancer, have failed to identify targetable alterations. The expression status of four transcription factors with key roles in SCLC pathogenesis defines distinct molecular subtypes of the disease, potentially enabling specific therapeutic approaches. Overexpression and amplification of MYC paralogues also affect the biology and therapeutic vulnerabilities of SCLC. Several other attractive targets have emerged in the past few years, including inhibitors of DNA-damage-response pathways, epigenetic modifiers, antibody-drug conjugates and chimeric antigen receptor T cells. However, the rapid development of therapeutic resistance and lack of biomarkers for effective selection of patients with SCLC are ongoing challenges. Emerging single-cell RNA sequencing data are providing insights into the plasticity and intratumoural and intertumoural heterogeneity of SCLC that might be associated with therapeutic resistance. In this Review, we provide a comprehensive overview of the latest advances in genomic and transcriptomic characterization of SCLC with a particular focus on opportunities for translation into new therapeutic approaches to improve patient outcomes.
Collapse
Affiliation(s)
- Triparna Sen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Nobuyuki Takahashi
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Subhamoy Chakraborty
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Naoko Takebe
- Developmental Therapeutics Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Amin H Nassar
- Division of Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Nagla A Karim
- Inova Schar Cancer Institute Virginia, Fairfax, VA, USA
| | - Sonam Puri
- Division of Medical Oncology, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Abdul Rafeh Naqash
- Medical Oncology/ TSET Phase 1 program, University of Oklahoma, Oklahoma City, OK, USA.
| |
Collapse
|
24
|
Varuzhanyan G, Chen CC, Freeland J, He T, Tran W, Song K, Wang L, Cheng D, Xu S, Dibernardo GA, Esedebe FN, Bhatia V, Han M, Abt ER, Park JW, Memarzadeh S, Shackelford D, Lee JK, Graeber T, Shirihai O, Witte O. PGC-1α drives small cell neuroendocrine cancer progression towards an ASCL1-expressing subtype with increased mitochondrial capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588489. [PMID: 38645232 PMCID: PMC11030384 DOI: 10.1101/2024.04.09.588489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Adenocarcinomas from multiple tissues can evolve into lethal, treatment-resistant small cell neuroendocrine (SCN) cancers comprising multiple subtypes with poorly defined metabolic characteristics. The role of metabolism in directly driving subtype determination remains unclear. Through bioinformatics analyses of thousands of patient tumors, we identified enhanced PGC-1α-a potent regulator of oxidative phosphorylation (OXPHOS)-in various SCN cancers (SCNCs), closely linked with neuroendocrine differentiation. In a patient-derived prostate tissue SCNC transformation system, the ASCL1-expressing neuroendocrine subtype showed elevated PGC-1α expression and increased OXPHOS activity. Inhibition of PGC-1α and OXPHOS reduced the proliferation of SCN lung and prostate cancer cell lines and blocked SCN prostate tumor formation. Conversely, enhancing PGC- 1α and OXPHOS, validated by small-animal Positron Emission Tomography mitochondrial imaging, tripled the SCN prostate tumor formation rate and promoted commitment to the ASCL1 lineage. These results establish PGC-1α as a driver of SCNC progression and subtype determination, highlighting novel metabolic vulnerabilities in SCNCs across different tissues. STATEMENT OF SIGNIFICANCE Our study provides functional evidence that metabolic reprogramming can directly impact cancer phenotypes and establishes PGC-1α-induced mitochondrial metabolism as a driver of SCNC progression and lineage determination. These mechanistic insights reveal common metabolic vulnerabilities across SCNCs originating from multiple tissues, opening new avenues for pan-SCN cancer therapeutic strategies.
Collapse
|
25
|
Qian C, Yang Q, Rotinen M, Huang R, Kim H, Gallent B, Yan Y, Cadaneanu R, Zhang B, Kaochar S, Freedland S, Posadas E, Ellis L, Di Vizio D, Morrissey C, Nelson P, Brady L, Murali R, Campbell M, Yang W, Knudsen B, Mostaghel E, Ye H, Garraway I, You S, Freeman M. ONECUT2 acts as a lineage plasticity driver in adenocarcinoma as well as neuroendocrine variants of prostate cancer. Nucleic Acids Res 2024; 52:7740-7760. [PMID: 38932701 PMCID: PMC11260453 DOI: 10.1093/nar/gkae547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/06/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024] Open
Abstract
Androgen receptor- (AR-) indifference is a mechanism of resistance to hormonal therapy in prostate cancer (PC). Here we demonstrate that ONECUT2 (OC2) activates resistance through multiple drivers associated with adenocarcinoma, stem-like and neuroendocrine (NE) variants. Direct OC2 gene targets include the glucocorticoid receptor (GR; NR3C1) and the NE splicing factor SRRM4, which are key drivers of lineage plasticity. Thus, OC2, despite its previously described NEPC driver function, can indirectly activate a portion of the AR cistrome through epigenetic activation of GR. Mechanisms by which OC2 regulates gene expression include promoter binding, enhancement of genome-wide chromatin accessibility, and super-enhancer reprogramming. Pharmacologic inhibition of OC2 suppresses lineage plasticity reprogramming induced by the AR signaling inhibitor enzalutamide. These results demonstrate that OC2 activation promotes a range of drug resistance mechanisms associated with treatment-emergent lineage variation in PC and support enhanced efforts to therapeutically target OC2 as a means of suppressing treatment-resistant disease.
Collapse
Affiliation(s)
- Chen Qian
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Qian Yang
- Departments of Urology and Computational Biomedicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mirja Rotinen
- Department of Health Sciences, Public University of Navarre, Pamplona, Navarra, Spain
| | - Rongrong Huang
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Hyoyoung Kim
- Departments of Urology and Computational Biomedicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Brad Gallent
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yiwu Yan
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Radu M Cadaneanu
- Department of Surgical and Perioperative Care, VA Greater Los Angeles; Department of Urology and Jonsson Comprehensive Cancer Center, the David Geffen School of Medicine, UCLA, Box 951738, 10833 Le Conte Ave 66-188 CHS UCLA, Los Angeles, CA 90095, USA
| | - Baohui Zhang
- Department of Surgical and Perioperative Care, VA Greater Los Angeles; Department of Urology and Jonsson Comprehensive Cancer Center, the David Geffen School of Medicine, UCLA, Box 951738, 10833 Le Conte Ave 66-188 CHS UCLA, Los Angeles, CA 90095, USA
| | - Salma Kaochar
- Department of Medicine Section Hematology/Oncology Baylor College of Medicine, Houston, 77030 TX, USA
| | - Stephen J Freedland
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Edwin M Posadas
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leigh Ellis
- Center for Prostate Disease Research, Mutha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20814, USA
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Dolores Di Vizio
- Departments of Urology, Pathology and Laboratory Medicine, and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Peter S Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Lauren Brady
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ramachandran Murali
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Moray J Campbell
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wei Yang
- Department of Pathology and Cancer Center, Stony Brook University, NY 11794, USA
| | - Beatrice S Knudsen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84108, USA
- Department of Pathology, University of Utah, Salt Lake City, UT 84108, USA
| | - Elahe A Mostaghel
- Geriatric Research, Education and Clinical Center (GRECC), U.S. Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA 98133, USA
| | - Huihui Ye
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Isla P Garraway
- Department of Surgical and Perioperative Care, VA Greater Los Angeles; Department of Urology and Jonsson Comprehensive Cancer Center, the David Geffen School of Medicine, UCLA, Box 951738, 10833 Le Conte Ave 66-188 CHS UCLA, Los Angeles, CA 90095, USA
| | - Sungyong You
- Departments of Urology and Computational Biomedicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael R Freeman
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
26
|
Pan B, Yan S, Yuan L, Xiang H, Ju M, Xu S, Jia W, Li J, Zhao Q, Zheng M. Multiomics sequencing and immune microenvironment characteristics define three subtypes of small cell neuroendocrine carcinoma of the cervix. J Pathol 2024; 263:372-385. [PMID: 38721894 DOI: 10.1002/path.6290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/23/2024] [Accepted: 04/03/2024] [Indexed: 06/12/2024]
Abstract
Small cell cervical carcinoma (SCCC) is the most common neuroendocrine tumor in the female genital tract, with an unfavorable prognosis and lacking an evidence-based therapeutic approach. Until now, the distinct subtypes and immune characteristics of SCCC combined with genome and transcriptome have not been described. We performed genomic (n = 18), HPV integration (n = 18), and transcriptomic sequencing (n = 19) of SCCC samples. We assessed differences in immune characteristics between SCCC and conventional cervical cancer, and other small cell neuroendocrine carcinomas, through bioinformatics analysis and immunohistochemical assays. We stratified SCCC patients through non-negative matrix factorization and described the characteristics of these distinct types. We further validated it using multiplex immunofluorescence (n = 77) and investigated its clinical prognostic effect. We confirmed a high frequency of PIK3CA and TP53 alterations and HPV18 integrations in SCCC. SCCC and other small cell carcinoma had similar expression signatures and immune cell infiltration patterns. Comparing patients with SCCC to those with conventional cervical cancer, the former presented immune excluded or 'desert' infiltration. The number of CD8+ cells in the invasion margin of SCCC patients predicted favorable clinical outcomes. We identified three transcriptome subtypes: an inflamed phenotype with high-level expression of genes related to the MHC-II complex (CD74) and IFN-α/β (SCCC-I), and two neuroendocrine subtypes with high-level expression of ASCL1 or NEUROD1, respectively. Combined with multiple technologies, we found that the neuroendocrine groups had more TP53 mutations and SCCC-I had more PIK3CA mutations. Multiplex immunofluorescence validated these subtypes and SCCC-I was an independent prognostic factor of overall survival. These results provide insights into SCCC tumor heterogeneity and potential therapies. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Baoyue Pan
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Shumei Yan
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Linjing Yuan
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Huiling Xiang
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Mingxiu Ju
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Shijie Xu
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Weihua Jia
- Biobank of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Jundong Li
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Qi Zhao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Min Zheng
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| |
Collapse
|
27
|
Desai P, Takahashi N, Kumar R, Nichols S, Malin J, Hunt A, Schultz C, Cao Y, Tillo D, Nousome D, Chauhan L, Sciuto L, Jordan K, Rajapakse V, Tandon M, Lissa D, Zhang Y, Kumar S, Pongor L, Singh A, Schroder B, Sharma AK, Chang T, Vilimas R, Pinkiert D, Graham C, Butcher D, Warner A, Sebastian R, Mahon M, Baker K, Cheng J, Berger A, Lake R, Abel M, Krishnamurthy M, Chrisafis G, Fitzgerald P, Nirula M, Goyal S, Atkinson D, Bateman NW, Abulez T, Nair G, Apolo A, Guha U, Karim B, El Meskini R, Ohler ZW, Jolly MK, Schaffer A, Ruppin E, Kleiner D, Miettinen M, Brown GT, Hewitt S, Conrads T, Thomas A. Microenvironment shapes small-cell lung cancer neuroendocrine states and presents therapeutic opportunities. Cell Rep Med 2024; 5:101610. [PMID: 38897168 PMCID: PMC11228806 DOI: 10.1016/j.xcrm.2024.101610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/04/2023] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Small-cell lung cancer (SCLC) is the most fatal form of lung cancer. Intratumoral heterogeneity, marked by neuroendocrine (NE) and non-neuroendocrine (non-NE) cell states, defines SCLC, but the cell-extrinsic drivers of SCLC plasticity are poorly understood. To map the landscape of SCLC tumor microenvironment (TME), we apply spatially resolved transcriptomics and quantitative mass spectrometry-based proteomics to metastatic SCLC tumors obtained via rapid autopsy. The phenotype and overall composition of non-malignant cells in the TME exhibit substantial variability, closely mirroring the tumor phenotype, suggesting TME-driven reprogramming of NE cell states. We identify cancer-associated fibroblasts (CAFs) as a crucial element of SCLC TME heterogeneity, contributing to immune exclusion, and predicting exceptionally poor prognosis. Our work provides a comprehensive map of SCLC tumor and TME ecosystems, emphasizing their pivotal role in SCLC's adaptable nature, opening possibilities for reprogramming the TME-tumor communications that shape SCLC tumor states.
Collapse
Affiliation(s)
- Parth Desai
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Medical Oncology, Fox Chase Cancer Center, Temple University Hospital and Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Nobuyuki Takahashi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Rajesh Kumar
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Samantha Nichols
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Justin Malin
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Allison Hunt
- Women's Health Integrated Research Center, Inova Health System, Falls Church, VA, USA
| | - Christopher Schultz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yingying Cao
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Desiree Tillo
- CCR Collaborative Bioinformatics, Resource, Office of Science and Technology Resources, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Darryl Nousome
- CCR Collaborative Bioinformatics, Resource, Office of Science and Technology Resources, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lakshya Chauhan
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Linda Sciuto
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kimberly Jordan
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Vinodh Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mayank Tandon
- CCR Collaborative Bioinformatics, Resource, Office of Science and Technology Resources, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Delphine Lissa
- Laboratory of Human Carcinogenesis, Center for Cancer Research National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yang Zhang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suresh Kumar
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lorinc Pongor
- HCEMM Cancer Genomics and Epigenetics Research Group, Szeged, Hungary
| | - Abhay Singh
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Brett Schroder
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ajit Kumar Sharma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tiangen Chang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rasa Vilimas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Danielle Pinkiert
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chante Graham
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Donna Butcher
- Molecular Histopathology Laboratory, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Andrew Warner
- Molecular Histopathology Laboratory, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Robin Sebastian
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mimi Mahon
- Pain and Palliative care services, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Karen Baker
- Pain and Palliative care services, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Jennifer Cheng
- Pain and Palliative care services, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Ann Berger
- Pain and Palliative care services, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Ross Lake
- Laboratory of Genitourinary cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Melissa Abel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Manan Krishnamurthy
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - George Chrisafis
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter Fitzgerald
- CCR Collaborative Bioinformatics, Resource, Office of Science and Technology Resources, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Micheal Nirula
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shubhank Goyal
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Devon Atkinson
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Nicholas W Bateman
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Tamara Abulez
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Govind Nair
- National Institute of Neurological Disorders and Stroke, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Apolo
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Rajaa El Meskini
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Zoe Weaver Ohler
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Mohit Kumar Jolly
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Alejandro Schaffer
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - G Tom Brown
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen Hewitt
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Conrads
- Women's Health Integrated Research Center, Inova Health System, Falls Church, VA, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
28
|
Wang Z, Liu C, Zheng S, Yao Y, Wang S, Wang X, Yin E, Zeng Q, Zhang C, Zhang G, Tang W, Zheng B, Xue L, Wang Z, Feng X, Wang Y, Ying J, Xue Q, Sun N, He J. Molecular subtypes of neuroendocrine carcinomas: A cross-tissue classification framework based on five transcriptional regulators. Cancer Cell 2024; 42:1106-1125.e8. [PMID: 38788718 DOI: 10.1016/j.ccell.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 04/03/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
Neuroendocrine carcinomas (NECs) are extremely lethal malignancies that can arise at almost any anatomic site. Characterization of NECs is hindered by their rarity and significant inter- and intra-tissue heterogeneity. Herein, through an integrative analysis of over 1,000 NECs originating from 31 various tissues, we reveal their tissue-independent convergence and further unveil molecular divergence driven by distinct transcriptional regulators. Pan-tissue NECs are therefore categorized into five intrinsic subtypes defined by ASCL1, NEUROD1, HNF4A, POU2F3, and YAP1. A comprehensive portrait of these subtypes is depicted, highlighting subtype-specific transcriptional programs, genomic alterations, evolution trajectories, therapeutic vulnerabilities, and clinicopathological presentations. Notably, the newly discovered HNF4A-dominated subtype-H exhibits a gastrointestinal-like signature, wild-type RB1, unique neuroendocrine differentiation, poor chemotherapeutic response, and prevalent large-cell morphology. The proposal of uniform classification paradigm illuminates transcriptional basis of NEC heterogeneity and bridges the gap across different lineages and cytomorphological variants, in which context-dependent prevalence of subtypes underlies their phenotypic disparities.
Collapse
Affiliation(s)
- Zhanyu Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Chengming Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Sufei Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; Office for Cancer Diagnosis and Treatment Quality Control, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yuxin Yao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Sihui Wang
- Department of Medical Oncology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, P.R. China
| | - Xinfeng Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Enzhi Yin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Qingpeng Zeng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Wei Tang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Zhen Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xiaoli Feng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China.
| |
Collapse
|
29
|
Carceles-Cordon M, Orme JJ, Domingo-Domenech J, Rodriguez-Bravo V. The yin and yang of chromosomal instability in prostate cancer. Nat Rev Urol 2024; 21:357-372. [PMID: 38307951 PMCID: PMC11156566 DOI: 10.1038/s41585-023-00845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 02/04/2024]
Abstract
Metastatic prostate cancer remains an incurable lethal disease. Studies indicate that prostate cancer accumulates genomic changes during disease progression and displays the highest levels of chromosomal instability (CIN) across all types of metastatic tumours. CIN, which refers to ongoing chromosomal DNA gain or loss during mitosis, and derived aneuploidy, are known to be associated with increased tumour heterogeneity, metastasis and therapy resistance in many tumour types. Paradoxically, high CIN levels are also proposed to be detrimental to tumour cell survival, suggesting that cancer cells must develop adaptive mechanisms to ensure their survival. In the context of prostate cancer, studies indicate that CIN has a key role in disease progression and might also offer a therapeutic vulnerability that can be pharmacologically targeted. Thus, a comprehensive evaluation of the causes and consequences of CIN in prostate cancer, its contribution to aggressive advanced disease and a better understanding of the acquired CIN tolerance mechanisms can translate into new tumour classifications, biomarker development and therapeutic strategies.
Collapse
Affiliation(s)
| | - Jacob J Orme
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Josep Domingo-Domenech
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Veronica Rodriguez-Bravo
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
30
|
Feng M, Matoso A, Epstein G, Fong M, Park YH, Gabrielson A, Patel S, Czerniak B, Compérat E, Hoffman-Censits J, Kates M, Kim S, McConkey D, Choi W. Identification of Lineage-specific Transcriptional Factor-defined Molecular Subtypes in Small Cell Bladder Cancer. Eur Urol 2024; 85:523-526. [PMID: 37380560 DOI: 10.1016/j.eururo.2023.05.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023]
Abstract
Small cell/neuroendocrine bladder cancers (SCBCs) are rare and highly aggressive tumors that are associated with poor clinical outcomes. We discovered that lineage-specific transcription factors (ASCL1, NEUROD1, and POU2F3) defined three SCBC molecular subtypes that resemble well-characterized subtypes in small cell lung cancer. The subtypes expressed various levels of neuroendocrine (NE) markers and distinct downstream transcriptional targets. Specifically, the ASCL1 and NEUROD1 subtypes had high NE marker expression and were enriched with different downstream regulators of the NE phenotype (FOXA2 and HES6, respectively). ASCL1 was also associated with the expression of delta-like ligands that control oncogenic Notch signaling. POU2F3, a master regulator of the NE low subtype, targeted TRPM5, SOX9, and CHAT. We also observed an inverse association between NE marker expression and immune signatures associated with sensitivity to immune checkpoint blockade, and the ASCL1 subtype had distinct targets for clinically available antibody-drug conjugates. These findings provide new insight into molecular heterogeneity in SCBCs with implications for the development of new treatment regimens. PATIENT SUMMARY: We investigated the levels of different proteins in a specific type of bladder cancer (small cell/neuroendocrine; SCBC). We could identify three distinct subtypes of SCBC with similarity to small cell/neuroendocrine cancers in other tissues. The results may help in identifying new treatment approaches for this type of bladder cancer.
Collapse
Affiliation(s)
- Mingxiao Feng
- Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Greenberg Bladder Cancer Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Andres Matoso
- Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Greenberg Bladder Cancer Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Gabriel Epstein
- Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Greenberg Bladder Cancer Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Megan Fong
- Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Greenberg Bladder Cancer Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Yong Hyun Park
- Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Department of Urology, St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Andrew Gabrielson
- Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Greenberg Bladder Cancer Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Sunil Patel
- Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Greenberg Bladder Cancer Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Bagdan Czerniak
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eva Compérat
- Department of Pathology, Medical University Vienna, General Hospital, Vienna, Austria
| | - Jeannie Hoffman-Censits
- Greenberg Bladder Cancer Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Max Kates
- Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Greenberg Bladder Cancer Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Seungchan Kim
- Center for Computational Systems Biology, Department of Electrical and Computer Engineering, Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX, USA
| | - David McConkey
- Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Greenberg Bladder Cancer Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Woonyoung Choi
- Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Greenberg Bladder Cancer Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| |
Collapse
|
31
|
Lehtinen N, Suhonen J, Rice K, Välimäki E, Toriseva M, Routila J, Halme P, Rahi M, Irjala H, Leivo I, Kallajoki M, Nees M, Kuopio T, Ventelä S, Rantala JK. Assessment of targeted therapy opportunities in sinonasal cancers using patient-derived functional tumor models. Transl Oncol 2024; 44:101935. [PMID: 38522153 PMCID: PMC10973676 DOI: 10.1016/j.tranon.2024.101935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Malignant tumors derived from the epithelium lining the nasal cavity region are termed sinonasal cancers, a highly heterogeneous group of rare tumors accounting for 3 - 5 % of all head and neck cancers. Progress with next-generation molecular profiling has improved our understanding of the complexity of sinonasal cancers and resulted in the identification of an increasing number of distinct tumor entities. Despite these significant developments, the treatment of sinonasal cancers has hardly evolved since the 1980s, and an advanced sinonasal cancer presents a poor prognosis as targeted therapies are usually not available. To gain insights into potential targeted therapeutic opportunities, we performed a multiomics profiling of patient-derived functional tumor models to identify molecular characteristics associated with pharmacological responses in the different subtypes of sinonasal cancer. METHODS Patient-derived ex vivo tumor models representing four distinct sinonasal cancer subtypes: sinonasal intestinal-type adenocarcinoma, sinonasal neuroendocrine carcinoma, sinonasal undifferentiated carcinoma and SMARCB1 deficient sinonasal carcinoma were included in the analyses. Results of functional drug screens of 160 anti-cancer therapies were integrated with gene panel sequencing and histological analyses of the tumor tissues and the ex vivo cell cultures to establish associations between drug sensitivity and molecular characteristics including driver mutations. RESULTS The different sinonasal cancer subtypes display considerable differential drug sensitivity. Underlying the drug sensitivity profiles, each subtype was associated with unique molecular features. The therapeutic vulnerabilities correlating with specific genomic background were extended and validated with in silico analyses of cancer cell lines representing different human cancers and with reported case studies of sinonasal cancers treated with targeted therapies. CONCLUSION The results demonstrate the importance of understanding the differential biology and the molecular features associated with the different subtypes of sinonasal cancers. Patient-derived ex vivo tumor models can be a powerful tool for investigating these rare cancers and prioritizing targeted therapeutic strategies for future clinical development and personalized medicine.
Collapse
Affiliation(s)
| | | | | | | | - Mervi Toriseva
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; FICAN West Cancer Centre, Turku, Finland
| | - Johannes Routila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Department for Otorhinolaryngology - Head and Neck Surgery, University of Turku and Turku University Hospital, Turku, Finland
| | - Perttu Halme
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Department for Otorhinolaryngology - Head and Neck Surgery, University of Turku and Turku University Hospital, Turku, Finland
| | - Melissa Rahi
- Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland; Clinical Neurosciences, University of Turku, Turku, Finland
| | - Heikki Irjala
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Department for Otorhinolaryngology - Head and Neck Surgery, University of Turku and Turku University Hospital, Turku, Finland
| | - Ilmo Leivo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Markku Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Matthias Nees
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; FICAN West Cancer Centre, Turku, Finland; Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Teijo Kuopio
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland; Wellbeing Services County of Central Finland, Jyväskylä, Finland
| | - Sami Ventelä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; FICAN West Cancer Centre, Turku, Finland; Department for Otorhinolaryngology - Head and Neck Surgery, University of Turku and Turku University Hospital, Turku, Finland
| | | |
Collapse
|
32
|
Jing N, Du X, Liang Y, Tao Z, Bao S, Xiao H, Dong B, Gao WQ, Fang YX. PAX6 promotes neuroendocrine phenotypes of prostate cancer via enhancing MET/STAT5A-mediated chromatin accessibility. J Exp Clin Cancer Res 2024; 43:144. [PMID: 38745318 PMCID: PMC11094950 DOI: 10.1186/s13046-024-03064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Neuroendocrine prostate cancer (NEPC) is a lethal subset of prostate cancer which is characterized by neuroendocrine differentiation and loss of androgen receptor (AR) signaling. Growing evidence reveals that cell lineage plasticity is crucial in the failure of NEPC therapies. Although studies suggest the involvement of the neural transcription factor PAX6 in drug resistance, its specific role in NEPC remains unclear. METHODS The expression of PAX6 in NEPC was identified via bioinformatics and immunohistochemistry. CCK8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay were used to illustrate the key role of PAX6 in the progression of in vitro. ChIP and Dual-luciferase reporter assays were conducted to confirm the binding sequences of AR in the promoter region of PAX6, as well as the binding sequences of PAX6 in the promoter regions of STAT5A and MET. For in vivo validation, the xenograft model representing NEPC subtype underwent pathological analysis to verify the significant role of PAX6 in disease progression. Complementary diagnoses were established through public clinical datasets and transcriptome sequencing of specific cell lines. ATAC-seq was used to detect the chromatin accessibility of specific cell lines. RESULTS PAX6 expression was significantly elevated in NEPC and negatively regulated by AR signaling. Activation of PAX6 in non-NEPC cells led to NE trans-differentiation, while knock-down of PAX6 in NEPC cells inhibited the development and progression of NEPC. Importantly, loss of AR resulted in an enhanced expression of PAX6, which reprogramed the lineage plasticity of prostate cancer cells to develop NE phenotypes through the MET/STAT5A signaling pathway. Through ATAC-seq, we found that a high expression level of PAX6 elicited enhanced chromatin accessibility, mainly through attenuation of H4K20me3, which typically causes chromatin silence in cancer cells. CONCLUSION This study reveals a novel neural transcription factor PAX6 could drive NEPC progression and suggest that it might serve as a potential therapeutic target for the management of NEPC.
Collapse
Affiliation(s)
- Nan Jing
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
- Med-X Research Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xinxing Du
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - ZhenKeke Tao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shijia Bao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Huixiang Xiao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Baijun Dong
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei-Qiang Gao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Med-X Research Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Yu-Xiang Fang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
33
|
Wang Z, Zeng S, Xu C. Re: Mingxiao Feng, Andres Matoso, Gabriel Epstein, et al. Identification of Lineage-specific Transcriptional Factor-defined Molecular Subtypes in Small Cell Bladder Cancer. Eur Urol. In press. https://doi.org/10.1016/j.eururo.2023.05.023. Eur Urol 2024; 85:e113-e114. [PMID: 37919193 DOI: 10.1016/j.eururo.2023.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 11/04/2023]
Affiliation(s)
- Ziwei Wang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Shuxiong Zeng
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
34
|
Franceschini GM, Quaini O, Mizuno K, Orlando F, Ciani Y, Ku SY, Sigouros M, Rothmann E, Alonso A, Benelli M, Nardella C, Auh J, Freeman D, Hanratty B, Adil M, Elemento O, Tagawa ST, Feng FY, Caffo O, Buttigliero C, Basso U, Nelson PS, Corey E, Haffner MC, Attard G, Aparicio A, Demichelis F, Beltran H. Noninvasive Detection of Neuroendocrine Prostate Cancer through Targeted Cell-free DNA Methylation. Cancer Discov 2024; 14:424-445. [PMID: 38197680 PMCID: PMC10905672 DOI: 10.1158/2159-8290.cd-23-0754] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/31/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024]
Abstract
Castration-resistant prostate cancer (CRPC) is a heterogeneous disease associated with phenotypic subtypes that drive therapy response and outcome differences. Histologic transformation to castration-resistant neuroendocrine prostate cancer (CRPC-NE) is associated with distinct epigenetic alterations, including changes in DNA methylation. The current diagnosis of CRPC-NE is challenging and relies on metastatic biopsy. We developed a targeted DNA methylation assay to detect CRPC-NE using plasma cell-free DNA (cfDNA). The assay quantifies tumor content and provides a phenotype evidence score that captures diverse CRPC phenotypes, leveraging regions to inform transcriptional state. We tested the design in independent clinical cohorts (n = 222 plasma samples) and qualified it achieving an AUC > 0.93 for detecting pathology-confirmed CRPC-NE (n = 136). Methylation-defined cfDNA tumor content was associated with clinical outcomes in two prospective phase II clinical trials geared towards aggressive variant CRPC and CRPC-NE. These data support the application of targeted DNA methylation for CRPC-NE detection and patient stratification. SIGNIFICANCE Neuroendocrine prostate cancer is an aggressive subtype of treatment-resistant prostate cancer. Early detection is important, but the diagnosis currently relies on metastatic biopsy. We describe the development and validation of a plasma cell-free DNA targeted methylation panel that can quantify tumor fraction and identify patients with neuroendocrine prostate cancer noninvasively. This article is featured in Selected Articles from This Issue, p. 384.
Collapse
Affiliation(s)
- Gian Marco Franceschini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Orsetta Quaini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Kei Mizuno
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Francesco Orlando
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Yari Ciani
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Sheng-Yu Ku
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael Sigouros
- Institute for Computational Biomedicine and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
| | - Emily Rothmann
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alicia Alonso
- Institute for Computational Biomedicine and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
| | | | - Caterina Nardella
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Joonghoon Auh
- Institute for Computational Biomedicine and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
| | - Dory Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Brian Hanratty
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mohamed Adil
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Olivier Elemento
- Institute for Computational Biomedicine and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
| | - Scott T. Tagawa
- Department of Medicine, Division of Medical Oncology, Weill Cornell Medicine, New York, New York
| | - Felix Y. Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Orazio Caffo
- Department of Medical Oncology, Santa Chiara Hospital, Trento, Italy
| | - Consuelo Buttigliero
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, Italy
| | - Umberto Basso
- Department of Oncology, Istituto Oncologico Veneto IOV - IRCCS, Padua, Italy
| | | | - Eva Corey
- University of Washington, Seattle, Washington
| | - Michael C. Haffner
- Fred Hutchinson Cancer Research Center, Seattle, Washington
- University of Washington, Seattle, Washington
| | - Gerhardt Attard
- Cancer Institute and University College London Hospitals, University College London, London, United Kingdom
| | - Ana Aparicio
- Department of GU Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
35
|
Solta A, Ernhofer B, Boettiger K, Megyesfalvi Z, Heeke S, Hoda MA, Lang C, Aigner C, Hirsch FR, Schelch K, Döme B. Small cells - big issues: biological implications and preclinical advancements in small cell lung cancer. Mol Cancer 2024; 23:41. [PMID: 38395864 PMCID: PMC10893629 DOI: 10.1186/s12943-024-01953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Current treatment guidelines refer to small cell lung cancer (SCLC), one of the deadliest human malignancies, as a homogeneous disease. Accordingly, SCLC therapy comprises chemoradiation with or without immunotherapy. Meanwhile, recent studies have made significant advances in subclassifying SCLC based on the elevated expression of the transcription factors ASCL1, NEUROD1, and POU2F3, as well as on certain inflammatory characteristics. The role of the transcription regulator YAP1 in defining a unique SCLC subset remains to be established. Although preclinical analyses have described numerous subtype-specific characteristics and vulnerabilities, the so far non-existing clinical subtype distinction may be a contributor to negative clinical trial outcomes. This comprehensive review aims to provide a framework for the development of novel personalized therapeutic approaches by compiling the most recent discoveries achieved by preclinical SCLC research. We highlight the challenges faced due to limited access to patient material as well as the advances accomplished by implementing state-of-the-art models and methodologies.
Collapse
Affiliation(s)
- Anna Solta
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Büsra Ernhofer
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Kristiina Boettiger
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Zsolt Megyesfalvi
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Simon Heeke
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christian Lang
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Division of Pulmonology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | - Clemens Aigner
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Fred R Hirsch
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Center for Thoracic Oncology, Mount Sinai Health System, Tisch Cancer Institute, New York, NY, USA.
| | - Karin Schelch
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Balazs Döme
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.
- National Koranyi Institute of Pulmonology, Budapest, Hungary.
- Department of Translational Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
36
|
Liu S, Chai T, Garcia-Marques F, Yin Q, Hsu EC, Shen M, Shaw Toland AM, Bermudez A, Hartono AB, Massey CF, Lee CS, Zheng L, Baron M, Denning CJ, Aslan M, Nguyen HM, Nolley R, Zoubeidi A, Das M, Kunder CA, Howitt BE, Soh HT, Weissman IL, Liss MA, Chin AI, Brooks JD, Corey E, Pitteri SJ, Huang J, Stoyanova T. UCHL1 is a potential molecular indicator and therapeutic target for neuroendocrine carcinomas. Cell Rep Med 2024; 5:101381. [PMID: 38244540 PMCID: PMC10897521 DOI: 10.1016/j.xcrm.2023.101381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/18/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024]
Abstract
Neuroendocrine carcinomas, such as neuroendocrine prostate cancer and small-cell lung cancer, commonly have a poor prognosis and limited therapeutic options. We report that ubiquitin carboxy-terminal hydrolase L1 (UCHL1), a deubiquitinating enzyme, is elevated in tissues and plasma from patients with neuroendocrine carcinomas. Loss of UCHL1 decreases tumor growth and inhibits metastasis of these malignancies. UCHL1 maintains neuroendocrine differentiation and promotes cancer progression by regulating nucleoporin, POM121, and p53. UCHL1 binds, deubiquitinates, and stabilizes POM121 to regulate POM121-associated nuclear transport of E2F1 and c-MYC. Treatment with the UCHL1 inhibitor LDN-57444 slows tumor growth and metastasis across neuroendocrine carcinomas. The combination of UCHL1 inhibitors with cisplatin, the standard of care used for neuroendocrine carcinomas, significantly delays tumor growth in pre-clinical settings. Our study reveals mechanisms of UCHL1 function in regulating the progression of neuroendocrine carcinomas and identifies UCHL1 as a therapeutic target and potential molecular indicator for diagnosing and monitoring treatment responses in these malignancies.
Collapse
Affiliation(s)
- Shiqin Liu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Timothy Chai
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | | | - Qingqing Yin
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - En-Chi Hsu
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Michelle Shen
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Radiology, Stanford University, Palo Alto, CA, USA
| | | | - Abel Bermudez
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Alifiani B Hartono
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher F Massey
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chung S Lee
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Liwei Zheng
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Maya Baron
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Caden J Denning
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Merve Aslan
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Holly M Nguyen
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Rosalie Nolley
- Department of Urology, Stanford University, Stanford, CA, USA
| | - Amina Zoubeidi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Millie Das
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, USA; Department of Medicine, Division of Oncology, Stanford University, Stanford, CA, USA
| | | | - Brooke E Howitt
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - H Tom Soh
- Department of Radiology, Stanford University, Palo Alto, CA, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Irving L Weissman
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University, Stanford, CA, USA; Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, USA
| | - Michael A Liss
- Department of Urology, UT Health San Antonio, San Antonio, TX, USA
| | - Arnold I Chin
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
| | - James D Brooks
- Department of Urology, Stanford University, Stanford, CA, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Sharon J Pitteri
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University, Durham, NC, USA
| | - Tanya Stoyanova
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Radiology, Stanford University, Palo Alto, CA, USA; Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
37
|
Saini S, Sreekumar A, Nathani S, Asante DM, Simmons MN. A novel exosome based therapeutic intervention against neuroendocrine prostate cancer. Sci Rep 2024; 14:2816. [PMID: 38307935 PMCID: PMC10837194 DOI: 10.1038/s41598-024-53269-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is a highly lethal variant of castration-resistant prostate cancer (CRPC) with poor survival rates. Current treatment options for NEPC are limited to highly toxic platinum drugs highlighting the urgent need for new therapies. This study aimed to develop a novel therapeutic approach using engineered exosomes against NEPC. Exosomes were modified to target CEACAM5, an NEPC surface antigen, by attaching CEACAM5 antibodies to HEK293T exosomes. These exosomes were loaded with drugs inhibiting EZH2 and the androgen receptor (AR) as recent research shows a persistent role of AR in NEPC wherein it plays a concerted role with EZH2 in driving neuronal gene programs. In vitro experiments with NEPC cell lines demonstrated that CEACAM5-targeted exosomes were specifically taken up by NEPC cells, leading to reduced cellular viability and decreased expression of neuronal markers. Further in vivo tests using a NEPC patient-derived xenograft model (LuCaP145.1) showed significant tumor regression in mice treated with engineered exosomes compared to control mice receiving IgG-labeled exosomes. These results suggest that CEACAM5-engineered exosomes hold promise as a targeted therapy for NEPC. Importantly, our exosome engineering strategy is versatile and can be adapted to target various surface antigens in prostate cancer and other diseases.
Collapse
Affiliation(s)
- Sharanjot Saini
- Department of Biochemistry and Molecular Biology, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA.
- Department of Urology, Augusta University, Augusta, GA, USA.
| | - Amritha Sreekumar
- Department of Biochemistry and Molecular Biology, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA
| | - Sandip Nathani
- Department of Biochemistry and Molecular Biology, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA
| | - Diana M Asante
- Department of Biochemistry and Molecular Biology, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA
| | | |
Collapse
|
38
|
Tauziède-Espariat A, Masliah-Planchon J, Tran S, Filser M, Saffroy R, Bochaton D, Hasty L, Senova S, Kauv P, Mokhtari K, Adam C, Poté N, Chrétien F, Métais A, Varlet P, Bielle F, Laurenge A. Brain metastasis of a urothelial neuroendocrine carcinoma: A double pitfall for neuropathologists and DNA-methylation profiling. Neuropathol Appl Neurobiol 2024; 50:e12951. [PMID: 38124282 DOI: 10.1111/nan.12951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Affiliation(s)
- Arnault Tauziède-Espariat
- Department of Neuropathology, GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris, France
| | - Julien Masliah-Planchon
- Institut Curie, Laboratory of Somatic Genetics, PMDT, Paris Sciences Lettres Research University, Paris, France
| | - Suzanne Tran
- Sorbonne Université, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France
- Department of Neuropathology, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France
| | - Mathilde Filser
- Institut Curie, Laboratory of Somatic Genetics, PMDT, Paris Sciences Lettres Research University, Paris, France
| | - Raphaël Saffroy
- Department of Biochemistry and Oncogenetics, Paul Brousse Hospital, Villejuif, France
| | - Dorian Bochaton
- Department of Neuropathology, GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris, France
| | - Lauren Hasty
- Department of Neuropathology, GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris, France
| | - Suhan Senova
- Department of Neurosurgery, Henri Mondor Hospital, Université Paris Est Créteil; Unité INSERM U955 IMRB, Neuropsychiatrie Translationnelle, Créteil, France
| | - Paul Kauv
- Department of Radiology, Henri Mondor Hospital, Créteil, France
| | - Karima Mokhtari
- Sorbonne Université, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France
- Department of Neuropathology, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France
| | - Clovis Adam
- Department of Pathology, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Nicolas Poté
- Department of Pathology, Beaujon Hospital, Clichy, France
| | - Fabrice Chrétien
- Department of Neuropathology, GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris, France
| | - Alice Métais
- Department of Neuropathology, GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Ima-brain Team, Paris, France
| | - Pascale Varlet
- Department of Neuropathology, GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Ima-brain Team, Paris, France
| | - Franck Bielle
- Sorbonne Université, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France
- Department of Neuropathology, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France
| | - Alice Laurenge
- Department of Neurology 2-Mazarin, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau Et de La Moelle Épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France
| |
Collapse
|
39
|
Abstract
Molecular abnormalities that shape human neoplasms dissociate their phenotypic landscape from that of the healthy counterpart. Through the lens of a microscope, tumour pathology optically captures such aberrations projected onto a tissue slide and has categorized human epithelial neoplasms into distinct histological subtypes based on the diverse morphogenetic and molecular programmes that they manifest. Tumour histology often reflects tumour aggressiveness, patient prognosis and therapeutic vulnerability, and thus has been used as a de facto diagnostic tool and for making clinical decisions. However, it remains elusive how the diverse histological subtypes arise and translate into pleiotropic biological phenotypes. Molecular analysis of clinical tumour tissues and their culture, including patient-derived organoids, and add-back genetic reconstruction of tumorigenic pathways using gene engineering in culture models and rodents further elucidated molecular mechanisms that underlie morphological variations. Such mechanisms include genetic mutations and epigenetic alterations in cellular identity codes that erode hard-wired morphological programmes and histologically digress tumours from the native tissues. Interestingly, tumours acquire the ability to grow independently of the niche-driven stem cell ecosystem along with these morphological alterations, providing a biological rationale for histological diversification during tumorigenesis. This Review comprehensively summarizes our current understanding of such plasticity in the histological and lineage commitment fostered cooperatively by molecular alterations and the tumour environment, and describes basic and clinical implications for future cancer therapy.
Collapse
Affiliation(s)
- Masayuki Fujii
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| | - Shigeki Sekine
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Toshiro Sato
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
40
|
Duplaquet L, So K, Ying AW, Li X, Li Y, Qiu X, Li R, Singh S, Wu XS, Liu Q, Qi J, Somerville TDD, Heiling H, Mazzola E, Lee Y, Zoller T, Vakoc CR, Doench JG, Forrester WC, Abrams T, Long HW, Niederst MJ, Kadoch C, Oser MG. Mammalian SWI/SNF complex activity regulates POU2F3 and constitutes a targetable dependency in small cell lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.21.576304. [PMID: 38328215 PMCID: PMC10849479 DOI: 10.1101/2024.01.21.576304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Small cell lung cancers (SCLC) are comprised of heterogeneous subtypes marked by lineage-specific transcription factors, including ASCL1, NEUROD1, and POU2F3. POU2F3-positive SCLC, ∼12% of all cases, are uniquely dependent on POU2F3 itself; as such, approaches to attenuate POU2F3 expression may represent new therapeutic opportunities. Here using genome-scale screens for regulators of POU2F3 expression and SCLC proliferation, we define mSWI/SNF complexes, including non-canonical BAF (ncBAF) complexes, as top dependencies specific to POU2F3-positive SCLC. Notably, clinical-grade pharmacologic mSWI/SNF inhibition attenuates proliferation of all POU2F3-positive SCLCs, while disruption of ncBAF via BRD9 degradation is uniquely effective in pure non-neuroendocrine POU2F3-SCLCs. mSWI/SNF maintains accessibility over gene loci central to POU2F3-mediated gene regulatory networks. Finally, chemical targeting of SMARCA4/2 mSWI/SNF ATPases and BRD9 decrease POU2F3-SCLC tumor growth and increase survival in vivo . Taken together, these results characterize mSWI/SNF-mediated global governance of the POU2F3 oncogenic program and suggest mSWI/SNF inhibition as a therapeutic strategy for SCLC.
Collapse
|
41
|
Enokido T, Horie M, Yoshino S, Suzuki HI, Matsuki R, Brunnström H, Micke P, Nagase T, Saito A, Miyashita N. Distinct microRNA Signature and Suppression of ZFP36L1 Define ASCL1-Positive Lung Adenocarcinoma. Mol Cancer Res 2024; 22:29-40. [PMID: 37801008 DOI: 10.1158/1541-7786.mcr-23-0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/23/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023]
Abstract
Achaete-scute family bHLH transcription factor 1 (ASCL1) is a master transcription factor involved in neuroendocrine differentiation. ASCL1 is expressed in approximately 10% of lung adenocarcinomas (LUAD) and exerts tumor-promoting effects. Here, we explored miRNA profiles in ASCL1-positive LUADs and identified several miRNAs closely associated with ASCL1 expression, including miR-375, miR-95-3p/miR-95-5p, miR-124-3p, and members of the miR-17∼92 family. Similar to small cell lung cancer, Yes1 associated transcriptional regulator (YAP1), a representative miR-375 target gene, was suppressed in ASCL1-positive LUADs. ASCL1 knockdown followed by miRNA profiling in a cell culture model further revealed that ASCL1 positively regulates miR-124-3p and members of the miR-17∼92 family. Integrative transcriptomic analyses identified ZFP36 ring finger protein like 1 (ZFP36L1) as a target gene of miR-124-3p, and IHC studies demonstrated that ASCL1-positive LUADs are associated with low ZFP36L1 protein levels. Cell culture studies showed that ectopic ZFP36L1 expression inhibits cell proliferation, survival, and cell-cycle progression. Moreover, ZFP36L1 negatively regulated several genes including E2F transcription factor 1 (E2F1) and snail family transcriptional repressor 1 (SNAI1). In conclusion, our study revealed that suppression of ZFP36L1 via ASCL1-regulated miR-124-3p could modulate gene expression, providing evidence that ASCL1-mediated regulation of miRNAs shapes molecular features of ASCL1-positive LUADs. IMPLICATIONS Our study revealed unique miRNA profiles of ASCL1-positive LUADs and identified ASCL1-regulated miRNAs with functional relevance.
Collapse
Affiliation(s)
- Takayoshi Enokido
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masafumi Horie
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Seiko Yoshino
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi I Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya, Japan
| | - Rei Matsuki
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hans Brunnström
- Lund University, Laboratory Medicine Region Skåne, Department of Clinical Sciences Lund, Pathology, Lund, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoya Miyashita
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
42
|
Nomura M, Ohuchi M, Sakamoto Y, Kudo K, Yaku K, Soga T, Sugiura Y, Morita M, Hayashi K, Miyahara S, Sato T, Yamashita Y, Ito S, Kikuchi N, Sato I, Saito R, Yaegashi N, Fukuhara T, Yamada H, Shima H, Nakayama KI, Hirao A, Kawasaki K, Arai Y, Akamatsu S, Tanuma SI, Sato T, Nakagawa T, Tanuma N. Niacin restriction with NAMPT-inhibition is synthetic lethal to neuroendocrine carcinoma. Nat Commun 2023; 14:8095. [PMID: 38092728 PMCID: PMC10719245 DOI: 10.1038/s41467-023-43630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) plays a major role in NAD biosynthesis in many cancers and is an attractive potential cancer target. However, factors dictating therapeutic efficacy of NAMPT inhibitors (NAMPTi) are unclear. We report that neuroendocrine phenotypes predict lung and prostate carcinoma vulnerability to NAMPTi, and that NAMPTi therapy against those cancers is enhanced by dietary modification. Neuroendocrine differentiation of tumor cells is associated with down-regulation of genes relevant to quinolinate phosphoribosyltransferase-dependent de novo NAD synthesis, promoting NAMPTi susceptibility in vitro. We also report that circulating nicotinic acid riboside (NAR), a non-canonical niacin absent in culture media, antagonizes NAMPTi efficacy as it fuels NAMPT-independent but nicotinamide riboside kinase 1-dependent NAD synthesis in tumors. In mouse transplantation models, depleting blood NAR by nutritional or genetic manipulations is synthetic lethal to tumors when combined with NAMPTi. Our findings provide a rationale for simultaneous targeting of NAR metabolism and NAMPT therapeutically in neuroendocrine carcinoma.
Collapse
Affiliation(s)
- Miyuki Nomura
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Mai Ohuchi
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Yoshimi Sakamoto
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Kei Kudo
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
- Department of Biochemical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keisuke Yaku
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Yuki Sugiura
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mami Morita
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Kayoko Hayashi
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Shuko Miyahara
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
- Department of Biochemical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taku Sato
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Yoji Yamashita
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Shigemi Ito
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Naohiko Kikuchi
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Ikuro Sato
- Department of Pathology, Miyagi Cancer Center Hospital, Natori, Japan
| | - Rintaro Saito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tatsuro Fukuhara
- Department of Respiratory Medicine, Miyagi Cancer Center Hospital, Natori, Japan
| | - Hidekazu Yamada
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Hiroshi Shima
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyusyu University, Fukuoka, Japan
- TMDU Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute and WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Kenta Kawasaki
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoichi Arai
- Department of Urology, Miyagi Cancer Center Hospital, Natori, Japan
| | - Shusuke Akamatsu
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sei-Ichi Tanuma
- Meikai University Research Institute of Odontology, Sakado, Japan
- University of Human Arts and Sciences, Saitama, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Nobuhiro Tanuma
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan.
- Department of Biochemical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
43
|
Dayton TL, Alcala N, Moonen L, den Hartigh L, Geurts V, Mangiante L, Lap L, Dost AFM, Beumer J, Levy S, van Leeuwaarde RS, Hackeng WM, Samsom K, Voegele C, Sexton-Oates A, Begthel H, Korving J, Hillen L, Brosens LAA, Lantuejoul S, Jaksani S, Kok NFM, Hartemink KJ, Klomp HM, Borel Rinkes IHM, Dingemans AM, Valk GD, Vriens MR, Buikhuisen W, van den Berg J, Tesselaar M, Derks J, Speel EJ, Foll M, Fernández-Cuesta L, Clevers H. Druggable growth dependencies and tumor evolution analysis in patient-derived organoids of neuroendocrine neoplasms from multiple body sites. Cancer Cell 2023; 41:2083-2099.e9. [PMID: 38086335 DOI: 10.1016/j.ccell.2023.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
Neuroendocrine neoplasms (NENs) comprise well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). Treatment options for patients with NENs are limited, in part due to lack of accurate models. We establish patient-derived tumor organoids (PDTOs) from pulmonary NETs and derive PDTOs from an understudied subtype of NEC, large cell neuroendocrine carcinoma (LCNEC), arising from multiple body sites. PDTOs maintain the gene expression patterns, intra-tumoral heterogeneity, and evolutionary processes of parental tumors. Through hypothesis-driven drug sensitivity analyses, we identify ASCL1 as a potential biomarker for response of LCNEC to treatment with BCL-2 inhibitors. Additionally, we discover a dependency on EGF in pulmonary NET PDTOs. Consistent with these findings, we find that, in an independent cohort, approximately 50% of pulmonary NETs express EGFR. This study identifies an actionable vulnerability for a subset of pulmonary NETs, emphasizing the utility of these PDTO models.
Collapse
Affiliation(s)
- Talya L Dayton
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands.
| | - Nicolas Alcala
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Laura Moonen
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Lisanne den Hartigh
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Veerle Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Lise Mangiante
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Lisa Lap
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Antonella F M Dost
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Joep Beumer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Sonja Levy
- Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Rachel S van Leeuwaarde
- Department of Endocrine Oncology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Wenzel M Hackeng
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Kris Samsom
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Catherine Voegele
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Alexandra Sexton-Oates
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Lisa Hillen
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Sylvie Lantuejoul
- Department of Biopathology, Pathology Research Platform- Synergie Lyon Cancer- CRCL, Centre Léon Bérard Unicancer, 69008 Lyon, France; Université Grenoble Alpes, Grenoble, France
| | - Sridevi Jaksani
- Hubrecht Organoid Technology, Utrecht 3584 CM, the Netherlands
| | - Niels F M Kok
- Department of Surgery, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Koen J Hartemink
- Department of Surgery, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Houke M Klomp
- Department of Surgery, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Inne H M Borel Rinkes
- Department of Endocrine Surgical Oncology, University Medical Center Utrecht, Utrecht 3508 GA, the Netherlands
| | - Anne-Marie Dingemans
- Department of Pulmonary Diseases, GROW School for Oncology and and Reproduction, Maastricht University Medical Centre, Maastricht, the Netherlands; Department of Pulmonary Medicine, Erasmus MC Cancer Institute, University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Gerlof D Valk
- Department of Endocrine Oncology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Menno R Vriens
- Department of Endocrine Surgical Oncology, University Medical Center Utrecht, Utrecht 3508 GA, the Netherlands
| | - Wieneke Buikhuisen
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - José van den Berg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Margot Tesselaar
- Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Jules Derks
- Department of Pulmonary Diseases, GROW School for Oncology and and Reproduction, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ernst Jan Speel
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Matthieu Foll
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Lynnette Fernández-Cuesta
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France.
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
44
|
Chen CC, Tran W, Song K, Sugimoto T, Obusan MB, Wang L, Sheu KM, Cheng D, Ta L, Varuzhanyan G, Huang A, Xu R, Zeng Y, Borujerdpur A, Bayley NA, Noguchi M, Mao Z, Morrissey C, Corey E, Nelson PS, Zhao Y, Huang J, Park JW, Witte ON, Graeber TG. Temporal evolution reveals bifurcated lineages in aggressive neuroendocrine small cell prostate cancer trans-differentiation. Cancer Cell 2023; 41:2066-2082.e9. [PMID: 37995683 PMCID: PMC10878415 DOI: 10.1016/j.ccell.2023.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/25/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
Trans-differentiation from an adenocarcinoma to a small cell neuroendocrine state is associated with therapy resistance in multiple cancer types. To gain insight into the underlying molecular events of the trans-differentiation, we perform a multi-omics time course analysis of a pan-small cell neuroendocrine cancer model (termed PARCB), a forward genetic transformation using human prostate basal cells and identify a shared developmental, arc-like, and entropy-high trajectory among all transformation model replicates. Further mapping with single cell resolution reveals two distinct lineages defined by mutually exclusive expression of ASCL1 or ASCL2. Temporal regulation by groups of transcription factors across developmental stages reveals that cellular reprogramming precedes the induction of neuronal programs. TFAP4 and ASCL1/2 feedback are identified as potential regulators of ASCL1 and ASCL2 expression. Our study provides temporal transcriptional patterns and uncovers pan-tissue parallels between prostate and lung cancers, as well as connections to normal neuroendocrine cell states.
Collapse
Affiliation(s)
- Chia-Chun Chen
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Wendy Tran
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Kai Song
- Department of Bioengineering, UCLA, Los Angeles, CA, USA
| | - Tyler Sugimoto
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Matthew B Obusan
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Liang Wang
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Katherine M Sheu
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Donghui Cheng
- Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
| | - Lisa Ta
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Grigor Varuzhanyan
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Arthur Huang
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Runzhe Xu
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
| | - Yuanhong Zeng
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Amirreza Borujerdpur
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Nicholas A Bayley
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Miyako Noguchi
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Zhiyuan Mao
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Colm Morrissey
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Eva Corey
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA; Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Yue Zhao
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, College of Basic Medical Sciences and the First Hospital, China Medical University, Shenyang, China
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Jung Wook Park
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Owen N Witte
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA; Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, USA; Parker Institute for Cancer Immunotherapy, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA; California NanoSystems Institute, UCLA, Los Angeles, CA, USA; Metabolomics Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
45
|
Shen M, Liu S, Toland A, Hsu EC, Hartono AB, Alabi BR, Aslan M, Nguyen HM, Sessions CJ, Nolley R, Shi C, Huang J, Brooks JD, Corey E, Stoyanova T. ACAA2 is a novel molecular indicator for cancers with neuroendocrine phenotype. Br J Cancer 2023; 129:1818-1828. [PMID: 37798372 PMCID: PMC10667239 DOI: 10.1038/s41416-023-02448-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Neuroendocrine phenotype is commonly associated with therapy resistance and poor prognoses in small-cell neuroendocrine cancers (SCNCs), such as neuroendocrine prostate cancer (NEPC) and small-cell lung cancer (SCLC). Expression levels of current neuroendocrine markers exhibit high case-by-case variability, so multiple markers are used in combination to identify SCNCs. Here, we report that ACAA2 is elevated in SCNCs and is a potential molecular indicator for SCNCs. METHODS ACAA2 expressions in tumour xenografts, tissue microarrays (TMAs), and patient tissues from prostate and lung cancers were analysed via immunohistochemistry. ACAA2 mRNA levels in lung and prostate cancer (PC) patients were assessed in published datasets. RESULTS ACAA2 protein and mRNA levels were elevated in SCNCs relative to non-SCNCs. Medium/high ACAA2 intensity was observed in 78% of NEPC PDXs samples (N = 27) relative to 33% of adeno-CRPC (N = 86), 2% of localised PC (N = 50), and 0% of benign prostate specimens (N = 101). ACAA2 was also elevated in lung cancer patient tissues with neuroendocrine phenotype. 83% of lung carcinoid tissues (N = 12) and 90% of SCLC tissues (N = 10) exhibited medium/high intensity relative to 40% of lung adenocarcinoma (N = 15). CONCLUSION ACAA2 expression is elevated in aggressive SCNCs such as NEPC and SCLC, suggesting it is a potential molecular indicator for SCNCs.
Collapse
Affiliation(s)
- Michelle Shen
- Department of Radiology, Stanford University, Stanford, CA, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Shiqin Liu
- Department of Radiology, Stanford University, Stanford, CA, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Angus Toland
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - En-Chi Hsu
- Department of Radiology, Stanford University, Stanford, CA, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | - Alifiani B Hartono
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Busola R Alabi
- Department of Radiology, Stanford University, Stanford, CA, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | - Merve Aslan
- Department of Radiology, Stanford University, Stanford, CA, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | - Holly M Nguyen
- Department of Urology, University of Washington, Seattle, WA, USA
| | | | - Rosalie Nolley
- Department of Urology, Stanford University, Stanford, CA, USA
| | - Chanjuan Shi
- Department of Pathology, Duke University, Durham, NC, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University, Durham, NC, USA
| | - James D Brooks
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
- Department of Urology, Stanford University, Stanford, CA, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Tanya Stoyanova
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Urology, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
46
|
Qian C, Yang Q, Rotinen M, Huang R, Kim H, Gallent B, Yan Y, Cadaneanu RM, Zhang B, Kaochar S, Freedland SJ, Posadas EM, Ellis L, Vizio DD, Morrissey C, Nelson PS, Brady L, Murali R, Campbell MJ, Yang W, Knudsen BS, Mostaghel EA, Ye H, Garraway IP, You S, Freeman MR. ONECUT2 Activates Diverse Resistance Drivers of Androgen Receptor-Independent Heterogeneity in Prostate Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.560025. [PMID: 37905039 PMCID: PMC10614109 DOI: 10.1101/2023.09.28.560025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Androgen receptor- (AR-) indifference is a mechanism of resistance to hormonal therapy in prostate cancer (PC). Here we demonstrate that the HOX/CUT transcription factor ONECUT2 (OC2) activates resistance through multiple drivers associated with adenocarcinoma, stem-like and neuroendocrine (NE) variants. Direct OC2 targets include the glucocorticoid receptor and the NE splicing factor SRRM4, among others. OC2 regulates gene expression by promoter binding, enhancement of chromatin accessibility, and formation of novel super-enhancers. OC2 also activates glucuronidation genes that irreversibly disable androgen, thereby evoking phenotypic heterogeneity indirectly by hormone depletion. Pharmacologic inhibition of OC2 suppresses lineage plasticity reprogramming induced by the AR signaling inhibitor enzalutamide. These results demonstrate that OC2 activation promotes a range of drug resistance mechanisms associated with treatment-emergent lineage variation in PC. Our findings support enhanced efforts to therapeutically target this protein as a means of suppressing treatment-resistant disease.
Collapse
Affiliation(s)
- Chen Qian
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Qian Yang
- Department of Urology and Computational Biomedicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mirja Rotinen
- Department of Health Sciences, Public University of Navarre, Pamplona, Navarra, Spain
| | - Rongrong Huang
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Hyoyoung Kim
- Department of Urology and Computational Biomedicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Brad Gallent
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yiwu Yan
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Radu M. Cadaneanu
- Department of Urology, David Geffen School of Medicine at UCLA, Box 951738, 10833 Le Conte Ave 66-188 CHS UCLA, Los Angeles, CA, 90095, USA
| | - Baohui Zhang
- Department of Urology, David Geffen School of Medicine at UCLA, Box 951738, 10833 Le Conte Ave 66-188 CHS UCLA, Los Angeles, CA, 90095, USA
| | - Salma Kaochar
- Department of Medicine Section Hematology/Oncology Baylor College of Medicine, Houston, 77030, TX
| | - Stephen J. Freedland
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Edwin M. Posadas
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leigh Ellis
- Center for Prostate Disease Research, Mutha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20814, USA
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Dolores Di Vizio
- Department of Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Peter S. Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Lauren Brady
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ramachandran Murali
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Moray J. Campbell
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wei Yang
- Department of Pathology and Cancer Center, Stony Brook University, NY 11794, USA
| | - Beatrice S. Knudsen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84108, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah 84108, USA
| | - Elahe A. Mostaghel
- Geriatric Research, Education and Clinical Center (GRECC), U.S. Department of Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98133, USA
| | - Huihui Ye
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Isla P. Garraway
- Department of Urology, David Geffen School of Medicine at UCLA, Box 951738, 10833 Le Conte Ave 66-188 CHS UCLA, Los Angeles, CA, 90095, USA
| | - Sungyong You
- Department of Urology and Computational Biomedicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael R. Freeman
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
47
|
Adamowicz K, Arend L, Maier A, Schmidt JR, Kuster B, Tsoy O, Zolotareva O, Baumbach J, Laske T. Proteomic meta-study harmonization, mechanotyping and drug repurposing candidate prediction with ProHarMeD. NPJ Syst Biol Appl 2023; 9:49. [PMID: 37816770 PMCID: PMC10564802 DOI: 10.1038/s41540-023-00311-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
Proteomics technologies, which include a diverse range of approaches such as mass spectrometry-based, array-based, and others, are key technologies for the identification of biomarkers and disease mechanisms, referred to as mechanotyping. Despite over 15,000 published studies in 2022 alone, leveraging publicly available proteomics data for biomarker identification, mechanotyping and drug target identification is not readily possible. Proteomic data addressing similar biological/biomedical questions are made available by multiple research groups in different locations using different model organisms. Furthermore, not only various organisms are employed but different assay systems, such as in vitro and in vivo systems, are used. Finally, even though proteomics data are deposited in public databases, such as ProteomeXchange, they are provided at different levels of detail. Thus, data integration is hampered by non-harmonized usage of identifiers when reviewing the literature or performing meta-analyses to consolidate existing publications into a joint picture. To address this problem, we present ProHarMeD, a tool for harmonizing and comparing proteomics data gathered in multiple studies and for the extraction of disease mechanisms and putative drug repurposing candidates. It is available as a website, Python library and R package. ProHarMeD facilitates ID and name conversions between protein and gene levels, or organisms via ortholog mapping, and provides detailed logs on the loss and gain of IDs after each step. The web tool further determines IDs shared by different studies, proposes potential disease mechanisms as well as drug repurposing candidates automatically, and visualizes these results interactively. We apply ProHarMeD to a set of four studies on bone regeneration. First, we demonstrate the benefit of ID harmonization which increases the number of shared genes between studies by 50%. Second, we identify a potential disease mechanism, with five corresponding drug targets, and the top 20 putative drug repurposing candidates, of which Fondaparinux, the candidate with the highest score, and multiple others are known to have an impact on bone regeneration. Hence, ProHarMeD allows users to harmonize multi-centric proteomics research data in meta-analyses, evaluates the success of the ID conversions and remappings, and finally, it closes the gaps between proteomics, disease mechanism mining and drug repurposing. It is publicly available at https://apps.cosy.bio/proharmed/ .
Collapse
Affiliation(s)
- Klaudia Adamowicz
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, 22607, Germany
| | - Lis Arend
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, 22607, Germany
| | - Andreas Maier
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, 22607, Germany
| | - Johannes R Schmidt
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Olga Tsoy
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, 22607, Germany
| | - Olga Zolotareva
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, 22607, Germany
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, 22607, Germany
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, 5230, Denmark
| | - Tanja Laske
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, 22607, Germany.
| |
Collapse
|
48
|
Ooki A, Osumi H, Fukuda K, Yamaguchi K. Potent molecular-targeted therapies for gastro-entero-pancreatic neuroendocrine carcinoma. Cancer Metastasis Rev 2023; 42:1021-1054. [PMID: 37422534 PMCID: PMC10584733 DOI: 10.1007/s10555-023-10121-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023]
Abstract
Neuroendocrine neoplasms (NENs), which are characterized by neuroendocrine differentiation, can arise in various organs. NENs have been divided into well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs) based on morphological differentiation, each of which has a distinct etiology, molecular profile, and clinicopathological features. While the majority of NECs originate in the pulmonary organs, extrapulmonary NECs occur most predominantly in the gastro-entero-pancreatic (GEP) system. Although platinum-based chemotherapy is the main therapeutic option for recurrent or metastatic GEP-NEC patients, the clinical benefits are limited and associated with a poor prognosis, indicating the clinically urgent need for effective therapeutic agents. The clinical development of molecular-targeted therapies has been hampered due to the rarity of GEP-NECs and the paucity of knowledge on their biology. In this review, we summarize the biology, current treatments, and molecular profiles of GEP-NECs based on the findings of pivotal comprehensive molecular analyses; we also highlight potent therapeutic targets for future precision medicine based on the most recent results of clinical trials.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Hiroki Osumi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koshiro Fukuda
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
49
|
Aubry A, Pearson JD, Charish J, Yu T, Sivak JM, Xirodimas DP, Avet-Loiseau H, Corre J, Monnier PP, Bremner R. Deneddylation of ribosomal proteins promotes synergy between MLN4924 and chemotherapy to elicit complete therapeutic responses. Cell Rep 2023; 42:112925. [PMID: 37552601 DOI: 10.1016/j.celrep.2023.112925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/29/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
The neddylation inhibitor MLN4924/Pevonedistat is in clinical trials for multiple cancers. Efficacy is generally attributed to cullin RING ligase (CRL) inhibition, but the contribution of non-CRL targets is unknown. Here, CRISPR screens map MLN4924-monotherapy sensitivity in retinoblastoma to a classic DNA damage-induced p53/E2F3/BAX-dependent death effector network, which synergizes with Nutlin3a or Navitoclax. In monotherapy-resistant cells, MLN4924 plus standard-of-care topotecan overcomes resistance, but reduces DNA damage, instead harnessing ribosomal protein nucleolar-expulsion to engage an RPL11/p21/MYCN/E2F3/p53/BAX synergy network that exhibits extensive cross-regulation. Strikingly, unneddylatable RPL11 substitutes for MLN4924 to perturb nucleolar function and enhance topotecan efficacy. Orthotopic tumors exhibit complete responses while preserving visual function. Moreover, MLN4924 plus melphalan deploy this DNA damage-independent strategy to synergistically kill multiple myeloma cells. Thus, MLN4924 synergizes with standard-of-care drugs to unlock a nucleolar death effector network across cancer types implying broad therapeutic relevance.
Collapse
Affiliation(s)
- Arthur Aubry
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada; Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Centre Hospitalo-universitaire (CHU) de Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole (IUCT-O), Université de Toulouse, UPS, Unité de Génomique du Myélome, Toulouse, France
| | - Joel D Pearson
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Jason Charish
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada; Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Tao Yu
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Jeremy M Sivak
- Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada; Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | | | - Hervé Avet-Loiseau
- Centre Hospitalo-universitaire (CHU) de Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole (IUCT-O), Université de Toulouse, UPS, Unité de Génomique du Myélome, Toulouse, France; Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM, Toulouse, France
| | - Jill Corre
- Centre Hospitalo-universitaire (CHU) de Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole (IUCT-O), Université de Toulouse, UPS, Unité de Génomique du Myélome, Toulouse, France; Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM, Toulouse, France
| | - Philippe P Monnier
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada; Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada; Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
50
|
De Bacco F, Orzan F, Crisafulli G, Prelli M, Isella C, Casanova E, Albano R, Reato G, Erriquez J, D'Ambrosio A, Panero M, Dall'Aglio C, Casorzo L, Cominelli M, Pagani F, Melcarne A, Zeppa P, Altieri R, Morra I, Cassoni P, Garbossa D, Cassisa A, Bartolini A, Pellegatta S, Comoglio PM, Finocchiaro G, Poliani PL, Boccaccio C. Coexisting cancer stem cells with heterogeneous gene amplifications, transcriptional profiles, and malignancy are isolated from single glioblastomas. Cell Rep 2023; 42:112816. [PMID: 37505981 DOI: 10.1016/j.celrep.2023.112816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/05/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Glioblastoma (GBM) is known as an intractable, highly heterogeneous tumor encompassing multiple subclones, each supported by a distinct glioblastoma stem cell (GSC). The contribution of GSC genetic and transcriptional heterogeneity to tumor subclonal properties is debated. In this study, we describe the systematic derivation, propagation, and characterization of multiple distinct GSCs from single, treatment-naive GBMs (GSC families). The tumorigenic potential of each GSC better correlates with its transcriptional profile than its genetic make-up, with classical GSCs being inherently more aggressive and mesenchymal more dependent on exogenous growth factors across multiple GBMs. These GSCs can segregate and recapitulate different histopathological aspects of the same GBM, as shown in a paradigmatic tumor with two histopathologically distinct components, including a conventional GBM and a more aggressive primitive neuronal component. This study provides a resource for investigating how GSCs with distinct genetic and/or phenotypic features contribute to individual GBM heterogeneity and malignant escalation.
Collapse
Affiliation(s)
- Francesca De Bacco
- Laboratory of Cancer Stem Cell Research, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; Department of Oncology, University of Turin, 10060 Candiolo, Italy
| | - Francesca Orzan
- Laboratory of Cancer Stem Cell Research, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | | | - Marta Prelli
- Laboratory of Cancer Stem Cell Research, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; Department of Oncology, University of Turin, 10060 Candiolo, Italy
| | - Claudio Isella
- Department of Oncology, University of Turin, 10060 Candiolo, Italy; Laboratory of Oncogenomics, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Elena Casanova
- Laboratory of Cancer Stem Cell Research, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Raffaella Albano
- Core Facilities, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Gigliola Reato
- Laboratory of Cancer Stem Cell Research, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; Department of Oncology, University of Turin, 10060 Candiolo, Italy
| | - Jessica Erriquez
- Core Facilities, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Antonio D'Ambrosio
- Laboratory of Cancer Stem Cell Research, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Mara Panero
- Unit of Pathology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Carmine Dall'Aglio
- Unit of Pathology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Laura Casorzo
- Unit of Pathology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Manuela Cominelli
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Francesca Pagani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Antonio Melcarne
- Neurosurgery Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| | - Pietro Zeppa
- Neurosurgery Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy; Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Roberto Altieri
- Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Isabella Morra
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Paola Cassoni
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Diego Garbossa
- Neurosurgery Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy; Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Anna Cassisa
- Laboratory of Oncogenomics, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Alice Bartolini
- Core Facilities, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Serena Pellegatta
- Unit of Immunotherapy of Brain Tumors, Fondazione IRCCS Istituto Neurologico C. Besta, 20133 Milan, Italy
| | - Paolo M Comoglio
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | | | - Pietro L Poliani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Carla Boccaccio
- Laboratory of Cancer Stem Cell Research, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; Department of Oncology, University of Turin, 10060 Candiolo, Italy.
| |
Collapse
|