1
|
Bhagat N, Nalawala Z, Patel J, Das D, Baldha R, Sarolia J, Rathod S. Self-Assembled systems for Nose-to-Brain delivery of Temozolamide (TMZ) in brain tumor therapy. Int J Pharm 2025; 675:125540. [PMID: 40174811 DOI: 10.1016/j.ijpharm.2025.125540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Glioblastoma multiforme (GBM) is an aggressive and highly invasive primary brain tumor with poor prognosis and resistance to conventional therapies. The therapeutic efficacy of existing treatments is significantly hampered by the presence of the blood-brain barrier (BBB), tumor heterogeneity, and intrinsic drug resistance mechanisms. Temozolomide (TMZ), the standard chemotherapeutic agent for GBM, suffers from low bioavailability, rapid systemic clearance, and enzymatic degradation, limiting its clinical success. This review highlights the potential of self-assembled nanocarrier-based drug delivery systems for enhancing the therapeutic index of TMZ through intranasal administration, which provides a direct and non-invasive route to the brain, circumventing the BBB and improving central nervous system (CNS) drug bioavailability. Self-assembled systems are highly customizable, allowing for precise control over particle size, surface charge, and release profiles, which can be tailored to improve the penetration and retention of TMZ in the brain. We comprehensively discuss recent advancements in polymeric nanoparticles, liposomes, micelles, niosomes, and solid lipid nanoparticles, emphasizing their physicochemical properties, pharmacokinetics, and mechanisms of targeted drug release. Additionally, we explore molecular and oxidative stress-related pathways contributing to GBM progression and TMZ resistance. Emerging research suggests that nanocarrier-based intranasal delivery of TMZ enhances drug stability, prolongs brain retention time, and minimizes systemic toxicity, offering a promising avenue for improving GBM treatment outcomes.
Collapse
Affiliation(s)
- Nishank Bhagat
- Parul Institute of Pharmacy & Research, Parul University, Wagodia 391760
| | - Zainab Nalawala
- Parul Institute of Pharmacy & Research, Parul University, Wagodia 391760
| | - Jemini Patel
- Parul Institute of Pharmacy & Research, Parul University, Wagodia 391760
| | - Diponkar Das
- Parul Institute of Pharmacy & Research, Parul University, Wagodia 391760
| | - Raj Baldha
- Parul Institute of Pharmacy & Research, Parul University, Wagodia 391760.
| | | | - Sachin Rathod
- Parul Institute of Pharmacy & Research, Parul University, Wagodia 391760; Maliba Pharmacy College, Maliba Campus, 394350.
| |
Collapse
|
2
|
Leng X, Yang Y, Jiang T, Zheng J, Zhang L, Huang J, Xu H, Fang M, Li X, Wang Z, Ge M, Lin H. An Energy Metabolism Nanoblocker for Cutting Tumor Cell Respiration and Inhibiting Mitochondrial Hijacking from Cytotoxic T Lymphocyte. Adv Healthc Mater 2025:e2405174. [PMID: 40091400 DOI: 10.1002/adhm.202405174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Energy metabolism modulation emerges as a highly regarded strategy for tumor therapy. However, the efficacy of targeting energy metabolism in tumor cells remains unsatisfactory due to the alternate energy production pathways by switching between mitochondrial respiration and glycolysis. In addition, tumor cells can hijack mitochondria from peripheral immune cells to maintain their energy metabolism as an extra respiratory pathway. In this study, a CD44 receptor-targeted hyaluronic acid energy metabolism nanoblocker is developed to achieve bidirectional blockade of basal respiration in tumor cells with the loaded mitochondrial oxidative phosphorylation (OXPHOS) inhibitor nebivolol hydrochloride, and the glycolysis inhibitor 3-bromopyruvate. Furthermore, combined intraperitoneal injection of L-778123 hydrochloride inhibits mitochondrial transfer, thus blocking the extra respiratory pathway of tumor cells and the depletion of cytotoxic T lymphocytes. This emerging strategy, which involves depleting tumor cell energy through inhibition of basal respiration (OXPHOS/glycolysis) and extra respiration, while synergistically enhancing effector immune cells to maintain systemic anti-tumor immune effects, demonstrates high efficacy and safety in both in vitro and in vivo experiments. It provides a conceptual paradigm shift in nanomedicine-mediated energy metabolism-based tumor therapy.
Collapse
Affiliation(s)
- Xiaojing Leng
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, Ultrasound Department of the Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing, 400010, China
| | - Yang Yang
- Department of Ultrasound, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Tao Jiang
- Department of Anaesthesiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Jun Zheng
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, Ultrasound Department of the Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing, 400010, China
| | - Liang Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, Ultrasound Department of the Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing, 400010, China
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Ju Huang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, Ultrasound Department of the Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing, 400010, China
| | - Han Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Mingxiao Fang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, Ultrasound Department of the Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing, 400010, China
| | - Xingsheng Li
- Geriatric Clinical Research Center of Chongqing, Geriatric department of the Second Affiliated Hospital Chongqing Medical University, Chongqing, 400010, China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, Ultrasound Department of the Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing, 400010, China
| | - Min Ge
- Department of Electrical Engineering, City University of Hong Kong, Tat Chee Avenue, HKSAR, 999077, China
| | - Han Lin
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, China
| |
Collapse
|
3
|
Liu Y, Zhang J, Lai C, Wang W, Huang Y, Bao X, Yan H, Sun X, Liu Q, Chen D, Dai X, Qian X, Zhao P. Injectable celastrol-loading emulsion hydrogel for immunotherapy of low-immunogenic cancer. J Nanobiotechnology 2025; 23:183. [PMID: 40050985 PMCID: PMC11887069 DOI: 10.1186/s12951-025-03154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/22/2025] [Indexed: 03/09/2025] Open
Abstract
Immunotherapy, exemplified by immune checkpoint blockade (ICB), has been extensively employed in antitumor treatments. Nevertheless, its efficacy in addressing low-immunogenic tumors has not yielded satisfactory results, primarily due to the depletion and inadequate infiltration of effector T cells within the tumor microenvironment (TME). Here, we construct an injectable water-in-oil emulsion hydrogel to load clinically used Celastrol (Gel@Cel), which addresses the limitations of Cel's hydrophobicity. Cel can both inhibit tumor cell proliferation and promote tumor cell apoptosis, while simultaneously inducing immunogenic cell death, through activation of the AKT and MAPK pathways. In a model of clinically refractory hepatocellular carcinoma with malignant ascites, intraperitoneal administration of Gel@Cel significantly inhibits tumor progression and activates antitumor immune effects through lipase-controlled release of Cel, as compared to free Cel. Intriguingly, the Gel@Cel induces the activation of dendritic cells, resulting in the infiltration of cytotoxic T cells in the TME of ascites. Furthermore, the administration of Cel increases the expression of programmed cell death protein ligand-1 (PD-L1) in tumor cells. Moreover, combining the PD-1 antibody (αPD-1) with Gel@Cel further enhances the antitumor effect and amplifies the immune activation. In conclusion, Gel@Cel exhibits promising therapeutic potential in the treatment of low-immunogenic tumors, especially when combined with ICB therapy.
Collapse
Affiliation(s)
- Yu Liu
- Department of Medical Oncology, Hangzhou Cancer Hospital, Hangzhou, 310002, China
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, China
| | - Jia Zhang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, China
- College of Energy Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Chunyu Lai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, China
| | - Wenjun Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yangyue Huang
- Department of Hepatobiliary Pancreatic Oncology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Xuanwen Bao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Haimeng Yan
- College of Medicine, Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, China
| | - Xuqi Sun
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, China
| | - Qiqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Dong Chen
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, China.
- College of Energy Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China.
| | - Xiaomeng Dai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
| | - Xinyu Qian
- Department of Medical Oncology, Hangzhou Cancer Hospital, Hangzhou, 310002, China.
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Wang Y, Ma X, Zhang Y, Yang Y, Wang P, Chen T, Gao C, Dong C, Zheng J, Wu A. Insights into Non-Metallic Magnetic Resonance Imaging Contrast Agents: Advances and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411875. [PMID: 39901535 DOI: 10.1002/smll.202411875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/15/2025] [Indexed: 02/05/2025]
Abstract
Traditional metal-based magnetic resonance imaging contrast agents (MRI CAs), such as gadolinium, iron, and manganese, have made significant advancements in diagnosing major diseases. However, their potential toxicity due to long-term accumulation in the brain and bones raises safety concerns. In contrast, non-metallic MRI CAs, which can produce a nuclear magnetic resonance effect, show great promise in MRI applications due to their adaptable structure and function, good biocompatibility, and excellent biodegradability. Nevertheless, the development of non-metallic MRI CAs is slow due to the inherent low magnetic sensitivity of organic compounds, their rapid metabolism, and susceptibility to reduction. Designing effective multifunctional organic compounds for high-sensitivity MRI remains a challenge. In this discussion, the mechanisms of various non-metallic MRI CAs are explored and an overview of their current status, highlighting both their advantages and potential drawbacks, is provided. The key strategies for creating high-performance MRI CAs are summarized and how different synthetic approaches affect the performance of non-metallic MRI Cas is evaluated. Last, the challenges and future prospects for these promising non-metallic MRI CAs are addressed.
Collapse
Affiliation(s)
- Yanan Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xuehua Ma
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunhao Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yanqiang Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Pengyu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianxiang Chen
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Changyong Gao
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Chen Dong
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Jianjun Zheng
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, 3l5010, China
| | - Aiguo Wu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
5
|
Ge Y, Zhou Q, Pan F, Wang R. Utilizing Nanoparticles to Overcome Anti-PD-1/PD-L1 Immunotherapy Resistance in Non-Small Cell Lung cancer: A Potential Strategy. Int J Nanomedicine 2025; 20:2371-2394. [PMID: 40027868 PMCID: PMC11871910 DOI: 10.2147/ijn.s505539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/25/2025] [Indexed: 03/05/2025] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality globally, with non-small cell lung cancer (NSCLC) constituting 85% of cases. Immune checkpoint inhibitors (ICIs) represented by anti-programmed cell death protein 1 (PD-1)/ programmed cell death ligand 1 (PD-L1) have emerged as a promising frontier in cancer treatment, effectively extending the survival of patients with NSCLC. However, the efficacy of ICIs exhibits significant variability across diverse patient populations, with a substantial proportion showing poor responsiveness and acquired resistance in those initially responsive to ICIs treatments. With the advancement of nanotechnology, nanoparticles offer unique advantages in tumor immunotherapy, including high permeability and prolonged retention(EPR) effects, enhanced drug delivery and stability, and modulation of the inflammatory tumor microenvironment(TME). This review summarizes the mechanisms of resistance to ICIs in NSCLC, focusing on tumor antigens loss and defective antigen processing and presentation, failure T cell priming, impaired T cell migration and infiltration, immunosuppressive TME, and genetic mutations. Furthermore, we discuss how nanoparticles, through their intrinsic properties such as the EPR effect, active targeting effect, shielding effect, self-regulatory effect, and synergistic effect, can potentiate the efficacy of ICIs and reverse resistance. In conclusion, nanoparticles serve as a robust platform for ICIs-based NSCLC therapy, aiding in overcoming resistance challenges.
Collapse
Affiliation(s)
- Yuli Ge
- Department of Medical Oncology, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Qiong Zhou
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
| | - Fan Pan
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
| | - Rui Wang
- Department of Medical Oncology, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| |
Collapse
|
6
|
Yang Y, Fang Y, Du X, Ying Z, Lu X, Zhou J. Application of nanoparticles with activating STING pathway function in tumor synergistic therapy. Int Immunopharmacol 2025; 148:114013. [PMID: 39823790 DOI: 10.1016/j.intimp.2025.114013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/21/2024] [Accepted: 01/01/2025] [Indexed: 01/20/2025]
Abstract
Although immunotherapy is currently one of the most promising methods for cancer treatment, its clinical application is limited due to issues such as excessive autoimmune responses and lack of specificity. Therefore, there is a need to improve immunotherapy by integrating emerging medical technologies with traditional treatments. The activation of the cGAS-STING pathway plays a crucial role in innate immunity and antiviral defense, making it highly promising for immunotherapy and attracting significant attention. In recent years, research on nanomaterials and immunotherapy has achieved groundbreaking progress in the medical field. Due to their unique size, shape, stiffness, surface effects, and quantum size effects, nanomaterials can either carry STING activators or directly activate the STING pathway, offering new opportunities for tumor-specific immunotherapy. These unique advantages of nanomaterials have opened up broader prospects for nanoparticle-based therapies targeting the STING pathway. This paper summarizes the current research on utilizing nanomaterials to activate the STING pathway, detailing the characteristics, classifications, and different approaches for targeting tumor cells. Additionally, it focuses on the latest advancements in combined nanotherapies based on cGAS-STING pathway activation, including the integration of nanomaterial-mediated STING pathway activation with immunotherapy, radiotherapy, chemotherapy, targeted therapy, and photodynamic therapy. This provides new ideas for nanoparticle-based combination therapies involving the STING pathway.
Collapse
Affiliation(s)
- Yi Yang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310053, Zhejiang, China
| | - Yaning Fang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310053, Zhejiang, China
| | - Xinyu Du
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, Zhejiang, China
| | - Zheye Ying
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, Zhejiang, China
| | - Xiwen Lu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China.
| | - Jing Zhou
- Department of Chemoradiotherapy, Ningbo NO.2 Hospital, Ningbo, Zhejiang, 315000, China.
| |
Collapse
|
7
|
Tian B, Wang S, Ding J, Qu W, Zhang C, Luan F, Wang N, Hou Y, Suo M, Liu H, Chen Y, Liu Y, Yan J, Zhang J, Li J, Wang L, Shi Y, Xiang R. The allogenic non-proteinogenic amino acid BMAA-based vaccine breaks up the immune tolerance against colorectal cancer. Theranostics 2025; 15:3143-3158. [PMID: 40083927 PMCID: PMC11898291 DOI: 10.7150/thno.104722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/23/2025] [Indexed: 03/16/2025] Open
Abstract
The fundamental issue in immunotherapy is the lack of tumor-specific antigens in most types of tumors, leading to immune tolerance. For approximately 85% of patients with microsatellite stable (MSS) colorectal cancer (CRC), the absence of tumor neoantigens results in poor immunotherapy efficacy. Our previous study demonstrated that the misincorporation of non-proteinogenic proline (Pro) analog azetidine-2-carboxylic acid (AZE) could generate mutated proteins that significantly enhance tumor cell antigenicity and anti-tumor immune responses. Methods: To activate more specific anti-tumor immune responses with fewer side effects, we utilized the non-proteinogenic serine (Ser) analog β-N-methylamino-L-alanine (BMAA), which can be misincorporated into proteins as a Ser substitute by seryl tRNA synthetase at an appropriate rate. BMAA misincorporated neoantigens were detected using mass spectrometry (MS), and cancer cell-enriched peptides with high antigenicity were selected in a murine CRC model for the preparation of BMAA-based self-assembling nanoparticles (SAN). Single-cell sequencing was performed to analyze immune responses induced by SAN vaccination combined with a toll-like receptor 7 agonist (TLRa) adjuvant and BMAA treatment. Results: SAN-TLRa vaccination with BMAA treatment induced an anti-tumor immune microenvironment. This combination stimulated the generation of specific CD8+ T cells and IgG targeting BMAA misincorporated neoepitopes, ultimately promoting immune activation, tumor suppression, and prolonged survival in the CRC murine model. Additionally, BMAA combined with SAN vaccine significantly enhanced the efficacy of the immune checkpoint inhibitor anti-PD-1 antibody. Conclusion: Our findings provide a promising strategy for artificially introducing neoantigens using BMAA, which can break immune tolerance without disrupting systemic immune balance. This approach offers novel avenues for CRC immunotherapy.
Collapse
Affiliation(s)
- Baorui Tian
- The School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Shijian Wang
- The School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jixuan Ding
- The School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Weiao Qu
- The School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Chen Zhang
- The School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Fangqun Luan
- The School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Nan Wang
- The School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yigong Hou
- The School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Mengying Suo
- The School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Huimin Liu
- The School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yanan Chen
- The School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yanhua Liu
- The School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jie Yan
- The School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jianbo Zhang
- The department of Gastrointestinal Surgery, Second affiliated Hospital of Chongqing Medical University, 288 Tianwen Road, Chongqing 400072, China
| | - Jia Li
- The School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Longlong Wang
- The School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yi Shi
- The School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Rong Xiang
- The School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
8
|
Huang Z, Tian K, Xue Y, Luo F. A promising role of noble metal NPs@MOFs in chondrosarcoma management. NANOSCALE 2025; 17:2961-2984. [PMID: 39718125 DOI: 10.1039/d4nr03878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Chondrosarcoma, a challenging and malignant neoplasm originating from cartilage cells, poses significant diagnostic and therapeutic hurdles due to its resistance to conventional treatments and the complexity of its diagnosis. Noble metal nanoparticle-embedded metal-organic frameworks (NPs@MOFs) stand out as a novel approach for the diagnosis and treatment of chondrosarcoma. This review delves into the properties and applications of NPs@MOFs, focusing on their classification by noble metal type and their role in enhancing photothermal therapy (PTT), photodynamic therapy (PDT), targeted drug delivery and chondrosarcoma diagnosis. Despite promising in vitro and in vivo results, challenges such as understanding the mechanisms of action and clinical translation remain, and the therapeutic effect of PTT and PDT on deep chondrosarcoma seems unsatisfactory. Future exploration, such as combined therapy and multiple MOF therapy, could unlock the full potential of noble metal NPs@MOFs in revolutionizing chondrosarcoma management, offering insights into the prospect of these materials in chondrosarcoma management.
Collapse
Affiliation(s)
- Ziheng Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Keyue Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yiyuan Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Department of General Dentistry, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China.
| |
Collapse
|
9
|
Wang J, Zhang G, Xing K, Wang B, Liu Y, Xue Y, Liu S, Leong DT. Influencing inter-cellular junctions with nanomaterials. Adv Colloid Interface Sci 2025; 336:103372. [PMID: 39671889 DOI: 10.1016/j.cis.2024.103372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/15/2024]
Abstract
Cell-cell junctions are essential for maintaining tissue integrity and regulating a wide range of physiological processes. While the disruption of intercellular junctions may lead to pathological conditions, it also presents an opportunity for therapeutic interventions. Nanomaterials have emerged as promising tools for modulating cell-cell junctions, offering new avenues for innovative treatments. In this review, we provide a comprehensive overview of the various nanomaterials interaction with cell-cell junctions. We discussed their underlying mechanisms, heterogenous effects on cellular behavior, and the therapeutic strategies of applying nanomaterial-induced intercellular junction disruption. Additionally, we address the challenges and opportunities involved in translating these strategies into clinical practice and discuss future directions for this rapidly advancing field.
Collapse
Affiliation(s)
- Jinping Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Guoying Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Kuoran Xing
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Baoteng Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yanping Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yuling Xue
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Shankui Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
10
|
Zhao L, Gui Y, Cai J, Deng X. Biometallic ions and derivatives: a new direction for cancer immunotherapy. Mol Cancer 2025; 24:17. [PMID: 39815289 PMCID: PMC11734411 DOI: 10.1186/s12943-025-02225-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/01/2025] [Indexed: 01/18/2025] Open
Abstract
Biometallic ions play a crucial role in regulating the immune system. In recent years, cancer immunotherapy has become a breakthrough in cancer treatment, achieving good efficacy in a wide range of cancers with its specificity and durability advantages. However, existing therapies still face challenges, such as immune tolerance and immune escape. Biometallic ions (e.g. zinc, copper, magnesium, manganese, etc.) can assist in enhancing the efficacy of immunotherapy through the activation of immune cells, enhancement of tumor antigen presentation, and improvement of the tumor microenvironment. In addition, biometallic ions and derivatives can directly inhibit tumor cell progression and offer the possibility of effectively overcoming the limitations of current cancer immunotherapy by promoting immune responses and reducing immunosuppressive signals. This review explores the role and potential application prospects of biometallic ions in cancer immunotherapy, providing new ideas for future clinical application of metal ions as part of cancer immunotherapy and helping to guide the development of more effective and safe therapeutic regimens.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 41001l, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Human, 410011, China
| | - Yajun Gui
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 41001l, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Human, 410011, China
| | - Jing Cai
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 41001l, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Human, 410011, China
| | - Xiangying Deng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 41001l, China.
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Human, 410011, China.
- Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
11
|
Niu R, Liu X, Yang X, Du X, Wang S, Ma X, Yin S, Shao L, Zhang J. Advances in Pure Drug Self-Assembled Nanosystems: A Novel Strategy for Combined Cancer Therapy. Pharmaceutics 2025; 17:68. [PMID: 39861716 PMCID: PMC11768559 DOI: 10.3390/pharmaceutics17010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/27/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Nanoparticle-based drug delivery systems hold great promise for improving the effectiveness of anti-tumor therapies. However, their clinical translation remains hindered by several significant challenges, including intricate preparation processes, limited drug loading capacity, and concerns regarding potential toxicity. In this context, pure drug-assembled nanosystems (PDANSs) have emerged as a promising alternative, attracting extensive research interest due to their simple preparation methods, high drug loading efficiency, and suitability for large-scale industrial production. This innovative approach presents new opportunities to enhance both the safety and therapeutic efficacy of cancer treatments. This review comprehensively explores recent progress in the application of PDANSs for cancer therapy. It begins by detailing the self-assembly mechanisms and fundamental principles underlying PDANS formation. The discussion then advances to strategies for assembling single pure drug nanoparticles, as well as the co-assembly of multiple drugs. Subsequently, the review addresses the therapeutic potential of PDANSs in combination treatment modalities, encompassing diagnostic and therapeutic applications. These include combinations of chemotherapeutic agents, phototherapeutic approaches, the integration of chemotherapy with phototherapy, and the synergistic use of immunotherapy with other treatment methods. Finally, the review highlights the potential of PDANSs in advancing tumor therapy and their prospects for clinical application, providing key insights for future research aimed at optimizing this technology and broadening its utility in cancer treatment.
Collapse
Affiliation(s)
- Runyan Niu
- Nanjing Medical Center for Clinical Pharmacy, Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (R.N.); (X.Y.); (X.D.); (S.W.)
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210008, China
| | - Xuexue Liu
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China;
| | - Xian Yang
- Nanjing Medical Center for Clinical Pharmacy, Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (R.N.); (X.Y.); (X.D.); (S.W.)
| | - Xiao Du
- Nanjing Medical Center for Clinical Pharmacy, Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (R.N.); (X.Y.); (X.D.); (S.W.)
| | - Siliang Wang
- Nanjing Medical Center for Clinical Pharmacy, Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (R.N.); (X.Y.); (X.D.); (S.W.)
| | - Xiaolong Ma
- Department of Colorectal Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China;
| | - Shaoping Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210008, China;
| | - Lihua Shao
- Department of Colorectal Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China;
| | - Jinping Zhang
- Nanjing Medical Center for Clinical Pharmacy, Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (R.N.); (X.Y.); (X.D.); (S.W.)
| |
Collapse
|
12
|
Liu Y, Sun X, Wei C, Guo S, Song C, Zhang J, Bai J. Targeted Drug Nanodelivery and Immunotherapy for Combating Tumor Resistance. Comb Chem High Throughput Screen 2025; 28:561-581. [PMID: 38676501 DOI: 10.2174/0113862073296206240416060154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 04/29/2024]
Abstract
Chemotherapy resistance is a common cause of tumor treatment failure. Various molecular responses, such as increased expression of efflux transporter proteins, including Pglycoprotein (P-gp), changes in the tumor microenvironment (TME), the role of platelets, and the effects of cancer stem cells (CSCs), can lead to drug resistance. Through extensive research on the mechanisms of drug resistance, more effective anti-resistance drugs and therapeutic approaches are being developed. This review explores drug resistance mechanisms and summarizes relevant anti-resistance drugs. In addition, due to the therapeutic limitations of the aforementioned treatments, new advances in nanocarrier-based combination immunotherapy to address the challenge of drug resistance have been described. Nanocarriers combined with immunotherapy can not only target tumor sites for targeted drug release but also modulate the autoimmune system and enhance immune efficacy, thereby overcoming tumor drug resistance. This review suggests new strategies for overcoming tumor drug resistance and is expected to inform tumor treatment and prognosis.
Collapse
Affiliation(s)
- Yun Liu
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, China
| | - Xinyu Sun
- School of Medical Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chen Wei
- School of Medical Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Shoudong Guo
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, China
| | - Chunxiao Song
- Anorectal Department, Weifang people's Hospital, Weifang, 261000, China
| | - Jiangyu Zhang
- school of Chemistry and Chemical Engineering, Xingtai University, Xingtai, 054001, China
| | - Jingkun Bai
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, China
| |
Collapse
|
13
|
Guo Z, Zheng H, Wang T, Han N, Zhang H, Li J, Cheng X, Ye J, Du S, Li P. Combination Nanodrug Delivery Systems Facilitate the Syncretism of Chemotherapy with Immunotherapy to Promote Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405752. [PMID: 39544164 DOI: 10.1002/smll.202405752] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/12/2024] [Indexed: 11/17/2024]
Abstract
Cancer has emerged as a significant threat that gravely endanger human health. Anti-tumor immunotherapy has now emerged as an important treatment for cancer. However, immunosuppressive tumor microenvironment limits the antitumor immunity. The importance of the immune system in the cancer treatment process must be emphasized. Herein, two precision-targeted nanoparticles PD-L1@Cur-NPs and PD-1@AS-NPs are constructed for cancer treatment. PD-L1@Cur-NPs can precisely target tumor cells in vivo to eradicate tumor cells or induce them apoptosis. PD-1@AS-NPs can precisely target T cells in vivo to activate the T cell-mediated immune system and induce antitumor immune responses. Furthermore, these two nanoparticles have good synergistic effect and show stronger antitumor effect after combination. After treatment with the combination of two nanoparticles, the tumor volumes of C57BL/6 tumor-bearing mice are significantly reduced. Moreover, the percentage of CD8+T cells and CD4+T cells in the tumor significantly increased, and the percentage of regulatory T cells significantly decreased. The percentage of memory T cells and memory effector T cells in the spleen also significantly increased after treatment, suggesting that the antitumor immunity is activated after treatment. This study provides a new antitumor treatment strategy combining chemotherapy and immunotherapy, which has good application prospect.
Collapse
Affiliation(s)
- Zishuo Guo
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Haocheng Zheng
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Tieshan Wang
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ning Han
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Haitong Zhang
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jialing Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xuehao Cheng
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jinhong Ye
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shouying Du
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Pengyue Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| |
Collapse
|
14
|
Ding M, Dai X, Yang C, Zhang Z, Wang Z, Wang Y, Li Y, Yan F. Erythrocyte-Based Biomimetic MOFs as a Triple Epigenetic Regulator for Enhancing Anti-Leukemia Immunity. NANO LETTERS 2024; 24:15989-15999. [PMID: 39638647 DOI: 10.1021/acs.nanolett.4c04264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
While therapeutic strategies targeting epigenetic dysregulation hold promise for leukemia, epigenetic drugs face several limitations, including low utilization rates, the emergence of resistance, and off-target effects. The hypoxic microenvironment in leukemia further impairs drug sensitivity. Here, we synthesized an MOF-based erythrocyte biomimetic nanoplatform to enhance immune responses against leukemia by targeting three epigenetic modifications. UiO-66-NH2 was loaded with two epigenetic drugs, along with oxygen-rich erythrocytes (red blood cells, RBCs). MA272@MOF@RBC suppressed hypoxia-induced factor (HIF-1α) and its downstream oncogenes, thereby enhancing the efficacy of the epigenetic drugs. The drugs inhibited the growth of leukemia cells by targeting DNA and histone methylation while enhancing m6A-RNA methylation. MA272@MOF@RBC activated cytotoxic and memory T cells by increasing the antigenicity of leukemia cells. MA272@MOF@RBC also demonstrated immunotherapeutic effects on solid tumors. This was the first study to report the synthesis of triple epigenetic regulatory biomimetic MOFs with significant clinical potential for tumor immunotherapy.
Collapse
Affiliation(s)
- Min Ding
- Department of Pediatric Intensive Care Unit, Children's Medical Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, China
| | - Xinlun Dai
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Chunfeng Yang
- Department of Pediatric Intensive Care Unit, Children's Medical Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, China
| | - Zhen Zhang
- Department of Pediatric Intensive Care Unit, Children's Medical Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, China
| | - Zhihua Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yiqiao Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yumei Li
- Department of Pediatric Intensive Care Unit, Children's Medical Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| |
Collapse
|
15
|
Kumar A, George JM, Sharma S, Koyyadi S, Sharma SK, Verwilst P, Bhatia A, Patro SK, Aggarwal A, Gupta S, Sharma S, Sharma A. pH-Activatable Molecular Probe for COX-2 Imaging in Human Oral Squamous Carcinoma Cells and Patient-Derived Tissues. ACS APPLIED BIO MATERIALS 2024; 7:8517-8527. [PMID: 39561328 DOI: 10.1021/acsabm.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
For developing a successful cancer therapeutic modality, the early precise detection of cancer cells in patient biopsies in oral squamous cell carcinoma (OSCC) is crucial. This could help researchers create new diagnostic and therapeutic tools and assist clinicians in recommending more effective treatment plans and improving patient survival. We have developed an SMPD, cyclooxygenase-2 (COX-2) targeting pH-activable fluorophore named CNP, combining a potent COX-2 inhibitor, celecoxib, linked to a naphthalimide fluorophore with an acidic microenvironment-responsive piperazine moiety for specific optical imaging of OSCC in cells and patient tissues. Compared to reference probe RNP lacking celecoxib, CNP selectively enters the COX-2 overexpressing oral cancer cells. Its acidity-responsive imaging response enhances selectivity over cancers with lower COX-2 expression levels and normal cells. Further, CNP is demonstrated in imaging OSCC cells in patient-derived biopsies. Thus, multifunctional CNP shows potential in exploring more reagents for fluorescence-based detection of OSCC cells in patient tissues with translational applications.
Collapse
Affiliation(s)
- Akhil Kumar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
- Oral Health Sciences Centre, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Jiya Mary George
- Amity School of Chemical Sciences, Amity University Punjab, Sector 82, Mohali, Punjab 140306, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- CSIR-Central Scientific Instruments Organisation, Sector 30C, Chandigarh 160030, India
| | - Sushank Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Sundar Koyyadi
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Suchinder K Sharma
- Amity School of Physical Sciences, Amity University Punjab, Sector 82, Mohali, Punjab 140306, India
| | - Peter Verwilst
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1041, Leuven 3000, Belgium
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Sourabha Kumar Patro
- Department of Otolaryngology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Anjali Aggarwal
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Shipra Gupta
- Oral Health Sciences Centre, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Sheetal Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Amit Sharma
- Amity School of Chemical Sciences, Amity University Punjab, Sector 82, Mohali, Punjab 140306, India
| |
Collapse
|
16
|
Mei T, Ye T, Huang D, Xie Y, Xue Y, Zhou D, Wang W, Chen J. Triggering immunogenic death of cancer cells by nanoparticles overcomes immunotherapy resistance. Cell Oncol (Dordr) 2024; 47:2049-2071. [PMID: 39565509 DOI: 10.1007/s13402-024-01009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/21/2024] Open
Abstract
Immunotherapy resistance poses a significant challenge in oncology, necessitating novel strategies to enhance the therapeutic efficacy. Immunogenic cell death (ICD), including necroptosis, pyroptosis and ferroptosis, triggers the release of tumor-associated antigens and numerous bioactive molecules. This release can potentiate a host immune response, thereby overcoming resistance to immunotherapy. Nanoparticles (NPs) with their biocompatible and immunomodulatory properties, are emerging as promising vehicles for the delivery of ICD-inducing agents and immune-stimulatory adjuvants to enhance immune cells tumoral infiltration and augment immunotherapy efficacy. This review explores the mechanisms underlying immunotherapy resistance, and offers an in-depth examination of ICD, including its principles and diverse modalities of cell death that contribute to it. We also provide a thorough overview of how NPs are being utilized to trigger ICD and bolster antitumor immunity. Lastly, we highlight the potential of NPs in combination with immunotherapy to revolutionize cancer treatment.
Collapse
Affiliation(s)
- Ting Mei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ting Ye
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dingkun Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Yuxiu Xie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Ying Xue
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dongfang Zhou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Weimin Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, 430022, China.
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
17
|
Li Y, Chen W, Koo S, Liu H, Saiding Q, Xie A, Kong N, Cao Y, Abdi R, Serhan CN, Tao W. Innate immunity-modulating nanobiomaterials for controlling inflammation resolution. MATTER 2024; 7:3811-3844. [PMID: 40123651 PMCID: PMC11925551 DOI: 10.1016/j.matt.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The acute inflammatory response is an inherent protective mechanism, its unsuccessful resolution can contribute to disease pathogenesis and potentially lead to death. Innate immune cells are the first line of host defenders and play a substantial role in inflammation initiation, amplification, resolution, or subsequent disease progression. As the resolution of inflammation is an active and highly regulated process, modulating innate immune cells, including neutrophils, monocytes and macrophages, and endothelial cells, and their interactions offer opportunities to control excessive inflammation. Nanobiomaterials have shown superior therapeutic potential in inflammation-related diseases by manipulating inflammatory responses because nanobiomaterials can target and interact with innate immune cells. Versatile nanobiomaterials can be designed for targeted modulation of specific innate immune responses. Nanopro-resolving medicines have been prepared both with pro-resolving lipid mediators and peptides each demonstrated to active resolution of inflammation in animal disease models. Here, we review innovative nanobiomaterials for modulating innate immunity and alleviating inflammation. We summarise the strategies converging the design of nanobiomaterials and the nano-bio interaction in modulating innate immune profiles and propelling the advancement of nanobiomaterials for inflammatory disease treatments. We also propose the future perspectives and translational challenges of nanobiomaterials that need to be overcome in this swiftly rising field.
Collapse
Affiliation(s)
- Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- These authors contributed equally: Yongjiang Li, Wei Chen
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- These authors contributed equally: Yongjiang Li, Wei Chen
| | - Seyoung Koo
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Haijun Liu
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qimanguli Saiding
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Angel Xie
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17177, Sweden
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Aili T, Zong JB, Zhou YF, Liu YX, Yang XL, Hu B, Wu JH. Recent advances of self-assembled nanoparticles in the diagnosis and treatment of atherosclerosis. Theranostics 2024; 14:7505-7533. [PMID: 39659570 PMCID: PMC11626940 DOI: 10.7150/thno.100388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/22/2024] [Indexed: 12/12/2024] Open
Abstract
Atherosclerosis remains a significant global health challenge, with its related conditions as the leading cause of death, underscoring the urgent need for enhanced diagnostic and therapeutic approaches. Recently, self-assembled nanoparticles (SANPs) have shown remarkable promise in treating atherosclerosis, attributed to their superior bioavailability, biodegradability, biocompatibility, and ease of functional modification. Numerous SANP variants, such as DNA origami, metal-organic frameworks (MOFs), nanozymes, peptide-based nanoparticles, and self-assembled prodrug nanoparticles, have been engineered, extending their utility in targeted drug delivery and imaging. Advances in fabrication technologies, including microfluidic techniques, allow for precise and scalable SANP production, while innovative nanoparticle designs-such as stimuli-responsive and carrier-free variants-enhance pharmacokinetic properties. The deployment of SANPs in atherosclerosis has introduced a range of diagnostic and therapeutic solutions, from non-invasive imaging and stimuli-responsive drug delivery to vaccination, theranostics, and biosensing. This review consolidates the recent progress in SANP applications for atherosclerosis, emphasizing their transformative potential in disease management.
Collapse
Affiliation(s)
- Tuersun Aili
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jia-bin Zong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi-fan Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu-xiao Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiang-liang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jie-hong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
19
|
Zou P, Huang L, Li Y, Liu D, Che J, Zhao T, Li H, Li J, Cui YN, Yang G, Li Z, Li LL, Gao C. Phase-Separated Nano-Antibiotics Enhanced Survival in Multidrug-Resistant Escherichia coli Sepsis by Precise Periplasmic EcDsbA Targeting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407152. [PMID: 39279551 DOI: 10.1002/adma.202407152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/27/2024] [Indexed: 09/18/2024]
Abstract
Disulfide bond (Dsb) proteins, especially DsbA, represent a promising but as-yet-unrealized target in combating multidrug-resistant (MDR) bacteria because their precise subcellular targeting through multibarrier remains a significant challenge. Here, a novel heterogenization-phase-separated nano-antibiotics (NCefoTs) is proposed, through the co-assembly of enzyme-inhibiting lipopeptides (ELp component), membrane-recognizing and disrupting lipopeptides (MLp component), and cefoperazone. The self-sorting components of MLp "concentrated island-liked clusters" on the surface of NCefoTs promote the efficient penetration of NCefoTs through the outer membrane. Triggered by the DsbA, the precisely spatiotemporal engineered NCefoTs transform to nanofibers in situ and further significantly enhance the inhibition of DsbA. The hydrolytic activity of β-lactamase and the motility function of flagella are thereby impeded, confirming the efficacy of NCefoTs in restoring susceptibility to antibiotics and inhibiting infection dissemination. By these synergistic effects of NCefoTs, the minimum inhibitory concentration of antibiotics decreases from over 300 µM to 1.56 µM for clinically isolated E. coli MDR. The survival rate of sepsis-inflicted mice is significantly enhanced from 0% to 92% upon encapsulation of cefoperazone in NCefoTs, which rapidly eliminates invading pathogens and mitigates inflammation. The universally applicable delivery system, based on an "on demands" strategy, presents a promising prospect for undruggable antibiotic targets in the periplasm to combat MDR bacteria.
Collapse
Affiliation(s)
- Pengfei Zou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Lin Huang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Yi Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Dan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, China
| | - Junwei Che
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Te Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, China
| | - Hui Li
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100083, China
| | - Jiaxin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Ya-Nan Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Guobao Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Zhiping Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Li-Li Li
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| |
Collapse
|
20
|
Liu Y, Tao D, Li M, Luo Z. Biomaterial-Mediated Metabolic Regulation of Ferroptosis for Cancer Immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2010. [PMID: 39492611 DOI: 10.1002/wnan.2010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/18/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Ferroptosis is a lipid peroxidation-driven cell death route and has attracted enormous interest for cancer therapy. Distinct from other forms of regulated cell death, its process is involved with multiple metabolic pathways including lipids, bioenergetics, iron, and so on, which influence cancer cell ferroptosis sensitivity and communication with the immune cells in the tumor microenvironment. Development of novel technologies for harnessing the ferroptosis-associated metabolic regulatory network would profoundly improve our understanding of the immune responses and enhance the efficacy of ferroptosis-dependent immunotherapy. Interestingly, the recent advances in bio-derived material-based therapeutic platforms offer novel opportunities to therapeutically modulate tumor metabolism through the in situ delivery of molecular or material cues, which not only allows the tumor-specific elicitation of ferroptosis but also holds promise to maximize their immunostimulatory impact. In this review, we will first dissect the crosstalk between tumor metabolism and ferroptosis and its impact on the immune regulation in the tumor microenvironment, followed by the comprehensive analysis on the recent progress in biomaterial-based metabolic regulatory strategies for evoking ferroptosis-mediated antitumor immunity. A perspective section is also provided to discuss the challenges in metabolism-regulating biomaterials for ferroptosis-immunotherapy. We envision that this review may provide new insights for improving tumor immunotherapeutic efficacy in the clinic.
Collapse
Affiliation(s)
- Yingqi Liu
- School of Life Sciences, Chongqing University, Chongqing, People's Republic of China
| | - Dan Tao
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Menghuan Li
- School of Life Sciences, Chongqing University, Chongqing, People's Republic of China
| | - Zhong Luo
- School of Life Sciences, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
21
|
Yang J, Chen L, Cai Z, Pang L, Huang Y, Xiao P, Wang J, Huang W, Cui W, Hu N. Precise Clearance of Intracellular MRSA via Internally and Externally Mediated Bioorthogonal Activation of Micro/Nano Hydrogel Microspheres. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402370. [PMID: 39342650 PMCID: PMC11600240 DOI: 10.1002/advs.202402370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/25/2024] [Indexed: 10/01/2024]
Abstract
Traditional high-dose antibiotic treatments of intracellular methicillin-resistant staphylococcus aureus (MRSA) are highly inefficient and associated with a high rate of infection relapse. As an effective antibacterial technology, sonodynamic therapy (SDT) may be able to break the dilemma. However, indiscriminate reactive oxygen species (ROS) release leads to potential side effects. This study incorporates Staphylococcal Protein A antibody-modified Cu2+/tetracarboxyphenylporphyrin nanoparticles (Cu(II)NS-SPA) into hydrogel microspheres (HAMA@Cu(II)NS-SPA) to achieve precise eradication of intracellular bacteria. This eradication is under bioorthogonal activation mediated by bacillithiol (BSH) (internally) and ultrasound (US) (externally). To specify, the US responsiveness of Cu(II)NS-SPA is restored when it is reduced to Cu(I)NS-SPA by the BSH secreted characteristically by intracellular MRSA, thus forming a bioorthogonal activation with the external US, which confines ROS production within the infected MΦ. Under external US activation at 2 W cm-2, over 95% of intracellular MRSA can be cleared. In vivo, a single injection of HAMA@Cu(II)NS-SPA achieves up to two weeks of antibacterial sonodynamic therapy, reducing pro-inflammatory factor expression by 90%, and peri-implant bone trabeculae numbers exceed the control group by five times. In summary, these micro/nano hydrogel microspheres mediated by internal and external bioorthogonal activation can precisely eliminate intracellular MRSA, effectively treating multi-drug resistant intracellular bacterial infections.
Collapse
Affiliation(s)
- Jianye Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Chongqing Medical UniversityOrthopedic Laboratory of Chongqing Medical UniversityChongqing400016P. R. China
| | - Li Chen
- Department of OrthopaedicsThe First Affiliated Hospital of Chongqing Medical UniversityOrthopedic Laboratory of Chongqing Medical UniversityChongqing400016P. R. China
| | - Zhengwei Cai
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Libin Pang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Yanran Huang
- Department of OrthopaedicsThe First Affiliated Hospital of Chongqing Medical UniversityOrthopedic Laboratory of Chongqing Medical UniversityChongqing400016P. R. China
| | - Pengcheng Xiao
- Department of OrthopaedicsThe First Affiliated Hospital of Chongqing Medical UniversityOrthopedic Laboratory of Chongqing Medical UniversityChongqing400016P. R. China
| | - Juan Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Wei Huang
- Department of OrthopaedicsThe First Affiliated Hospital of Chongqing Medical UniversityOrthopedic Laboratory of Chongqing Medical UniversityChongqing400016P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Ning Hu
- Department of OrthopaedicsThe First Affiliated Hospital of Chongqing Medical UniversityOrthopedic Laboratory of Chongqing Medical UniversityChongqing400016P. R. China
| |
Collapse
|
22
|
Wang Y, Su L, Hu Z, Peng S, Li N, Fu H, Wang B, Wu H. Resveratrol suppresses liver cancer progression by downregulating AKR1C3: targeting HCC with HSA nanomaterial as a carrier to enhance therapeutic efficacy. Apoptosis 2024; 29:1429-1453. [PMID: 39023830 DOI: 10.1007/s10495-024-01995-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
The enzyme AKR1C3 plays a crucial role in hormone and drug metabolism and is associated with abnormal expression in liver cancer, leading to tumor progression and poor prognosis. Nanoparticles modified with HSA can modulate the tumor microenvironment by enhancing photodynamic therapy to induce apoptosis in tumor cells and alleviate hypoxia. Therefore, exploring the potential regulatory mechanisms of resveratrol on AKR1C3 through the construction of HSA-RSV NPs carriers holds significant theoretical and clinical implications for the treatment of liver cancer. The aim of this study is to investigate the targeted regulation of AKR1C3 expression through the loading of resveratrol (RSV) on nanomaterials HSA-RSV NPs (Nanoparticles) in order to alleviate tumor hypoxia and inhibit the progression of hepatocellular carcinoma (HCC), and to explore its molecular mechanism. PubChem database and PharmMapper server were used to screen the target genes of RSV. HCC-related differentially expressed genes (DEGs) were analyzed through the GEO dataset, and relevant genes were retrieved from the GeneCards database, resulting in the intersection of the three to obtain candidate DEGs. GO and KEGG enrichment analyses were performed on the candidate DEGs to analyze the potential cellular functions and molecular signaling pathways affected by the main target genes. The cytohubba plugin was used to screen the top 10 target genes ranked by Degree and further intersected the results of LASSO and Random Forest (RF) to obtain hub genes. The expression analysis of hub genes and the prediction of malignant tumor prognosis were conducted. Furthermore, a pharmacophore model was constructed using PharmMapper. Molecular docking simulations were performed using AutoDockTools 1.5.6 software, and ROC curve analysis was performed to determine the core target. In vitro cell experiments were carried out by selecting appropriate HCC cell lines, treating HCC cells with different concentrations of RSV, or silencing or overexpressing AKR1C3 using lentivirus. CCK-8, clone formation, flow cytometry, scratch experiment, and Transwell were used to measure cancer cell viability, proliferation, migration, invasion, and apoptosis, respectively. Cellular oxygen consumption rate was analyzed using the Seahorse XF24 analyzer. HSA-RSV NPs were prepared, and their characterization and cytotoxicity were evaluated. The biological functional changes of HCC cells after treatment were detected. An HCC subcutaneous xenograft model was established in mice using HepG2 cell lines. HSA-RSV NPs were injected via the tail vein, with a control group set, to observe changes in tumor growth, tumor targeting of NPs, and biological safety. TUNEL, Ki67, and APC-hypoxia probe staining were performed on excised tumor tissue to detect tumor cell proliferation, apoptosis, and hypoxia. Lentivirus was used to silence or overexpress AKR1C3 simultaneously with the injection of HSA-RSV NPs via the tail vein to assess the impact of AKR1C3 on the regulation of HSA-RSV NPs in HCC progression. Bioinformatics analysis revealed that AKR1C3 is an important target gene involved in the regulation of HCC by RSV, which is associated with the prognosis of HCC patients and upregulated in expression. In vitro cell experiments showed that RSV significantly inhibits the respiratory metabolism of HCC cells, suppressing their proliferation, migration, and invasion and promoting apoptosis. Silencing AKR1C3 further enhances the toxicity of RSV towards HCC cells. The characterization and cytotoxicity experiments of nanomaterials demonstrated the successful construction of HSA-RSV NPs, which exhibited stronger inhibitory effects on HCC cells. In vivo, animal experiments further confirmed that targeted downregulation of AKR1C3 by HSA-RSV NPs suppresses the progression of HCC and tumor hypoxia while exhibiting tumor targeting and biological safety. Targeted downregulation of AKR1C3 by HSA-RSV NPs can alleviate HCC tumor hypoxia and inhibit the progression of HCC.
Collapse
Affiliation(s)
- Ying Wang
- Operating Room, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Longxiang Su
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Zhansheng Hu
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning Province, 121001, China
| | - Shuang Peng
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning Province, 121001, China
| | - Na Li
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning Province, 121001, China
| | - Haiyan Fu
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning Province, 121001, China
| | - Baoquan Wang
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning Province, 121001, China
| | - Huiping Wu
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning Province, 121001, China.
| |
Collapse
|
23
|
Luo L, Zhou H, Wang S, Pang M, Zhang J, Hu Y, You J. The Application of Nanoparticle-Based Imaging and Phototherapy for Female Reproductive Organs Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2207694. [PMID: 37154216 DOI: 10.1002/smll.202207694] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/06/2023] [Indexed: 05/10/2023]
Abstract
Various female reproductive disorders affect millions of women worldwide and bring many troubles to women's daily life. Let alone, gynecological cancer (such as ovarian cancer and cervical cancer) is a severe threat to most women's lives. Endometriosis, pelvic inflammatory disease, and other chronic diseases-induced pain have significantly harmed women's physical and mental health. Despite recent advances in the female reproductive field, the existing challenges are still enormous such as personalization of disease, difficulty in diagnosing early cancers, antibiotic resistance in infectious diseases, etc. To confront such challenges, nanoparticle-based imaging tools and phototherapies that offer minimally invasive detection and treatment of reproductive tract-associated pathologies are indispensable and innovative. Of late, several clinical trials have also been conducted using nanoparticles for the early detection of female reproductive tract infections and cancers, targeted drug delivery, and cellular therapeutics. However, these nanoparticle trials are still nascent due to the body's delicate and complex female reproductive system. The present review comprehensively focuses on emerging nanoparticle-based imaging and phototherapies applications, which hold enormous promise for improved early diagnosis and effective treatments of various female reproductive organ diseases.
Collapse
Affiliation(s)
- Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Mei Pang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yilong Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| |
Collapse
|
24
|
Sun Q, Kong N, Zhao H, Zhang X, Tao Q, Jiang H, Xuan A, Li X. pH-sensitive and redox-responsive poly(tetraethylene glycol) nanoparticle-based platform for cancer treatment. NANOTECHNOLOGY 2024; 35:495707. [PMID: 39293467 DOI: 10.1088/1361-6528/ad7c54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024]
Abstract
Effective drug delivery with precise tumour targeting is crucial for cancer treatment. To address the challenges posed by the specificity and complexity of the tumour microenvironment, we developed a poly(tetraethylene glycol)-based disulfide nanoparticle (NP) platform and explored its potential in cancer treatment, focusing on drug loading and controlled release performance. Poly(tetraethylene glycol) NPs were characterised using nuclear magnetic resonance spectroscopy, mass spectrometry, and ultraviolet-visible spectroscopy. Additionally, we evaluated physicochemical properties, including dynamic light scattering, zeta potential analysis, drug loading capacity (DLC), and drug loading efficiency (DLE). The impact of NPs on the mouse colorectal cancer cell line (CT26) and NIH3T3 cells was assessed using a cytotoxicity assay, live/dead staining assay, flow cytometry, and confocal fluorescence microscopy. The experimental results align with the expected chemical structure and physicochemical properties of poly(tetraethylene glycol) NPs. These NPs exhibit high DLE (78.7%) and DLC (12%), with minimal changes in particle size over time in different media.In vitroexperiments revealed that the NPs can induce significant cytotoxicity and apoptosis in CT26 cells. Cellular uptake notably increases with increasing concentration and exposure time. The confocal microscopic analysis confirmed the effective distribution and accumulation of NPs within cells. In conclusion, poly(tetraethylene glycol) NPs hold promise for improving drug-delivery efficiency, offering potential advancements in cancer treatment.
Collapse
Affiliation(s)
- Qian Sun
- Jinan University, Guangzhou 510632, Guangdong, People's Republic of China
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, People's Republic of China
| | - Nuocheng Kong
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, People's Republic of China
| | - Hanqing Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, People's Republic of China
| | - Xianwen Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, People's Republic of China
| | - Qimeng Tao
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, People's Republic of China
| | - Hao Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, People's Republic of China
| | - Aili Xuan
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, People's Republic of China
| | - Xianming Li
- Jinan University, Guangzhou 510632, Guangdong, People's Republic of China
- Department of Radiation Oncology, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen 518020, Guangdong, People's Republic of China
| |
Collapse
|
25
|
Chu Z, Wang W, Zheng W, Fu W, Wang Y, Wang H, Qian H. Biomaterials with cancer cell-specific cytotoxicity: challenges and perspectives. Chem Soc Rev 2024; 53:8847-8877. [PMID: 39092634 DOI: 10.1039/d4cs00636d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Significant advances have been made in materials for biomedical applications, including tissue engineering, bioimaging, cancer treatment, etc. In the past few decades, nanostructure-mediated therapeutic strategies have been developed to improve drug delivery, targeted therapy, and diagnosis, maximizing therapeutic effectiveness while reducing systemic toxicity and side effects by exploiting the complicated interactions between the materials and the cell and tissue microenvironments. This review briefly introduces the differences between the cells and tissues of tumour or normal cells. We summarize recent advances in tumour microenvironment-mediated therapeutic strategies using nanostructured materials. We then comprehensively discuss strategies for fabricating nanostructures with cancer cell-specific cytotoxicity by precisely controlling their composition, particle size, shape, structure, surface functionalization, and external energy stimulation. Finally, we present perspectives on the challenges and future opportunities of nanotechnology-based toxicity strategies in tumour therapy.
Collapse
Affiliation(s)
- Zhaoyou Chu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China.
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Wang Zheng
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Yujie Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Hua Wang
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China.
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Anhui Medical University, Hefei 230011, P. R. China
| |
Collapse
|
26
|
Wei Y, Weng X, Wang Y, Yang W. Stimuli-Responsive Polymersomes: Reshaping the Immunosuppressive Tumor Microenvironment. Biomacromolecules 2024; 25:4663-4676. [PMID: 39054960 DOI: 10.1021/acs.biomac.4c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The progression of cancer involves mutations in normal cells, leading to uncontrolled division and tissue destruction, highlighting the complexity of tumor microenvironments (TMEs). Immunotherapy has emerged as a transformative approach, yet the balance between efficacy and safety remains a challenge. Nanoparticles such as polymersomes offer the possibility to precisely target tumors, deliver drugs in a controlled way, effectively modulate the antitumor immunity, and notably reduce side effects. Herein, stimuli-responsive polymersomes, with capabilities for carrying multiple therapeutics, are highlighted for their potential in enhancing antitumor immunity through mechanisms like inducing immunogenic cell death and activating STING (stimulator of interferon genes), etc. The recent progress of utilizing stimuli-responsive polymersomes to reshape the TME is reviewed here. The advantages and limitations to applied stimuli-responsive polymersomes are outlined. Additionally, challenges and future prospects in leveraging polymersomes for cancer therapy are discussed, emphasizing the need for future research and clinical translation.
Collapse
Affiliation(s)
- Yaohua Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiao Weng
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan 450001 China
| | - Yayun Wang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan 450001 China
| | - Weijing Yang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan 450001 China
| |
Collapse
|
27
|
Peng X, Fang J, Lou C, Yang L, Shan S, Wang Z, Chen Y, Li H, Li X. Engineered nanoparticles for precise targeted drug delivery and enhanced therapeutic efficacy in cancer immunotherapy. Acta Pharm Sin B 2024; 14:3432-3456. [PMID: 39220871 PMCID: PMC11365410 DOI: 10.1016/j.apsb.2024.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 09/04/2024] Open
Abstract
The advent of cancer immunotherapy has imparted a transformative impact on cancer treatment paradigms by harnessing the power of the immune system. However, the challenge of practical and precise targeting of malignant cells persists. To address this, engineered nanoparticles (NPs) have emerged as a promising solution for enhancing targeted drug delivery in immunotherapeutic interventions, owing to their small size, low immunogenicity, and ease of surface modification. This comprehensive review delves into contemporary research at the nexus of NP engineering and immunotherapy, encompassing an extensive spectrum of NP morphologies and strategies tailored toward optimizing tumor targeting and augmenting therapeutic effectiveness. Moreover, it underscores the mechanisms that NPs leverage to bypass the numerous obstacles encountered in immunotherapeutic regimens and probes into the combined potential of NPs when co-administered with both established and novel immunotherapeutic modalities. Finally, the review evaluates the existing limitations of NPs as drug delivery platforms in immunotherapy, which could shape the path for future advancements in this promising field.
Collapse
Affiliation(s)
- Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Jianjun Fang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Chuyuan Lou
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Shaobo Shan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 10050, China
| | - Zixian Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Yutong Chen
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Xuexin Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-17177, Sweden
| |
Collapse
|
28
|
Zeng X, Chen Q, Chen T. Nanomaterial-assisted oncolytic bacteria in solid tumor diagnosis and therapeutics. Bioeng Transl Med 2024; 9:e10672. [PMID: 39036084 PMCID: PMC11256190 DOI: 10.1002/btm2.10672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 07/23/2024] Open
Abstract
Cancer presents a formidable challenge in modern medicine due to the intratumoral heterogeneity and the dynamic microenvironmental niche. Natural or genetically engineered oncolytic bacteria have always been hailed by scientists for their intrinsic tumor-targeting and oncolytic capacities. However, the immunogenicity and low toxicity inevitably constrain their application in clinical practice. When nanomaterials, characterized by distinctive physicochemical properties, are integrated with oncolytic bacteria, they achieve mutually complementary advantages and construct efficient and safe nanobiohybrids. In this review, we initially analyze the merits and drawbacks of conventional tumor therapeutic approaches, followed by a detailed examination of the precise oncolysis mechanisms employed by oncolytic bacteria. Subsequently, we focus on harnessing nanomaterial-assisted oncolytic bacteria (NAOB) to augment the effectiveness of tumor therapy and utilizing them as nanotheranostic agents for imaging-guided tumor treatment. Finally, by summarizing and analyzing the current deficiencies of NAOB, this review provides some innovative directions for developing nanobiohybrids, intending to infuse novel research concepts into the realm of solid tumor therapy.
Collapse
Affiliation(s)
- Xiangdi Zeng
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
- The First Clinical Medical College, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Qi Chen
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Tingtao Chen
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
- National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational Medicine, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
- School of PharmacyJiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| |
Collapse
|
29
|
Escher TE, Yuk SA, Qian Y, Stubbs CK, Scott EA, Satchell KJF. Therapeutic expression of RAS Degrader RRSP in Pancreatic Cancer via Nanocarrier-mediated mRNA delivery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598439. [PMID: 38948803 PMCID: PMC11212117 DOI: 10.1101/2024.06.11.598439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
About one-third of all human cancers encode abnormal RAS proteins locked in a constitutively activated state to drive malignant transformation and uncontrolled tumor growth. Despite progress in development of small molecules for treatment of mutant KRAS cancers, there is a need for a pan-RAS inhibitor that is effective against all RAS isoforms and variants and that avoids drug resistance. We have previously shown that the naturally occurring bacterial enzyme RAS/RAP1-specific endopeptidase (RRSP) is a potent RAS degrader that can be re-engineered as a biologic therapy to induce regression of colorectal, breast, and pancreatic tumors. Here, we have developed a strategy for in vivo expression of this RAS degrader via mRNA delivery using a synthetic nonviral gene delivery platform composed of the poly(ethylene glycol)-b-poly(propylene sulfide) (PEG-b-PPS) block copolymer conjugated to a dendritic cationic peptide (PPDP2). Using this strategy, PPDP2 is shown to deliver mRNA to both human and mouse pancreatic cells resulting in RRSP gene expression, activity, and loss of cell proliferation. Further, pancreatic tumors are reduced with residual tumors lacking detectable RAS and phosphorylated ERK. These data support that mRNA-loaded synthetic nanocarrier delivery of a RAS degrader can interrupt the RAS signaling system within pancreatic cancer cells while avoiding side effects during therapy.
Collapse
Affiliation(s)
- Taylor E Escher
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611 United States
| | - Simseok A Yuk
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yuan Qian
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Caleb K Stubbs
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611 United States
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Research Center, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611 United States
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611 United States
- Robert H. Lurie Comprehensive Cancer Research Center, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611 United States
| |
Collapse
|
30
|
Du F, Rische CH, Li Y, Vincent MP, Krier-Burris RA, Qian Y, Yuk SA, Almunif S, Bochner BS, Qiao B, Scott EA. Controlled adsorption of multiple bioactive proteins enables targeted mast cell nanotherapy. NATURE NANOTECHNOLOGY 2024; 19:698-704. [PMID: 38228804 PMCID: PMC11105988 DOI: 10.1038/s41565-023-01584-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
Protein adsorption onto nanomaterials often results in denaturation and loss of bioactivity. Controlling the adsorption process to maintain the protein structure and function has potential for a range of applications. Here we report that self-assembled poly(propylene sulfone) (PPSU) nanoparticles support the controlled formation of multicomponent enzyme and antibody coatings and maintain their bioactivity. Simulations indicate that hydrophobic patches on protein surfaces induce a site-specific dipole relaxation of PPSU assemblies to non-covalently anchor the proteins without disrupting the protein hydrogen bonding or structure. As a proof of concept, a nanotherapy employing multiple mast-cell-targeted antibodies for preventing anaphylaxis is demonstrated in a humanized mouse model. PPSU nanoparticles displaying an optimized ratio of co-adsorbed anti-Siglec-6 and anti-FcεRIα antibodies effectively inhibit mast cell activation and degranulation, preventing anaphylaxis. Protein immobilization on PPSU surfaces provides a simple and rapid platform for the development of targeted protein nanomedicines.
Collapse
Affiliation(s)
- Fanfan Du
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Clayton H Rische
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yang Li
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Michael P Vincent
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Rebecca A Krier-Burris
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yuan Qian
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Simseok A Yuk
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Sultan Almunif
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Bruce S Bochner
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Baofu Qiao
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Department of Natural Sciences, Baruch College, City University of New York, New York, NY, USA
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
31
|
Guo Z, Ye J, Cheng X, Wang T, Zhang Y, Yang K, Du S, Li P. Nanodrug Delivery Systems in Antitumor Immunotherapy. Biomater Res 2024; 28:0015. [PMID: 38840653 PMCID: PMC11045275 DOI: 10.34133/bmr.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/26/2024] [Indexed: 06/07/2024] Open
Abstract
Cancer has become one of the most important factors threatening human health, and the global cancer burden has been increasing rapidly. Immunotherapy has become another clinical research hotspot after surgery, chemotherapy, and radiotherapy because of its high efficiency and tumor metastasis prevention. However, problems such as lower immune response rate and immune-related adverse reaction in the clinical application of immunotherapy need to be urgently solved. With the development of nanodrug delivery systems, various nanocarrier materials have been used in the research of antitumor immunotherapy with encouraging therapeutic results. In this review, we mainly summarized the combination of nanodrug delivery systems and immunotherapy from the following 4 aspects: (a) nanodrug delivery systems combined with cytokine therapy to improve cytokines delivery in vivo; (b) nanodrug delivery systems provided a suitable platform for the combination of immune checkpoint blockade therapy with other tumor treatments; (c) nanodrug delivery systems helped deliver antigens and adjuvants for tumor vaccines to enhance immune effects; and (d) nanodrug delivery systems improved tumor treatment efficiency and reduced toxicity for adoptive cell therapy. Nanomaterials chosen by researchers to construct nanodrug delivery systems and their function were also introduced in detail. Finally, we discussed the current challenges and future prospects in combining nanodrug delivery systems with immunotherapy.
Collapse
Affiliation(s)
- Zishuo Guo
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jinhong Ye
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xuehao Cheng
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tieshan Wang
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- YiDu Central Hospital of Weifang, Weifang, Shandong 262500, China
| | - Kaili Yang
- Beijing University of Chinese Medicine, Beijing 102488, China
| | | | - Pengyue Li
- Address correspondence to: (P.L.); (S.D.)
| |
Collapse
|
32
|
Zhang MR, Fang LL, Guo Y, Wang Q, Li YJ, Sun HF, Xie SY, Liang Y. Advancements in Stimulus-Responsive Co-Delivery Nanocarriers for Enhanced Cancer Immunotherapy. Int J Nanomedicine 2024; 19:3387-3404. [PMID: 38617801 PMCID: PMC11012697 DOI: 10.2147/ijn.s454004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/14/2024] [Indexed: 04/16/2024] Open
Abstract
Cancer immunotherapy has emerged as a novel therapeutic approach against tumors, with immune checkpoint inhibitors (ICIs) making significant clinical practice. The traditional ICIs, PD-1 and PD-L1, augment the cytotoxic function of T cells through the inhibition of tumor immune evasion pathways, ultimately leading to the initiation of an antitumor immune response. However, the clinical implementation of ICIs encounters obstacles stemming from the existence of an immunosuppressive tumor microenvironment and inadequate infiltration of CD8+T cells. Considerable attention has been directed towards advancing immunogenic cell death (ICD) as a potential solution to counteract tumor cell infiltration and the immunosuppressive tumor microenvironment. This approach holds promise in transforming "cold" tumors into "hot" tumors that exhibit responsiveness to antitumor. By combining ICD with ICIs, a synergistic immune response against tumors can be achieved. However, the combination of ICD inducers and PD-1/PD-L1 inhibitors is hindered by issues such as poor targeting and uncontrolled drug release. An advantageous solution presented by stimulus-responsive nanocarrier is integrating the physicochemical properties of ICD inducers and PD-1/PD-L1 inhibitors, facilitating precise delivery to specific tissues for optimal combination therapy. Moreover, these nanocarriers leverage the distinct features of the tumor microenvironment to accomplish controlled drug release and regulate the kinetics of drug delivery. This article aims to investigate the advancement of stimulus-responsive co-delivery nanocarriers utilizing ICD and PD-1/PD-L1 inhibitors. Special focus is dedicated to exploring the advantages and recent advancements of this system in enabling the combination of ICIs and ICD inducers. The molecular mechanisms of ICD and ICIs are concisely summarized. In conclusion, we examine the potential research prospects and challenges that could greatly enhance immunotherapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Meng-Ru Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
- Department of Clinical Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Lin-Lin Fang
- RemeGen Co., Ltd, YanTai, ShanDong, 264000, People’s Republic of China
| | - Yang Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Qin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Hong-Fang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Shu-Yang Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Yan Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| |
Collapse
|
33
|
Li M, Jiang H, Hu P, Shi J. Nanocatalytic Anti-Tumor Immune Regulation. Angew Chem Int Ed Engl 2024; 63:e202316606. [PMID: 38212843 DOI: 10.1002/anie.202316606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/30/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Immunotherapy has brought a new dawn for human being to defeat cancer. Although existing immunotherapy regimens (CAR-T, etc.) have made breakthroughs in the treatments of hematological cancer and few solid tumors such as melanoma, the therapeutic efficacy on most solid tumors is still far from being satisfactory. In recent years, the researches on tumor immunotherapy based on nanocatalytic materials are under rapid development, and significant progresses have been made. Nanocatalytic medicine has been demonstrated to be capable of overcoming the limitations of current clinicnal treatments by using toxic chemodrugs, and exhibits highly attractive advantages over traditional therapies, such as the enhanced and sustained therapeutic efficacy based on the durable catalytic activity, remarkably reduced harmful side-effects without using traditional toxic chemodrugs, and so on. Most recently, nanocatalytic medicine has been introduced in the immune-regulation for disease treatments, especially, in the immunoactivation for tumor therapies. This article presents the most recent progresses in immune-response activations by nanocatalytic medicine-initiated chemical reactions for tumor immunotherapy, and elucidates the mechanism of nanocatalytic medicines in regulating anti-tumor immunity. By reviewing the current research progress in the emerging field, this review will further highlight the great potential and broad prospects of nanocatalysis-based anti-tumor immune-therapeutics.
Collapse
Affiliation(s)
- Mingyuan Li
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P R. China
| | - Han Jiang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P R. China
| | - Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine, Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, P. R. China
| | - Jianlin Shi
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P R. China
| |
Collapse
|
34
|
Peng W, Cao Y, Zhang Y, Zhong A, Zhang C, Wei Z, Liu X, Dong S, Wu J, Xue Y, Wu M, Yao C. Optimal Irreversible Electroporation Combined with Nano-Enabled Immunomodulatory to Boost Systemic Antitumor Immunity. Adv Healthc Mater 2024; 13:e2302549. [PMID: 38059737 DOI: 10.1002/adhm.202302549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/22/2023] [Indexed: 12/08/2023]
Abstract
In this work, we proposed nµPEF, a novel pulse configuration combining nanosecond and microsecond pulses (nµPEF), to enhance tumor ablation in irreversible electroporation (IRE) for oncological therapy. nµPEF demonstrated improved efficacy in inducing immunogenic cell death, positioning it as a potential candidate for next-generation ablative therapy. However, the immune response elicited by nµPEF alone was insufficient to effectively suppress distant tumors. To address this limitation, we developed PPR@CM-PD1, a genetically engineered nanovesicle. PPR@CM-PD1 employed a polyethylene glycol-polylactic acid-glycolic acid (PEG-PLGA) nanoparticle encapsulating the immune adjuvant imiquimod and coated with a genetically engineered cell membrane expressing programmed cell death protein 1 (PD1). This design allowed PPR@CM-PD1 to target both the innate immune system through toll-like receptor 7 (TLR7) agonism and the adaptive immune system through programmed cell death protein 1/programmed cell death-ligand 1 (PD1/PDL1) checkpoint blockade. In turn, nµPEF facilitated intratumoral infiltration of PPR@CM-PD1 by modulating the tumor stroma. The combination of nµPEF and PPR@CM-PD1 generated a potent and systemic antitumor immune response, resulting in remarkable suppression of both nµPEF-treated and untreated distant tumors (abscopal effects). This interdisciplinary approach presents a promising perspective for oncotherapy and holds great potential for future clinical applications.
Collapse
Affiliation(s)
- Wencheng Peng
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, 400044, P. R. China
| | - Yanbing Cao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yuting Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Aoxue Zhong
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Cao Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Zuwu Wei
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Shoulong Dong
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, 400044, P. R. China
| | - Jingcheng Wu
- Department of Health Science, Technology and Education, National Health Commission of the People's Republic of China, Beijing, 100088, P. R. China
| | - Yanan Xue
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, and School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Chenguo Yao
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
35
|
Hu R, Lan J, Zhang D, Shen W. Nanotherapeutics for prostate cancer treatment: A comprehensive review. Biomaterials 2024; 305:122469. [PMID: 38244344 DOI: 10.1016/j.biomaterials.2024.122469] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Prostate cancer (PCa) is the most prevalent solid organ malignancy and seriously affects male health. The adverse effects of prostate cancer therapeutics can cause secondary damage to patients. Nanotherapeutics, which have special targeting abilities and controlled therapeutic release profiles, may serve as alternative agents for PCa treatment. At present, many nanotherapeutics have been developed to treat PCa and have shown better treatment effects in animals than traditional therapeutics. Although PCa nanotherapeutics are highly attractive, few successful cases have been reported in clinical practice. To help researchers design valuable nanotherapeutics for PCa treatment and avoid useless efforts, herein, we first reviewed the strategies and challenges involved in prostate cancer treatment. Subsequently, we presented a comprehensive review of nanotherapeutics for PCa treatment, including their targeting methods, controlled release strategies, therapeutic approaches and mechanisms. Finally, we proposed the future prospects of nanotherapeutics for PCa treatment.
Collapse
Affiliation(s)
- Ruimin Hu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jin Lan
- Department of Ultrasound, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Dinglin Zhang
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Wenhao Shen
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
36
|
Wang Y, Liu Y, Zhang J, Peng Q, Wang X, Xiao X, Shi K. Nanomaterial-mediated modulation of the cGAS-STING signaling pathway for enhanced cancer immunotherapy. Acta Biomater 2024; 176:51-76. [PMID: 38237711 DOI: 10.1016/j.actbio.2024.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
Despite the current promise of immunotherapy, many cancer patients still suffer from challenges such as poor immune response rates, resulting in unsatisfactory clinical efficacy of existing therapies. There is an urgent need to combine emerging biomedical discoveries and innovations in traditional therapies. Modulation of the cGAS-STING signalling pathway represents an important innate immunotherapy pathway that serves as a crucial DNA sensing mechanism in innate immunity and viral defense. It has attracted increasing attention as an emerging target for cancer therapy. The recent advancements in nanotechnology have led to the significant utilization of nanomaterials in cancer immunotherapy, owing to their exceptional physicochemical properties such as large specific surface area and efficient permeability. Given the rapid development of cancer immunotherapy driven by the cGAS-STING activation, this study reviews the latest research progress in employing nanomaterials to modulate this signaling pathway. Based on the introduction of the main activation mechanisms of cGAS-STING pathway, this review focuses on nanomaterials that mediate the agonists involved and effectively activate this signaling pathway. In addition, combination nanotherapeutics based on the activation of the cGAS-STING signaling pathway are also discussed, including emerging strategies combining nanoformulated agonists with chemotherapy, radiotherapy as well as other immunomodulation in tumor targeting therapy. STATEMENT OF SIGNIFICANCE: Given the rapid development of cancer immunotherapy driven by the cGAS / STING activation, this study reviews the latest research advances in the use of nanomaterials to modulate this signaling pathway. Based on the introduction of key cGAS-STING components and their activation mechanisms, this review focuses on nanomaterials that can mediate the corresponding agonists and effectively activate this signaling pathway. In addition, combination nanotherapies based on the activation of the cGAS-STING signaling pathway are also discussed, including emerging strategies combining nanoformulated agonists with chemotherapy, radiotherapy as well as immunomodulation in cancer therapy,.
Collapse
Affiliation(s)
- Yaxin Wang
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Yunmeng Liu
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Jincheng Zhang
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Qikai Peng
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Xingdong Wang
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Xiyue Xiao
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Kai Shi
- College of Pharmacy, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
37
|
Liu X, Jiang H, Wang X. Advances in Cancer Research: Current and Future Diagnostic and Therapeutic Strategies. BIOSENSORS 2024; 14:100. [PMID: 38392019 PMCID: PMC10886776 DOI: 10.3390/bios14020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Cancers of unknown primary (CUP) exhibit significant cellular heterogeneity and malignancy, which poses significant challenges for diagnosis and treatment. Recent years have seen deeper insights into the imaging, pathology, and genetic characteristics of CUP, driven by interdisciplinary collaboration and the evolution of diagnostic and therapeutic strategies. However, due to their insidious onset, lack of evidence-based medicine, and limited clinical understanding, diagnosing and treating CUP remain a significant challenge. To inspire more creative and fantastic research, herein, we report and highlight recent advances in the diagnosis and therapeutic strategies of CUP. Specifically, we discuss advanced diagnostic technologies, including 12-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with computed tomography (18F-FDG PET/CT) or 68Ga-FAPI (fibroblast activation protein inhibitor) PET/CT, liquid biopsy, molecular diagnostics, self-assembling nanotechnology, and artificial intelligence (AI). In particular, the discussion will extend to the effective treatment techniques currently available, such as targeted therapies, immunotherapies, and bio-nanotechnology-based therapeutics. Finally, a novel perspective on the challenges and directions for future CUP diagnostic and therapeutic strategies is discussed.
Collapse
Affiliation(s)
- Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
38
|
Sun Z, Zhao H, Ma L, Shi Y, Ji M, Sun X, Ma D, Zhou W, Huang T, Zhang D. The quest for nanoparticle-powered vaccines in cancer immunotherapy. J Nanobiotechnology 2024; 22:61. [PMID: 38355548 PMCID: PMC10865557 DOI: 10.1186/s12951-024-02311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Despite recent advancements in cancer treatment, this disease still poses a serious threat to public health. Vaccines play an important role in preventing illness by preparing the body's adaptive and innate immune responses to combat diseases. As our understanding of malignancies and their connection to the immune system improves, there has been a growing interest in priming the immune system to fight malignancies more effectively and comprehensively. One promising approach involves utilizing nanoparticle systems for antigen delivery, which has been shown to potentiate immune responses as vaccines and/or adjuvants. In this review, we comprehensively summarized the immunological mechanisms of cancer vaccines while focusing specifically on the recent applications of various types of nanoparticles in the field of cancer immunotherapy. By exploring these recent breakthroughs, we hope to identify significant challenges and obstacles in making nanoparticle-based vaccines and adjuvants feasible for clinical application. This review serves to assess recent breakthroughs in nanoparticle-based cancer vaccinations and shed light on their prospects and potential barriers. By doing so, we aim to inspire future immunotherapies for cancer that harness the potential of nanotechnology to deliver more effective and targeted treatments.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Hui Zhao
- Department of Endodontics, East Branch of Jinan Stomatological Hospital, Jinan, 250000, Shandong, China
| | - Li Ma
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yanli Shi
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Mei Ji
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xiaodong Sun
- Department of Endodontics, Gaoxin Branch of Jinan Stomatological Hospital, Jinan, 250000, Shandong, China
| | - Dan Ma
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Wei Zhou
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Tao Huang
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Dongsheng Zhang
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
39
|
Klug N, Burke J, Scott E. Rational Engineering of Islet Tolerance via Biomaterial-Mediated Immune Modulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:216-224. [PMID: 38166244 PMCID: PMC10766078 DOI: 10.4049/jimmunol.2300527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/17/2023] [Indexed: 01/04/2024]
Abstract
Type 1 diabetes (T1D) onset is characterized by an autoimmune attack on β islet cells within the pancreas, preventing the insulin secretion required to maintain glucose homeostasis. Targeted modulation of key immunoregulatory cell populations is a promising strategy to restore tolerance to β cells. This strategy can be used to prevent T1D onset or reverse T1D with transplanted islets. To this end, drug delivery systems can be employed to transport immunomodulatory cargo to specific cell populations that inhibit autoreactive T cell-mediated destruction of the β cell mass. The rational engineering of biomaterials into nanoscale and microscale drug carriers can facilitate targeted interactions with immune cells. The physicochemical properties of the biomaterial, the delivered immunomodulatory agent, and the target cell populations are critical variables in the design of these delivery systems. In this review, we discuss recent biomaterials-based drug delivery approaches to induce islet tolerance and the need to consider both immune and metabolic markers of disease progression.
Collapse
Affiliation(s)
- Natalie Klug
- Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL
| | - Jacqueline Burke
- Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL
| | - Evan Scott
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
40
|
Cheng J, Huang H, Chen Y, Wu R. Nanomedicine for Diagnosis and Treatment of Atherosclerosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304294. [PMID: 37897322 PMCID: PMC10754137 DOI: 10.1002/advs.202304294] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/11/2023] [Indexed: 10/30/2023]
Abstract
With the changing disease spectrum, atherosclerosis has become increasingly prevalent worldwide and the associated diseases have emerged as the leading cause of death. Due to their fascinating physical, chemical, and biological characteristics, nanomaterials are regarded as a promising tool to tackle enormous challenges in medicine. The emerging discipline of nanomedicine has filled a huge application gap in the atherosclerotic field, ushering a new generation of diagnosis and treatment strategies. Herein, based on the essential pathogenic contributors of atherogenesis, as well as the distinct composition/structural characteristics, synthesis strategies, and surface design of nanoplatforms, the three major application branches (nanodiagnosis, nanotherapy, and nanotheranostic) of nanomedicine in atherosclerosis are elaborated. Then, state-of-art studies containing a sequence of representative and significant achievements are summarized in detail with an emphasis on the intrinsic interaction/relationship between nanomedicines and atherosclerosis. Particularly, attention is paid to the biosafety of nanomedicines, which aims to pave the way for future clinical translation of this burgeoning field. Finally, this comprehensive review is concluded by proposing unresolved key scientific issues and sharing the vision and expectation for the future, fully elucidating the closed loop from atherogenesis to the application paradigm of nanomedicines for advancing the early achievement of clinical applications.
Collapse
Affiliation(s)
- Jingyun Cheng
- Department of UltrasoundShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| | - Hui Huang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou Institute of Shanghai UniversityWenzhouZhejiang325088P. R. China
| | - Rong Wu
- Department of UltrasoundShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| |
Collapse
|
41
|
Guo Y, Liu S, Jing D, Liu N, Luo X. The construction of elastin-like polypeptides and their applications in drug delivery system and tissue repair. J Nanobiotechnology 2023; 21:418. [PMID: 37951928 PMCID: PMC10638729 DOI: 10.1186/s12951-023-02184-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023] Open
Abstract
Elastin-like polypeptides (ELPs) are thermally responsive biopolymers derived from natural elastin. These peptides have a low critical solution temperature phase behavior and can be used to prepare stimuli-responsive biomaterials. Through genetic engineering, biomaterials prepared from ELPs can have unique and customizable properties. By adjusting the amino acid sequence and length of ELPs, nanostructures, such as micelles and nanofibers, can be formed. Correspondingly, ELPs have been used for improving the stability and prolonging drug-release time. Furthermore, ELPs have widespread use in tissue repair due to their biocompatibility and biodegradability. Here, this review summarizes the basic property composition of ELPs and the methods for modulating their phase transition properties, discusses the application of drug delivery system and tissue repair and clarifies the current challenges and future directions of ELPs in applications.
Collapse
Affiliation(s)
- Yingshu Guo
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Shiwei Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Dan Jing
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Nianzu Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
42
|
Hadley P, Chen Y, Cline L, Han Z, Tang Q, Huang X, Desai T. Precise surface functionalization of PLGA particles for human T cell modulation. Nat Protoc 2023; 18:3289-3321. [PMID: 37853157 PMCID: PMC10775953 DOI: 10.1038/s41596-023-00887-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/05/2023] [Indexed: 10/20/2023]
Abstract
The biofunctionalization of synthetic materials has extensive utility for biomedical applications, but approaches to bioconjugation typically show insufficient efficiency and controllability. We recently developed an approach by building synthetic DNA scaffolds on biomaterial surfaces that enables the precise control of cargo density and ratio, thus improving the assembly and organization of functional cargos. We used this approach to show that the modulation and phenotypic adaptation of immune cells can be regulated using our precisely functionalized biomaterials. Here, we describe the three key procedures, including the fabrication of polymeric particles engrafted with short DNA scaffolds, the attachment of functional cargos with complementary DNA strands, and the surface assembly control and quantification. We also explain the critical checkpoints needed to ensure the overall quality and expected characteristics of the biological product. We provide additional experimental design considerations for modifying the approach by varying the material composition, size or cargo types. As an example, we cover the use of the protocol for human primary T cell activation and for the identification of parameters that affect ex vivo T cell manufacturing. The protocol requires users with diverse expertise ranging from synthetic materials to bioconjugation chemistry to immunology. The fabrication procedures and validation assays to design high-fidelity DNA-scaffolded biomaterials typically require 8 d.
Collapse
Affiliation(s)
- Pierce Hadley
- Medical Scientist Training Program, University of California, San Francisco, CA, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Yuanzhou Chen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Cell Design Institute and Center for Synthetic Immunology, University of California, San Francisco, CA, USA
| | - Lariana Cline
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Zhiyuan Han
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Qizhi Tang
- Diabetes Center, University of California, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Surgery, University of California, San Francisco, CA, USA
| | - Xiao Huang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
- Cell Design Institute and Center for Synthetic Immunology, University of California, San Francisco, CA, USA.
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Tejal Desai
- UC Berkeley-UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
- Diabetes Center, University of California, San Francisco, CA, USA.
- Cell Design Institute and Center for Synthetic Immunology, University of California, San Francisco, CA, USA.
- School of Engineering, Brown University, Providence, RI, USA.
| |
Collapse
|
43
|
Mao J, Jin Z, Rui X, Li L, Hou C, Leng X, Bi X, Chen Z, Chen Y, Wang J. A Universal Cyclodextrin-Based Nanovaccine Platform Delivers Epitope Peptides for Enhanced Antitumor Immunity. Adv Healthc Mater 2023; 12:e2301099. [PMID: 37602523 DOI: 10.1002/adhm.202301099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/13/2023] [Indexed: 08/22/2023]
Abstract
Currently, there is still an intense demand for a simple and scalable delivery platform for peptide-based cancer vaccines. Herein, a cyclodextrin-based polymer nanovaccine platform (CDNP) is designed for the codelivery of peptides with two immune adjuvants [the Toll-like receptor (TLR)7/8 agonist R848 and the TLR9 agonist CpG] that is broadly applicable to epitope peptides with diverse sequences. Specifically, the cyclodextrin-based polymers are covalently linked to epitope peptides via a bioreactive bond-containing cross-linker (PNC-DTDE-PNC) and then physically load with R848 and CpG to obtain CDNP. The CDNP efficiently accumulats in the lymph nodes (LNs), greatly facilitating antigen capture and cross-presentation by antigen-presenting cells. The immunogenicity of the epitope peptides is significantly enhanced by the codelivery and synergy of the adjuvants, and the CDNP shows the ability to inhibit tumor progression in diverse tumor-bearing mouse models. It is concluded that CDNP holds promise as an optimized peptide-based cancer vaccine platform.
Collapse
Affiliation(s)
- Jiarong Mao
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| | - Zhetong Jin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| | - Xue Rui
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| | - Lu Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| | - Chengchen Hou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| | - Xuejiao Leng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| | - Xiaolin Bi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| | - Zhipeng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| | - Yugen Chen
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| | - Jingjing Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| |
Collapse
|
44
|
Li W, Li M, Huang Q, He X, Shen C, Hou X, Xue F, Deng Z, Luo Y. Advancement of regulating cellular signaling pathways in NSCLC target therapy via nanodrug. Front Chem 2023; 11:1251986. [PMID: 37744063 PMCID: PMC10512551 DOI: 10.3389/fchem.2023.1251986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Lung cancer (LC) is one of the leading causes of high cancer-associated mortality worldwide. Non-small cell lung cancer (NSCLC) is the most common type of LC. The mechanisms of NSCLC evolution involve the alterations of multiple complex signaling pathways. Even with advances in biological understanding, early diagnosis, therapy, and mechanisms of drug resistance, many dilemmas still need to face in NSCLC treatments. However, many efforts have been made to explore the pathological changes of tumor cells based on specific molecular signals for drug therapy and targeted delivery. Nano-delivery has great potential in the diagnosis and treatment of tumors. In recent years, many studies have focused on different combinations of drugs and nanoparticles (NPs) to constitute nano-based drug delivery systems (NDDS), which deliver drugs regulating specific molecular signaling pathways in tumor cells, and most of them have positive implications. This review summarized the recent advances of therapeutic targets discovered in signaling pathways in NSCLC as well as the related NDDS, and presented the future prospects and challenges.
Collapse
Affiliation(s)
- Wenqiang Li
- Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Mei Li
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Huang
- Sichuan North Medical College, Nanchong, Sichuan, China
| | - Xiaoyu He
- Sichuan North Medical College, Nanchong, Sichuan, China
| | - Chen Shen
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoming Hou
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fulai Xue
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiping Deng
- Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Yao Luo
- Zigong First People’s Hospital, Zigong, Sichuan, China
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
45
|
Liu Y, Fei Y, Wang X, Yang B, Li M, Luo Z. Biomaterial-enabled therapeutic modulation of cGAS-STING signaling for enhancing antitumor immunity. Mol Ther 2023; 31:1938-1959. [PMID: 37002605 PMCID: PMC10362396 DOI: 10.1016/j.ymthe.2023.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
cGAS-STING signaling is a central component in the therapeutic action of most existing cancer therapies. The accumulated knowledge of tumor immunoregulatory network in recent years has spurred the development of cGAS-STING agonists for tumor treatment as an effective immunotherapeutic strategy. However, the clinical translation of these agonists is thus far unsatisfactory because of the low immunostimulatory efficacy and unrestricted side effects under clinically relevant conditions. Interestingly, the rational integration of biomaterial technology offers a promising approach to overcome these limitations for more effective and safer cGAS-STING-mediated tumor therapy. Herein, we first outline the cGAS-STING signaling axis and generally discuss its association with tumors. We then symmetrically summarize the recent progress in those biomaterial-based cGAS-STING agonism strategies to generate robust antitumor immunity, categorized by the chemical nature of those cGAS-STING stimulants and carrier substrates. Finally, a perspective is provided to discuss the existing challenges and potential opportunities in cGAS-STING modulation for tumor therapy.
Collapse
Affiliation(s)
- Yingqi Liu
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Yang Fei
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Xuan Wang
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Bingbing Yang
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China.
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China.
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW The pathophysiological understanding of kidney-related disorders has profoundly increased; however, tissue-specific and cell-specific treatments in this field remain scarce. Advances in nanomedicine enable alteration of pharmacokinetics and targeted treatments improving efficiency and reducing toxicity. This review addresses recent developments of nanocarriers used for various purposes in the broad field of kidney disease, which may pave a path to new therapeutic and diagnostic solutions employing nanomedicine. RECENT FINDINGS Controlled delivery of antiproliferative medications enables improved treatment of polycystic kidney disease and fibrosis. Directed anti-inflammatory treatment mitigated glomerulonephritis and tubulointerstitial nephritis. Multiple injury pathways in AKI have been targeted, with therapeutic solutions for oxidative stress, mitochondrial dysfunction, local inflammation and improving self-repair mechanisms. In addition to such treatment development, noninvasive early detection methods (minutes after ischemic insult) have been demonstrated as well. Sustained release of therapies that reduce ischemia-reperfusion injury as well as new aspects for immunosuppression bring hope to improving kidney transplant outcomes. The latest breakthroughs in gene therapy are made achievable by engineering the targeted delivery of nucleic acids for new treatments of kidney disease. SUMMARY Recent advances in nanotechnology and pathophysiological understanding of kidney diseases show potential for translatable therapeutic and diagnostic interventions in multiple etiologies of kidney disease.
Collapse
Affiliation(s)
- Bishop Boaz
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Swagat Sharma
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
- Simpson Quarry Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
47
|
Li D, Liu S, Ma Y, Liu S, Liu Y, Ding J. Biomaterials That Induce Immunogenic Cell Death. SMALL METHODS 2023; 7:e2300204. [PMID: 37116170 DOI: 10.1002/smtd.202300204] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/31/2023] [Indexed: 05/17/2023]
Abstract
The immune system takes part in most physiological and pathological processes of the body, including the occurrence and development of cancer. Immunotherapy provides a promising modality for inhibition and even the cure of cancer. During immunotherapy, the immunogenic cell death (ICD) of tumor cells induced by chemotherapy, radiotherapy, phototherapy, bioactive materials, and so forth, triggers a series of cellular responses by causing the release of tumor-associated antigens and damage-associated molecular patterns, which ultimately activate innate and adaptive immune responses. Among them, the ICD-induced biomaterials attract increasing conditions as a benefit of biosafety and multifunctional modifications. This Review summarizes the research progress in biomaterials for inducing ICD via triggering endoplasmic reticulum oxidative stress, mitochondrial dysfunction, and cell membrane rupture and discusses the application prospects of ICD-inducing biomaterials in clinical practice for cancer immunotherapy.
Collapse
Affiliation(s)
- Di Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Siqi Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Yang Ma
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
| | - Shixian Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
| |
Collapse
|
48
|
Chen Q, Li C, Wang Q. Multifunctional Nano-Biomaterials for Cancer Therapy via Inducing Enhanced Immunogenic Cell Death. SMALL METHODS 2023; 7:e2201457. [PMID: 36703555 DOI: 10.1002/smtd.202201457] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/30/2022] [Indexed: 05/17/2023]
Abstract
Immunotherapy is considered to be one of the most promising methods to overcome cancer. Immunogenic cell death (ICD), as a special form of cell death that can trigger an antitumor immune response, has attracted increasing attention for cancer immunotherapy. Presently, ICD-mediating immunotherapy needs to overcome many hurdles including a lack of targeted delivery systems for ICD inducers, insufficient antitumor immunity, and the immunosuppressive tumor microenvironment. Recent research has demonstrated that nano-biomaterials exhibit unique biochemphysical properties at the nanoscale, providing a prospective approach to overcoming these obstacles. In this review, the authors first survey the occurrence, processes, and detection methods of ICD. Subsequently, the recent advances of nano-biomaterials applied to enhance ICD according to the key steps in the process of ICD, particularly with a focus on the mechanisms and lifting schemes are investigated. Finally, based on the achievement in the representative studies, the prospects and challenges of nanotechnology in ICD for cancer therapy are discussed to enable clinical translation.
Collapse
Affiliation(s)
- Qian Chen
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- North District of Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, China
| | - Chunyan Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qiangbin Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
49
|
Rama B, Ribeiro AJ. Role of nanotechnology in the prolonged release of drugs by the subcutaneous route. Expert Opin Drug Deliv 2023; 20:559-577. [PMID: 37305971 DOI: 10.1080/17425247.2023.2214362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/11/2023] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Subcutaneous physiology is distinct from other parenteral routes that benefit the administration of prolonged-release formulations. A prolonged-release effect is particularly convenient for treating chronic diseases because it is associated with complex and often prolonged posologies. Therefore, drug-delivery systems focused on nanotechnology are proposed as alternatives that can overcome the limitations of current therapeutic regimens and improve therapeutic efficacy. AREAS COVERED This review presents an updated systematization of nanosystems, focusing on their applications in highly prevalent chronic diseases. Subcutaneous-delivered nanosystem-based therapies comprehensively summarize nanosystems, drugs, and diseases and their advantages, limitations, and strategies to increase their translation into clinical applications. An outline of the potential contribution of quality-by-design (QbD) and artificial intelligence (AI) to the pharmaceutical development of nanosystems is presented. EXPERT OPINION Although recent academic research and development (R&D) advances in the subcutaneous delivery of nanosystems have exhibited promising results, pharmaceutical industries and regulatory agencies need to catch up. The lack of standardized methodologies for analyzing in vitro data from nanosystems for subcutaneous administration and subsequent in vivo correlation limits their access to clinical trials. There is an urgent need for regulatory agencies to develop methods that faithfully mimic subcutaneous administration and specific guidelines for evaluating nanosystems.
Collapse
Affiliation(s)
- B Rama
- Faculdade de Farmácia, Universidade de Coimbra, Coimbra, Portugal
| | - A J Ribeiro
- Faculdade de Farmácia, Universidade de Coimbra, Coimbra, Portugal
- Genetics of Cognitive Disfunction, i3S, IBMC, Porto, Portugal
| |
Collapse
|
50
|
Jia L, Fu Y, Zhang N, Liu Y, Su L, Wang H, Zhao W. Directional conjugation of Trop2 antibody to black phosphorus nanosheets for phototherapy in orthotopic gastric carcinoma. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 51:102687. [PMID: 37121458 DOI: 10.1016/j.nano.2023.102687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/29/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
Tumor-associated calcium signal transducer 2 (Trop2) highly specific expression in gastric carcinoma (GC). The combination of Trop2 antibody and phototherapy agents could exhibit synergetic antitumor activity. Black phosphorus nanosheets (BP) are covalently modified with Trop2 IgG antibodies via heterobifunctional linker of polyethylene glycol (PEG). Then the Trop2 antibody was directionally conjugated to BP via Schiff base reaction between aldehyde group from oxidized Trop2 antibody and amino group of PEG. The Trop2-funcationalzied BP can significantly increase the endocytosis of BP in Trop2-positive GC cells exhibiting a reinforced antitumor activity under near infrared (NIR) irradiation. More importantly, a murine orthotopic GC model demonstrates that Trop2 antibody modification can significantly promote the accumulation of BP at tumor tissues and strengthen antitumoral activity of phototherapy. Directional conjugation of Trop2 antibody to BP facilitates the BP with superior stability, tumor targeting ability and excellent anti-tumor activity under NIR irradiation without systemic toxicity.
Collapse
Affiliation(s)
- Lizhou Jia
- Central Laboratory, Bayannur Hospital, Bayannur 015000, China
| | - Yuhao Fu
- Central Laboratory, Bayannur Hospital, Bayannur 015000, China; Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot 010050, China
| | - Ning Zhang
- Central Laboratory, Bayannur Hospital, Bayannur 015000, China
| | - Yang Liu
- Central Laboratory, Bayannur Hospital, Bayannur 015000, China
| | - Lin Su
- Otolaryngology Head and Neck Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Haisheng Wang
- Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot 010050, China.
| | - Wei Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210012, China.
| |
Collapse
|