1
|
Lee CY, Yang SF, Mai ELC, Huang JY, Yeh CB, Chang CK. The Relationship Between Aortic Stenosis and the Possibility of Subsequent Macular Diseases: A Nationwide Database Study. Diagnostics (Basel) 2025; 15:760. [PMID: 40150102 PMCID: PMC11941305 DOI: 10.3390/diagnostics15060760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Objectives: This study aimed to investigate the possible relationship between aortic stenosis (AS) occupancy and the incidence of subsequent macular diseases. Methods: A retrospective cohort study was conducted using the TriNetX database, and participants with AS were enrolled and matched to non-AS participants. A total of 421,860 and 421,860 participants were evenly divided into the AS and non-AS groups, respectively. The major outcomes of the present study include the development of age-related macular degeneration (AMD), retinal vascular occlusion (RVO), epiretinal membrane (ERM), and central serous chorioretinopathy (CSC). Cox proportional hazard regression was utilized for statistical analysis. Results: There were 4426 and 3013 AMD events; 7315 and 4753 RVO events; 2780 and 1910 ERM events; and 113 and 64 CSC events in the AS and non-AS groups, respectively. According to the results of Cox proportional hazard regression analysis, the AS group demonstrated significantly higher incidences of all macular diseases, including AMD, RVO, ERM, and CSC, compared to the non-AS group (all p < 0.05). The cumulative probabilities of all macular diseases were significantly higher in the AS group than in the non-AS group (all p < 0.05). In the sensitivity analysis, the developmental risks of AMD were significantly higher in the AS group than in the non-AS group with all traits. Conclusions: This study determined that AS occupancy is related to a higher risk of developing macular diseases, which positively correlated to the disease time of AS.
Collapse
Affiliation(s)
- Chia-Yi Lee
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Nobel Eye Institute, Taipei 10041, Taiwan
- Department of Ophthalmology, Jen-Ai Hospital Dali Branch, Taichung 41265, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Elsa Lin-Chin Mai
- Nobel Eye Institute, Taipei 10041, Taiwan
- Department of Optometry, MacKay Junior College of Medicine, Nursing, and Management, Taipei 11260, Taiwan
- Department of Ophthalmology, Far Eastern Memorial Hospital, Taipei 22060, Taiwan
| | - Jing-Yang Huang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chao-Bin Yeh
- Department of Emergency Medicine, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chao-Kai Chang
- Nobel Eye Institute, Taipei 10041, Taiwan
- Department of Optometry, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan
| |
Collapse
|
2
|
Tremamunno G, Vecsey-Nagy M, Schoepf UJ, Zsarnoczay E, Aquino GJ, Kravchenko D, Laghi A, Jacob A, Sharma P, Rapaka S, O'Doherty J, Suranyi PS, Kabakus IM, Amoroso NS, Steinberg DH, Emrich T, Varga-Szemes A. Artificial Intelligence Improves Prediction of Major Adverse Cardiovascular Events in Patients Undergoing Transcatheter Aortic Valve Replacement Planning CT. Acad Radiol 2025; 32:702-711. [PMID: 39389811 DOI: 10.1016/j.acra.2024.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024]
Abstract
RATIONALE AND OBJECTIVES Coronary CT angiography (CCTA) is mandatory before transcatheter aortic valve replacement (TAVR). Our objective was to evaluate the efficacy of artificial intelligence (AI)-powered software in automatically analyzing cardiac parameters from pre-procedural CCTA to predict major adverse cardiovascular events (MACE) in TAVR patients. MATERIALS AND METHODS Patients undergoing pre-TAVR CCTA were retrospectively included. AI software automatically extracted 34 morphologic and volumetric cardiac parameters characterizing the ventricles, atria, myocardium, and epicardial adipose tissue. Clinical information and outcomes were recorded from institutional database. Cox regression analysis identified predictors of MACE, including non-fatal myocardial infarction, heart failure hospitalization, unstable angina, and cardiac death. Model performance was evaluated with Harrell's C-index, and nested models were compared using the likelihood ratio test. Manual analysis of 170 patients assessed agreement with automated measurements. RESULTS Among the 648 enrolled patients (77 ± 9.3 years, 58.9% men), 116 (17.9%) experienced MACE within a median follow-up of 24 months (interquartile range 10-40). After adjusting for clinical parameters, only left ventricle long axis shortening (LV-LAS) was an independent predictor of MACE (hazard ratio [HR], 1.05 [95% confidence interval, 1.05-1.11]; p = 0.04), with significantly improved C-index (0.620 vs. 0.633; p < 0.001). When adjusted for the Society of Thoracic Surgeons Predicted Risk of Mortality score, LV-LAS was also predictive of MACE (HR, 1.08 [95%CI, 1.03-1.13]; p = 0.002), while improving model performance (C-index: 0.557 vs. 0.598; p < 0.001). All parameters showed good or excellent agreement with manual measurements. CONCLUSION Automated AI-based comprehensive cardiac assessment enables pre-TAVR MACE prediction, with LV-LAS outperforming all other parameters.
Collapse
Affiliation(s)
- Giuseppe Tremamunno
- Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, South Carolina 29425, USA (G.T., M.V.N., U.J.S., E.Z., G.J.A., D.K., J.O., P.S.S., I.M.K., T.E., A.V.S.); Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University, Hospital Via di Grottarossa, 1035-1039 00189 Rome, Italy (G.T., A.L.)
| | - Milan Vecsey-Nagy
- Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, South Carolina 29425, USA (G.T., M.V.N., U.J.S., E.Z., G.J.A., D.K., J.O., P.S.S., I.M.K., T.E., A.V.S.); Heart and Vascular Center, Semmelweis University, Varosmajor utca 68, Budapest 1122, Hungary (M.V.N.)
| | - U Joseph Schoepf
- Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, South Carolina 29425, USA (G.T., M.V.N., U.J.S., E.Z., G.J.A., D.K., J.O., P.S.S., I.M.K., T.E., A.V.S.)
| | - Emese Zsarnoczay
- Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, South Carolina 29425, USA (G.T., M.V.N., U.J.S., E.Z., G.J.A., D.K., J.O., P.S.S., I.M.K., T.E., A.V.S.); MTA-SE Cardiovascular Imaging Research Group, Medical Imaging Centre, Semmelweis University, Koranyi Sandor street 2, Budapest 1083, Hungary (E.Z.)
| | - Gilberto J Aquino
- Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, South Carolina 29425, USA (G.T., M.V.N., U.J.S., E.Z., G.J.A., D.K., J.O., P.S.S., I.M.K., T.E., A.V.S.)
| | - Dmitrij Kravchenko
- Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, South Carolina 29425, USA (G.T., M.V.N., U.J.S., E.Z., G.J.A., D.K., J.O., P.S.S., I.M.K., T.E., A.V.S.); Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany (D.K.); Quantitative Imaging Laboratory Bonn (QILaB), Venusberg-Campus 1, 53127, Bonn, Germany (D.K.)
| | - Andrea Laghi
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University, Hospital Via di Grottarossa, 1035-1039 00189 Rome, Italy (G.T., A.L.)
| | - Athira Jacob
- Siemens Healthineers, 755 College Rd E, Princeton, New Jersey 08540, USA (A.J., P.S., S.R.)
| | - Puneet Sharma
- Siemens Healthineers, 755 College Rd E, Princeton, New Jersey 08540, USA (A.J., P.S., S.R.)
| | - Saikiran Rapaka
- Siemens Healthineers, 755 College Rd E, Princeton, New Jersey 08540, USA (A.J., P.S., S.R.)
| | - Jim O'Doherty
- Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, South Carolina 29425, USA (G.T., M.V.N., U.J.S., E.Z., G.J.A., D.K., J.O., P.S.S., I.M.K., T.E., A.V.S.); Siemens Medical Solutions, 40 Liberty Blvd, Malvern, Pennsylvania 19355, USA (J.O.)
| | - Pal Spruill Suranyi
- Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, South Carolina 29425, USA (G.T., M.V.N., U.J.S., E.Z., G.J.A., D.K., J.O., P.S.S., I.M.K., T.E., A.V.S.)
| | - Ismail Mikdat Kabakus
- Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, South Carolina 29425, USA (G.T., M.V.N., U.J.S., E.Z., G.J.A., D.K., J.O., P.S.S., I.M.K., T.E., A.V.S.)
| | - Nicholas S Amoroso
- Division in Cardiology, Department of Medicine, Medical University of South Carolina, 25 Courtenay Dr, Charleston, South Carolina 29425, USA (N.S.A., D.H.S.)
| | - Daniel H Steinberg
- Division in Cardiology, Department of Medicine, Medical University of South Carolina, 25 Courtenay Dr, Charleston, South Carolina 29425, USA (N.S.A., D.H.S.)
| | - Tilman Emrich
- Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, South Carolina 29425, USA (G.T., M.V.N., U.J.S., E.Z., G.J.A., D.K., J.O., P.S.S., I.M.K., T.E., A.V.S.); Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, Mainz 55131, Germany (T.E.)
| | - Akos Varga-Szemes
- Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, South Carolina 29425, USA (G.T., M.V.N., U.J.S., E.Z., G.J.A., D.K., J.O., P.S.S., I.M.K., T.E., A.V.S.).
| |
Collapse
|
3
|
Hafiane A, Pisaturo A, Favari E, Bortnick AE. Atherosclerosis, calcific aortic valve disease and mitral annular calcification: same or different? Int J Cardiol 2025; 420:132741. [PMID: 39557087 DOI: 10.1016/j.ijcard.2024.132741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/03/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Abstract
There are similarities in the pathophysiologic mechanisms of atherosclerosis, calcific aortic valve disease (CAVD) and mitral annular calcification (MAC), however, medical treatment to slow or stop the progression of CAVD or MAC has been more elusive as compared to atherosclerosis. Atherosclerosis and CAVD share common demographic, clinical, protein, and genetic factors even more so than with MAC, which supports the possibility of shared medical therapies, though abrogating calcific extracellular vesicle shedding could be a common target for all three conditions. Herein, we summarize the overlapping and distinct pathways for further investigation, as well as key areas where additional research is needed.
Collapse
Affiliation(s)
- Anouar Hafiane
- Department of Medicine, Faculty of Medicine, Institute of the McGill University Health Centre, McGill University, Montreal, Canada.
| | | | - Elda Favari
- Department of Food and Drug, University of Parma, Parma, Italy.
| | - Anna E Bortnick
- Department of Medicine, Divisions of Cardiology and Geriatrics, and Department of Obstetrics & Gynecology and Women's Health, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States of America.
| |
Collapse
|
4
|
Juhász D, Vecsey-Nagy M, Jermendy ÁL, Szilveszter B, Simon J, Vattay B, Boussoussou M, Dávid D, Maurovich-Horvát P, Merkely B, Apor A, Molnár L, Dósa E, Rakovics M, Johnson J, Manouras A, Nagy AI. Prognostic and therapeutic implications of a low aortic valve calcium score in patients with low-gradient aortic stenosis. Eur Heart J Cardiovasc Imaging 2025; 26:287-298. [PMID: 39470396 PMCID: PMC11781834 DOI: 10.1093/ehjci/jeae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/19/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
AIMS Low-gradient (LG) aortic stenosis (AS) poses a diagnostic challenge. Aortic valve calcium score (AVCS) assessment has emerged as a complementary diagnostic method when echocardiography provides discordant results. However, the diagnostic and prognostic values of AVCS in LGAS have not been thoroughly studied. Our aims in this study were to investigate the prognostic importance of AVCS in LGAS and to assess whether symptomatic patients with LGAS and low AVCS may benefit from aortic valve intervention (AVI). METHODS AND RESULTS A total of 327 symptomatic patients (78.5 ± 7.3 years, 51% women) with severe AS defined by the aortic valve area who underwent computed tomography for transcatheter aortic valve intervention (TAVI) planning were enrolled. AVCS was measured. AVCS < 2000AU in men and < 1200 AU in women was considered a low AVCS. A total of 243 patients had high gradient (HG) and 84 had LGAS. A low AVCS was present in 25 (10%) patients with HG and 34 (40%) with LGAS. Over a median follow-up period of 4.9 years, 194 deaths occurred. In multivariate analysis, AVCS was a significant independent predictor of all-cause mortality among patients with HGAS [adjusted hazard ratio (aHR): 2.317; CI: 1.104-4.861; P = 0.026] but not among those with LGAS (aHR: 0.848; CI: 0.434-1.658; P = 0.630). After propensity score matching between patients who underwent AVI and those who were medically treated, AVI (94% TAVI) was a significant and independent predictor of survival among LGAS patients with a low AVCS even after adjustment for clinical variables (aHR: 0.102, CI: 0.028-0.369; P < 0.001). CONCLUSION The prevalence of a low AVCS is much higher in patients with LGAS than in those with HGAS. In patients with symptomatic severe LGAS, a low AVCS does not entail a better prognosis. AVI is equally beneficial in LGAS patients with a high or low AVCS, similarly to those with HGAS.
Collapse
Affiliation(s)
- D Juhász
- Heart and Vascular Centre, Semmelweis University, 68. Varosmajor u, 1122-Budapest, Hungary
| | - M Vecsey-Nagy
- Heart and Vascular Centre, Semmelweis University, 68. Varosmajor u, 1122-Budapest, Hungary
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Á L Jermendy
- Heart and Vascular Centre, Semmelweis University, 68. Varosmajor u, 1122-Budapest, Hungary
| | - B Szilveszter
- Heart and Vascular Centre, Semmelweis University, 68. Varosmajor u, 1122-Budapest, Hungary
| | - J Simon
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - B Vattay
- Heart and Vascular Centre, Semmelweis University, 68. Varosmajor u, 1122-Budapest, Hungary
| | - M Boussoussou
- Heart and Vascular Centre, Semmelweis University, 68. Varosmajor u, 1122-Budapest, Hungary
| | - D Dávid
- Heart and Vascular Centre, Semmelweis University, 68. Varosmajor u, 1122-Budapest, Hungary
| | | | - B Merkely
- Heart and Vascular Centre, Semmelweis University, 68. Varosmajor u, 1122-Budapest, Hungary
| | - A Apor
- Heart and Vascular Centre, Semmelweis University, 68. Varosmajor u, 1122-Budapest, Hungary
| | - L Molnár
- Heart and Vascular Centre, Semmelweis University, 68. Varosmajor u, 1122-Budapest, Hungary
| | - E Dósa
- Heart and Vascular Centre, Semmelweis University, 68. Varosmajor u, 1122-Budapest, Hungary
| | - M Rakovics
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Statistics, ELTE Eötvös Loránd University, Faculty of Social Sciences, Budapest, Hungary
| | - J Johnson
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - A Manouras
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - A I Nagy
- Heart and Vascular Centre, Semmelweis University, 68. Varosmajor u, 1122-Budapest, Hungary
| |
Collapse
|
5
|
Wang H, Wu X, Zhang H, Shi F, Dong N, An J. Risk factors and predictive model for moderate to severe perivalvular leakage following transcatheter aortic valve replacement. Am J Transl Res 2024; 16:7563-7572. [PMID: 39822518 PMCID: PMC11733353 DOI: 10.62347/vrxs6310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/28/2024] [Indexed: 01/19/2025]
Abstract
OBJECTIVE To identify the risk factors associated with moderate to severe perivalvular leakage (PVL) after transcatheter aortic valve replacement (TAVR) and to construct a prediction model for this risk. METHODS A retrospective analysis was conducted on 128 patients with severe aortic stenosis who had received TAVR in The Second Hospital of Hebei Medical University from January 2019 to January 2024. The length of the aortic regurgitation bundle and annular circumference ratio were measured by transesophageal echocardiography immediately after the valve implantation. Patients with moderate to severe PVL were included in observation group, while the remaining comprised the control group. Clinical data of the patients were recorded, and univariate and multivariate Logistic regression analyses were performed on factors potentially influencing the development of moderate to severe PVL after surgery. A risk prediction model was constructed correspondingly. RESULTS Of the 128 patients, 51 with moderate or severe PVL served as the observation group and the remaining 77 served as the control group. The results of univariate and multivariate analyses identified LVOT coverage index, depth of valve implantation, LVEDd, aortic angulation, LVESD, and calcification volume entered as independent risk factors associated with moderate to severe PVL following TAVR (P<0.05). A predictive model for post-TAVR PVL was constructed by incorporating these significant factors. ROC curve analysis of the prediction model for moderate to severe PVL showed an area under the curve of 0.911. CONCLUSION LVOT coverage index, depth of valve implantation, LVEDd, aortic angulation, LVESD, and calcification volume are independent risk factors for moderate to severe PVL in patients with severe aortic stenosis after TAVR. Risk prediction model constructed based on the risk factors are valuable tool for identifying patients at high risk of developing moderate or greater PVL post-surgery.
Collapse
Affiliation(s)
- Huajun Wang
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University Shijiazhuang 050000, Hebei, China
| | - Xueda Wu
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University Shijiazhuang 050000, Hebei, China
| | - Hang Zhang
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University Shijiazhuang 050000, Hebei, China
| | - Fengwu Shi
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University Shijiazhuang 050000, Hebei, China
| | - Nan Dong
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University Shijiazhuang 050000, Hebei, China
| | - Jinghui An
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University Shijiazhuang 050000, Hebei, China
| |
Collapse
|
6
|
Yahav A, Adam D. Early Detection of Left Ventricular Dysfunction With Machine Learning-Based Strain Imaging in Aortic Stenosis Patients. Echocardiography 2024; 41:e70007. [PMID: 39539126 DOI: 10.1111/echo.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE Aortic stenosis (AS) is a common cardiovascular condition where early detection of left ventricular (LV) dysfunction is essential for timely intervention and optimal management. Current echocardiographic measurements, such as ejection fraction (EF), are insensitive to minor changes in LV function, and strain imaging is typically limited to the global longitudinal strain (GLS) parameter due to robustness issues. This study introduces a novel, fully automatic algorithm to enhance the detection of LV dysfunction in AS patients using multiple strain imaging parameters. METHODS We applied supervised machine-learning techniques to classify data from 82 severe AS patients, 96 chest pain subjects, and 319 healthy volunteers. RESULTS Our model significantly outperformed EF and GLS in distinguishing AS patients from healthy volunteers (area under the curve [AUC] = 0.97 vs. 0.88 and 0.82, respectively). It also surpassed EF and GLS in differentiating AS patients from chest pain subjects (AUC = 0.95 vs. 0.90 and 0.55, respectively). CONCLUSION This novel, clinically interpretable model leverages the potential of strain imaging to enhance diagnostic accuracy and guide clinical decision-making in LV dysfunction, thereby improving clinical practice.
Collapse
Affiliation(s)
- Amir Yahav
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Dan Adam
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
7
|
Chong T, Lan NSR, Courtney W, He A, Strange G, Playford D, Dwivedi G, Hillis GS, Ihdayhid AR. Medical Therapy to Prevent or Slow Progression of Aortic Stenosis: Current Evidence and Future Directions. Cardiol Rev 2024; 32:473-482. [PMID: 36961371 DOI: 10.1097/crd.0000000000000528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Degenerative aortic stenosis is a growing clinical problem owing to the high incidence in an aging population and its significant morbidity and mortality. Currently, aortic valve replacement remains the only treatment. Despite promising observational data, pharmacological management to slow or halt progression of aortic stenosis has remained elusive. Nevertheless, with a greater understanding of the mechanisms which underpin aortic stenosis, research has begun to explore novel treatment strategies. This review will explore the historical agents used to manage aortic stenosis and the emerging agents that are currently under investigation.
Collapse
Affiliation(s)
- Travis Chong
- From the Department of Cardiology, Fiona Stanley Hospital, Perth, Australia
- Harry Perkins Institute of Medical Research, Perth, Australia
| | - Nick S R Lan
- From the Department of Cardiology, Fiona Stanley Hospital, Perth, Australia
- Harry Perkins Institute of Medical Research, Perth, Australia
- Internal Medicine, Medical School, The University of Western Australia, Perth, Australia
| | - William Courtney
- Internal Medicine, Medical School, The University of Western Australia, Perth, Australia
- Department of Cardiology, Royal Perth Hospital, Perth, Australia
| | - Albert He
- From the Department of Cardiology, Fiona Stanley Hospital, Perth, Australia
- Harry Perkins Institute of Medical Research, Perth, Australia
| | - Geoff Strange
- School of Medicine, University of Notre Dame, Fremantle, Australia
| | - David Playford
- School of Medicine, University of Notre Dame, Fremantle, Australia
| | - Girish Dwivedi
- From the Department of Cardiology, Fiona Stanley Hospital, Perth, Australia
- Harry Perkins Institute of Medical Research, Perth, Australia
- Internal Medicine, Medical School, The University of Western Australia, Perth, Australia
| | - Graham S Hillis
- Internal Medicine, Medical School, The University of Western Australia, Perth, Australia
- Department of Cardiology, Royal Perth Hospital, Perth, Australia
| | - Abdul Rahman Ihdayhid
- From the Department of Cardiology, Fiona Stanley Hospital, Perth, Australia
- Harry Perkins Institute of Medical Research, Perth, Australia
- Curtin Medical School, Curtin University, Perth, Australia
| |
Collapse
|
8
|
Karakasis P, Patoulias D, Giannakoulas G, Sagris M, Theofilis P, Fragakis N, Biondi-Zoccai G. Effect of Glucagon-like Peptide-1 Receptor Agonism on Aortic Valve Stenosis Risk: A Mendelian Randomization Analysis. J Clin Med 2024; 13:6411. [PMID: 39518550 PMCID: PMC11546526 DOI: 10.3390/jcm13216411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Aortic valve repair is currently the only effective treatment for calcific aortic valve stenosis (CAVS), as no pharmacological therapies exist to prevent or slow its progression. Recent promising results showed that glucagon-like peptide-1 (GLP-1) attenuates the calcification of aortic valve interstitial cells. Therefore, we conducted a two-sample Mendelian randomization analysis to investigate the effect of GLP-1 receptor agonism (GLP-1Ra) on the risk of CAVS. Methods: The inverse variance weighted (IVW) method was used to obtain the primary causal inference, and several sensitivity analyses, including MR-Egger, were performed to assess the robustness of the results. Results: Based on the IVW estimates, the GLP-1Ra showed a neutral effect on the risk of CAVS (odds ratio [OR] per 1 mmol/mol decrease in glycated hemoglobin = 0.87, 95% CI = [0.69, 1.11], p = 0.259; I2 = 4.5%, Cohran's Q = 2.09, heterogeneity p = 0.35; F statistic = 16.8). A non-significant effect was also derived by the sensitivity analyses. No evidence of horizontal pleiotropy was identified. Conclusions: GLP-1Ra was not significantly associated with the risk of CAVS. Furthermore, pragmatically designed studies are required to evaluate the effect of GLP-1Ra on the clinical course of CAVS in different patient subgroups.
Collapse
Affiliation(s)
- Paschalis Karakasis
- Second Department of Cardiology, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
- Department of Hygiene, Social-Preventive Medicine & Medical Statistics, Medical School, Aristotle University of Thessaloniki, University Campus, 54642 Thessaloniki, Greece
| | - Dimitrios Patoulias
- Second Propedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - George Giannakoulas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Marios Sagris
- School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece; (M.S.); (P.T.)
| | - Panagiotis Theofilis
- School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece; (M.S.); (P.T.)
| | - Nikolaos Fragakis
- Second Department of Cardiology, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy;
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy
| |
Collapse
|
9
|
Song N, Yu JE, Ji E, Choi KH, Lee S. Hydrogen sulfide inhibits gene expression associated with aortic valve degeneration by inducing NRF2-related pro-autophagy effect in human aortic valve interstitial cells. Mol Cell Biochem 2024; 479:2653-2662. [PMID: 37861880 DOI: 10.1007/s11010-023-04881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
Aortic valve stenosis (AS) is the most common valvular heart disease but there are currently no effective medical treatments that can delay disease progression due to a lack of knowledge of the precise pathophysiology. The expression of sulfide: quinone oxidoreductase (SQOR) and nuclear factor erythroid 2-related factor 2 (NRF2) was decreased in the aortic valve of AS patients. However, the role of SQOR and NRF2 in the pathophysiology of AS has not been found. We investigated the effects of hydrogen sulfide (H2S)-releasing compounds on diseased aortic valve interstitial cells (AVICs) to explain the cellular mechanism of SQOR and elucidate the medical value of H2S for AS treatment. Sodium hydrosulfide (NaHS) treatment increased the expression of SQOR and NRF2 gene and consequently induced the NRF2 target genes, such as NAD(P)H quinone dehydrogenase 1 and cystathionine γ-lyase. In addition, NaHS dose-dependently decreased the expression level of fibrosis and inflammation-related genes (MMP9, TNF-α, IL6) and calcification-related genes (ALP, osteocalcin, RUNX2, COL1A1) in human AVICs. Furthermore, NaHS activated the AMPK-mTOR pathway and inhibited the PI3K-AKT pathway, resulting in a pro-autophagy effect in human AVICs. An NRF2 inhibitor, brusatol, attenuated NaHS-induced AMPK activation and decreased the autophagy markers Beclin-1 and LC3AB, suggesting that the mechanism of action of H2S is related to NRF2. In conclusion, H2S decreased gene expression levels related to aortic valve degeneration and activated AMPK-mTOR-mediated pro-autophagy function associated with NRF2 in human AVICs. Therefore, H2S could be a potential therapeutic target for the development of AS treatment.
Collapse
Affiliation(s)
- Naaleum Song
- Division of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Medical Science, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, 88 Olympic-ro 43 Gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jeong Eun Yu
- Division of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Medical Science, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, 88 Olympic-ro 43 Gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Eunhye Ji
- Division of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Hee Choi
- Division of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sahmin Lee
- Division of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Department of Medical Science, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, 88 Olympic-ro 43 Gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
10
|
Yifan D, Zhen F, Yue M, Xun S, Jiapei G, Li Z, Jing Z. Safety and efficacy of minimal transcatheter aortic valve replacement: A systematic review and meta-analysis. Heart Lung 2024; 67:158-168. [PMID: 38788303 DOI: 10.1016/j.hrtlng.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Transcatheter aortic valve replacement (TAVR) is a preferred treatment for patients with highly critical aortic stenosis (AS), which is a difficult and complicated procedure, leaving a heavy economical burden on patients and national health insurance. Minimalist TAVR can simplify a part of the operation procedures, but the surgical efficacy and safety are still under debated. OBJECTIVES Explore the effectiveness and safety of minimalist TAVR in the treatment of patients with aortic stenosis. METHODS A systematic search of PubMed, Web of Science, and Embase databases was conducted for studies involving application of minimalist TAVR in patients with severe aortic stenosis, two researchers independently screened the literature, extracted data and Meta-analysis was performed using STATA 16.0 software. RESULTS Nine studies, involving a total of 3,148 AS patients, were included. Minimalist TAVR has similar surgical success rates compared to standardized TAVR, intraoperative fluoroscopy time, dosage of contrast agent, and total operative time were superior to standard TAVR. Regarding surgical complications, the incidence of permanent pacemaker placement and moderate to severe paravalvular leakage were similar for both TAVR, the risk of major vascular complications and major bleeding events in the minimalist TAVR was significantly lower than the standard TAVR. The risk of overall death, stroke, and cardiovascular-related readmission within 30 days was similar in both procedures. CONCLUSION Patients with severe aortic stenosis treated with minimalist TAVR have similar short-term efficacy as well as 30-day clinical outcomes to standard TAVR, while minimalist TAVR could reduce the risk of major vascular complications and bleeding complications.
Collapse
Affiliation(s)
- Deng Yifan
- Clinical Medical College, Yangzhou University, Yangzhou 225001, PR China; Taizhou People's Hospital affiliated to Nanjing Medical University, Tai zhou 225300, PR China; Medical College of Yangzhou University, Yang zhou 225001, PR China
| | - Fang Zhen
- Clinical Medical College, Yangzhou University, Yangzhou 225001, PR China; Medical College of Yangzhou University, Yang zhou 225001, PR China
| | - Ma Yue
- Clinical Medical College, Yangzhou University, Yangzhou 225001, PR China; Medical School of Nanjing University, Nanjing, 21000, PR China
| | - Sun Xun
- Clinical Medical College, Yangzhou University, Yangzhou 225001, PR China; alian Medical University, Dalian 116000, PR China
| | - Gao Jiapei
- Clinical Medical College, Yangzhou University, Yangzhou 225001, PR China; Medical College of Yangzhou University, Yang zhou 225001, PR China
| | - Zhu Li
- Clinical Medical College, Yangzhou University, Yangzhou 225001, PR China; Taizhou People's Hospital affiliated to Nanjing Medical University, Tai zhou 225300, PR China; Medical College of Yangzhou University, Yang zhou 225001, PR China.
| | - Zhang Jing
- Clinical Medical College, Yangzhou University, Yangzhou 225001, PR China; Northern Jiangsu People's Hospital, Yangzhou 225001, PR China.
| |
Collapse
|
11
|
Haq SH, Shah SR, Eapen D, Kleman A, Knous M, Laird A, Cole W, Patel SM. Rest, replace, and recover: TandemHeart to transcatheter aortic valve replacement-a case report. Eur Heart J Case Rep 2024; 8:ytae465. [PMID: 39290520 PMCID: PMC11407279 DOI: 10.1093/ehjcr/ytae465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/26/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
Background Severe aortic stenosis (AS) can present insidiously, with the end stages resulting in significant valvular-induced cardiomyopathy and can lead to cardiogenic shock (CS). Such cases result in a myriad of complex manifestations and are often associated with a poor prognosis. These patients require emergent cardiac evaluation and valvular intervention. Unfortunately, the immediate nature of the CS provides little time for a detailed valvular evaluation. Possible management involves use of mechanical circulatory support (MCS) prior to urgent transcatheter aortic valve replacement (TAVR). Case summary The patient was a 70-year-old female who developed refractory CS, and acute decompensated heart failure was complicated by AV block secondary to severe AS. Due to progressively worsening haemodynamics, the need for MCS for cardiovascular support and eventual valve replacement resulted in the decision to pursue TandemHeart® (TH; LivaNova Inc, Pittsburgh, PA, USA). We discuss the novel implementation of the TH as a means of bridging to TAVR. Discussion TandemHeart system provides the benefits of improving haemodynamic support in CS while allowing unencumbered access to the stenotic valve for balloon aortic valvuloplasty (BAV) or TAVR. In our evaluation, we discuss the utilization and benefits associated with TH to TAVR in allowing for cardiac rest, replacement of the valve, and recovery of left ventricular function.
Collapse
Affiliation(s)
- Syed H Haq
- Department of Internal Medicine, Bon Secours Mercy Health-St. Rita's Medical Center, 730 W Market Street, Lima, OH 45801, USA
| | - Sidra R Shah
- Department of Internal Medicine, Bon Secours Mercy Health-St. Rita's Medical Center, 730 W Market Street, Lima, OH 45801, USA
| | - David Eapen
- Department of Internal Medicine, Bon Secours Mercy Health-St. Rita's Medical Center, 730 W Market Street, Lima, OH 45801, USA
| | - Anna Kleman
- Structural Heart & Intervention Center, Bon Secours Mercy Health-St. Rita's Medical Center, 730 W Market Street, Lima, OH 45801, USA
| | - Mallory Knous
- Department of Critical Care Medicine, Bon Secours Mercy Health-St. Rita's Medical Center, 730 W Market Street, Lima, OH 45801, USA
| | - Amanda Laird
- Department of Critical Care Medicine, Bon Secours Mercy Health-St. Rita's Medical Center, 730 W Market Street, Lima, OH 45801, USA
| | - William Cole
- Department of Critical Care Medicine, Bon Secours Mercy Health-St. Rita's Medical Center, 730 W Market Street, Lima, OH 45801, USA
| | - Sandeep M Patel
- Structural Heart & Intervention Center, Bon Secours Mercy Health-St. Rita's Medical Center, 730 W Market Street, Lima, OH 45801, USA
| |
Collapse
|
12
|
Kachanova OS, Boyarskaya NV, Docshin PM, Scherbinin TS, Zubkova VG, Saprankov VL, Uspensky VE, Mitrofanova LB, Malashicheva AB. Ex vivo model of pathological calcification of human aortic valve. Front Cardiovasc Med 2024; 11:1411398. [PMID: 39280032 PMCID: PMC11394195 DOI: 10.3389/fcvm.2024.1411398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
The development of drug therapy for the pathological calcification of the aortic valve is still an open issue due to the lack of effective treatment strategies. Currently, the only option for treating this condition is surgical correction and symptom management. The search for models to study the safety and efficacy of anti-calcifying drugs requires them to not only be as close as possible to in vivo conditions, but also to be flexible with regard to the molecular studies that can be applied to them. The ex vivo model has several advantages, including the ability to study the effect of a drug on human cells while preserving the original structure of the valve. This allows for a better understanding of how different cell types interact within the valve, including non-dividing cells. The aim of this study was to develop a reproducible ex vivo calcification model based on valves from patients with calcific aortic stenosis. We aimed to induce spontaneous calcification in valve tissue fragments under osteogenic conditions, and to demonstrate the possibility of significantly suppressing it using a calcification inhibitor. To validate the model, we tested a Notch inhibitor Crenigacestat (LY3039478), which has been previously shown to have an anti-calcifying effect on interstitial cell of the aortic valve. We demonstrate here an approach to testing calcification inhibitors using an ex vivo model of cultured human aortic valve tissue fragments. Thus, we propose that ex vivo models may warrant further investigation for their utility in studying aortic valve disease and performing pre-clinical assessment of drug efficacy.
Collapse
Affiliation(s)
- O S Kachanova
- Research Laboratory of Diseases with Excessive Calcification, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - N V Boyarskaya
- Research Laboratory of Diseases with Excessive Calcification, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - P M Docshin
- Research Laboratory of Diseases with Excessive Calcification, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - T S Scherbinin
- Research Laboratory of Diseases with Excessive Calcification, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - V G Zubkova
- Research Laboratory of Diseases with Excessive Calcification, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - V L Saprankov
- Research Laboratory of Diseases with Excessive Calcification, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - V E Uspensky
- Research Laboratory of Diseases with Excessive Calcification, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - L B Mitrofanova
- Research Laboratory of Diseases with Excessive Calcification, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - A B Malashicheva
- Research Laboratory of Diseases with Excessive Calcification, Almazov National Medical Research Centre, Saint Petersburg, Russia
| |
Collapse
|
13
|
Ruan L, Zhu L, Su L, Hu S, Wang S, Guo Q, Wan B, Qiu S, Zhang Y, Wei Y. Better prognosis in surgical aortic valve replacement patients with lower red cell distribution width: A MIMIC-IV database study. PLoS One 2024; 19:e0306258. [PMID: 39042622 PMCID: PMC11265686 DOI: 10.1371/journal.pone.0306258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Surgical aortic valve replacement (SAVR) currently stands as a primary surgical intervention for addressing aortic valve disease in patients. This retrospective study focused on the role of the red blood cell distribution width (RDW) in predicting adverse outcomes among SAVR patients. METHODS The subjects for this study were exclusively derived from the Medical Information Mart for Intensive Care database (MIMIC IV 2.0). Kaplan‒Meier (K-M) curves and Cox proportional hazards regression models were employed to assess the correlation between RDW, one-year mortality, and postoperative atrial fibrillation (POAF). The smooth-fitting curves were used to observe the relative risk (RR) of RDW in one-year mortality and POAF. Furthermore, time-dependent receiver operating characteristic (ROC) curves, the continuous-net reclassification index (NRI), and integrated discrimination improvement (IDI) were employed for comprehensive assessment of the prognostic value of RDW. RESULTS Analysis of RDW revealed a distinctive inverted U-shaped relationship with one-year mortality, while its association with POAF appeared nearly linear. Cox multiple regression models showed that RDW > 14.35%, along with preoperative potassium concentration and perioperative red blood cell transfusion, were significantly linked to one-year mortality (K-M curves, log-rank P < 0.01). Additionally, RDW was associated with both POAF and prolonged hospital stays (P < 0.05). There was no significant difference in length of stay in ICU. Notably, the inclusion of RDW in the predictive models substantially enhanced its performance. This was evidenced by the time-dependent ROC curve (AUC = 0.829), NRI (P< 0.05), IDI (P< 0.05), and K-M curves (log-rank P< 0.01). CONCLUSIONS RDW serves as a robust prognostic indicator for SAVR patients, offering a novel means of anticipating adverse postoperative events.
Collapse
Affiliation(s)
- Liancheng Ruan
- Department of Thoracic Surgery, The Second Affiliated Hospital of Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Lingxiao Zhu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Lang Su
- Department of Thoracic Surgery, The Second Affiliated Hospital of Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Sheng Hu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Silin Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Qiang Guo
- Department of Thoracic Surgery, The Second Affiliated Hospital of Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Bingen Wan
- Department of Thoracic Surgery, The Second Affiliated Hospital of Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Shengyu Qiu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yang Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yiping Wei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
14
|
Sandeep B, Liu X, Wu Q, Gao K, Xiao Z. Recent updates on asymptomatic and symptomatic aortic valve stenosis its diagnosis, pathogenesis, management and future perspectives. Curr Probl Cardiol 2024; 49:102631. [PMID: 38729278 DOI: 10.1016/j.cpcardiol.2024.102631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Aortic stenosis (AS) is very common in mid-aged and elderly patients, and it has been reported to have a negative impact on both short and long-term survival with a high mortality rate. The current study identified methods of diagnosis, incidence, and causes of AS, pathogenesis, intervention and management and future perspectives of Asymptomatic and Symptomatic Aortic stenosis. A systematic literature search was conducted using PubMed, Scopus and CINAHL, using the Mesh terms and key words "Aortic stenosis", "diagnostic criteria", "pathogenesis", "incidence and causes of AS" and" intervention and management strategies". Studies were retained for review after meeting strict inclusion criteria that included studies evaluating Asymptomatic and Symptomatic AS. Studies were excluded if duplicate publication, overlap of patients, subgroup studies of a main study, lack of data on AS severity, case reports and letters to editors. Forty-five articles were selected for inclusion. Incidence of AS across the studies ranged from 3 % to 7 %. Many factors have been associated with incidence and increased risk of AS, highest incidence of AS was described after aortic valve calcification, rheumatic heart disease, degenerative aortic valve disease, bicuspid aortic valve and other factors. AS is common and can be predicted by aortic root calcification volume, rheumatic heart disease, degenerative aortic valve disease, bicuspid aortic valve. Intervention and management for AS patients is a complex decision that takes into consideration multiple factors. On the other hand, there is not enough progress in preventive pharmacotherapy to slow the progression of AS.
Collapse
Affiliation(s)
- Bhushan Sandeep
- Department of Cardio-Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China.
| | - Xian Liu
- Department of Cardio-Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China
| | - Qinghui Wu
- Department of Cardio-Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China
| | - Ke Gao
- Department of Cardio-Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China
| | - Zongwei Xiao
- Department of Cardio-Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China
| |
Collapse
|
15
|
Reichl JJ, Stolte T, Tang S, Boeddinghaus J, Wagener M, Leibundgut G, Kaiser CA, Nestelberger T. Prognostic Impact of Left Ventricular Ejection Fraction Improvement after Transcatheter Aortic Valve Replacement. J Clin Med 2024; 13:3639. [PMID: 38999205 PMCID: PMC11242474 DOI: 10.3390/jcm13133639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Introduction: Transcatheter aortic valve replacement (TAVR) has become an efficient and safe alternative to surgical aortic valve replacement (SAVR). While severe aortic stenosis as well as severe aortic regurgitation (AR) are known to negatively impact left ventricular ejection fraction (LVEF), prior studies have shown that TAVR can lead to an improvement in LVEF. Thus far, little is known about the prognostic implication of LVEF improvement as a sole predictor of outcomes. Therefore, the aim of this study was to assess the prognostic impact of LVEF impairment before TAVR, as well as early LVEF improvement in patients undergoing TAVR. Materials and Methods: Patients undergoing TAVR in a large tertiary university hospital were consecutively included in a prospective registry. Transthoracic echocardiography (TTE) was performed at baseline, after 1 month and annually thereafter. Significant LVEF improvement was defined as a relative increase of ≥10% in LVEF at 30 days compared to baseline LVEF. The primary outcome was all-cause mortality at 1 year. Secondary outcomes were major adverse cardiovascular events (MACEs) including cardiovascular death, non-fatal myocardial infarction, stroke, bleeding and unplanned re-interventions of the aortic valve at 5 years. Results: Among 1655 patients who underwent TAVR between September 2011 and April 2024, the LVEF at baseline was available for 1556 patients. Of these, 1031 patients (66.2%) had preserved LVEF at baseline (LVEF ≥ 53%), whereas 303 patients (19.5%) had moderately reduced LVEF (40-52%) and 222 patients (14.3%) had severely reduced LVEF (<40%). Out of the patients with impaired LVEF, 155 (40.4%) patients showed a significant improvement in LVEF ≥10% after 30 days, while 229 (60.6%) patients showed no significant LVEF improvement (<10%). Patients with preserved LVEF at baseline had significantly better mortality outcomes than those with severely reduced LVEF (p < 0.001). LVEF improvement was associated with a survival benefit after 1 year (p = 0.009, HR 2.68, 0.95 CI 1.23-5.85) which diminished after 5 years (p = 0.058), but patients with LVEF improvement showed lower MACE rates at 5 years (p < 0.001). Conclusions: Preserved LVEF before TAVR is an independent predictor for improved outcomes. Additionally, early improvement in LVEF is associated with beneficial outcomes in patients undergoing TAVR.
Collapse
Affiliation(s)
- Jakob Johannes Reichl
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (J.J.R.); (T.S.); (S.T.); (J.B.); (M.W.); (G.L.); (C.A.K.)
- Department of General Internal Medicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Thorald Stolte
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (J.J.R.); (T.S.); (S.T.); (J.B.); (M.W.); (G.L.); (C.A.K.)
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Shihui Tang
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (J.J.R.); (T.S.); (S.T.); (J.B.); (M.W.); (G.L.); (C.A.K.)
| | - Jasper Boeddinghaus
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (J.J.R.); (T.S.); (S.T.); (J.B.); (M.W.); (G.L.); (C.A.K.)
| | - Max Wagener
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (J.J.R.); (T.S.); (S.T.); (J.B.); (M.W.); (G.L.); (C.A.K.)
| | - Gregor Leibundgut
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (J.J.R.); (T.S.); (S.T.); (J.B.); (M.W.); (G.L.); (C.A.K.)
| | - Christoph Ado Kaiser
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (J.J.R.); (T.S.); (S.T.); (J.B.); (M.W.); (G.L.); (C.A.K.)
| | - Thomas Nestelberger
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (J.J.R.); (T.S.); (S.T.); (J.B.); (M.W.); (G.L.); (C.A.K.)
| |
Collapse
|
16
|
Svaguša T, Žarak M, Šušnjar D, Gjorgjievska S, Varvodić J, Slišković N, Šestan G, Kušurin M, Prkačin I, Rudež I. Low Level of First Morning Urine Cardiac Troponin I: A Specific Hallmark of Aortic Stenosis Severity. J Clin Med 2024; 13:2472. [PMID: 38731001 PMCID: PMC11084163 DOI: 10.3390/jcm13092472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Background: It has recently been shown that cardiac-specific troponin I concentrations in first morning urine samples can be measured with commercially available tests. Due to their accumulation in the first morning urine, scientific papers indicate a potential predictive value for cardiovascular diseases. Therefore, the aim of this study was to compare the concentration of cardiac troponin I in the first morning urine in patients with severe aortic stenosis and the healthy population. Patients and Methods: Blood and first morning urine samples were collected from 34 healthy individuals (17 female) at University Hospital Merkur and 25 patients with severe aortic stenosis (14 female) before surgical treatment at University Hospital Dubrava. Cardiac troponin I and T values were determined using high-sensitivity assays using commercially available Abbott and Roche tests. Results: Patients with severe aortic stenosis had significantly lower troponin I concentrations in the first morning urine samples (0.3 ng/L (0.1-0.6)) as compared to the healthy population (15.2 ng/L (8.4-19.9)) (p < 0.001). There was no statistically significant difference in troponin T concentrations between healthy individuals and patients with severe aortic stenosis. In parallel, both I and T plasma troponin concentrations were significantly higher in patients with severe aortic stenosis. Conclusions: In patients with severe aortic stenosis, cardiac troponin I values in the first morning urine are significantly lower than in healthy subjects.
Collapse
Affiliation(s)
- Tomo Svaguša
- Department of Cardiovascular Disease, Dubrava University Hospital, 10000 Zagreb, Croatia;
| | - Marko Žarak
- Clinical Department of Laboratory Diagnostics, Dubrava University Hospital, 10000 Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Dubravka Šušnjar
- Department of Cardiac and Transplant Surgery, Dubrava University Hospital, 10000 Zagreb, Croatia; (D.Š.); (S.G.); (J.V.); (N.S.); (G.Š.); (M.K.); (I.R.)
| | - Savica Gjorgjievska
- Department of Cardiac and Transplant Surgery, Dubrava University Hospital, 10000 Zagreb, Croatia; (D.Š.); (S.G.); (J.V.); (N.S.); (G.Š.); (M.K.); (I.R.)
| | - Josip Varvodić
- Department of Cardiac and Transplant Surgery, Dubrava University Hospital, 10000 Zagreb, Croatia; (D.Š.); (S.G.); (J.V.); (N.S.); (G.Š.); (M.K.); (I.R.)
| | - Nikola Slišković
- Department of Cardiac and Transplant Surgery, Dubrava University Hospital, 10000 Zagreb, Croatia; (D.Š.); (S.G.); (J.V.); (N.S.); (G.Š.); (M.K.); (I.R.)
| | - Gloria Šestan
- Department of Cardiac and Transplant Surgery, Dubrava University Hospital, 10000 Zagreb, Croatia; (D.Š.); (S.G.); (J.V.); (N.S.); (G.Š.); (M.K.); (I.R.)
| | - Marko Kušurin
- Department of Cardiac and Transplant Surgery, Dubrava University Hospital, 10000 Zagreb, Croatia; (D.Š.); (S.G.); (J.V.); (N.S.); (G.Š.); (M.K.); (I.R.)
| | - Ingrid Prkačin
- Department of Internal Medicine, Merkur University Hospital, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Igor Rudež
- Department of Cardiac and Transplant Surgery, Dubrava University Hospital, 10000 Zagreb, Croatia; (D.Š.); (S.G.); (J.V.); (N.S.); (G.Š.); (M.K.); (I.R.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
17
|
Cayer LGJ, Surendran A, Karakach T, Aukema HM, Ravandi A. Valvular Prostaglandins Are Elevated in Severe Human Aortic Valve Stenosis. Arterioscler Thromb Vasc Biol 2024; 44:e131-e144. [PMID: 38357817 DOI: 10.1161/atvbaha.123.320001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Aortic valve stenosis (AVS) is the most common valvular disease in the developed world. AVS involves the progressive fibrocalcific remodeling of the aortic valve (AV), which impairs function and can ultimately lead to heart failure. Due to gaps in our understanding of the underlying mechanisms of AVS, there are no pharmacological treatments or dietary interventions known to slow AVS progression. Recent studies have begun to suggest oxylipins-a class of bioactive lipids-may be dysregulated in the valves of patients with AVS. METHODS We utilized high-performance liquid chromatography-tandem mass spectrometry to conduct a targeted oxylipin analysis on human AV tissue and plasma from a cohort of 110 patients undergoing AV surgery. RESULTS We identified 36 oxylipins in human AV tissue with all showing significant increase in patients with severe AVS. A multivariate model including patient characteristics and valvular oxylipins identified the arachidonic acid-COX (cyclooxygenase) pathway-derived prostanoids to be the most associated with AVS severity. Plasma oxylipin levels were measured in a subset of AV surgery patients and compared with a control group of healthy participants, showing distinct oxylipin profiles between control and disease. CONCLUSIONS Our comprehensive analysis of oxylipins in the human AV identified the inflammatory and osteogenic regulating prostanoids to be positively correlated with AVS severity. This elucidation of prostanoid dysregulation warrants further research into COX inhibition to mitigate AVS.
Collapse
Affiliation(s)
- Lucien G J Cayer
- Food and Human Nutritional Sciences (L.G.J.C., T.K., H.M.A.), University of Manitoba, Winnipeg, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Manitoba, Canada (L.G.J.C., H.M.A., A.R.)
| | - Arun Surendran
- Physiology and Pathophysiology, Rady Faculty of Health Sciences (A.S.), University of Manitoba, Winnipeg, Canada
- Precision Cardiovascular Medicine Group, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada (A.S., H.M.A., A.R.)
| | - Tobias Karakach
- Food and Human Nutritional Sciences (L.G.J.C., T.K., H.M.A.), University of Manitoba, Winnipeg, Canada
- Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada (T.K.)
| | - Harold M Aukema
- Food and Human Nutritional Sciences (L.G.J.C., T.K., H.M.A.), University of Manitoba, Winnipeg, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Manitoba, Canada (L.G.J.C., H.M.A., A.R.)
- Precision Cardiovascular Medicine Group, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada (A.S., H.M.A., A.R.)
| | - Amir Ravandi
- Section of Cardiology, Max Rady College of Medicine (A.R.), University of Manitoba, Winnipeg, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Manitoba, Canada (L.G.J.C., H.M.A., A.R.)
- Precision Cardiovascular Medicine Group, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada (A.S., H.M.A., A.R.)
| |
Collapse
|
18
|
Feldmann A, Nitschke Y, Linß F, Mulac D, Stücker S, Bertrand J, Buers I, Langer K, Rutsch F. Improved Reversion of Calcifications in Porcine Aortic Heart Valves Using Elastin-Targeted Nanoparticles. Int J Mol Sci 2023; 24:16471. [PMID: 38003660 PMCID: PMC10671589 DOI: 10.3390/ijms242216471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Calcified aortic valve disease in its final stage leads to aortic valve stenosis, limiting cardiac function. To date, surgical intervention is the only option for treating calcific aortic valve stenosis. This study combined controlled drug delivery by nanoparticles (NPs) and active targeting by antibody conjugation. The chelating agent diethylenetriaminepentaacetic acid (DTPA) was covalently bound to human serum albumin (HSA)-based NP, and the NP surface was modified using conjugating antibodies (anti-elastin or isotype IgG control). Calcification was induced ex vivo in porcine aortic valves by preincubation in an osteogenic medium containing 2.5 mM sodium phosphate for five days. Valve calcifications mainly consisted of basic calcium phosphate crystals. Calcifications were effectively resolved by adding 1-5 mg DTPA/mL medium. Incubation with pure DTPA, however, was associated with a loss of cellular viability. Reversal of calcifications was also achieved with DTPA-coupled anti-elastin-targeted NPs containing 1 mg DTPA equivalent. The addition of these NPs to the conditioned media resulted in significant regression of the valve calcifications compared to that in the IgG-NP control without affecting cellular viability. These results represent a step further toward the development of targeted nanoparticular formulations to dissolve aortic valve calcifications.
Collapse
Affiliation(s)
- Anja Feldmann
- Department of General Pediatrics, Muenster University Children’s Hospital, D-48149 Muenster, Germany; (A.F.); (Y.N.); (I.B.)
- International Network of Ectopic Calcification (INTEC), 9000 Ghent, Belgium; (F.L.); (S.S.); (J.B.)
| | - Yvonne Nitschke
- Department of General Pediatrics, Muenster University Children’s Hospital, D-48149 Muenster, Germany; (A.F.); (Y.N.); (I.B.)
- International Network of Ectopic Calcification (INTEC), 9000 Ghent, Belgium; (F.L.); (S.S.); (J.B.)
| | - Franziska Linß
- International Network of Ectopic Calcification (INTEC), 9000 Ghent, Belgium; (F.L.); (S.S.); (J.B.)
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, D-48149 Muenster, Germany; (D.M.); (K.L.)
| | - Dennis Mulac
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, D-48149 Muenster, Germany; (D.M.); (K.L.)
| | - Sina Stücker
- International Network of Ectopic Calcification (INTEC), 9000 Ghent, Belgium; (F.L.); (S.S.); (J.B.)
- Department of Orthopaedic Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany
| | - Jessica Bertrand
- International Network of Ectopic Calcification (INTEC), 9000 Ghent, Belgium; (F.L.); (S.S.); (J.B.)
- Department of Orthopaedic Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany
| | - Insa Buers
- Department of General Pediatrics, Muenster University Children’s Hospital, D-48149 Muenster, Germany; (A.F.); (Y.N.); (I.B.)
- International Network of Ectopic Calcification (INTEC), 9000 Ghent, Belgium; (F.L.); (S.S.); (J.B.)
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, D-48149 Muenster, Germany; (D.M.); (K.L.)
| | - Frank Rutsch
- Department of General Pediatrics, Muenster University Children’s Hospital, D-48149 Muenster, Germany; (A.F.); (Y.N.); (I.B.)
- International Network of Ectopic Calcification (INTEC), 9000 Ghent, Belgium; (F.L.); (S.S.); (J.B.)
| |
Collapse
|
19
|
Scalia IG, Farina JM, Padang R, Jokerst CE, Pereyra M, Mahmoud AK, Naqvi TZ, Chao CJ, Oh JK, Arsanjani R, Ayoub C. Aortic Valve Calcium Score by Computed Tomography as an Adjunct to Echocardiographic Assessment-A Review of Clinical Utility and Applications. J Imaging 2023; 9:250. [PMID: 37998097 PMCID: PMC10672559 DOI: 10.3390/jimaging9110250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
Aortic valve stenosis (AS) is increasing in prevalence due to the aging population, and severe AS is associated with significant morbidity and mortality. Echocardiography remains the mainstay for the initial detection and diagnosis of AS, as well as for grading of severity. However, there are important subgroups of patients, for example, patients with low-flow low-gradient or paradoxical low-gradient AS, where quantification of severity of AS is challenging by echocardiography and underestimation of severity may delay appropriate management and impart a worse prognosis. Aortic valve calcium score by computed tomography has emerged as a useful clinical diagnostic test that is complimentary to echocardiography, particularly in cases where there may be conflicting data or clinical uncertainty about the degree of AS. In these situations, aortic valve calcium scoring may help re-stratify grading of severity and, therefore, further direct clinical management. This review presents the evolution of aortic valve calcium score by computed tomography, its diagnostic and prognostic value, as well as its utility in clinical care.
Collapse
Affiliation(s)
- Isabel G. Scalia
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (I.G.S.)
| | - Juan M. Farina
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (I.G.S.)
| | - Ratnasari Padang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Milagros Pereyra
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (I.G.S.)
| | - Ahmed K. Mahmoud
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (I.G.S.)
| | - Tasneem Z. Naqvi
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (I.G.S.)
| | - Chieh-Ju Chao
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jae K. Oh
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Reza Arsanjani
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (I.G.S.)
| | - Chadi Ayoub
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (I.G.S.)
| |
Collapse
|
20
|
Lakshmanan S, Gimelli A. Cardiovascular Imaging in Clinical Trial Design: A Vision for Sustainability. JACC Case Rep 2023; 24:102048. [PMID: 37869224 PMCID: PMC10589438 DOI: 10.1016/j.jaccas.2023.102048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
|
21
|
Dittfeld C, Winkelkotte M, Scheer A, Voigt E, Schmieder F, Behrens S, Jannasch A, Matschke K, Sonntag F, Tugtekin SM. Challenges of aortic valve tissue culture - maintenance of viability and extracellular matrix in the pulsatile dynamic microphysiological system. J Biol Eng 2023; 17:60. [PMID: 37770970 PMCID: PMC10538250 DOI: 10.1186/s13036-023-00377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) causes an increasing health burden in the 21st century due to aging population. The complex pathophysiology remains to be understood to develop novel prevention and treatment strategies. Microphysiological systems (MPSs), also known as organ-on-chip or lab-on-a-chip systems, proved promising in bridging in vitro and in vivo approaches by applying integer AV tissue and modelling biomechanical microenvironment. This study introduces a novel MPS comprising different micropumps in conjunction with a tissue-incubation-chamber (TIC) for long-term porcine and human AV incubation (pAV, hAV). RESULTS Tissue cultures in two different MPS setups were compared and validated by a bimodal viability analysis and extracellular matrix transformation assessment. The MPS-TIC conjunction proved applicable for incubation periods of 14-26 days. An increased metabolic rate was detected for pulsatile dynamic MPS culture compared to static condition indicated by increased LDH intensity. ECM changes such as an increase of collagen fibre content in line with tissue contraction and mass reduction, also observed in early CAVD, were detected in MPS-TIC culture, as well as an increase of collagen fibre content. Glycosaminoglycans remained stable, no significant alterations of α-SMA or CD31 epitopes and no accumulation of calciumhydroxyapatite were observed after 14 days of incubation. CONCLUSIONS The presented ex vivo MPS allows long-term AV tissue incubation and will be adopted for future investigation of CAVD pathophysiology, also implementing human tissues. The bimodal viability assessment and ECM analyses approve reliability of ex vivo CAVD investigation and comparability of parallel tissue segments with different treatment strategies regarding the AV (patho)physiology.
Collapse
Affiliation(s)
- Claudia Dittfeld
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany.
| | - Maximilian Winkelkotte
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Anna Scheer
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Emmely Voigt
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Florian Schmieder
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - Stephan Behrens
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - Anett Jannasch
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Klaus Matschke
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Frank Sonntag
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - Sems-Malte Tugtekin
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| |
Collapse
|
22
|
Kanwischer L, Xu X, Saifuddin AB, Maamari S, Tan X, Alnour F, Tampe B, Meyer T, Zeisberg M, Hasenfuss G, Puls M, Zeisberg EM. Low levels of circulating methylated IRX3 are related to worse outcome after transcatheter aortic valve implantation in patients with severe aortic stenosis. Clin Epigenetics 2023; 15:149. [PMID: 37697352 PMCID: PMC10496273 DOI: 10.1186/s13148-023-01561-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Aortic stenosis (AS) is one of the most common cardiac diseases and major cause of morbidity and mortality in the elderly. Transcatheter aortic valve implantation (TAVI) is performed in such patients with symptomatic severe AS and reduces mortality for the majority of these patients. However, a significant percentage dies within the first two years after TAVI, such that there is an interest to identify parameters, which predict outcome and could guide pre-TAVI patient selection. High levels of cardiac fibrosis have been identified as such independent predictor of cardiovascular mortality after TAVI. Promoter hypermethylation commonly leads to gene downregulation, and the Iroquois homeobox 3 (IRX3) gene was identified in a genome-wide transcriptome and methylome to be hypermethylated and downregulated in AS patients. In a well-described cohort of 100 TAVI patients in which cardiac fibrosis levels were quantified histologically in cardiac biopsies, and which had a follow-up of up to two years, we investigated if circulating methylated DNA of IRX3 in the peripheral blood is associated with cardiac fibrosis and/or mortality in AS patients undergoing TAVI and thus could serve as a biomarker to add information on outcome after TAVI. RESULTS Patients with high levels of methylation in circulating IRX3 show a significantly increased survival as compared to patients with low levels of IRX3 methylation indicating that high peripheral IRX3 methylation is associated with an improved outcome. In the multivariable setting, peripheral IRX3 methylation acts as an independent predictor of all-cause mortality. While there is no significant correlation of levels of IRX3 methylation with cardiac death, there is a significant but very weak inverse correlation between circulating IRX3 promoter methylation level and the amount of cardiac fibrosis. Higher levels of peripheral IRX3 methylation further correlated with decreased cardiac IRX3 expression and vice versa. CONCLUSIONS High levels of IRX3 methylation in the blood of AS patients at the time of TAVI are associated with better overall survival after TAVI and at least partially reflect myocardial IRX3 expression. Circulating methylated IRX3 might aid as a potential biomarker to help guide both pre-TAVI patient selection and post-TAVI monitoring.
Collapse
Affiliation(s)
- Leon Kanwischer
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Xingbo Xu
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Afifa Binta Saifuddin
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Sabine Maamari
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Xiaoying Tan
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Fouzi Alnour
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Björn Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Thomas Meyer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Miriam Puls
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Elisabeth M Zeisberg
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
23
|
Zhou Y, Yuan Z, Wang M, Zhang Z, Tan C, Yu J, Bi Y, Liao X, Zhou X, Ali Sheikh MS, Yang D. Liraglutide Attenuates Aortic Valve Calcification in a High-Cholesterol-Diet-Induced Experimental Calcific Aortic Valve Disease Model in Apolipoprotein E-Deficient Mice. J Cardiovasc Dev Dis 2023; 10:386. [PMID: 37754815 PMCID: PMC10531705 DOI: 10.3390/jcdd10090386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is a significant cause of morbidity and mortality among elderly people. However, no effective medications have been approved to slow or prevent the progression of CAVD. Here, we examined the effect of liraglutide on aortic valve stenosis. METHODS Male Apoe-/- mice were fed with a high-cholesterol diet for 24 weeks to generate an experimental CAVD model and randomly assigned to a liraglutide treatment group or control group. Echocardiography and immunohistological analyses were performed to examine the aortic valve function and morphology, fibrosis, and calcium deposition. Plasma Glucagon-like peptide-1 (GLP-1) levels and inflammatory contents were measured via ELISA, FACS, and immunofluorescence. RNA sequencing (RNA-seq) was used to identify liraglutide-affected pathways and processes. RESULTS Plasma GLP-1 levels were reduced in the CAVD model, and liraglutide treatment significantly improved aortic valve calcification and functions and attenuated inflammation. RNA-seq showed that liraglutide affects multiple myofibroblastic and osteogenic differentiations or inflammation-associated biological states or processes in the aortic valve. Those liraglutide-mediated beneficial effects were associated with increased GLP-1 receptor (GLP-1R) expression. CONCLUSIONS Liraglutide blocks aortic valve calcification and may serve as a potential therapeutic drug for CAVD treatment.
Collapse
Affiliation(s)
- Yangzhao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.Z.); (Z.Y.); (M.W.); (Z.Z.); (C.T.); (J.Y.); (Y.B.); (X.L.); (X.Z.)
| | - Zhaoshun Yuan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.Z.); (Z.Y.); (M.W.); (Z.Z.); (C.T.); (J.Y.); (Y.B.); (X.L.); (X.Z.)
| | - Min Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.Z.); (Z.Y.); (M.W.); (Z.Z.); (C.T.); (J.Y.); (Y.B.); (X.L.); (X.Z.)
| | - Zhiyuan Zhang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.Z.); (Z.Y.); (M.W.); (Z.Z.); (C.T.); (J.Y.); (Y.B.); (X.L.); (X.Z.)
| | - Changming Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.Z.); (Z.Y.); (M.W.); (Z.Z.); (C.T.); (J.Y.); (Y.B.); (X.L.); (X.Z.)
| | - Jiaolian Yu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.Z.); (Z.Y.); (M.W.); (Z.Z.); (C.T.); (J.Y.); (Y.B.); (X.L.); (X.Z.)
| | - Yanfeng Bi
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.Z.); (Z.Y.); (M.W.); (Z.Z.); (C.T.); (J.Y.); (Y.B.); (X.L.); (X.Z.)
| | - Xiaobo Liao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.Z.); (Z.Y.); (M.W.); (Z.Z.); (C.T.); (J.Y.); (Y.B.); (X.L.); (X.Z.)
| | - Xinmin Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.Z.); (Z.Y.); (M.W.); (Z.Z.); (C.T.); (J.Y.); (Y.B.); (X.L.); (X.Z.)
| | - Md Sayed Ali Sheikh
- Department of Internal Medicine, Cardiology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Dafeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.Z.); (Z.Y.); (M.W.); (Z.Z.); (C.T.); (J.Y.); (Y.B.); (X.L.); (X.Z.)
| |
Collapse
|
24
|
Witz A, Effertz D, Goebel N, Schwab M, Franke UFW, Torzewski M. Pro-Calcifying Role of Enzymatically Modified LDL (eLDL) in Aortic Valve Sclerosis via Induction of IL-6 and IL-33. Biomolecules 2023; 13:1091. [PMID: 37509127 PMCID: PMC10377083 DOI: 10.3390/biom13071091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
One of the contributors to atherogenesis is enzymatically modified LDL (eLDL). eLDL was detected in all stages of aortic valve sclerosis and was demonstrated to trigger the activation of p38 mitogen-activated protein kinase (p38 MAPK), which has been identified as a pro-inflammatory protein in atherosclerosis. In this study, we investigated the influence of eLDL on IL-6 and IL-33 induction, and also the impact of eLDL on calcification in aortic valve stenosis (AS). eLDL upregulated phosphate-induced calcification in valvular interstitial cells (VICs)/myofibroblasts isolated from diseased aortic valves, as demonstrated by alizarin red staining. Functional studies demonstrated activation of p38 MAPK as well as an altered gene expression of osteogenic genes known to be involved in vascular calcification. In parallel with the activation of p38 MAPK, eLDL also induced upregulation of the cytokines IL-6 and IL-33. The results suggest a pro-calcifying role of eLDL in AS via induction of IL-6 and IL-33.
Collapse
Affiliation(s)
- Annemarie Witz
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Denise Effertz
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Nora Goebel
- Department of Cardiovascular Surgery, Robert-Bosch-Hospital, 70376 Stuttgart, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- Department of Clinical Pharmacology, University of Tuebingen, 72076 Tuebingen, Germany
- Department of Biochemistry and Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany
| | - Ulrich F W Franke
- Department of Cardiovascular Surgery, Robert-Bosch-Hospital, 70376 Stuttgart, Germany
| | - Michael Torzewski
- Department of Laboratory Medicine and Hospital Hygiene, Robert-Bosch-Hospital, 70376 Stuttgart, Germany
| |
Collapse
|
25
|
Naso F, Colli A, Zilla P, Calafiore AM, Lotan C, Padalino MA, Sturaro G, Gandaglia A, Spina M. Correlations between the alpha-Gal antigen, antibody response and calcification of cardiac valve bioprostheses: experimental evidence obtained using an alpha-Gal knockout mouse animal model. Front Immunol 2023; 14:1210098. [PMID: 37426661 PMCID: PMC10327888 DOI: 10.3389/fimmu.2023.1210098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Preformed antibodies against αGal in the human and the presence of αGal antigens on the tissue constituting the commercial bioprosthetic heart valves (BHVs, mainly bovine or porcine pericardium), lead to opsonization of the implanted BHV, leading to deterioration and calcification. Murine subcutaneous implantation of BHVs leaflets has been widely used for testing the efficacy of anti-calcification treatments. Unfortunately, commercial BHVs leaflets implanted into a murine model will not be able to elicit an αGal immune response because such antigen is expressed in the recipient and therefore immunologically tolerated. Methods This study evaluates the calcium deposition on commercial BHV using a new humanized murine αGal knockout (KO) animal model. Furtherly, the anti-calcification efficacy of a polyphenol-based treatment was deeply investigated. By using CRISPR/Cas9 approach an αGal KO mouse was created and adopted for the evaluation of the calcific propensity of original and polyphenols treated BHV by subcutaneous implantation. The calcium quantification was carried out by plasma analysis; the immune response evaluation was performed by histology and immunological assays. Anti-αGal antibodies level in KO mice increases at least double after 2 months of implantation of original commercial BHV compared to WT mice, conversely, the polyphenols-based treatment seems to effectively mask the antigen to the KO mice's immune system. Results Commercial leaflets explanted after 1 month from KO mice showed a four-time increased calcium deposition than what was observed on that explanted from WT. Polyphenol treatment prevents calcium deposition by over 99% in both KO and WT animals. The implantation of commercial BHV leaflets significantly stimulates the KO mouse immune system resulting in massive production of anti-Gal antibodies and the exacerbation of the αGal-related calcific effect if compared with the WT mouse. Discussion The polyphenol-based treatment applied in this investigation showed an unexpected ability to inhibit the recognition of BHV xenoantigens by circulating antibodies almost completely preventing calcific depositions compared to the untreated counterpart.
Collapse
Affiliation(s)
- Filippo Naso
- Biocompatibility Innovation Srl, Este, Padua, Italy
| | - Andrea Colli
- Cardiac Surgery Unit, Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Peter Zilla
- Christian Barnard Department of Cardiothoracic Surgery, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | | | - Chaim Lotan
- Hadassah University Hospital - Cardiovascular Division, Ein Kerem, Jerusalem, Israel
| | - Massimo A. Padalino
- Pediatric and Congenital Cardiac Surgery Unit, Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | | | | | - Michele Spina
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
26
|
Mercean DB, Tomoaia R, Şerban AM, Moţ ŞDC, Hagiu R, Mihu CM. The Impact of Monocyte to High-Density Lipoprotein Cholesterol Ratio on All-Cause and Cardiovascular Mortality in Patients with Transcatheter Aortic Valve Replacement. J Pers Med 2023; 13:989. [PMID: 37373978 PMCID: PMC10304107 DOI: 10.3390/jpm13060989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Inflammation plays a significant role in the pathogenesis of aortic stenosis. This study aimed to investigate the prognostic value of the monocyte-HDL cholesterol ratio (MHR), a new inflammatory marker, in severe aortic stenosis (AS) patients who underwent transcatheter aortic valve replacement (TAVR). METHODS A total of 125 patients with severe AS who underwent TAVR were assessed. Clinical, echocardiographic and laboratory data relevant to the research were retrospectively obtained from the patients' records. The MHR was determined by dividing the absolute monocyte count by the HDL-C value. The primary endpoints were overall and cardiovascular mortality. RESULTS During a median follow-up time of 39 months, primary endpoints were developed in 51 (40.8%) patients (overall mortality) and 21 (16.8%) patients (cardiovascular mortality). A receiver operating characteristic (ROC) analysis showed that by using a cut-off level of 16.16, the MHR predicted the all-cause mortality with a sensitivity of 50.9% and specificity of 89.1%. In predicting cardiovascular mortality, the MHR exhibited a sensitivity of 80.9% and specificity of 70.1% when a cut-off level of 13.56 was used. In the multivariate analysis, the MHR (p < 0.0001; 95% CI: 1.06-1.15) and atrial fibrillation (p = 0.018; 95% CI: 1.11-3.38) were found to be significant predictors of overall mortality. CONCLUSIONS This study showed a significant elevation in the MHR among patients who experienced all-cause and cardiovascular mortality and this ratio emerged as an independent predictor of all-cause death in patients with severe AS undergoing TAVR.
Collapse
Affiliation(s)
- Denisa Bianca Mercean
- 1st Department of Morphological Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.B.M.); (C.M.M.)
- Cardiology Department, Heart Institute “N. Stăncioiu”, 400001 Cluj-Napoca, Romania; (A.M.Ş.); (Ş.D.C.M.); (R.H.)
| | - Raluca Tomoaia
- 5th Department of Internal Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Cardiology Department, Rehabilitation Hospital, 400347 Cluj-Napoca, Romania
| | - Adela Mihaela Şerban
- Cardiology Department, Heart Institute “N. Stăncioiu”, 400001 Cluj-Napoca, Romania; (A.M.Ş.); (Ş.D.C.M.); (R.H.)
- 5th Department of Internal Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ştefan Dan Cezar Moţ
- Cardiology Department, Heart Institute “N. Stăncioiu”, 400001 Cluj-Napoca, Romania; (A.M.Ş.); (Ş.D.C.M.); (R.H.)
| | - Radu Hagiu
- Cardiology Department, Heart Institute “N. Stăncioiu”, 400001 Cluj-Napoca, Romania; (A.M.Ş.); (Ş.D.C.M.); (R.H.)
| | - Carmen Mihaela Mihu
- 1st Department of Morphological Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.B.M.); (C.M.M.)
- Radiology and Imaging Department, County Emergency Hospital, 400006 Cluj-Napoca, Romania
| |
Collapse
|
27
|
Playford D, Schwarz N, Chowdhury E, Williamson A, Duong M, Kearney L, Stewart S, Strange G. Comorbidities and Symptom Status in Moderate and Severe Aortic Stenosis: A Multicenter Clinical Cohort Study. JACC. ADVANCES 2023; 2:100356. [PMID: 38938261 PMCID: PMC11198361 DOI: 10.1016/j.jacadv.2023.100356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/29/2024]
Abstract
Background Symptoms associated with severe aortic stenosis (AS) are used to guide management. Objectives The purpose of this study was to examine the pattern of symptoms, comorbidities, and cardiac damage in moderate and severe AS. Methods A total of 846,198 echocardiographic investigations from 330,940 individuals aged >18 years were selected for the most recent echocardiogram, moderate or severe AS (mean gradient 20.0-39.9 mm Hg, aortic valve peak gradient 3.0-3.9 m/s and aortic valve area >1.0 cm2; or ≥ 40.0 mm Hg, ≥4.0 m/s or ≤1.0 cm2, respectively), and a cardiologist consultation. Natural Language Processing was applied to letters to extract comorbidities, dyspnea, chest pain, and syncope. Patients with prior aortic valve replacement were excluded. Results 2,213 patients (0.7% overall, 32.8% females) had moderate and 3,416 (1.0%, 47.3% females) had severe AS. Comorbidities were common, including hypertension, (56.6% moderate AS, 53.1% severe AS, P = 0.01), coronary disease (46.0% and 46.8%, respectively, P = 0.58) and atrial fibrillation (29.6% and 34.8%, respectively, P < 0.001). Symptoms were also common in both moderate (n = 915, 41.3%) and severe (n = 1,630, 47.7%) AS (P < 0.001). Comorbidities were more likely in symptomatic vs asymptomatic patients (P < 0.001). Dyspnea was more likely in severe AS, whereas angina and syncope were similar in moderate vs severe AS. In multivariable analysis, only dyspnea was associated with severe (vs moderate) AS (OR: 1.73, 95% CI: 1.41-2.13, P < 0.001). In both adjusted and unadjusted models, the degree of cardiac damage did not relate to presence of any symptoms but was associated with AS severity. Conclusions Dyspnea is common in both moderate and severe AS, is associated with comorbidities and is not related to the degree of cardiac damage. Symptom-guided management decisions in AS may need revision.
Collapse
Affiliation(s)
- David Playford
- Advara Heart Care, Leabrook, Adelaide, Australia
- School of Medicine, The University of Notre Dame, Fremantle, Australia
| | | | | | | | - MyNgan Duong
- Advara Heart Care, Leabrook, Adelaide, Australia
| | - Leighton Kearney
- Advara Heart Care, Leabrook, Adelaide, Australia
- Cardiology, Warringal Private Hospital, Heidelberg, Victoria, Australia
| | - Simon Stewart
- Institute for Health Research, The University of Notre Dame, Fremantle, Australia
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Geoff Strange
- School of Medicine, The University of Notre Dame, Fremantle, Australia
- Heart Research Institute, Sydney, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
28
|
Hadziselimovic E, Greve AM, Sajadieh A, Olsen MH, Kesäniemi YA, Nienaber CA, Ray SG, Rossebø AB, Wachtell K, Nielsen OW. Association of high-sensitivity troponin T with outcomes in asymptomatic non-severe aortic stenosis: a post-hoc substudy of the SEAS trial. EClinicalMedicine 2023; 58:101875. [PMID: 36915288 PMCID: PMC10006443 DOI: 10.1016/j.eclinm.2023.101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND High-sensitivity Troponin T (hsTnT), a biomarker of cardiomyocyte overload and injury, relates to aortic valve replacement (AVR) and mortality in severe aortic stenosis (AS). However, its prognostic value remains unknown in asymptomatic patients with AS. We aimed to investigate if an hsTnT level >14 pg/mL (above upper limit of normal 99th percentile) is associated with echocardiographic AS-severity, subsequent AVR, ischaemic coronary events (ICE), and mortality in asymptomatic patients with non-severe AS. METHODS In this post-hoc sub-analysis of the multicentre, randomised, double-blind, placebo-controlled SEAS trial (ClinicalTrials.gov, NCT00092677), we included asymptomatic patients with mild to moderate-severe AS. We ascertained baseline and 1-year hsTnT concentrations and examined the association between baseline levels and the risk of the primary composite endpoint, defined as the first event of all-cause mortality, isolated AVR (without coronary artery bypass grafting (CABG)), or ICE. Multivariable regressions and competing risk analyses examined associations of hsTnT level >14 pg/mL with clinical correlates and 5-year risk of the primary endpoint. FINDINGS Between January 6, 2003, and March 4, 2004, a total of 1873 patients were enrolled in the SEAS trial, and 1739 patients were included in this post-hoc sub-analysis. Patients had a mean (SD) age of 67.5 (9.7) years, 61.0% (1061) were men, 17.4% (302) had moderate-severe AS, and 26.0% (453) had hsTnT level >14 pg/mL. The median hsTnT difference from baseline to 1-year was 0.8 pg/mL (IQR, -0.4 to 2.3). In adjusted linear regression, log(hsTnT) did not correlate with echocardiographic AS severity (p = 0.36). In multivariable Cox regression, a hsTnT level >14 pg/mL vs. hsTnT ≤14 pg/mL was associated with an increased risk of the primary composite endpoint (HR, 1.41; 95% CI, 1.18-1.70; p = 0.0002). In a competing risk model of first of the individual components of the primary endpoint, a hsTnT level >14 pg/mL was associated with ICE risk (HR 1.71; 95% CI, 1.23-2.38; p = 0.0013), but not with isolated AVR (p = 0.064) or all-cause mortality (p = 0.49) as the first event. INTERPRETATION hsTnT level is within the reference range (≤14 pg/mL) in 3 out of 4 non-ischaemic patients with asymptomatic mild-to-moderate AS and remains stable during a 1-year follow-up regardless of AS-severity. An hsTnT level >14 pg/mL was mainly associated with subsequent ICE, which suggest that hsTnT concentration is primarily a risk marker of subclinical coronary atherosclerotic disease. FUNDING Merck & Co., Inc., the Schering-Plough Corporation, the Interreg IVA program, Roche Diagnostics Ltd., and Gangstedfonden. Open access publication fee funding provided by prof. Olav W. Nielsen and Department of Cardiology, Bispebjerg University Hospital, Denmark.
Collapse
Affiliation(s)
- Edina Hadziselimovic
- Department of Cardiology, Bispebjerg University Hospital, Copenhagen, Denmark
- Corresponding author. Department of Cardiology, Bispebjerg University Hospital, Bispebjerg Bakke 23, 2400, Copenhagen, Denmark.
| | - Anders M. Greve
- Department of Clinical Biochemistry, 3011, Rigshospitalet, Copenhagen, Denmark
| | - Ahmad Sajadieh
- Department of Cardiology, Bispebjerg University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Michael H. Olsen
- Department of Internal Medicine 1, Holbæk Hospital, Denmark
- Department of Regional Health Research, University of Southern Denmark, Denmark
| | - Y. Antero Kesäniemi
- Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | | | | | - Anne B. Rossebø
- Department of Cardiology, Oslo University Hospital, Ullevål, Oslo, Norway
| | | | - Olav W. Nielsen
- Department of Cardiology, Bispebjerg University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
29
|
Burdeynaya AL, Afanasieva OI, Ezhov MV, Klesareva EA, Saidova MA, Pokrovsky SN. Lipoprotein(a) and Its Autoantibodies in Association with Calcific Aortic Valve Stenosis. Diseases 2023; 11:diseases11010043. [PMID: 36975592 PMCID: PMC10047835 DOI: 10.3390/diseases11010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Aortic valve stenosis is the most common valvular heart disease in the Western world. Lipoprotein(a) (Lp(a)) is an independent risk factor of coronary heart disease (CHD) and calcific aortic valve stenosis (CAVS). The aim of this study was to assess the role of Lp(a) and its autoantibodies [autoAbs] in CAVS in patients with and without CHD. We included 250 patients (mean age 69 ± 3 years, males 42%) and divided them into three groups. There were two groups of patients with CAVS depending on the presence (group 1) or absence of CHD (group 2). The control group included the patients without CHD or CAVS. According to logistic regression analysis, levels of Lp(a), IgM autoAbs to oxidized Lp(a) (oxLp(a)), and age were independent predictors of CAVS. A concomitant increase in Lp(a) level (≥30 mg/dL) and a decrease in IgM autoAbs concentration (<9.9 lab. Units) are associated with CAVS with an odds ratio (OR) of 6.4, p < 0.01, and with CAVS and CHD with an OR of 17.3, p < 0.001. IgM autoantibodies to oxLp(a) are associated with calcific aortic valve stenosis regardless of Lp(a) concentration and other risk factors. Higher Lp(a) and lower IgM autoantibodies to oxLp(a) levels are associated with a much higher risk of calcific aortic valve stenosis.
Collapse
Affiliation(s)
- Anna L. Burdeynaya
- Laboratory of Lipid Disorders, Department of Atherosclerosis, A.L. Myasnikov Institute of Clinical Cardiology, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Olga I. Afanasieva
- Laboratory of Atherosclerosis, Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Marat V. Ezhov
- Laboratory of Lipid Disorders, Department of Atherosclerosis, A.L. Myasnikov Institute of Clinical Cardiology, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
- Correspondence:
| | - Elena A. Klesareva
- Laboratory of Atherosclerosis, Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Marina A. Saidova
- Department of Ultrasound Diagnostics, A.L. Myasnikov Institute of Clinical Cardiology, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Sergey N. Pokrovsky
- Laboratory of Atherosclerosis, Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| |
Collapse
|
30
|
Yasmin F, Shaikh A, Asghar MS, Moeed A, Najeeb H, Waqar E, Ram MD, Nankani A, Ochani RK, Aamir M, Ullah W, Waqar F, Johnson DM, Johnson DM. Early Transcatheter or Surgical Aortic Valve Replacement Versus Conservative Management in Asymptomatic Patients With Severe Aortic Stenosis: A Systematic Review and Meta-analysis. Curr Probl Cardiol 2023; 48:101477. [PMID: 36328337 DOI: 10.1016/j.cpcardiol.2022.101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 02/01/2023]
Abstract
The merits of conservative management vs early intervention in patients with asymptomatic severe aortic stenosis remains unknown. Digital databases (MEDLINE, Google Scholar, and Embase) were searched for all relevant studies from inception through September 2022. Studies comparing conservative management with early intervention were compared using a random-effects model to calculate risk ratios (RRs) with 95% confidence interval (CI). A total of 12 studies comprising 3624 asymptomatic aortic stenosis patients (1747 receiving surgery, and 1877 receiving conservative treatment) were included in the analysis. The average follow-up time was 4.45 (IQR 3.5-5) years. Early intervention was associated with a significantly reduced risk of cardiac (RR 0.42, 95% CI 0.25-0.72; P = 0.001; I2 = 54%), non-cardiac (RR 0.46, 95% CI 0.32-0.68; P < 0.0001; I2 = 0%), all-cause mortality (RR 0.40, 95% CI 0.32-0.51; P < 0.00001; I2 = 58%), heart failure hospitalization (RR 0.21, 95% CI 0.13-0.36; P < 0.00001; I2 = 0%), sudden cardiac death (RR 0.29, 95% CI 0.12-0.66; P = 0.004, I2 = 24%), and MACE (RR 0.46, 95% CI; 0.28-0.75; P = 0.002; I2 = 68%), compared with conservative management. There was no significant difference in the 30-day mortality (RR 0.63, 95% CI 0.19-2.04; P = 0.44; I2 = 28%), myocardial infarction (RR 0.44, 95% CI 0.19-1.06; P = 0.07, I2=0%), and 90-day mortality (RR 0.68, 95% CI 0.20-2.37; P = 0.55; I2 = 61%) between the 2 groups. This meta-analysis shows statistically significant reductions in the risk for all-cause mortality, cardiac specific mortality, non-cardiac mortality, heart failure hospitalization, MACE, and sudden cardiac death among asymptomatic aortic stenosis patients who underwent early intervention as opposed to conservative management.
Collapse
Affiliation(s)
- Farah Yasmin
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Asim Shaikh
- Department of Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | | | - Abdul Moeed
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Hala Najeeb
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Eisha Waqar
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Muskaan Doulat Ram
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Avinash Nankani
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Rohan Kumar Ochani
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Muhammad Aamir
- Lehigh Valley Heart Specialists, Lehigh Valley Health Network, Allentown PA
| | - Waqas Ullah
- Division of Cardiology, Sidney Kimmel Medical College, Thomas Jefferson University Hospitals, Philadelphia PA
| | - Fahad Waqar
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Drew M Johnson
- Division of Cardiology, Sidney Kimmel Medical College, Thomas Jefferson University Hospitals, Philadelphia PA.
| | | |
Collapse
|
31
|
Shah SM, Shah J, Lakey SM, Garg P, Ripley DP. Pathophysiology, emerging techniques for the assessment and novel treatment of aortic stenosis. Open Heart 2023; 10:e002244. [PMID: 36963766 PMCID: PMC10040005 DOI: 10.1136/openhrt-2022-002244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
Our perspectives on aortic stenosis (AS) are changing. Evolving from the traditional thought of a passive degenerative disease, developing a greater understanding of the condition's mechanistic underpinning has shifted the paradigm to an active disease process. This advancement from the 'wear and tear' model is a result of the growing economic and health burden of AS, particularly within industrialised countries, prompting further research. The pathophysiology of calcific AS (CAS) is complex, yet can be characterised similarly to that of atherosclerosis. Progressive remodelling involves lipid-protein complexes, with lipoprotein(a) being of particular interest for diagnostics and potential future treatment options.There is an unmet clinical need for asymptomatic patient management; no pharmacotherapies are proven to slow progression and intervention timing varies. Novel approaches are developing to address this through: (1) screening with circulating biomarkers; (2) development of drugs to slow disease progression and (3) early valve intervention guided by medical imaging. Existing biomarkers (troponin and brain natriuretic peptide) are non-specific, but cost-effective predictors of ventricular dysfunction. In addition, their integration with cardiovascular MRI can provide accurate risk stratification, aiding aortic valve replacement decision making. Currently, invasive intervention is the only treatment for AS. In comparison, the development of lipoprotein(a) lowering therapies could provide an alternative; slowing progression of CAS, preventing left ventricular dysfunction and reducing reliance on surgical intervention.The landscape of AS management is rapidly evolving. This review outlines current understanding of the pathophysiology of AS, its management and future perspectives for the condition's assessment and treatment.
Collapse
Affiliation(s)
- Syed Muneeb Shah
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Jay Shah
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Samuel Mark Lakey
- Department of Cardiology, Northumbria Healthcare NHS Foundation Trust, North Shields, UK
| | - Pankaj Garg
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
- Department of Cardiology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, Norfolk, UK
| | - David Paul Ripley
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
- Department of Cardiology, Northumbria Healthcare NHS Foundation Trust, North Shields, UK
| |
Collapse
|
32
|
De Azevedo D, Geers J, Gheysens O, Dweck M, Vancraeynest D. 18F-Sodium Fluoride PET/CT in Assessing Valvular Heart and Atherosclerotic Diseases. Semin Nucl Med 2023; 53:241-257. [PMID: 36116988 DOI: 10.1053/j.semnuclmed.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/11/2022]
Abstract
Aortic valve stenosis is the most common valvular disease in Western countries, while atherosclerotic cardiovascular disease is the foremost cause of death and disability worldwide. Valve degeneration and atherosclerosis are mediated by inflammation and calcification and inevitably progress over time. Computed tomography can visualise the later stages of macroscopic calcification but fails to assess the early stages of microcalcification and cannot differentiate active from burnt out disease states. Molecular imaging has the ability to provide complementary information related to disease activity, which may allow us to detect disease early, to predict disease progression and to monitor preventive or therapeutic strategies for in both aortic stenosis and atherosclerosis. PET/CT is a non-invasive imaging technique that enables visualization of ongoing molecular processes within small structures, such as the coronary arteries or heart valves. 18F-sodium fluoride (18F-NaF) binds hydroxyapatite deposits in the extracellular matrix, with preferential binding to newly developing deposits of microcalcification, which provides an assessment of calcification activity. In recent years, 18F-NaF has attracted the attention of many research groups and has been evaluated in several pathological cardiovascular processes. Histologic validation of the 18F-NaF PET signal in valvular disease and atherosclerosis has been reported in multiple independent studies. The selective high-affinity binding of 18F-NaF to microscopic calcified deposits (beyond the resolution of μCT) has been demonstrated ex vivo, as well as its ability to distinguish between areas of macro- and active microcalcification. In addition, prospective clinical studies have shown that baseline 18F-NaF uptake in patients with aortic stenosis and mitral annular calcification is correlated with subsequent calcium deposition and valvular dysfunction after a follow-up period of 2 years. In patients with surgical bioprosthetic aortic valves but without morphological criteria for prosthetic degeneration, increased 18F-NaF uptake at baseline was associated with subsequent bioprosthetic degeneration over time. Similar data were obtained in a cohort of patients with transcatheter aortic valve implantation. Furthermore, several studies have confirmed the association of coronary 18F-NaF uptake with adverse atherosclerotic plaque features, active disease and future disease progression. 18F-NaF uptake is also associated with future fatal or nonfatal myocardial infarction in patients with established coronary artery disease. The link between 18F-NaF uptake and active atherosclerotic disease has not only been demonstrated in the coronary arteries, but also in peripheral arterial disease, abdominal aortic aneurysms and carotid atherosclerosis. It can be assumed that 18F-NaF PET/CT will strengthen the diagnostic toolbox of practitioners in the coming years. Indeed, there is a strong medical need to diagnose degenerative valvular disease and to detect active atherosclerotic disease states. Finally, the use of 18F-NaF as a biomarker to monitor the efficacy of drug therapies in preventing these pathological processes is attractive. In this review, we consider the role of 18F-NaF PET/CT imaging in cardiac valvular diseases and atherosclerosis.
Collapse
Affiliation(s)
- David De Azevedo
- Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, and IREC/CARD UCLouvain, Brussels, Belgium.
| | - Jolien Geers
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Chancellor's Building, Little France Crescent, Midlothian, Edinburgh, UK; Department of Cardiology, CHVZ (Centrum voor Hart en Vaatziekten), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Olivier Gheysens
- Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc and Institute of Clinical and Experimental Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Marc Dweck
- Department of Cardiology, CHVZ (Centrum voor Hart en Vaatziekten), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - David Vancraeynest
- Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, and IREC/CARD UCLouvain, Brussels, Belgium
| |
Collapse
|
33
|
Liu H, Yin H, Wang Z, Yuan Q, Xu F, Chen Y, Li C. Rho A/ROCK1 signaling-mediated metabolic reprogramming of valvular interstitial cells toward Warburg effect accelerates aortic valve calcification via AMPK/RUNX2 axis. Cell Death Dis 2023; 14:108. [PMID: 36774349 PMCID: PMC9922265 DOI: 10.1038/s41419-023-05642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/13/2023]
Abstract
The aberrant differentiation of valvular interstitial cells (VICs) to osteogenic lineages promotes calcified aortic valves disease (CAVD), partly activated by potentially destructive hemodynamic forces. These involve Rho A/ROCK1 signaling, a mechano-sensing pathway. However, how Rho A/ROCK1 signaling transduces mechanical signals into cellular responses and disrupts normal VIC homeostasis remain unclear. We examined Rho A/ROCK1 signaling in human aortic valves, and further detected how Rho A/ROCK1 signaling regulates mineralization in human VICs. Aortic valves (CAVD n = 22, normal control (NC) n = 12) from patients undergoing valve replacement were investigated. Immunostaining and western blotting analysis indicated that Rho A/ROCK1 signaling, as well as key transporters and enzymes involved in the Warburg effect, were markedly upregulated in human calcified aortic valves compared with those in the controls. In vitro, Rho A/ROCK1-induced calcification was confirmed as AMPK-dependent, via a mechanism involving metabolic reprogramming of human VICs to Warburg effect. Y-27632, a selective ROCK1 inhibitor, suppressed the Warburg effect, rescued AMPK activity and subsequently increased RUNX2 ubiquitin-proteasome degradation, leading to decreased RUNX2 protein accumulation in human VICs under pathological osteogenic stimulus. Rho A/ROCK1 signaling, which is elevated in human calcified aortic valves, plays a positive role in valvular calcification, partially through its ability to drive metabolic switching of VICs to the Warburg effect, leading to altered AMPK activity and RUNX2 protein accumulation. Thus, Rho A/ROCK1 signaling could be an important and unrecognized hub of destructive hemodynamics and cellular aerobic glycolysis that is essential to promote the CAVD process.
Collapse
Affiliation(s)
- Huiruo Liu
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hang Yin
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhen Wang
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qiuhuan Yuan
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Feng Xu
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuguo Chen
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Chuanbao Li
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
34
|
Kaiser Y, Labrecque J, Stroes ESG, Boekholdt SM, Bos D. Lipoprotein(a) and progression of aortic valve calcification: a case of collider bias? Reply. Eur Heart J 2023; 44:626. [PMID: 36610071 PMCID: PMC9925270 DOI: 10.1093/eurheartj/ehac742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
| | - Jeremy Labrecque
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - S Matthijs Boekholdt
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Daniel Bos
- Corresponding author. Tel: +31107043791,
| |
Collapse
|
35
|
Pinto G, Fragasso G. Aortic valve stenosis: drivers of disease progression and drug targets for therapeutic opportunities. Expert Opin Ther Targets 2022; 26:633-644. [DOI: 10.1080/14728222.2022.2118576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Giuseppe Pinto
- Departmen of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano-Milan, Italy
| | - Gabriele Fragasso
- Department of Clinical Cardiology, Heart Failure Clinic, IRCCS San Raffaele Scientific Institute, Milano
| |
Collapse
|
36
|
Tanase DM, Valasciuc E, Gosav EM, Floria M, Costea CF, Dima N, Tudorancea I, Maranduca MA, Serban IL. Contribution of Oxidative Stress (OS) in Calcific Aortic Valve Disease (CAVD): From Pathophysiology to Therapeutic Targets. Cells 2022; 11:cells11172663. [PMID: 36078071 PMCID: PMC9454630 DOI: 10.3390/cells11172663] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a major cause of cardiovascular mortality and morbidity, with increased prevalence and incidence. The underlying mechanisms behind CAVD are complex, and are mainly illustrated by inflammation, mechanical stress (which induces prolonged aortic valve endothelial dysfunction), increased oxidative stress (OS) (which trigger fibrosis), and calcification of valve leaflets. To date, besides aortic valve replacement, there are no specific pharmacological treatments for CAVD. In this review, we describe the mechanisms behind aortic valvular disease, the involvement of OS as a fundamental element in disease progression with predilection in AS, and its two most frequent etiologies (calcific aortic valve disease and bicuspid aortic valve); moreover, we highlight the potential of OS as a future therapeutic target.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence:
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- 2nd Ophthalmology Clinic, Prof. Dr. Nicolae Oblu Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Ionut Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Cardiology Clinic St. Spiridon County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
37
|
Tzolos E, Kwiecinski J, Berman D, Slomka P, Newby DE, Dweck MR. Latest Advances in Multimodality Imaging of Aortic Stenosis. J Nucl Med 2022; 63:353-358. [PMID: 34887339 PMCID: PMC8978201 DOI: 10.2967/jnumed.121.262304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Aortic stenosis is a common condition associated with major morbidity, mortality, and health-care costs. Nevertheless, we currently lack any effective medical therapies that can treat or prevent disease development or progression. Modern advances in echocardiography and CT have helped improve the assessment of aortic stenosis severity and monitoring of disease progression, whereas cardiac MRI informs on myocardial health and the development of fibrosis. In a series of recent studies, 18F-NaF PET/CT has been shown to assess valvular disease activity and progression, providing mechanistic insights that can inform potential novel therapeutic approaches. This review will examine the latest advances in the imaging of aortic stenosis and bioprosthetic valve degeneration and explore how these techniques can assist patient management and potentially accelerate novel therapeutic developments.
Collapse
Affiliation(s)
- Evangelos Tzolos
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland; and
| | - Daniel Berman
- Division of Nuclear Medicine, Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Piotr Slomka
- Division of Nuclear Medicine, Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
38
|
Abstract
As populations age worldwide, the burden of valvular heart disease has grown exponentially, and so has the proportion of affected women. Although rheumatic valve disease is declining in high-income countries, degenerative age-related causes are rising. Calcific aortic stenosis and degenerative mitral regurgitation affect a significant proportion of elderly women, particularly those with comorbidities. Women with valvular heart disease have been underrepresented in many of the landmark studies which form the basis for guideline recommendations. As a consequence, surgical referrals in women have often been delayed, with worse postoperative outcomes compared with men. As described in this review, a more recent effort to include women in research studies and clinical trials has increased our knowledge about sex-based differences in epidemiology, pathophysiology, diagnostic criteria, treatment options, outcomes, and prognosis.
Collapse
Affiliation(s)
| | - Joanna Chikwe
- Department of Cardiac Surgery, Smidt Heart Institute at Cedars-Sinai, Los Angeles, CA (J.C.)
| | - Rebecca T Hahn
- Division of Cardiology, New York Presbyterian Columbia Heart Valve Center, Columbia University Medical Center (R.T.H.)
| | - Judy W Hung
- Division of Cardiology, Harvard Medical School, Massachusetts General Hospital, Boston (J.W.H.)
| | - Francesca N Delling
- Division of Cardiology, University of California, San Francisco (J.T.D., F.N.D.)
| |
Collapse
|
39
|
Innate immune cells in the pathophysiology of calcific aortic valve disease: lessons to be learned from atherosclerotic cardiovascular disease? Basic Res Cardiol 2022; 117:28. [PMID: 35581364 PMCID: PMC9114076 DOI: 10.1007/s00395-022-00935-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 01/31/2023]
Abstract
Calcific aortic valve disease (CAVD) is the most common valvular disease in the developed world with currently no effective pharmacological treatment available. CAVD results from a complex, multifactorial process, in which valvular inflammation and fibro-calcific remodelling lead to valve thickening and cardiac outflow obstruction. The exact underlying pathophysiology of CAVD is still not fully understood, yet the development of CAVD shows many similarities with the pathophysiology of atherosclerotic cardiovascular disease (ASCVD), such as coronary artery disease. Innate immune cells play a crucial role in ASCVD and might also play a pivotal role in the development of CAVD. This review summarizes the current knowledge on the role of innate immune cells, both in the circulation and in the aortic valve, in the development of CAVD and the similarities and differences with ASCVD. Trained immunity and clonal haematopoiesis of indeterminate potential are proposed as novel immunological mechanisms that possibly contribute to the pathophysiology of CAVD and new possible treatment targets are discussed.
Collapse
|
40
|
Kaiser Y, Nurmohamed NS, Kroon J, Verberne HJ, Tzolos E, Dweck MR, Somsen AG, Arsenault BJ, Stroes ESG, Zheng KH, Boekholdt SM. Lipoprotein(a) has no major impact on calcification activity in patients with mild to moderate aortic valve stenosis. Heart 2022; 108:61-66. [PMID: 34593533 PMCID: PMC8666821 DOI: 10.1136/heartjnl-2021-319804] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/02/2021] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE To assess whether patients with aortic valve stenosis (AS) with elevated lipoprotein(a) (Lp(a)) are characterised by increased valvular calcification activity compared with those with low Lp(a). METHODS We performed 18F-sodium fluoride (18F-NaF) positron emission tomography/CT in patients with mild to moderate AS (peak aortic jet velocity between 2 and 4 m/s) and high versus low Lp(a) (>50 mg/dL vs <50 mg/dL, respectively). Subjects were matched according to age, gender, peak aortic jet velocity and valve morphology. We used a target to background ratio with the most diseased segment approach to compare 18F-NaF uptake. RESULTS 52 individuals (26 matched pairs) were included in the analysis. The mean age was 66.4±5.5 years, 44 (84.6%) were men, and the mean aortic valve velocity was 2.80±0.49 m/s. The median Lp(a) was 79 (64-117) mg/dL and 7 (5-11) mg/dL in the high and low Lp(a) groups, respectively. Systolic blood pressure and low-density-lipoprotein cholesterol (corrected for Lp(a)) were significantly higher in the low Lp(a) group (141±12 mm Hg vs 128±12 mm Hg, 2.5±1.1 mmol/L vs 1.9±0.8 mmol/L). We found no difference in valvular 18F-NaF uptake between the high and low Lp(a) groups (3.02±1.26 vs 3.05±0.96, p=0.902). Linear regression analysis showed valvular calcium score to be the only significant determinant of valvular 18F-NaF uptake (β=0.63; 95% CI 0.38 to 0.88 per 1000 Agatston unit increase, p<0.001). Lp(a) was not associated with 18F-NaF uptake (β=0.17; 95% CI -0.44 to 0.88, p=0.305 for the high Lp(a) group). CONCLUSION Among patients with mild to moderate AS, calcification activity is predominantly determined by established calcium burden. The results do not support our hypothesis that Lp(a) is associated with valvular 18F-NaF uptake.
Collapse
Affiliation(s)
- Yannick Kaiser
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Nick S Nurmohamed
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jeffrey Kroon
- Department of Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Hein J Verberne
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Evangelos Tzolos
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Aernout G Somsen
- Cardiology Centers of the Netherlands, Amsterdam, The Netherlands
| | - Benoit J Arsenault
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec Canada
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Kang H Zheng
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - S Matthijs Boekholdt
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Lindman BR, Sukul D, Dweck MR, Madhavan MV, Arsenault BJ, Coylewright M, Merryman WD, Newby DE, Lewis J, Harrell FE, Mack MJ, Leon MB, Otto CM, Pibarot P. Evaluating Medical Therapy for Calcific Aortic Stenosis: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 78:2354-2376. [PMID: 34857095 PMCID: PMC8647810 DOI: 10.1016/j.jacc.2021.09.1367] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/08/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022]
Abstract
Despite numerous promising therapeutic targets, there are no proven medical treatments for calcific aortic stenosis (AS). Multiple stakeholders need to come together and several scientific, operational, and trial design challenges must be addressed to capitalize on the recent and emerging mechanistic insights into this prevalent heart valve disease. This review briefly discusses the pathobiology and most promising pharmacologic targets, screening, diagnosis and progression of AS, identification of subgroups that should be targeted in clinical trials, and the need to elicit the patient voice earlier rather than later in clinical trial design and implementation. Potential trial end points and tools for assessment and approaches to implementation and design of clinical trials are reviewed. The efficiencies and advantages offered by a clinical trial network and platform trial approach are highlighted. The objective is to provide practical guidance that will facilitate a series of trials to identify effective medical therapies for AS resulting in expansion of therapeutic options to complement mechanical solutions for late-stage disease.
Collapse
Affiliation(s)
- Brian R Lindman
- Structural Heart and Valve Center, Cardiovascular Division, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | - Devraj Sukul
- Cardiovascular Division, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Mahesh V Madhavan
- Division of Cardiology, Department of Medicine, New York-Presbyterian/Columbia University Irving Medical Center, New York, New York, USA
| | - Benoit J Arsenault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec City, Québec, Canada
| | - Megan Coylewright
- The Erlanger Heart and Lung Institute, Department of Medicine, University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - John Lewis
- Heart Valve Voice US, Washington, DC, USA
| | - Frank E Harrell
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michael J Mack
- Baylor Scott and White Health Heart Hospital, Plano, Texas, USA
| | - Martin B Leon
- Division of Cardiology, Department of Medicine, New York-Presbyterian/Columbia University Irving Medical Center, New York, New York, USA
| | - Catherine M Otto
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Philippe Pibarot
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec City, Québec, Canada
| |
Collapse
|
42
|
Musilanga N, Hongli Z, Hongyu C. Reappraising the spectrum of bleeding gastrointestinal angioectasia in a degenerative calcific aortic valve stenosis: Heyde’s syndrome. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2021. [DOI: 10.1186/s43162-021-00046-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The occurrence of bleeding gastrointestinal angioectasia in elderly patients with degenerative calcific aortic stenosis is one of the most challenging clinical scenarios. A number of studies have shown that this clinical phenomenon is known as Heyde’s syndrome.
Main body of the abstract
The pathogenesis of Heyde’s syndrome is mainly due to the loss of high-molecular-weight von Willebrand factor (HMW vWF) multimers, as a consequent fragmentation of HMW vWF multimers as they pass through the stenosed aortic valve leading to acquired von Willebrand syndrome type IIA. Aortic valve replacement has proven to be a more effective management approach in the cessation of recurrent episodes of gastrointestinal bleeding.
Short conclusion
Physicians should have a high index of suspicion when dealing with elderly patients with established aortic stenosis presenting with iron deficiency anemia or unclear gastrointestinal bleeding. Parallel consultations between different specialties are essential for appropriate management.
Collapse
|
43
|
Montero-Cruces L, Carnero-Alcázar M, Reguillo-Lacruz FJ, Cobiella-Carnicer FJ, Pérez-Camargo D, Campelos-Fernández P, Maroto-Castellanos LC. One-Year Hemodynamic Performance of Three Cardiac Aortic Bioprostheses: A Randomized Comparative Clinical Trial. J Clin Med 2021; 10:jcm10225340. [PMID: 34830622 PMCID: PMC8625181 DOI: 10.3390/jcm10225340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Background: We aimed to compare 1 year the hemodynamic in-vivo performance of three biological aortic prostheses (Carpentier Perimount Magna EaseTM, Crown PRTTM, and TrifectaTM). Methods: The sample used in this study comes from the “BEST-VALVE” clinical trial, which is a phase IV single-blinded randomized clinical trial with the three above-mentioned prostheses. Results: 154 patients were included. Carpentier Perimount Magna EaseTM (n = 48, 31.2%), Crown PRTTM (n = 51, 32.1%) and TrifectaTM (n = 55, 35.7%). One year after the surgery, the mean aortic gradient and the peak aortic velocity was 17.5 (IQR 11.3–26) and 227.1 (IQR 202.0–268.8) for Carpentier Perimount Magna EaseTM, 21.4 (IQR 14.5–26.7) and 237.8 (IQR 195.9–261.9) for Crown PRTTM, and 13 (IQR 9.6–17.8) and 209.7 (IQR 176.5–241.4) for TrifectaTM, respectively. Pairwise comparisons demonstrated improved mean gradients and maximum velocity of TrifectaTM as compared to Crown PRTTM. Among patients with nominal prosthesis sizes ≤ 21, the mean and peak aortic gradient was higher for Crown PRTTM compared with TrifectaTM, and in patients with an aortic annulus measured with metric Hegar dilators less than or equal to 22 mm. Conclusions: One year after surgery, the three prostheses presented a different hemodynamic performance, being TrifectaTM superior to Crown PRTTM.
Collapse
|
44
|
Chester AH, Sarathchandra P, McCormack A, Yacoub MH. Organ Culture Model of Aortic Valve Calcification. Front Cardiovasc Med 2021; 8:734692. [PMID: 34660737 PMCID: PMC8517236 DOI: 10.3389/fcvm.2021.734692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/02/2021] [Indexed: 01/10/2023] Open
Abstract
A significant amount of knowledge has been gained with the use of cell-based assays to elucidate the mechanisms that mediate heart valve calcification. However, cells used in these studies lack their association with the extra-cellular matrix or the influence of other cellular components of valve leaflets. We have developed a model of calcification using intact porcine valve leaflets, that relies upon a biological stimulus to drive the formation of calcified nodules within the valve leaflets. Alizarin Red positive regions were formed in response to lipopolysaccharide and inorganic phosphate, which could be quantified when viewed under polarized light. Point analysis and elemental mapping analysis of electron microscope images confirmed the presence of nodules containing calcium and phosphorus. Immunohistochemical staining showed that the development of these calcified regions corresponded with the expression of RUNX2, osteocalcin, NF-kB and the apoptosis marker caspase 3. The formation of calcified nodules and the expression of bone markers were both inhibited by adenosine in a concentration-dependent manner, illustrating that the model is amenable to pharmacological manipulation. This organ culture model offers an increased level of tissue complexity in which to study the mechanisms that are involved in heart valve calcification.
Collapse
Affiliation(s)
- Adrian H Chester
- Heart Science Centre, Magdi Yacoub Institute, Harefield, United Kingdom.,National Heart & Lung Institute, Imperial College, Imperial College London, London, United Kingdom
| | - Padmini Sarathchandra
- National Heart & Lung Institute, Imperial College, Imperial College London, London, United Kingdom
| | - Ann McCormack
- National Heart & Lung Institute, Imperial College, Imperial College London, London, United Kingdom
| | - Magdi H Yacoub
- Heart Science Centre, Magdi Yacoub Institute, Harefield, United Kingdom.,National Heart & Lung Institute, Imperial College, Imperial College London, London, United Kingdom
| |
Collapse
|
45
|
Affiliation(s)
- Evangelos Tzolos
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Marc Richard Dweck
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
46
|
Kaiser Y, Singh SS, Zheng KH, Verbeek R, Kavousi M, Pinto SJ, Vernooij MW, Sijbrands EJG, Boekholdt SM, de Rijke YB, Stroes ESG, Bos D. Lipoprotein(a) is robustly associated with aortic valve calcium. Heart 2021; 107:1422-1428. [PMID: 33963048 PMCID: PMC8372399 DOI: 10.1136/heartjnl-2021-319044] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Objectives To investigate the prevalence and quantity of aortic valve calcium (AVC) in two large cohorts, stratified according to age and lipoprotein(a) (Lp(a)), and to assess the association between Lp(a) and AVC. Methods We included 2412 participants from the population-based Rotterdam Study (52% women, mean age=69.6±6.3 years) and 859 apparently healthy individuals from the Amsterdam University Medical Centers (UMC) outpatient clinic (57% women, mean age=45.9±11.6 years). All individuals underwent blood sampling to determine Lp(a) concentration and non-enhanced cardiac CT to assess AVC. Logistic and linear regression analyses were performed to investigate the associations of Lp(a) with the presence and amount of AVC. Results The prevalence of AVC was 33.1% in the Rotterdam Study and 5.4% in the Amsterdam UMC cohort. Higher Lp(a) concentrations were independently associated with presence of AVC in both cohorts (OR per 50 mg/dL increase in Lp(a): 1.54 (95% CI 1.36 to 1.75) in the Rotterdam Study cohort and 2.02 (95% CI 1.19 to 3.44) in the Amsterdam UMC cohort). In the Rotterdam Study cohort, higher Lp(a) concentrations were also associated with increase in aortic valve Agatston score (β 0.19, 95% CI 0.06 to 0.32 per 50 mg/dL increase). Conclusions Lp(a) is robustly associated with presence of AVC in a wide age range of individuals. These results provide further rationale to assess the effect of Lp(a) lowering interventions in individuals with early AVC to prevent end-stage aortic valve stenosis.
Collapse
Affiliation(s)
- Yannick Kaiser
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sunny S Singh
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kang H Zheng
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Rutger Verbeek
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sara-Joan Pinto
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Department of Clinical Epidemiology, Biostatistics and Bio-informatics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Meike W Vernooij
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Eric J G Sijbrands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - S Matthijs Boekholdt
- Department of Cardiology, Department of Cardiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Yolanda B de Rijke
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Daniel Bos
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands .,Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
47
|
Henning RJ. The current diagnosis and treatment of patients with aortic valve stenosis. Future Cardiol 2021; 17:1143-1160. [PMID: 33728942 DOI: 10.2217/fca-2020-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aortic valve stenosis (AS) is the third most frequent cardiovascular abnormality after coronary artery disease and hypertension. A bicuspid aortic valve is the most common cause for AS until seventh decade and calcific valve degeneration is responsible thereafter. In symptomatic patients, The risk of death increases from ≤1%/year to 2%/month. An echo valve area ≤1 cm2, peak transaortic velocity ≥4 m/s, mean valve gradient ≥40 mmHg and/or computerized tomography valve calcium score >2000 Agatston units (AU) for males or more than 1200 AU for females indicate severe AS. AS stages and management are discussed. Valve replacement is based on surgical risk, valve durability/hemodynamics, need for anticoagulation and patient preferences. EuroSCORE ≥20%, Society of Thoracic Surgeons Predicted Risk of Mortality ≥8% and co-morbidities indicate high surgical risk. Surgery is recommended for low-intermediate risk patients. Transcatheter aortic valve implantation is an alternative in older patients at low, intermediate, high or prohibitive risk. Transaortic valve implantation/replacement trials are summarized.
Collapse
|
48
|
Sayed A, Almotawally S, Wilson K, Munir M, Bendary A, Ramzy A, Hirji S, Ibrahim Abushouk A. Minimally invasive surgery versus transcatheter aortic valve replacement: a systematic review and meta-analysis. Open Heart 2021; 8:openhrt-2020-001535. [PMID: 33455914 PMCID: PMC7813322 DOI: 10.1136/openhrt-2020-001535] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Transcatheter aortic valve replacement (TAVR) has recently been approved for use in patients who are at intermediate and low surgical risk. Moreover, recent years have witnessed a renewed interest in minimally invasive aortic valve replacement (miAVR). The present meta-analysis compared the outcomes of TAVR and miAVR in the management of aortic stenosis (AS). We conducted an electronic search across six databases from 2002 (TAVR inception) to December 2019. Data from relevant studies regarding the clinical and length of hospitalisation outcomes were extracted and analysed using R software. We identified a total of 11 cohort studies, of which seven were matched/propensity matched. Our analysis demonstrated higher rates of midterm mortality (≥1 year) with TAVR (risk ratio (RR): 1.93, 95% CI: 1.16 to 3.22), but no significant differences with respect to 1 month mortality (RR: 1.00, 95% CI: 0.55 to 1.81), stroke (RR: 1.08, 95% CI: 0.40 to 2.87) and bleeding (RR: 1.45, 95% CI: 0.56 to 3.75) rates. Patients undergoing TAVR were more likely to experience paravalvular leakage (RR: 14.89, 95% CI: 6.89 to 32.16), yet less likely to suffer acute kidney injury (RR: 0.38, 95% CI: 0.21 to 0.69) compared with miAVR. The duration of hospitalisation was significantly longer in the miAVR group (mean difference: 1.92 (0.61 to 3.24)). Grading of Recommendations Assessment, Development and Evaluation assessment revealed ≤moderate quality of evidence in all outcomes. TAVR was associated with lower acute kidney injury rate and shorter length of hospitalisation, yet higher risks of midterm mortality and paravalvular leakage. Given the increasing adoption of both techniques, there is an urgent need for head-to-head randomised trials with adequate follow-up periods.
Collapse
Affiliation(s)
- Ahmed Sayed
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Karim Wilson
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Malak Munir
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed Bendary
- Faculty of Medicine, Cardiology, Benha University, Benha, Egypt
| | - Ahmed Ramzy
- Faculty of Medicine, Cardiology, Benha University, Benha, Egypt
| | - Sameer Hirji
- Division of Cardiac Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
49
|
Zhou K, Guo T, Xu Y, Guo R. Correlation Between Plasma Matrix Metalloproteinase-28 Levels and Severity of Calcific Aortic Valve Stenosis. Med Sci Monit 2020; 26:e925260. [PMID: 32950995 PMCID: PMC7526340 DOI: 10.12659/msm.925260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/22/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Calcific aortic valve disease is a common cardiovascular disorder worldwide. This study aimed to investigate the correlation between plasma matrix metalloproteinase-28 (MMP-28) levels and the severity of calcific aortic valve stenosis. MATERIAL AND METHODS Calcific aortic valve stenosis patients who were admitted to the heart center of our hospital between January 2016 and January 2019 to undergo surgery were successively enrolled in this study (55 males and 24 females with an average age of 58.5±9.6). Information on echocardiography, plasma MMP-28 levels, and other clinical data of the patients was retrospectively collected. RESULTS The average plasma MMP-28 level was 2.43±2.22 ng/mL (range, 0.22-8.27 ng/mL). Plasma MMP-28 levels in patients with mild (n=24), moderate (n=31), or severe (n=24) aortic valve stenosis were 0.74 (0.25-2.23), 1.46 (0.50-3.22), and 4.13 (1.54-6.18) ng/mL, respectively, indicating that the patients with severe aortic valve stenosis had significantly higher MMP-28 levels than the patients with moderate or mild aortic valve stenosis (both P<0.01). Regression analysis using the general linear model further revealed that plasma MMP-28 level was correlated with the peak blood flow velocity and mean pressure gradient of the transaortic valve, and the correlations were statistically significant (both P<0.01). CONCLUSIONS MMP-28 level is significantly elevated in severe cases of calcific aortic valve stenosis. Moreover, plasma MMP-28 levels are positively correlated with the mean pressure gradients and peak blood flow velocity of the transaortic valve.
Collapse
Affiliation(s)
- Ke Zhou
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Ting Guo
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Rong Guo
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
50
|
Grim JC, Aguado BA, Vogt BJ, Batan D, Andrichik CL, Schroeder ME, Gonzalez-Rodriguez A, Yavitt FM, Weiss RM, Anseth KS. Secreted Factors From Proinflammatory Macrophages Promote an Osteoblast-Like Phenotype in Valvular Interstitial Cells. Arterioscler Thromb Vasc Biol 2020; 40:e296-e308. [PMID: 32938214 DOI: 10.1161/atvbaha.120.315261] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Resident valvular interstitial cells (VICs) activate to myofibroblasts during aortic valve stenosis progression, which further promotes fibrosis or even differentiate into osteoblast-like cells that can lead to calcification of valve tissue. Inflammation is a hallmark of aortic valve stenosis, so we aimed to determine proinflammatory cytokines secreted from M1 macrophages that give rise to a transient VIC phenotype that leads to calcification of valve tissue. Approach and Results: We designed hydrogel biomaterials as valve extracellular matrix mimics enabling the culture of VICs in either their quiescent fibroblast or activated myofibroblast phenotype in response to the local matrix stiffness. When VIC fibroblasts and myofibroblasts were treated with conditioned media from THP-1-derived M1 macrophages, we observed robust reduction of αSMA (alpha smooth muscle actin) expression, reduced stress fiber formation, and increased proliferation, suggesting a potent antifibrotic effect. We further identified TNF (tumor necrosis factor)-α and IL (interleukin)-1β as 2 cytokines in M1 media that cause the observed antifibrotic effect. After 7 days of culture in M1 conditioned media, VICs began differentiating into osteoblast-like cells, as measured by increased expression of RUNX2 (runt-related transcription factor 2) and osteopontin. We also identified and validated IL-6 as a critical mediator of the observed pro-osteogenic effect. CONCLUSIONS Proinflammatory cytokines in M1 conditioned media inhibit myofibroblast activation in VICs (eg, TNF-α and IL-1β) and promote their osteogenic differentiation (eg, IL-6). Together, our work suggests inflammatory M1 macrophages may drive a myofibroblast-to-osteogenic intermediate VIC phenotype, which may mediate the switch from fibrosis to calcification during aortic valve stenosis progression.
Collapse
Affiliation(s)
- Joseph C Grim
- Department of Chemical and Biological Engineering (J.C.G., B.A.A., B.J.V., C.L.A., A.G.-R., F.M.Y., K.S.A.), University of Colorado Boulder, Boulder.,BioFrontiers Institute (J.C.G., B.A.A., D.B., M.E.S., A.G.-R., F.M.Y., K.S.A.), University of Colorado Boulder, Boulder
| | - Brian A Aguado
- Department of Chemical and Biological Engineering (J.C.G., B.A.A., B.J.V., C.L.A., A.G.-R., F.M.Y., K.S.A.), University of Colorado Boulder, Boulder.,BioFrontiers Institute (J.C.G., B.A.A., D.B., M.E.S., A.G.-R., F.M.Y., K.S.A.), University of Colorado Boulder, Boulder
| | - Brandon J Vogt
- Department of Chemical and Biological Engineering (J.C.G., B.A.A., B.J.V., C.L.A., A.G.-R., F.M.Y., K.S.A.), University of Colorado Boulder, Boulder
| | - Dilara Batan
- BioFrontiers Institute (J.C.G., B.A.A., D.B., M.E.S., A.G.-R., F.M.Y., K.S.A.), University of Colorado Boulder, Boulder.,Division of Biochemistry (D.B.), University of Colorado Boulder, Boulder
| | - Cassidy L Andrichik
- Department of Chemical and Biological Engineering (J.C.G., B.A.A., B.J.V., C.L.A., A.G.-R., F.M.Y., K.S.A.), University of Colorado Boulder, Boulder
| | - Megan E Schroeder
- BioFrontiers Institute (J.C.G., B.A.A., D.B., M.E.S., A.G.-R., F.M.Y., K.S.A.), University of Colorado Boulder, Boulder.,Materials Science and Engineering Program (M.E.S., K.S.A.), University of Colorado Boulder, Boulder
| | - Andrea Gonzalez-Rodriguez
- Department of Chemical and Biological Engineering (J.C.G., B.A.A., B.J.V., C.L.A., A.G.-R., F.M.Y., K.S.A.), University of Colorado Boulder, Boulder.,BioFrontiers Institute (J.C.G., B.A.A., D.B., M.E.S., A.G.-R., F.M.Y., K.S.A.), University of Colorado Boulder, Boulder
| | - F Max Yavitt
- Department of Chemical and Biological Engineering (J.C.G., B.A.A., B.J.V., C.L.A., A.G.-R., F.M.Y., K.S.A.), University of Colorado Boulder, Boulder.,BioFrontiers Institute (J.C.G., B.A.A., D.B., M.E.S., A.G.-R., F.M.Y., K.S.A.), University of Colorado Boulder, Boulder
| | - Robert M Weiss
- Department of Internal Medicine, University of Iowa, Iowa City (R.M.W.)
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering (J.C.G., B.A.A., B.J.V., C.L.A., A.G.-R., F.M.Y., K.S.A.), University of Colorado Boulder, Boulder.,BioFrontiers Institute (J.C.G., B.A.A., D.B., M.E.S., A.G.-R., F.M.Y., K.S.A.), University of Colorado Boulder, Boulder.,Materials Science and Engineering Program (M.E.S., K.S.A.), University of Colorado Boulder, Boulder
| |
Collapse
|