1
|
Chen X, You J, Dong N, Wu D, Zhao D, Yong R, Hu W. Molecular mapping and validation of quantitative trait loci for content of micronutrients in wheat grain. FRONTIERS IN PLANT SCIENCE 2025; 15:1522465. [PMID: 39898268 PMCID: PMC11782267 DOI: 10.3389/fpls.2024.1522465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/16/2024] [Indexed: 02/04/2025]
Abstract
Manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), and selenium (Se) are essential micronutrients for human health. However, the genetic basis for the content of Mn, Fe, Cu, Zn, and Se in wheat grains remains unclear. A recombinant inbred lines (RIL) population derived from Yangmai 4/Yanzhan 1 (YM4/YZ1) with wheat 55K single nucleotide polymorphism (SNP) arrays and micronutrient content of two environments was used to construct a genetic linkage map and dissect the quantitative trait loci (QTL) for the content of Mn, Fe, Cu, Zn, and Se in wheat. A total of 8 QTL were detected and located on chromosomes 1A, 1B, 2D, 4D, 7A, and 7D, respectively. Among them, QFe.yaas-2D and QSe.yaas-2D were co-located on chromosome 2D, while QMn.yaas-4D and QZn.yaas-4D were co-located on chromosome 4D, which were in the dwarfing locus of Rht-D1 region. The positive alleles of QCu.yaas-1A, QMn.yaas-1B, and QZn.yaas-7D were contributed by YZ1 and explained 7.66-19.92% of the phenotypic variances, while the positive alleles of QFe.yaas-2D, QSe.yaas-2D, QMn.yaas-4D, QZn.yaas-4D, and QCu.yaas-7A were contributed by YM4 and explained 5.77-20.11% of the phenotypic variances. The positive alleles of QCu.yaas-1A, QMn.yaas-1B, and QMn/Zn.yaas-4D increased TGW by 3.52%, 3.45%, and 7.51% respectively, while the positive alleles of QFe/Se.yaas-2D decreased TGW by 6.45%. Six SNP markers flanked the target QTL were converted into Kompetitive allele specific PCR (KASP) markers, and their effects were validated in a panel of one hundred and forty-nine wheat advanced lines. Twenty-five advanced lines harboring at least five positive alleles were identified in the validation populations. A total of 60 and 51 high-confidence annotated genes for QFe/Se.yaas-2D and QMn/Zn.yaas-4D were identified using the International Wheat Genome Sequencing Consortium Reference Sequence v2.1 (IWGSC RefSeq v2.1), respectively. Some genes in these two regions were involved in stress tolerance, growth development, Zn synthesis in plants. These results provide the basis for fine-mapping the target QTL of micronutrient content and marker-assisted selection in grain quality breeding programs.
Collapse
Affiliation(s)
- Xiangdong Chen
- Henan Provincial Key Laboratory of Hybrid Wheat, School of Agriculture, Henan Institute of Science and Technology, Xinxiang, China
| | - Junchao You
- Henan Provincial Key Laboratory of Hybrid Wheat, School of Agriculture, Henan Institute of Science and Technology, Xinxiang, China
| | - Nannan Dong
- Henan Provincial Key Laboratory of Hybrid Wheat, School of Agriculture, Henan Institute of Science and Technology, Xinxiang, China
| | - Di Wu
- Lixiahe Institute of Agriculture Sciences, Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, Jiangsu, China
| | - Die Zhao
- Lixiahe Institute of Agriculture Sciences, Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, Jiangsu, China
| | - Rui Yong
- Lixiahe Institute of Agriculture Sciences, Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, Jiangsu, China
| | - Wenjing Hu
- Lixiahe Institute of Agriculture Sciences, Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Liu L, Wang C, Yin K, Ni M, Ding Y, Li C, Zheng SJ. The Dual Effect of Selenium Application in Reducing Fusarium Wilt Disease Incidence in Banana and Producing Se-Enriched Fruits. PLANTS (BASEL, SWITZERLAND) 2024; 13:3435. [PMID: 39683228 DOI: 10.3390/plants13233435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Fusarium wilt disease severely constrains the global banana industry. The highly destructive disease is caused by Fusarium oxysporum f. sp. cubense, especially its virulent tropical race 4 (Foc TR4). Selenium (Se), a non-essential mineral nutrient in higher plants, is known to enhance plant resistance against several fungal pathogens. The experiments we conducted showed that selenium (≥10 mg/L) dramatically inhibited the growth of Foc TR4 mycelia and promoted plant growth. The further study we performed recorded a substantial reduction in the disease index (DI) of banana plants suffering from Foc TR4 when treated with selenium. The selenium treatments (20~160 mg/L) demonstrated significant control levels, with recorded symptom reductions ranging from 42.4% to 65.7% in both greenhouse and field trials. The DI was significantly negatively correlated with the total selenium content (TSe) in roots. Furthermore, selenium treatments enhanced the antioxidant enzyme activities of peroxidase (POD), polyphenol oxidase (PPO), and glutathione peroxidase (GSH-Px) in banana. After two applications of selenium (100 and 200 mg/plant) in the field, the TSe in banana pulps increased 23.7 to 25.9-fold and achieved the Se enrichment standard for food. The results demonstrate that selenium applications can safely augment root TSe levels, both reducing Fusarium wilt disease incidence and producing Se-enriched banana fruits. For the first time, this study has revealed that selenium can significantly reduce the damage caused by soil-borne pathogens in banana by increasing the activities of antioxidant enzymes and inhibiting fungal growth.
Collapse
Affiliation(s)
- Lina Liu
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, The Ministry of Agriculture and Rural Affairs International Joint Research Center for Agriculture, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650500, China
| | - Chengye Wang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China
| | - Kesuo Yin
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, The Ministry of Agriculture and Rural Affairs International Joint Research Center for Agriculture, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Ming Ni
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, The Ministry of Agriculture and Rural Affairs International Joint Research Center for Agriculture, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Yue Ding
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, The Ministry of Agriculture and Rural Affairs International Joint Research Center for Agriculture, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650500, China
| | - Si-Jun Zheng
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, The Ministry of Agriculture and Rural Affairs International Joint Research Center for Agriculture, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
- Bioversity International, Kunming 650205, China
| |
Collapse
|
3
|
Liu MX, Cai YT, Wang RJ, Zhu PF, Liu YC, Sun H, Ling Y, Zhu WZ, Chen J, Zhang XL. Aggregation-Induced Emission CN-Based Nanoparticles to Alleviate Hypoxic Liver Fibrosis via Triggering HSC Ferroptosis and Enhancing Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33021-33037. [PMID: 38888460 DOI: 10.1021/acsami.4c04361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Hypoxia can lead to liver fibrosis and severely limits the efficacy of photodynamic therapy (PDT). Herein, carbon nitride (CN)-based hybrid nanoparticles (NPs) VPSGCNs@TSI for light-driven water splitting were utilized to solve this problem. CNs were doped with selenide glucose (Se-glu) to enhance their red/NIR region absorption. Then, vitamin A-poly(ethylene glycol) (VA-PEG) fragments and aggregation-induced emission (AIE) photosensitizers TSI were introduced into Se-glu-doped CN NPs (VPSGCNs) to construct VPSGCNs@TSI NPs. The introduction of VA-PEG fragments enhanced the targeting of the NPs to activated hepatic stellate cells (HSCs) and reduced their toxicity to ordinary liver cells. VPSGCN units could trigger water splitting to generate O2 under 660 nm laser irradiation, improve the hypoxic environment of the fibrosis site, downregulate HIF-1α expression, and activate HSC ferroptosis via the HIF-1α/SLC7A11 pathway. In addition, generated O2 could also increase the reactive oxygen species (ROS) production of TSI units in a hypoxic environment, thereby completely reversing hypoxia-triggered PDT resistance to enhance the PDT effect. The combination of water-splitting materials and photodynamic materials showed a 1 + 1 > 2 effect in increasing oxygen levels in liver fibrosis, promoting ferroptosis of activated HSCs and reversing PDT resistance caused by hypoxia.
Collapse
Affiliation(s)
- Ming-Xuan Liu
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Yu-Ting Cai
- School of Pharmacy, Nantong University, Nantong 226001, PR China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, PR China
| | - Ruo-Jia Wang
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Peng-Fei Zhu
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Yan-Chao Liu
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Hao Sun
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Yong Ling
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Wei-Zhong Zhu
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, PR China
| | - Xiao-Ling Zhang
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| |
Collapse
|
4
|
Li Q, Xian L, Yuan L, Lin Z, Chen X, Wang J, Li T. The use of selenium for controlling plant fungal diseases and insect pests. FRONTIERS IN PLANT SCIENCE 2023; 14:1102594. [PMID: 36909414 PMCID: PMC9992213 DOI: 10.3389/fpls.2023.1102594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The selenium (Se) applications in biomedicine, agriculture, and environmental health have become great research interest in recent decades. As an essential nutrient for humans and animals, beneficial effects of Se on human health have been well documented. Although Se is not an essential element for plants, it does play important roles in improving plants' resistances to a broad of biotic and abiotic stresses. This review is focused on recent findings from studies on effects and mechanisms of Se on plant fungal diseases and insect pests. Se affects the plant resistance to fungal diseases by preventing the invasion of fungal pathogen through positively affecting plant defense to pathogens; and through negative effects on pathogen by destroying the cell membrane and cellular extensions of pathogen inside plant tissues after invasion; and changing the soil microbial community to safeguard plant cells against invading fungi. Plants, grown under Se enriched soils or treated with Se through foliar and soil applications, can metabolize Se into dimethyl selenide or dimethyl diselenide, which acts as an insect repellent compound to deter foraging and landing pests, thus providing plant mediated resistance to insect pests; moreover, Se can also lead to poisoning to some pests if toxic amounts of Se are fed, resulting in steady pest mortality, lower reproduction rate, negative effects on growth and development, thus shortening the life span of many insect pests. In present manuscript, reports are reviewed on Se-mediated plant resistance to fungal pathogens and insect pests. The future perspective of Se is also discussed on preventing the disease and pest control to protect plants from economic injuries and damages.
Collapse
Affiliation(s)
- Qianru Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu, Key Laboratory of Crop Genomics and Molecular Breeding and Collaborative Innovation of Modern Crops and Food Crops in Jiangsu, Jiangsu Key Laboratory of Crop Genetics and Physiology, and College of Agriculture, Yangzhou University, Yangzhou, China
| | - Limei Xian
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu, Key Laboratory of Crop Genomics and Molecular Breeding and Collaborative Innovation of Modern Crops and Food Crops in Jiangsu, Jiangsu Key Laboratory of Crop Genetics and Physiology, and College of Agriculture, Yangzhou University, Yangzhou, China
| | - Linxi Yuan
- Department of Health and Environmental Sciences, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Zhiqing Lin
- Department of Environmental Sciences and Department of Biological Sciences, Southern Illinois University - Edwardsville, Edwardsville, IL, United States
| | - Xiaoren Chen
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Tao Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu, Key Laboratory of Crop Genomics and Molecular Breeding and Collaborative Innovation of Modern Crops and Food Crops in Jiangsu, Jiangsu Key Laboratory of Crop Genetics and Physiology, and College of Agriculture, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Selenium and human nervous system. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Bai X, Li F, Li F, Guo L. Different dietary sources of selenium alter meat quality, shelf life, selenium deposition, and antioxidant status in Hu lambs. Meat Sci 2022; 194:108961. [PMID: 36084490 DOI: 10.1016/j.meatsci.2022.108961] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/22/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
Thirty-two male Hu lambs (32.31 ± 3.31 kg; 4-months-old) were randomly assigned to four treatments: (1) control (CON), (2) selenium-enriched yeast (SeY, 0.8 mg/kg), (3) selenized glucose (SeGlu, 0.8 mg/kg), and (4) sodium selenite (SS, 0.8 mg/kg) to evaluate their effects on Hu lamb production and slaughter performance, antioxidant capacity, hematological parameters, meat quality and shelf-life. The production and slaughter performances were not different (P > 0.05) among treatments. SeGlu and SeY increased (P < 0.05) the total antioxidant capacity in serum and muscle selenium content while decreasing (P < 0.05) the malondialdehyde (MDA) contents both in serum and muscle. SeGlu extended muscle shelf-life by 7.7 h compared with CON and decreased (P < 0.05) yellowness (b*) and lightness (L*) in meat stored for 24 h. In summary, the effects of SeGlu were similar to those of SeY and better than those of SS in improving serum and muscle antioxidant status, prolonging muscle shelf-life, and increasing selenium deposition in muscle.
Collapse
Affiliation(s)
- Xue Bai
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fei Li
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Long Guo
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
7
|
Zhang X, Zuo T, Yu L. Ag/Se‐Catalyzed Selective Epoxidation of
β
‐Ionone with Molecular Oxygen. ChemistrySelect 2022. [DOI: 10.1002/slct.202203514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xu Zhang
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 People's Republic of China
| | - Tingting Zuo
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 People's Republic of China
| | - Lei Yu
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 People's Republic of China
| |
Collapse
|
8
|
Xian L, Li Q, Li T, Yu L. Methylselenized glucose: An efficient organoselenium fertilizer enhancing the selenium content in wheat grains. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Zhang X, Zhou R, Qi Z, Chen L, Yu L. PhSe(O)OH/Al(NO 3) 3-Catalyzed selectivity controllable oxidation of sulphide owing to the synergistic effect of Se, Al 3+ and nitrate. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00190j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalyzed by PhSe(O)OH/Al(NO3)3, selective oxidation of sulphides to produce sulfoxides or sulphones could be achieved under mild conditions. The synergistic effect of Se, Al3+ and nitrate is the key factor for the reaction.
Collapse
Affiliation(s)
- Xu Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Rui Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Zhengyuan Qi
- College of Information Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Liping Chen
- College of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, China
| | - Lei Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| |
Collapse
|
10
|
Liu M, Zhang X, Chu S, Ge Y, Huang T, Liu Y, Yu L. Selenization of cotton products with NaHSe endowing the antibacterial activities. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.05.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Zhou W, Xiao X, Liu Y, Zhang X. Magnetic Se/Fe/PCN-Catalyzed Oxidative Cracking Alkenes in O 2. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202201023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Hong'en C, Peizi L, Xiaobi J, Hongwei Z. Selective Epoxidation of β-Ionone Catalyzed by Iron-Doped Se/C. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Access to 3-alkylselenindoles by multicomponent reaction of indoles, selenium powder and unactivated alkyl halides under transition-metal-free conditions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
A perspective of the engineering applications of carbon-based selenium-containing materials. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Zhu Z, Sun S, Tang S, Chu S, Zhang X. Easily fabricated Fe/Se soft magnetic material for catalytic phenol oxidation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Zhu Z, Sun S, Jing X. Carbon-based selenium: an easily fabricated environmental material for removing lead from the electrolytic wastewater. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01875-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
17
|
Synergistic effect of T80/B30 vesicles and T80/PN320 mixed micelles with Se/C on nasal mucosal immunity. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Wang F, Yang C, Shi Y, Yu L. PhSe(O)OH/NHPI-catalyzed oxidative deoximation reaction using air as oxidant. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Wang Q, Li P, Li T, Liu M, Zuo S, Liu J, Xu L, Zhang X, Yu L. Methylselenized Glucose: Improvement of the Stability of Glucose-Supported Selenium via the End-Capping Strategy. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qiyuan Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Peizi Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Tao Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Collaborative Innovation of Modern Crops and Food Crops in Jiangsu/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Menglan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Collaborative Innovation of Modern Crops and Food Crops in Jiangsu/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Collaborative Innovation of Modern Crops and Food Crops in Jiangsu/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Jian Liu
- Sichuan Selewood Technology Company Limited, Chengdu 610218, China
| | - Lin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Collaborative Innovation of Modern Crops and Food Crops in Jiangsu/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Xu Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Lei Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| |
Collapse
|
20
|
Manna T, Misra AK. On-water synthesis of glycosyl selenocyanate derivatives and their application in the metal free organocatalytic preparation of nonglycosidic selenium linked pseudodisaccharide derivatives. RSC Adv 2021; 11:10902-10911. [PMID: 35423588 PMCID: PMC8695869 DOI: 10.1039/d1ra00711d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/02/2021] [Indexed: 12/23/2022] Open
Abstract
Glycosyl selenocyanate derivatives were prepared in very good yield by the treatment of glycosyl halide or triflate derivatives with potassium selenocyanate in water. A variety of selenium linked pseudodisaccharide derivatives were prepared in excellent yield using glycosyl selenocyanates as stable building blocks in the presence of hydrazine hydrate under metal-free organocatalytic reaction conditions.
Collapse
Affiliation(s)
- Tapasi Manna
- Division of Molecular Medicine, Bose Institute P-1/12, C.I.T. Scheme VII M Kolkata 700054 India +91-33-2355-3886
| | - Anup Kumar Misra
- Division of Molecular Medicine, Bose Institute P-1/12, C.I.T. Scheme VII M Kolkata 700054 India +91-33-2355-3886
| |
Collapse
|
21
|
Liu C, He Z, Niu J, Cheng Q, Zhao Z, Li H, Shi J, Wang H. Two-dimensional SnO 2 anchored biomass-derived carbon nanosheet anode for high-performance Li-ion capacitors. RSC Adv 2021; 11:10018-10026. [PMID: 35423490 PMCID: PMC8695415 DOI: 10.1039/d1ra00822f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/27/2021] [Indexed: 01/29/2023] Open
Abstract
Lithium-ion capacitors (LICs) combine the advantages of both batteries and supercapacitors; they have attracted intensive attention among energy conversion and storage fields, and one of the key points of their research is the exploration of suitable battery-type electrode materials. Herein, a simple and low-cost strategy is proposed, in which SnO2 particles are anchored on the conductive porous carbon nano-sheets (PCN) derived from coffee grounds. This method can inhibit the grain coarsening of Sn and the volume change of SnO2 effectively, thus improving the electrochemical reversibility of the materials. In the lithium half cell (0-3.0 V vs. Li/Li+), the as-prepared SnO2/PCN electrode yields a reversible capacity of 799 mA h g-1 at 0.1 A g-1 and decent long-term cyclability of 313 mA h g-1 at 1 A g-1 after 500 cycles. The excellent Li+ storage performance of SnO2/PCN is beneficial from the hierarchical structure as well as the robust carbonaceous buffer layer. Besides, a LIC hybrid device with the as-prepared SnO2/PCN anode exhibits outstanding energy and power density of 138 W h kg-1 and 53 kW kg-1 at a voltage window of 1.0-4.0 V. These promising results open up a new way to develop advanced anode materials with high rate and long life.
Collapse
Affiliation(s)
- Chang Liu
- School of Materials Science and Engineering, Ocean University of China Qingdao 266100 People's Republic of China
| | - Zeyin He
- School of Materials Science and Engineering, Ocean University of China Qingdao 266100 People's Republic of China
| | - Jianmin Niu
- Shanghai Shipbuilding Technology Research Institute No. 851, Zhongshan South 2nd Road, Xuhui District Shanghai 200032 China
| | - Qiang Cheng
- School of Materials Science and Engineering, Ocean University of China Qingdao 266100 People's Republic of China
| | - Zongchen Zhao
- School of Materials Science and Engineering, Ocean University of China Qingdao 266100 People's Republic of China
| | - Haoran Li
- School of Materials Science and Engineering, Ocean University of China Qingdao 266100 People's Republic of China
| | - Jing Shi
- School of Materials Science and Engineering, Ocean University of China Qingdao 266100 People's Republic of China
| | - Huanlei Wang
- School of Materials Science and Engineering, Ocean University of China Qingdao 266100 People's Republic of China
| |
Collapse
|
22
|
Wang F, Chen T, Shi Y, Yu L. AIBN‐Initiated Oxidative Deoximation Reaction: A Metal‐Free and Environmentally‐Friendly Protocol. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Feng Wang
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China
| | - Tian Chen
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China
| | - Yaocheng Shi
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China
| | - Lei Yu
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China
| |
Collapse
|
23
|
Shi C, Huang Q, Zhang R, Liang X, Wang F, Liu Z, Liu M, Hu H, Yin Y. Preparation and catalytic behavior of antioxidant cassava starch with selenium active sites and hydrophobic microenvironments. RSC Adv 2021; 11:39758-39767. [PMID: 35494106 PMCID: PMC9044535 DOI: 10.1039/d1ra06832f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/24/2021] [Indexed: 11/21/2022] Open
Abstract
The preparation of antioxidant starch with the activity of glutathione peroxidase (GPx) for scavenging free radicals can not only enrich the types of modified starch but also alternate native GPx to overcome its drawbacks.
Collapse
Affiliation(s)
- Cheng Shi
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qiugang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Ruirui Zhang
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Xingtang Liang
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Feng Wang
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Zijie Liu
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Min Liu
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yanzhen Yin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| |
Collapse
|
24
|
Cao Z, Deng X, Chen C, Liu Y, Yu L, Jiang X. Synergetic catalysis of Se and Cu allowing diethoxylation of halomethylene ketones using O2 as the mild oxidant. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00471e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Catalyzed by PhSe(O)OH/Cu(OAc)2, sp3-C–H alkylation of bromomethylene ketones produced useful α-carbonyl acetals under mild conditions. Bromo-containing substrates could release HBr during the reaction, avoiding the use of acidic additives.
Collapse
Affiliation(s)
- Zhicheng Cao
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
| | - Xin Deng
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| | - Chao Chen
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| | - Yonghong Liu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| | - Lei Yu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- Department of Chemistry
- East China Normal University
- Shanghai 200062
- China
| |
Collapse
|
25
|
Li P, Cao K, Jing X, Liu Y, Yu L. Catalytic epoxidation of β-ionone with molecular oxygen using selenium-doped silica materials. NEW J CHEM 2021. [DOI: 10.1039/d1nj03311e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Se-doped silica could catalyze the β-ionone epoxidation reaction. Interestingly, by doping with fluorine in the catalyst, the reaction selectivity was significantly enhanced. The metal-free process is suitable for pharmaceutical synthesis.
Collapse
Affiliation(s)
- Peizi Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Kuanhong Cao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
- Guangling College, Yangzhou University, Yangzhou 225000, China
| | - Xiaobi Jing
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yonghong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Lei Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
26
|
Gurawa A, Kumar M, Kashyap S. Me 3SI-promoted chemoselective deacetylation: a general and mild protocol. RSC Adv 2021; 11:19310-19315. [PMID: 35478635 PMCID: PMC9033574 DOI: 10.1039/d1ra03209g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/16/2021] [Indexed: 11/21/2022] Open
Abstract
A catalytic and practical approach for the selective removal of acetyl groups using various substrates bearing orthogonal moieties has been demonstrated under ambient conditions.
Collapse
Affiliation(s)
- Aakanksha Gurawa
- Carbohydrate Chemistry Research Laboratory (CCRL)
- Department of Chemistry
- Malaviya National Institute of Technology Jaipur, (MNIT)
- Jaipur-302017
- India
| | - Manoj Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL)
- Department of Chemistry
- Malaviya National Institute of Technology Jaipur, (MNIT)
- Jaipur-302017
- India
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL)
- Department of Chemistry
- Malaviya National Institute of Technology Jaipur, (MNIT)
- Jaipur-302017
- India
| |
Collapse
|
27
|
Mao X, Hua C, Yang L, Zhang Y, Sun Z, Li L, Li T. The Effects of Selenium on Wheat Fusarium Head Blight and DON Accumulation Were Selenium Compound-Dependent. Toxins (Basel) 2020; 12:toxins12090573. [PMID: 32899906 PMCID: PMC7551897 DOI: 10.3390/toxins12090573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/03/2022] Open
Abstract
Fusarium head blight (FHB) caused by Fusarium graminearum not only results in severe yield losses, but also contaminates wheat grains with deoxynivalenol (DON) toxins. Prevention and control of FHB and DON contamination rely mainly on resistant varieties and fungicides. Selenium (Se) is an essential element for humans and animals, and also a beneficial element for plants. In this work, four Se compounds, i.e., sodium selenite (Na2SeO3), sodium selenate (Na2SeO4), selenomethionine (SeMet) and selenocysteine (SeCys2), were supplemented in a trichothecene biosynthesis induction (TBI) solid medium at different dosages in in vitro experiments. The four Se compounds at the dosage of 20 mg∙L−1 were sprayed onto wheat spikes immediately after inoculation at anthesis. All four of the Se compounds significantly inhibited the mycelial growth and DON production in the in vitro experiment; however, in planta, their effects on FHB severity and toxin accumulation in grains were compound-dependent. SeMet consistently negatively regulated fungal growth and DON accumulation both in vitro and in planta, which could be a novel and proconsumer strategy for reducing the detriment of wheat FHB disease and DON accumulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tao Li
- Correspondence: ; Tel.: +86-514-8797-7806
| |
Collapse
|
28
|
Jin GQ, Gao WX, Zhou YB, Liu MC, Wu HY. Synthesis of selenated isochromenones by AgNO3-catalyzed three-component reaction of alkynylaryl esters, selenium powder and ArB(OH)2. RSC Adv 2020; 10:30439-30442. [PMID: 35516059 PMCID: PMC9056279 DOI: 10.1039/d0ra06016j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/10/2020] [Indexed: 11/26/2022] Open
Abstract
Reported is the AgNO3-catalyzed three-component reaction of alkynylaryl esters, selenium powder and ArB(OH)2, providing a facile entry to selenated isochromenones. This work highlights the use of selenium powder as a selenium reagent in the synthesis of selenated isochromenones for the first time. We reported AgNO3-catalyzed three-component reaction of alkynylaryl esters, selenium powder and ArB(OH)2, providing an efficient synthetic route to selenated isochromenones.![]()
Collapse
Affiliation(s)
- Guo-Qing Jin
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Wen-Xia Gao
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Yun-Bing Zhou
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Miao-Chang Liu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Hua-Yue Wu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| |
Collapse
|