1
|
Toll-like receptor chaperone HSP90B1 and the immune response to Mycobacteria. PLoS One 2018; 13:e0208940. [PMID: 30550567 PMCID: PMC6294361 DOI: 10.1371/journal.pone.0208940] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
Abstract
Rationale HSP90B1, also known as gp96, is a chaperone for multiple Toll-like receptors (TLRs) and is necessary for TLR-mediated inflammatory responses in murine myeloid cells. The molecule is also expressed in T-cells though its specific role is unknown. We hypothesized that human HSP90B1 regulates monocyte and T-cell responses to Mycobacterium tuberculosis (Mtb) and bacilli Calmette-Guerin (BCG) and that its variants are associated with susceptibility to TB disease. Methods We screened 17 haplotype-tagging SNPs in the HSP90B1 gene region for association with BCG-induced T-cell cytokine responses using both an ex-vivo whole blood assay (N = 295) and an intracellular cytokine staining assay (N = 180) on samples collected 10 weeks after birth. Using a case-control study design, we evaluated the same SNPs for association with TB disease in a South African pediatric cohort (N = 217 cases, 604 controls). A subset of these SNPs was evaluated for association with HSP90B1 expression in human monocytes, monocyte-derived dendritic cells, and T-cells using RT-PCR. Lastly, we used CRISPR/Cas9 gene editing to knock down HSP90B1 expression in a human monocyte cell line (U937). Knockdown and control cell lines were tested for TLR surface expression and control of Mtb replication. Results We identified three SNPs, rs10507172, rs10507173 and rs1920413, that were associated with BCG-induced IL-2 secretion (p = 0.017 for rs10507172 and p = 0.03 for rs10507173 and rs1920413, Mann-Whitney, dominant model). SNPs rs10507172 and rs10507173 were associated with TB disease in an unadjusted analysis (p = 0.036 and 0.025, respectively, dominant model) that strengthened with sensitivity analysis of the definite TB cases, which included only those patients with microbiologically confirmed Mtb (p = 0.007 and 0.012, respectively). Knockdowns of HSP90B1 in monocyte cell lines with CRISPR did not alter TLR2 surface expression nor influence Mtb replication relative to controls. Conclusion Among infants, an HSP90B1 gene-region variant is associated with BCG-induced IL-2 production and may be associated with protection from TB disease. HSP90B1 knockdown in human monocyte-like cell lines did not influence TLR2 surface localization nor Mtb replication. Together, these data suggest that HSP90B1 regulates T-cell, but not monocyte, responses to mycobacteria in humans.
Collapse
|
2
|
Abstract
Tuberculosis infects millions of people worldwide and remains a leading global killer despite widespread neonatal administration of the tuberculosis vaccine, bacillus Calmette-Guérin (BCG). BCG has clear and sustained efficacy, but after 10 years, its efficacy appears to wane, at least in some populations. Fortunately, there are many new tuberculosis vaccines in development today, some in advanced stages of clinical trial testing. Here we review the epidemiological need for tuberculosis vaccination, including evolving standards for administration to at risk individuals in developing countries. We also examine proven sources of immune protection from tuberculosis, which to date have exclusively involved natural or vaccine exposure to whole cell mycobacteria. After summarizing evidence for the use and efficacy of BCG, we detail the most promising new candidate vaccines against tuberculosis. The global need for a new tuberculosis vaccine is acute and huge, but clinical trials to be completed in the coming few years are likely either to identify a new tuberculosis vaccine or to substantially reframe how we understand immune protection from this historical scourge.
Collapse
|
3
|
Immune regulation of miR-30 on the Mycobacterium tuberculosis-induced TLR/MyD88 signaling pathway in THP-1 cells. Exp Ther Med 2017; 14:3299-3303. [PMID: 28912881 DOI: 10.3892/etm.2017.4872] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 04/07/2017] [Indexed: 12/23/2022] Open
Abstract
The present study aimed to examine the expression of microRNA (miR)-30 family members in THP-1 human monocytes cells during Mycobacterium tuberculosis (MTB) H37Rv infection, and to investigate the role of miR-30 in the regulation of MTB-induced Toll-like receptor (TLR)/myeloid differentiation factor 88 (MyD88) activation and cytokine expression. The THP-1 cells were infected with MTB H37Rv and the expression of miR-30 family members was determined by reverse transcription-quantitative polymerase chain reaction analysis. In addition, miR-30a and miR-30e mimics were transfected into THP-1 cells to overexpress miR-30a and miR-30e. The expression of TLR2, TLR4 and MyD88 was determined by western blot analysis, and the expression of the cytokines tumor necrosis factor-α, interleukin (IL)-6, and IL-8 was determined using ELISA assays. A luciferase reporter assay was used to identify the target gene of miR-30a. MTB infection was demonstrated to significantly induce miR-30a and miR-30e expression in THP-1 cells in a time-dependent manner. Forced overexpression of miR-30a, but not miR-30e, exhibited an inhibitory effect on TLR/MyD88 activation and cytokine expression in the uninfected and MTB-infected THP-1 cells. The luciferase reporter assay demonstrated that miR-30a directly regulates the transcriptional activity of the MyD88 3'-untranslated region. In conclusion, the present study, to the best of our knowledge, is the first to demonstrate that miR-30a suppresses TLR/MyD88 activation and cytokine expression in THP-1 cells during MTB H37Rv infection, and that MyD88 is a direct target of miR-30a. The current study may aid in the development of novel therapeutic approaches for treating MTB.
Collapse
|
4
|
Abstract
Despite widespread use of the Bacillus Calmette-Guerin vaccine, tuberculosis, caused by infection with Mycobacterium tuberculosis, remains a leading cause of morbidity and mortality worldwide. As CD8+ T cells are critical to tuberculosis host defense and a phase 2b vaccine trial of modified vaccinia Ankara expressing Ag85a that failed to demonstrate efficacy, also failed to induce a CD8+ T cell response, an effective tuberculosis vaccine may need to induce CD8+ T cells. However, little is known about CD8, as compared to CD4, antigens in tuberculosis. Herein, we report the results of the first ever HLA allele independent genome-wide CD8 antigen discovery program. Using CD8+ T cells derived from humans with latent tuberculosis infection or tuberculosis and an interferon-γ ELISPOT assay, we screened a synthetic peptide library representing 10% of the Mycobacterium tuberculosis proteome, selected to be enriched for Mycobacterium tuberculosis antigens. We defined a set of immunodominant CD8 antigens including part or all of 74 Mycobacterium tuberculosis proteins, only 16 of which are previously known CD8 antigens. Immunogenicity was associated with the degree of expression of mRNA and protein. Immunodominant antigens were enriched in cell wall proteins with preferential recognition of Esx protein family members, and within proteins comprising the Mycobacterium tuberculosis secretome. A validation study of immunodominant antigens demonstrated that these antigens were strongly recognized in Mycobacterium tuberculosis-infected individuals from a tuberculosis endemic region in Africa. The tuberculosis vaccine field will likely benefit from this greatly increased known repertoire of CD8 immunodominant antigens and definition of properties of Mycobacterium tuberculosis proteins important for CD8 antigenicity. Specific bacterial proteins have been found that drive effective immune responses to tuberculosis, with use in making more effective vaccines. Immunity to tuberculosis (TB) is facilitated by two types of white blood cell; however, most research has focused on one: the CD4+ T cell. Deborah A. Lewinsohn and David Lewinsohn, of the Oregon Health & Science University, USA, and collaborators lay out the essential functions of the oft-neglected CD8+ T cell, and undertook a broad approach to catalogue and define the bacterial proteins that activate the CD8+ T cell response. The team found that TB-infected humans reacted strongly to their protein library, and described several characteristics of CD8+ T cell ‘antigens’ (activators of immune cells) that will likely prove highly useful in the design of more protective TB vaccines.
Collapse
|
5
|
Abstract
SUMMARY Tuberculosis (TB) is a leading cause of death worldwide despite the availability of effective chemotherapy for over 60 years. Although Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccination protects against active TB disease in some populations, its efficacy is suboptimal. Development of an effective TB vaccine is a top global priority that has been hampered by an incomplete understanding of protective immunity to TB. Thus far, preventing TB disease, rather than infection, has been the primary target for vaccine development. Several areas of research highlight the importance of including preinfection vaccines in the development pipeline. First, epidemiology and mathematical modeling studies indicate that a preinfection vaccine would have a high population-level impact for control of TB disease. Second, immunology studies support the rationale for targeting prevention of infection, with evidence that host responses may be more effective during acute infection than during chronic infection. Third, natural history studies indicate that resistance to TB infection occurs in a small percentage of the population. Fourth, case-control studies of BCG indicate that it may provide protection from infection. Fifth, prevention-of-infection trials would have smaller sample sizes and a shorter duration than disease prevention trials and would enable opportunities to search for correlates of immunity as well as serve as a criterion for selecting a vaccine product for testing in a larger TB disease prevention trial. Together, these points support expanding the focus of TB vaccine development efforts to include prevention of infection as a primary goal along with vaccines or other interventions that reduce the rate of transmission and reactivation.
Collapse
|
6
|
Latent tuberculosis infection: myths, models, and molecular mechanisms. Microbiol Mol Biol Rev 2015; 78:343-71. [PMID: 25184558 DOI: 10.1128/mmbr.00010-14] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to present the current state of knowledge on human latent tuberculosis infection (LTBI) based on clinical studies and observations, as well as experimental in vitro and animal models. Several key terms are defined, including "latency," "persistence," "dormancy," and "antibiotic tolerance." Dogmas prevalent in the field are critically examined based on available clinical and experimental data, including the long-held beliefs that infection is either latent or active, that LTBI represents a small population of nonreplicating, "dormant" bacilli, and that caseous granulomas are the haven for LTBI. The role of host factors, such as CD4(+) and CD8(+) T cells, T regulatory cells, tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ), in controlling TB infection is discussed. We also highlight microbial regulatory and metabolic pathways implicated in bacillary growth restriction and antibiotic tolerance under various physiologically relevant conditions. Finally, we pose several clinically important questions, which remain unanswered and will serve to stimulate future research on LTBI.
Collapse
|
7
|
Nayak K, Jing L, Russell RM, Davies DH, Hermanson G, Molina DM, Liang X, Sherman DR, Kwok WW, Yang J, Kenneth J, Ahamed SF, Chandele A, Murali-Krishna K, Koelle DM. Identification of novel Mycobacterium tuberculosis CD4 T-cell antigens via high throughput proteome screening. Tuberculosis (Edinb) 2015; 95:275-87. [PMID: 25857935 DOI: 10.1016/j.tube.2015.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/24/2015] [Accepted: 03/01/2015] [Indexed: 10/23/2022]
Abstract
Elicitation of CD4 IFN-gamma T cell responses to Mycobacterium tuberculosis (MTB) is a rational vaccine strategy to prevent clinical tuberculosis. Diagnosis of MTB infection is based on T-cell immune memory to MTB antigens. The MTB proteome contains over four thousand open reading frames (ORFs). We conducted a pilot antigen identification study using 164 MTB proteins and MTB-specific T-cells expanded in vitro from 12 persons with latent MTB infection. Enrichment of MTB-reactive T-cells from PBMC used cell sorting or an alternate system compatible with limited resources. MTB proteins were used as single antigens or combinatorial matrices in proliferation and cytokine secretion readouts. Overall, our study found that 44 MTB proteins were antigenic, including 27 not previously characterized as CD4 T-cell antigens. Antigen truncation, peptide, NTM homology, and HLA class II tetramer studies confirmed malate synthase G (encoded by gene Rv1837) as a CD4 T-cell antigen. This simple, scalable system has potential utility for the identification of candidate MTB vaccine and biomarker antigens.
Collapse
Affiliation(s)
- Kaustuv Nayak
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Lichen Jing
- Department of Medicine, Division of Infectious Diseases, University of Washington, Box 358061, Seattle, WA 98195, USA.
| | - Ronnie M Russell
- Department of Medicine, Division of Infectious Diseases, University of Washington, Box 358061, Seattle, WA 98195, USA.
| | - D Huw Davies
- Department of Medicine, Division of Infectious Diseases, University of California, Room 376D Med-Surg II, Irvine, CA 92697-4068, USA; Antigen Discovery, Inc., 1 Technology Drive Suite E309, Irvine, CA 92618, USA.
| | - Gary Hermanson
- Antigen Discovery, Inc., 1 Technology Drive Suite E309, Irvine, CA 92618, USA.
| | - Douglas M Molina
- Antigen Discovery, Inc., 1 Technology Drive Suite E309, Irvine, CA 92618, USA.
| | - Xiaowu Liang
- Antigen Discovery, Inc., 1 Technology Drive Suite E309, Irvine, CA 92618, USA.
| | - David R Sherman
- Seattle Biomedical Research Institute, 307 Westlake Ave. North, No. 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Box 359931, Seattle, WA 98195, USA.
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, 1201 9th Ave., Seattle, WA, 98101, USA.
| | - Junbao Yang
- Benaroya Research Institute at Virginia Mason, 1201 9th Ave., Seattle, WA, 98101, USA.
| | - John Kenneth
- Division of Infectious Diseases, St. John's Research Institute, St. John's National Academy of Health Sciences, Sarjapur Road, Koramangala 2 Block, Bangaluru, Karnataka 560034, India.
| | - Syed F Ahamed
- Division of Infectious Diseases, St. John's Research Institute, St. John's National Academy of Health Sciences, Sarjapur Road, Koramangala 2 Block, Bangaluru, Karnataka 560034, India.
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; Emory Vaccine Center, 1510 Clifton Road, Atlanta, GA 30329, USA.
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; Emory Vaccine Center, 1510 Clifton Road, Atlanta, GA 30329, USA; Department of Pediatrics, Emory University, 1760 Haygood Drive, Atlanta, GA 30322, USA.
| | - David M Koelle
- Department of Medicine, Division of Infectious Diseases, University of Washington, Box 358061, Seattle, WA 98195, USA; Department of Global Health, University of Washington, Box 359931, Seattle, WA 98195, USA; Benaroya Research Institute at Virginia Mason, 1201 9th Ave., Seattle, WA, 98101, USA; Department of Laboratory Medicine, University of Washington, Box 358070, Seattle, WA 98195, USA; Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, 1100 Eastlake Ave. East, Seattle, WA 98109, USA.
| |
Collapse
|
8
|
Cruz A, Torrado E, Carmona J, Fraga AG, Costa P, Rodrigues F, Appelberg R, Correia-Neves M, Cooper AM, Saraiva M, Pedrosa J, Castro AG. BCG vaccination-induced long-lasting control of Mycobacterium tuberculosis correlates with the accumulation of a novel population of CD4⁺IL-17⁺TNF⁺IL-2⁺ T cells. Vaccine 2014; 33:85-91. [PMID: 25448107 DOI: 10.1016/j.vaccine.2014.11.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 11/30/2022]
Abstract
Mycobacterium bovis Bacille Calmette-Guerin (BCG) is the only vaccine in use to prevent Mycobacterium tuberculosis (Mtb) infection. Here we analyzed the protective efficacy of BCG against Mtb challenges 21 or 120 days after vaccination. Only after 120 days post-vaccination were mice able to efficiently induce early Mtb growth arrest and maintain long-lasting control of Mtb. This protection correlated with the accumulation of CD4(+) T cells expressing IL-17(+)TNF(+)IL-2(+). In contrast, mice challenged with Mtb 21 days after BCG vaccination exhibited only a mild and transient protection, associated with the accumulation of CD4(+) T cells that were mostly IFN-γ(+)TNF(+) and to a lesser extent IFN-γ(+)TNF(+)IL-2(+). These data suggest that the memory response generated by BCG vaccination is functionally distinct depending upon the temporal proximity to BCG vaccination. Understanding how these responses are generated and maintained is critical for the development of novel vaccination strategies against tuberculosis.
Collapse
Affiliation(s)
- Andrea Cruz
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Egídio Torrado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jenny Carmona
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra G Fraga
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrício Costa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui Appelberg
- Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Margarida Saraiva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António G Castro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
9
|
The History of Tuberculosis and Bacillus Calmette–Guérin Vaccine in Iran. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2014. [DOI: 10.5812/pedinfect.20766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Abstract
Tuberculosis (TB) continues to be an important public health problem. Currently, 2,100 million people--one third of the world population--are infected by Mycobacterium tuberculosis, with an estimated annual rate of 9.4 million new cases, and 440,000 cases of multidrug-resistant (MDR) TB in 2008; furthermore, cases of extensively-resistant (XDR) TB have been detected in 57 countries. While TB cases are constantly declining in industrialized countries, the rates and mortality due to this infection in developing countries remain alarming and will continue to be so in the future. Although the priorities in these countries are at present simpler, methods allowing rapid diagnosis of TB and of resistant strains will obviously contribute to better control of the disease. Nucleic acid amplification techniques allow M. tuberculosis detection in clinical samples in a few hours, while liquid media cultures may yield positive results in only 2 to 4 weeks, half the time that is usually required for growth in conventional solid media, which also allows more rapid determination of drug susceptibilities. Similarly, based on molecular biology, several approaches may rapidly identify gene mutations associated with resistance to antituberculosis drugs in clinical samples. Finally, the main obstacle to treatment adherence among patients--its length--could be minimized in the future if the new combinations of drugs currently under investigation, and some promising new vaccines, confirm similar rates of efficacy to those used at present.
Collapse
|
11
|
Gau B, Lemétais A, Lepore M, Garcia-Alles LF, Bourdreux Y, Mori L, Gilleron M, De Libero G, Puzo G, Beau JM, Prandi J. Simplified deoxypropionate acyl chains for Mycobacterium tuberculosis sulfoglycolipid analogues: chain length is essential for high antigenicity. Chembiochem 2013; 14:2413-7. [PMID: 24174158 DOI: 10.1002/cbic.201300482] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Benjamin Gau
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS and Université de Toulouse, BP 64182, 205 route de Narbonne, 31077 Toulouse (France)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Dintwe OB, Day CL, Smit E, Nemes E, Gray C, Tameris M, McShane H, Mahomed H, Hanekom WA, Scriba TJ. Heterologous vaccination against human tuberculosis modulates antigen-specific CD4+ T-cell function. Eur J Immunol 2013; 43:2409-20. [PMID: 23737382 PMCID: PMC3816254 DOI: 10.1002/eji.201343454] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/24/2013] [Accepted: 05/31/2013] [Indexed: 12/19/2022]
Abstract
Heterologous prime-boost strategies hold promise for vaccination against tuberculosis. However, the T-cell characteristics required for protection are not known. We proposed that boost vaccines should induce long-lived functional and phenotypic changes to T cells primed by Bacille Calmette Guerin (BCG) and/or natural exposure to mycobacteria. We characterized changes among specific CD4+ T cells after vaccination with the MVA85A vaccine in adults, adolescents, and children. CD4+ T cells identified with Ag85A peptide-bearing HLA class II tetramers were characterized by flow cytometry. We also measured proliferative potential and cytokine expression of Ag85A-specific CD4+ T cells. During the effector phase, MVA85A-induced specific CD4+ T cells coexpressed IFN-γ and IL-2, skin homing integrins, and the activation marker CD38. This was followed by contraction and a transition to predominantly IL-2-expressing, CD45RA−CCR7+CD27+ or CD45RA+CCR7+CD27+ specific CD4+ T cells. These surface phenotypes were similar to Ag85A-specific T cells prior to MVA85A. However, functional differences were observed postvaccination: specific proliferative capacity was markedly higher after 6–12 months than before vaccination. Our data suggest that MVA85A vaccination may modulate Ag85A-specific CD4+ T-cell function, resulting in greater recall potential. Importantly, surface phenotypes commonly used as proxies for memory T-cell function did not associate with functional effects of vaccination.
Collapse
Affiliation(s)
- One B Dintwe
- South African Tuberculosis Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town, South Africa
| | - Cheryl L Day
- South African Tuberculosis Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town, South Africa
- Department of Global Health, Rollins School of Public Health, Emory UniversityAtlanta, GA, USA
- Emory Vaccine Center, Emory UniversityAtlanta, GA, USA
| | - Erica Smit
- South African Tuberculosis Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town, South Africa
| | - Elisa Nemes
- South African Tuberculosis Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town, South Africa
| | - Clive Gray
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town, South Africa
| | - Michele Tameris
- South African Tuberculosis Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town, South Africa
| | - Helen McShane
- Centre for Clinical Vaccinology and Tropical Medicine and The Jenner Institute Laboratories, Nuffield Department of Medicine, Oxford UniversityOxford, United Kingdom
| | - Hassan Mahomed
- South African Tuberculosis Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town, South Africa
| | - Willem A Hanekom
- South African Tuberculosis Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town, South Africa
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town, South Africa
- Correspondence: Dr. Thomas J. Scriba, South African Tuberculosis Vaccine Initiative, Werner and Beit Building, Anzio Road, Observatory 7925, Cape Town, South Africa, Fax: +27-214066693, e-mail:
| |
Collapse
|
13
|
Lewinsohn DM, Swarbrick GM, Cansler ME, Null MD, Rajaraman V, Frieder MM, Sherman DR, McWeeney S, Lewinsohn DA. Human Mycobacterium tuberculosis CD8 T Cell Antigens/Epitopes Identified by a Proteomic Peptide Library. PLoS One 2013; 8:e67016. [PMID: 23805289 PMCID: PMC3689843 DOI: 10.1371/journal.pone.0067016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 05/17/2013] [Indexed: 12/31/2022] Open
Abstract
Identification of CD8+ T cell antigens/epitopes expressed by human pathogens with large genomes is especially challenging, yet necessary for vaccine development. Immunity to tuberculosis, a leading cause of mortality worldwide, requires CD8+ T cell immunity, yet the repertoire of CD8 antigens/epitopes remains undefined. We used integrated computational and proteomic approaches to screen 10% of the Mycobacterium tuberculosis (Mtb) proteome for CD8 Mtb antigens. We designed a weighting schema based upon a Multiple Attribute Decision Making:framework to select 10% of the Mtb proteome with a high probability of containing CD8+ T cell epitopes. We created a synthetic peptide library consisting of 15-mers overlapping by 11 aa. Using the interferon-γ ELISPOT assay and Mtb-infected dendritic cells as antigen presenting cells, we screened Mtb-specific CD8+ T cell clones restricted by classical MHC class I molecules (MHC class Ia molecules), that were isolated from Mtb-infected humans, against this library. Three novel CD8 antigens were unambiguously identified: the EsxJ family (Rv1038c, Rv1197, Rv3620c, Rv2347c, Rv1792), PE9 (Rv1088), and PE_PGRS42 (Rv2487c). The epitopes are B5701-restricted EsxJ24–34, B3905-restricted PE953–67, and B3514-restricted PE_PGRS4248–56, respectively. The utility of peptide libraries in identifying unknown epitopes recognized by classically restricted CD8+ T cells was confirmed, which can be applied to other intracellular pathogens with large size genomes. In addition, we identified three novel Mtb epitopes/antigens that may be evaluated for inclusion in vaccines and/or diagnostics for tuberculosis.
Collapse
Affiliation(s)
- David M. Lewinsohn
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Sciences University, Portland, Oregon
- Portland Veterans Administration Medical Center, Portland, Oregon
- * E-mail:
| | | | - Meghan E. Cansler
- Department of Pediatrics, Oregon Health & Sciences University, Portland, Oregon
| | - Megan D. Null
- Department of Pediatrics, Oregon Health & Sciences University, Portland, Oregon
| | - Veena Rajaraman
- Portland Veterans Administration Medical Center, Portland, Oregon
- Oregon Cancer Institute, Oregon Health & Sciences University, Portland, Oregon
| | - Marisa M. Frieder
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Sciences University, Portland, Oregon
- Portland Veterans Administration Medical Center, Portland, Oregon
| | | | - Shannon McWeeney
- Oregon Cancer Institute, Oregon Health & Sciences University, Portland, Oregon
| | | |
Collapse
|
14
|
Dalmia N, Ramsay AJ. Prime-boost approaches to tuberculosis vaccine development. Expert Rev Vaccines 2013; 11:1221-33. [PMID: 23176655 DOI: 10.1586/erv.12.94] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Four individuals die from active TB disease each minute, while at least 2 billion are latently infected and at risk for disease reactivation. BCG, the only licensed TB vaccine, is effective in preventing childhood forms of TB; however its poor efficacy in adults, emerging drug-resistant TB strains and tedious chemotherapy regimes, warrant the development of novel prophylactic measures. Designing safe and effective vaccines against TB will require novel approaches on several levels, including the administration of rationally selected mycobacterial antigens in efficient delivery vehicles via optimal immunization routes. Given the primary site of disease manifestation in the lungs, development of mucosal immunization strategies to generate protective immune responses both locally, and in the circulation, may be important for effective TB prophylaxis. This review focuses on prime-boost immunization strategies currently under investigation and highlights the potential of mucosal delivery and rational vaccine design based on systems biology.
Collapse
Affiliation(s)
- Neha Dalmia
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | |
Collapse
|
15
|
Flower DR, Perrie Y. Identification of Candidate Vaccine Antigens In Silico. IMMUNOMIC DISCOVERY OF ADJUVANTS AND CANDIDATE SUBUNIT VACCINES 2013. [PMCID: PMC7120937 DOI: 10.1007/978-1-4614-5070-2_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The identification of immunogenic whole-protein antigens is fundamental to the successful discovery of candidate subunit vaccines and their rapid, effective, and efficient transformation into clinically useful, commercially successful vaccine formulations. In the wider context of the experimental discovery of vaccine antigens, with particular reference to reverse vaccinology, this chapter adumbrates the principal computational approaches currently deployed in the hunt for novel antigens: genome-level prediction of antigens, antigen identification through the use of protein sequence alignment-based approaches, antigen detection through the use of subcellular location prediction, and the use of alignment-independent approaches to antigen discovery. Reference is also made to the recent emergence of various expert systems for protein antigen identification.
Collapse
Affiliation(s)
- Darren R. Flower
- Aston Pharmacy School, School of Life and Health Sciences, University of Aston, Aston Triangle, Birmingham, B4 7ET United Kingdom
| | - Yvonne Perrie
- Aston Pharmacy School, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET United Kingdom
| |
Collapse
|
16
|
Schaaf HS, Seddon JA. Epidemiology and management of childhood multidrug-resistant tuberculosis. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/cpr.12.62] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Immune markers and correlates of protection for vaccine induced immune responses. Vaccine 2012; 30:4907-20. [PMID: 22658928 DOI: 10.1016/j.vaccine.2012.05.049] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/15/2012] [Accepted: 05/19/2012] [Indexed: 12/15/2022]
Abstract
Vaccines have been a major innovation in the history of mankind and still have the potential to address the challenges posed by chronic intracellular infections including tuberculosis, HIV and malaria which are leading causes of high morbidity and mortality across the world. Markers of an appropriate humoral response currently remain the best validated correlates of protective immunity after vaccination. Despite advancements in the field of immunology over the past few decades currently there are, however, no sufficiently validated immune correlates of vaccine induced protection against chronic infections in neither human nor veterinary medicine. Technological and conceptual advancements within cell-mediated immunology have led to a number of new immunological read-outs with the potential to emerge as correlates of vaccine induced protection. For T(H)1 type responses, antigen-specific production of interferon-gamma (IFN-γ) has been promoted as a quantitative marker of protective cell-mediated immune responses over the past couple of decades. More recently, however, evidence from several infections has pointed towards the quality of the immune response, measured through increased levels of antigen-specific polyfunctional T cells capable of producing a triad of relevant cytokines, as a better correlate of sustained protective immunity against this type of infections. Also the possibilities to measure antigen-specific cytotoxic T cells (CTL) during infection or in response to vaccination, through recombinant major histocompatibility complex (MHC) class I tetramers loaded with relevant peptides, has opened a new vista to include CTL responses in the evaluation of protective immune responses. Here, we review different immune markers and new candidates for correlates of a protective vaccine induced immune response against chronic infections and how successful they have been in defining the protective immunity in human and veterinary medicine.
Collapse
|
18
|
Nambiar JK, Pinto R, Aguilo JI, Takatsu K, Martin C, Britton WJ, Triccas JA. Protective immunity afforded by attenuated, PhoP-deficient Mycobacterium tuberculosis is associated with sustained generation of CD4+ T-cell memory. Eur J Immunol 2011; 42:385-92. [PMID: 22105536 DOI: 10.1002/eji.201141903] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/30/2011] [Accepted: 11/15/2011] [Indexed: 11/07/2022]
Abstract
Definition of protective immunity induced by effective vaccines is important for the design of new pathogen control strategies. Inactivation of the PhoP response-regulator in Mycobacterium tuberculosis results in a highly attenuated strain that demonstrates impressive protective efficacy in pre-clinical models of tuberculosis. In this report we demonstrate that the protection afforded by the M. tuberculosis phoP mutant strain is associated with the long-term maintenance of CD4(+) T-cell memory. Immunization of mice with SO2 resulted in enhanced expansion of M. tuberculosis-specific CD4(+) T cells compared with vaccination with the BCG vaccine, with an increased frequency of these cells persisting at extended time-points after vaccination. Strikingly, vaccination with SO2 resulted in sustained generation of CD4(+) T cells displaying a central memory phenotype, a property not shared by BCG. Further, SO2 vaccination markedly improved the generation of polyfunctional cytokine-secreting CD4(+) T cells compared with BCG vaccination. The improved generation of functionally competent memory T cells by SO2 correlated with augmented recall responses in SO2-vaccinated animals after challenge with virulent M. tuberculosis. This study defines a mechanism for the protective effect of the SO2 vaccine and suggests that deletion of defined virulence networks may provide vaccine strains with potent immuno-stimulatory properties.
Collapse
Affiliation(s)
- Jonathan K Nambiar
- Microbial Pathogenesis and Immunity Group, Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
19
|
Parra M, Derrick SC, Yang A, Tian J, Kolibab K, Oakley M, Perera LP, Jacobs WR, Kumar S, Morris SL. Malaria infections do not compromise vaccine-induced immunity against tuberculosis in mice. PLoS One 2011; 6:e28164. [PMID: 22205939 PMCID: PMC3242757 DOI: 10.1371/journal.pone.0028164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 11/02/2011] [Indexed: 11/18/2022] Open
Abstract
Background Given the considerable geographic overlap in the endemic regions for malaria and tuberculosis, it is probable that co-infections with Mycobacterium tuberculosis and Plasmodium species are prevalent. Thus, it is quite likely that both malaria and TB vaccines may be used in the same populations in endemic areas. While novel vaccines are currently being developed and tested individually against each of these pathogens, the efficacy of these vaccines has not been evaluated in co-infection models. To further assess the effectiveness of these new immunization strategies, we investigated whether co-infection with malaria would impact the anti-tuberculosis protection induced by four different types of TB vaccines in a mouse model of pulmonary tuberculosis. Principal Findings Here we show that the anti-tuberculosis protective immunity induced by four different tuberculosis vaccines was not impacted by a concurrent infection with Plasmodium yoelii NL, a nonlethal form of murine malaria. After an aerogenic challenge with virulent M. tuberculosis, the lung bacterial burdens of vaccinated animals were not statistically different in malaria infected and malaria naïve mice. Multi-parameter flow cytometric analysis showed that the frequency and the median fluorescence intensities (MFI) for specific multifunctional T (MFT) cells expressing IFN-γ, TNF-α, and/or IL-2 were suppressed by the presence of malaria parasites at 2 weeks following the malaria infection but was not affected after parasite clearance at 7 and 10 weeks post-challenge with P. yoelii NL. Conclusions Our data indicate that the effectiveness of novel TB vaccines in protecting against tuberculosis was unaffected by a primary malaria co-infection in a mouse model of pulmonary tuberculosis. While the activities of specific MFT cell subsets were reduced at elevated levels of malaria parasitemia, the T cell suppression was short-lived. Our findings have important relevance in developing strategies for the deployment of new TB vaccines in malaria endemic areas.
Collapse
Affiliation(s)
- Marcela Parra
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Review, USFDA, Bethesda, Maryland, United States of America
| | - Steven C. Derrick
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Review, USFDA, Bethesda, Maryland, United States of America
| | - Amy Yang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Review, USFDA, Bethesda, Maryland, United States of America
| | - JinHua Tian
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Review, USFDA, Bethesda, Maryland, United States of America
| | - Kristopher Kolibab
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Review, USFDA, Bethesda, Maryland, United States of America
| | - Miranda Oakley
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Review, USFDA, Bethesda, Maryland, United States of America
| | - Liyanage P. Perera
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - William R. Jacobs
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sanjai Kumar
- Office of Blood Research and Review, Center for Biologics Research and Review, USFDA, Bethesda, Maryland, United States of America
| | - Sheldon L. Morris
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Review, USFDA, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
20
|
Abstract
Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis (TB), is the most successful pathogen of mankind and remains a major threat to global health as the leading cause of death due to a bacterial pathogen. Yet 90-95% of those who are infected with MTB remain otherwise healthy. These people are classified as "latently infected," but remain a reservoir from which active TB cases will continue to develop ("reactivation tuberculosis"). Latent infection is defined by the absence of clinical symptoms of TB in addition to a delayed hypersensitivity reaction to the purified protein derivative of MTB used in tuberculin skin test or a T-cell response to MTB-specific antigens. In the absence of reliable control measures for tuberculosis, understanding latent MTB infection and subsequent reactivation is a research priority. This review aims to summarize the recent findings in human and non-human primate models of tuberculosis that have led to new concepts of latent tuberculosis.
Collapse
Affiliation(s)
- Hannah P Gideon
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, W1144 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
21
|
|
22
|
Abstract
Tuberculosis results in an estimated 1·7 million deaths each year and the worldwide number of new cases (more than 9 million) is higher than at any other time in history. 22 low-income and middle-income countries account for more than 80% of the active cases in the world. Due to the devastating effect of HIV on susceptibility to tuberculosis, sub-Saharan Africa has been disproportionately affected and accounts for four of every five cases of HIV-associated tuberculosis. In many regions highly endemic for tuberculosis, diagnosis continues to rely on century-old sputum microscopy; there is no vaccine with adequate effectiveness and tuberculosis treatment regimens are protracted and have a risk of toxic effects. Increasing rates of drug-resistant tuberculosis in eastern Europe, Asia, and sub-Saharan Africa now threaten to undermine the gains made by worldwide tuberculosis control programmes. Moreover, our fundamental understanding of the pathogenesis of this disease is inadequate. However, increased investment has allowed basic science and translational and applied research to produce new data, leading to promising progress in the development of improved tuberculosis diagnostics, biomarkers of disease activity, drugs, and vaccines. The growing scientific momentum must be accompanied by much greater investment and political commitment to meet this huge persisting challenge to public health. Our Seminar presents current perspectives on the scale of the epidemic, the pathogen and the host response, present and emerging methods for disease control (including diagnostics, drugs, biomarkers, and vaccines), and the ongoing challenge of tuberculosis control in adults in the 21st century.
Collapse
Affiliation(s)
- Stephen D Lawn
- The Desmond Tutu HIV Centre, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | | |
Collapse
|
23
|
Gallegos AM, van Heijst JWJ, Samstein M, Su X, Pamer EG, Glickman MS. A gamma interferon independent mechanism of CD4 T cell mediated control of M. tuberculosis infection in vivo. PLoS Pathog 2011; 7:e1002052. [PMID: 21625591 PMCID: PMC3098235 DOI: 10.1371/journal.ppat.1002052] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 03/19/2011] [Indexed: 12/12/2022] Open
Abstract
CD4 T cell deficiency or defective IFNγ signaling render humans and mice highly susceptible to Mycobacterium tuberculosis (Mtb) infection. The prevailing model is that Th1 CD4 T cells produce IFNγ to activate bactericidal effector mechanisms of infected macrophages. Here we test this model by directly interrogating the effector functions of Th1 CD4 T cells required to control Mtb in vivo. While Th1 CD4 T cells specific for the Mtb antigen ESAT-6 restrict in vivo Mtb growth, this inhibition is independent of IFNγ or TNF and does not require the perforin or FAS effector pathways. Adoptive transfer of Th17 CD4 T cells specific for ESAT-6 partially inhibited Mtb growth while Th2 CD4 T cells were largely ineffective. These results imply a previously unrecognized IFNγ/TNF independent pathway that efficiently controls Mtb and suggest that optimization of this alternative effector function may provide new therapeutic avenues to combat Mtb through vaccination.
Collapse
Affiliation(s)
- Alena M. Gallegos
- NIH/NIAID Laboratory of Parasitic Diseases,
Bethesda, Maryland, United States of America
- Immunology Program, Infectious Disease
Service, Memorial Sloan-Kettering Cancer Center, New York, New York, United
States of America
| | - Jeroen W. J. van Heijst
- Immunology Program, Infectious Disease
Service, Memorial Sloan-Kettering Cancer Center, New York, New York, United
States of America
| | - Miriam Samstein
- Program in Immunology and Microbial
Pathogenesis, Weill Graduate School of Medical Sciences, New York, New York,
United States of America
| | - Xiaodi Su
- Program in Immunology and Microbial
Pathogenesis, Weill Graduate School of Medical Sciences, New York, New York,
United States of America
| | - Eric G. Pamer
- Immunology Program, Infectious Disease
Service, Memorial Sloan-Kettering Cancer Center, New York, New York, United
States of America
- * E-mail: (EGP); (MSG)
| | - Michael S. Glickman
- Immunology Program, Infectious Disease
Service, Memorial Sloan-Kettering Cancer Center, New York, New York, United
States of America
- * E-mail: (EGP); (MSG)
| |
Collapse
|
24
|
Abstract
Tuberculosis (TB) drug research and development efforts have resurged in the past 10 years to meet urgent medical needs, but enormous challenges remain. These urgent needs are largely driven by the current long and arduous multidrug regimens, which have significant safety, tolerability and compliance issues; rising and disturbing rates of multidrug- and extensively drug-resistant TB; the existence of approximately 2 billion individuals already latently infected with Mycobacterium tuberculosis, the causative pathogen of TB; and a global TB-HIV co-epidemic. Stakeholders in TB drug development are moving to enable and streamline development and registration of novel, multidrug treatment regimens, comprised of multiple new chemical entities with novel mechanisms of action that do not demonstrate cross-resistance to current first- and second-line TB drugs. Ideally, these new regimens will ultimately provide a short, simple treatment suitable for essentially all TB patients, whether sensitive or resistant to the current anti-TB agents, whether HIV-positive or -negative, and irrespective of patient age. This article reviews the challenges faced by those trying to develop these novel regimens and the key agents currently in clinical testing for TB; the latter are organized for discussion into three categories: (i) novel drugs (TMC207, SQ109, sudoterb [LL3858]); (ii) present first-line TB drugs being re-evaluated to optimize their efficacy (rifampicin, rifapentine); and (iii) currently licensed drugs for other indications and 'next-generation' compounds of the same chemical class being repurposed for TB (gatifloxacin and moxifloxacin; linezolid, PNU100480 and AZD5847; metronidazole, OPC-67683 and PA-824).
Collapse
Affiliation(s)
- Ann M Ginsberg
- Global Alliance for TB Drug Development, New York, New York 10005, USA.
| |
Collapse
|
25
|
Flower DR, Macdonald IK, Ramakrishnan K, Davies MN, Doytchinova IA. Computer aided selection of candidate vaccine antigens. Immunome Res 2010; 6 Suppl 2:S1. [PMID: 21067543 PMCID: PMC2981880 DOI: 10.1186/1745-7580-6-s2-s1] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Immunoinformatics is an emergent branch of informatics science that long ago pullulated from the tree of knowledge that is bioinformatics. It is a discipline which applies informatic techniques to problems of the immune system. To a great extent, immunoinformatics is typified by epitope prediction methods. It has found disappointingly limited use in the design and discovery of new vaccines, which is an area where proper computational support is generally lacking. Most extant vaccines are not based around isolated epitopes but rather correspond to chemically-treated or attenuated whole pathogens or correspond to individual proteins extract from whole pathogens or correspond to complex carbohydrate. In this chapter we attempt to review what progress there has been in an as-yet-underexplored area of immunoinformatics: the computational discovery of whole protein antigens. The effective development of antigen prediction methods would significantly reduce the laboratory resource required to identify pathogenic proteins as candidate subunit vaccines. We begin our review by placing antigen prediction firmly into context, exploring the role of reverse vaccinology in the design and discovery of vaccines. We also highlight several competing yet ultimately complementary methodological approaches: sub-cellular location prediction, identifying antigens using sequence similarity, and the use of sophisticated statistical approaches for predicting the probability of antigen characteristics. We end by exploring how a systems immunomics approach to the prediction of immunogenicity would prove helpful in the prediction of antigens.
Collapse
Affiliation(s)
- Darren R Flower
- School of Life and Health Sciences, University of Aston, Aston Triangle, Birmingham, B4 7ET, UK.
| | | | | | | | | |
Collapse
|
26
|
Denholm JT, McBryde ES. The use of anti-tuberculosis therapy for latent TB infection. Infect Drug Resist 2010; 3:63-72. [PMID: 21694895 PMCID: PMC3108738 DOI: 10.2147/idr.s8994] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Indexed: 01/30/2023] Open
Abstract
Tuberculosis infection is of global public health significance, with millions of incident cases each year. Many cases, particularly in low-prevalence settings, result from the reactivation of latent tuberculosis infection (LTBI); potentially acquired years prior to active disease. Up to one-third of the world’s population has been infected with LTBI, and so may be at risk for future active TB disease. A variety of antituberculosis medications and treatment regimens have now been evaluated in the management of LTBI, with the aim of eradicating tuberculosis bacilli and reducing the likelihood of subsequent reactivation disease. This article reviews LTBI therapies and their use in clinical contexts, and considers future directions for individual and population-based strategies in LTBI management.
Collapse
Affiliation(s)
- Justin T Denholm
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | | |
Collapse
|