1
|
Sanaullah B, Truong NV, Nguyen TK, Han ET. Combating Malaria: Targeting the Ubiquitin-Proteasome System to Conquer Drug Resistance. Trop Med Infect Dis 2025; 10:94. [PMID: 40278767 PMCID: PMC12031434 DOI: 10.3390/tropicalmed10040094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Malaria primarily affects developing nations and is one of the most destructive and pervasive tropical parasite infections. Antimalarial drug resistance, characterized by a parasite's ability to survive and reproduce despite recommended medication doses, poses a significant challenge. Along with resistance to antimalarial drugs, the rate of mutation a parasite undergoes, overall parasite load, drug potency, adherence to treatment, dosing accuracy, drug bioavailability, and the presence of poor-quality counterfeit drugs are some of the contributing factors that elicit opposition to treatment. The ubiquitin-proteasome system (UPS) has become a promising drug target for malaria because of its central importance in the parasite's life cycle and its contribution to artemisinin resistance. Polymorphisms in the Kelch13 gene of Plasmodium falciparum are the best-known markers for artemisinin resistance and are associated with a highly active UPS. Certain proteasome inhibitors, which are the other key players of the UPS, have demonstrated activity against malarial parasites and the ability to work with artemisinin. This work describes how, through targeting the UPS, the greater effectiveness of antimalarial drugs-especially where there is strong resistance-can be achieved, which contributes to overcoming the drug resistance phenomenon in malaria.
Collapse
Affiliation(s)
| | | | | | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
2
|
Tarjányi O, Olasz K, Rátky F, Sétáló G, Boldizsár F. Proteasome Inhibitors: Potential in Rheumatoid Arthritis Therapy? Int J Mol Sci 2025; 26:2943. [PMID: 40243560 PMCID: PMC11988683 DOI: 10.3390/ijms26072943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that leads to the destruction of peripheral joint cartilage and bone tissue. Despite the advent of biological therapies in the past decades, the complete remission of RA patients is still out of reach. Therefore, the search for novel therapeutic approaches is still open in the field of RA. Proteasome inhibitors (PIs) were originally designed to be used in hematological malignancies like multiple myeloma. However, evidence has shown that they are potent inhibitors of the NF-κB pathway, which plays a pivotal role in inflammatory processes and RA. Furthermore, inhibition of cell activation and induction of apoptosis was also reported about PIs. In the present review, we summarize the current knowledge about the potential effects of PIs in RA based on reports from animal and human studies. We believe that there is substantial potential in the use of PIs in RA therapy either alone or in combination with the medications already used.
Collapse
Affiliation(s)
- Oktávia Tarjányi
- Department of Medical Biology, Medical School, University of Pecs, H-7624 Pecs, Hungary; (O.T.); (F.R.); (G.S.)
| | - Katalin Olasz
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pecs, Hungary;
| | - Fanni Rátky
- Department of Medical Biology, Medical School, University of Pecs, H-7624 Pecs, Hungary; (O.T.); (F.R.); (G.S.)
| | - György Sétáló
- Department of Medical Biology, Medical School, University of Pecs, H-7624 Pecs, Hungary; (O.T.); (F.R.); (G.S.)
| | - Ferenc Boldizsár
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pecs, Hungary;
| |
Collapse
|
3
|
Sülzen H, Fajtova P, O’Donoghue AJ, Silhan J, Boura E. Structural Insights into Salinosporamide a Mediated Inhibition of the Human 20S Proteasome. Molecules 2025; 30:1386. [PMID: 40142161 PMCID: PMC11946101 DOI: 10.3390/molecules30061386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
The 20S proteasome, a critical component of the ubiquitin-proteasome system, plays a central role in regulating protein degradation in eukaryotic cells. Marizomib (MZB), also known as salinosporamide A, is a natural γ-lactam-β-lactone compound derived from Salinispora tropica and is a potent 20S proteasome covalent inhibitor with demonstrated anticancer properties. Its broad-spectrum inhibition of all three proteasome subunits and its ability to cross the blood-brain barrier has made it a promising therapeutic candidate for glioblastoma. In addition to this, MZB also demonstrates significant inhibition against the 20S proteasome of Trichomonas vaginalis (Tv20S), a protozoan parasite, suggesting its potential for parasitic treatments. Here, we present the cryo-EM structure of the human 20S proteasome in complex with MZB at 2.55 Å resolution. This structure reveals the binding mode of MZB to all six catalytic subunits within the two β-rings of the 20S proteasome, providing a detailed molecular understanding of its irreversible inhibitory mechanism. These findings enhance the therapeutic potential of MZB for both cancer and parasitic diseases at the molecular level and highlight marine-derived natural products in targeting the proteasome for therapeutic applications.
Collapse
Affiliation(s)
- Hagen Sülzen
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610 Prague, Czech Republic (P.F.)
| | - Pavla Fajtova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610 Prague, Czech Republic (P.F.)
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA;
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA;
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jan Silhan
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610 Prague, Czech Republic (P.F.)
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610 Prague, Czech Republic (P.F.)
| |
Collapse
|
4
|
Ma H, Hou CY, Zhao R, Qi X, Wu XF. Nickel-Catalyzed Cyclization/Carbonylation Reaction of N-Allylbromoacetamides with Arylboronic Acids toward 2-Pyrrolidinones. Org Lett 2025; 27:1299-1303. [PMID: 39856028 PMCID: PMC11812007 DOI: 10.1021/acs.orglett.5c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
A straightforward and efficient nickel-catalyzed cyclization/carbonylation transformation of N-allylbromoacetamides toward the synthesis of 2-pyrrolidinone derivatives has been developed with arylboronic acids as the reaction partner. This transformation proceeds through a sequential single-electron-transfer pathway via 5-exo-trig cyclization and carbonyl insertion steps, furnishing a variety of 2-pyrrolidinone derivatives in good yields. Various useful functional groups were well tolerated. Moreover, formic acid is applied as the CO source here with nickel as the catalyst, which provides a good supplement for carbonylation chemistry and heterocycle synthesis.
Collapse
Affiliation(s)
- Hucheng Ma
- School
of Chemistry and Chemical Engineering, Key Laboratory of Surface &
Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s
Republic of China
| | - Chen-Yang Hou
- School
of Chemistry and Chemical Engineering, Key Laboratory of Surface &
Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s
Republic of China
| | - Ruyi Zhao
- School
of Chemistry and Chemical Engineering, Key Laboratory of Surface &
Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s
Republic of China
| | - Xinxin Qi
- School
of Chemistry and Chemical Engineering, Key Laboratory of Surface &
Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s
Republic of China
| | - Xiao-Feng Wu
- Dalian
National Laboratory for Clean Energy, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, People’s
Republic of China
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
5
|
Claridge SE, Nath S, Baum A, Farias R, Cavallo J, Rizvi NM, De Boni L, Park E, Granados GL, Hauesgen M, Fernandez‐Rodriguez R, Kozan EN, Kanshin E, Huynh KQ, Chen P, Wu K, Ueberheide B, Mosquera JM, Hirsch FR, DeVita RJ, Elemento O, Pauli C, Pan Z, Hopkins BD. Functional genomics pipeline identifies CRL4 inhibition for the treatment of ovarian cancer. Clin Transl Med 2025; 15:e70078. [PMID: 39856363 PMCID: PMC11761363 DOI: 10.1002/ctm2.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The goal of precision oncology is to find effective therapeutics for every patient. Through the inclusion of emerging therapeutics in a high-throughput drug screening platform, our functional genomics pipeline inverts the common paradigm to identify patient populations that are likely to benefit from novel therapeutic strategies. APPROACH Utilizing drug screening data across a panel of 46 cancer cell lines from 11 tumor lineages, we identified an ovarian cancer-specific sensitivity to the first-in-class CRL4 inhibitors KH-4-43 and 33-11. CRL4 (i.e., Cullin-4 RING E3 ubiquitin ligase) is known to be dysregulated in a variety of cancer contexts, making it an attractive therapeutic target. Unlike proteasome inhibitors that are associated with broad toxicity, CRL4 inhibition offers the potential for tumor-specific effects. RESULTS We observed that CRL4 inhibition negatively regulates core gene signatures that are upregulated in ovarian tumors and significantly slowed tumor growth as compared to the standard of care, cisplatin, in OVCAR8 xenografts. Building on this, we performed combination drug screening in conjunction with proteomic and transcriptomic profiling to identify ways to improve the antitumor effects of CRL4 inhibition in ovarian cancer models. CRL4 inhibition consistently resulted in activation of the mitogen-activated protein kinase (MAPK) signaling cascade at both the transcriptomic and protein levels, suggesting that survival signaling is induced in response to CRL4 inhibition. These observations were concordant with the results of the combination drug screens in seven ovarian cancer cell lines that showed CRL4 inhibition cooperates with MEK inhibition. Preclinical studies in OVCAR8 and A2780 xenografts confirmed the therapeutic potential of the combination of KH-4-43 and trametinib, which extended overall survival and slowed tumor progression relative to either single agent or the standard of care. CONCLUSIONS Together, these data demonstrate the prospective utility of functional modeling pipelines for therapeutic development and underscore the clinical potential of CRL4 inhibition in the ovarian cancer context. HIGHLIGHTS A precision medicine pipeline identifies ovarian cancer sensitivity to CRL4 inhibitors. CRL4 inhibition induces activation of MAPK signalling as identified by RNA sequencing, proteomics, and phosphoproteomics. Inhibitor combinations that target both CRL4 and this CRL4 inhibitor-induced survival signalling enhance ovarian cancer sensitivity to treatment.
Collapse
Affiliation(s)
- Sally E. Claridge
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNew YorkUSA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Shalini Nath
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNew YorkUSA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
| | - Anneliese Baum
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Richard Farias
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Julie‐Ann Cavallo
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Nile M. Rizvi
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Lamberto De Boni
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNew YorkUSA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Eric Park
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Genesis Lara Granados
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Matthew Hauesgen
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ruben Fernandez‐Rodriguez
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Eda Nur Kozan
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNew YorkUSA
| | - Evgeny Kanshin
- Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkNew YorkUSA
- Proteomics LaboratoryNew York University School of MedicineNew YorkNew YorkUSA
| | - Khoi Q. Huynh
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Drug Discovery Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Peng‐Jen Chen
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Drug Discovery Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Kenneth Wu
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkNew YorkUSA
- Proteomics LaboratoryNew York University School of MedicineNew YorkNew YorkUSA
- Department of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Juan Miguel Mosquera
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNew YorkUSA
| | - Fred R. Hirsch
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Medicine, Hematology, and Medical OncologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Robert J. DeVita
- Proteomics LaboratoryNew York University School of MedicineNew YorkNew YorkUSA
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
- Institute for Computational Biomedicine, Weill Cornell MedicineNew YorkNew YorkUSA
- Clinical and Translational Science Center, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Chantal Pauli
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Zhen‐Qiang Pan
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Benjamin D. Hopkins
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNew YorkUSA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
| |
Collapse
|
6
|
Sülzen H, Fajtova P, O’Donoghue AJ, Boura E, Silhan J. Structural insights into Salinosporamide A mediated inhibition of the human 20S proteasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635221. [PMID: 39974992 PMCID: PMC11838377 DOI: 10.1101/2025.01.28.635221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The 20S proteasome, a critical component of the ubiquitin-proteasome system, plays a central role in regulating protein degradation in eukaryotic cells. Marizomib (MZB), a natural γ-lactam-β-lactone compound derived from Salinispora tropica, is a potent 20S proteasome covalent inhibitor with demonstrated anticancer properties. Its broad-spectrum inhibition of all three proteasome subunits and ability to cross the blood-brain barrier has made it a promising therapeutic candidate for glioblastoma. Here, we present the cryo-EM structure of the human 20S proteasome in complex with MZB at 2.55 Å resolution. This structure reveals the binding mode of MZB to all six catalytic subunits within the two β-rings of the 20S proteasome, providing a detailed molecular understanding of its irreversible inhibitory mechanism. These findings explain the therapeutic potential of MZB at the molecular level and highlight marine-derived natural products in targeting the proteasome for anticancer treatment.
Collapse
Affiliation(s)
- Hagen Sülzen
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Pavla Fajtova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92037, USA
| | - Anthony J O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92037, USA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Jan Silhan
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| |
Collapse
|
7
|
St. Thomas N, Christopher BN, Reyes L, Robinson RM, Golick L, Zhu X, Chapman E, Dolloff NG. Pharmacological Modulation of the Unfolded Protein Response as a Therapeutic Approach in Cutaneous T-Cell Lymphoma. Biomolecules 2025; 15:76. [PMID: 39858470 PMCID: PMC11763779 DOI: 10.3390/biom15010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a rare T-cell malignancy characterized by inflamed and painful rash-like skin lesions that may affect large portions of the body's surface. Patients experience recurrent infections due to a compromised skin barrier and generalized immunodeficiency resulting from a dominant Th2 immune phenotype of CTCL cells. Given the role of the unfolded protein response (UPR) in normal and malignant T-cell development, we investigated the impact of UPR-inducing drugs on the viability, transcriptional networks, and Th2 phenotype of CTCL. We found that CTCL cells were >5-fold more sensitive to the proteasome inhibitor bortezomib (Btz) and exhibited a distinct signaling and transcriptional response compared to normal CD4+ cells. The CTCL response was dominated by the induction of the HSP70 family member HSPA6 (HSP70B') and, to a lesser extent, HSPA5 (BiP/GRP78). To understand the significance of these two factors, we used a novel isoform selective small-molecule inhibitor of HSPA5/6 (JG-023). JG-023 induced pro-apoptotic UPR signaling and enhanced the cytotoxic effects of proteasome inhibitors and other UPR-inducing drugs in CTCL but not normal T cells. Interestingly, JG-023 also selectively suppressed the production of Th2 cytokines in CTCL and normal CD4+ T cells. Conditioned media (CM) from CTCL were immunosuppressive to normal T cells through an IL-10-dependent mechanism. This immunosuppression could be reversed by JG-023, other HSP70 inhibitors, Btz, and combinations of these UPR-targeted drugs. Our study points to the importance of the UPR in the pathology of CTCL and demonstrates the potential of proteasome and targeted HSPA5/6 inhibitors for therapy.
Collapse
Affiliation(s)
- Nadia St. Thomas
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Ave., MSC509, Charleston, SC 29425, USA; (N.S.T.); (B.N.C.); (L.R.); (R.M.R.); (L.G.)
| | - Benjamin N. Christopher
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Ave., MSC509, Charleston, SC 29425, USA; (N.S.T.); (B.N.C.); (L.R.); (R.M.R.); (L.G.)
| | - Leticia Reyes
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Ave., MSC509, Charleston, SC 29425, USA; (N.S.T.); (B.N.C.); (L.R.); (R.M.R.); (L.G.)
| | - Reeder M. Robinson
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Ave., MSC509, Charleston, SC 29425, USA; (N.S.T.); (B.N.C.); (L.R.); (R.M.R.); (L.G.)
| | - Lena Golick
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Ave., MSC509, Charleston, SC 29425, USA; (N.S.T.); (B.N.C.); (L.R.); (R.M.R.); (L.G.)
| | - Xiaoyi Zhu
- Department of Pharmacology and Therapeutics, Center for Inflammation Science and Systems Medicine, University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA; (X.Z.); (E.C.)
| | - Eli Chapman
- Department of Pharmacology and Therapeutics, Center for Inflammation Science and Systems Medicine, University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA; (X.Z.); (E.C.)
| | - Nathan G. Dolloff
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Ave., MSC509, Charleston, SC 29425, USA; (N.S.T.); (B.N.C.); (L.R.); (R.M.R.); (L.G.)
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
- Zucker Institute for Innovation Commercialization, Charleston, SC 29425, USA
| |
Collapse
|
8
|
Sogbein O, Paul P, Umar M, Chaari A, Batuman V, Upadhyay R. Bortezomib in cancer therapy: Mechanisms, side effects, and future proteasome inhibitors. Life Sci 2024; 358:123125. [PMID: 39413903 DOI: 10.1016/j.lfs.2024.123125] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/07/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
The ubiquitin-proteasome pathway (UPP) regulates protein stability and normal cellular functions with the help of autocatalytic proteasome complex. Studies have linked aberrant proteasome activity to malignant cells and found that proteasome inhibitors play a significant role as therapeutic drugs for various types of cancer, specifically multiple myeloma and mantle cell lymphoma. Bortezomib, the first FDA-approved proteasome inhibitor for treating different stages of multiple myeloma, acts on cancer cells by inhibiting the 26S proteasome, modulating NF-κB, phosphorylating Bcl-2, upregulating of NOXA, blocking p53 degradation, activating caspase, generating reactive oxygen species (ROS), and inhibiting angiogenesis. However, its efficacy is limited due to side effects such as peripheral neuropathy (PN), thrombotic microangiopathy (TMA), and acute interstitial nephritis (AIN). Therefore, a better understanding of its precise mechanism of action may help mitigate these side effects. In this review, we have discussed the proposed mechanisms of action and off target effects of Bortezomib, along with the prospects of next generation potential proteasome inhibitor drugs in the treatment of cancer.
Collapse
Affiliation(s)
- Olusola Sogbein
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Pradipta Paul
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Qatar
| | - Meenakshi Umar
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ali Chaari
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Qatar
| | - Vecihi Batuman
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Rohit Upadhyay
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
9
|
Lehmann JA, Lindner D, Sung HM, Stoecklin G. E3 ubiquitin ligase RNF10 promotes dissociation of stalled ribosomes and responds to ribosomal subunit imbalance. Nat Commun 2024; 15:10350. [PMID: 39609413 PMCID: PMC11604940 DOI: 10.1038/s41467-024-54411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/08/2024] [Indexed: 11/30/2024] Open
Abstract
Aberrant translation causes ribosome stalling, which leads to the ubiquitination of ribosomal proteins and induces ribosome-associated quality control. As part of this quality control process, the E3 ubiquitin ligase RNF10 monoubiquitinates ribosomal protein RPS3. Here, we demonstrate that RNF10-mediated RPS3 monoubiquitination antagonizes ribosomal half-mer formation by promoting dissociation of 40S subunits from ribosomes stalled during translation elongation. Interestingly, RNF10 also promotes dissociation of 40S subunits stalled during aberrant translation initiation. Moreover, RNF10 levels are tightly coupled to the amount of 40S subunits. Knockdown of RPS proteins, which abrogates 40S ribosome biogenesis, results in proteasomal degradation of RNF10. Vice versa, knockdown of RPL proteins, which abrogates 60S biogenesis, leads to the accumulation of stalled initiating 40S subunits, increased RNF10 levels, and RPS3 monoubiquitination. As a factor required for the resolution of stalled translation events, RNF10 is part of a fundamental mechanism by which cells respond to imbalances in ribosomal subunit stoichiometry.
Collapse
Affiliation(s)
- Janina A Lehmann
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Doris Lindner
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Hsu-Min Sung
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany.
| |
Collapse
|
10
|
Kusaczuk M, Tyszka N, Krętowski R, Cechowska-Pasko M. The Proteasome Inhibitor Marizomib Evokes Endoplasmic Reticulum Stress and Promotes Apoptosis in Human Glioblastoma Cells. Pharmaceuticals (Basel) 2024; 17:1089. [PMID: 39204194 PMCID: PMC11357632 DOI: 10.3390/ph17081089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Proteasomes play an important role in the physiology of cancer cells, and inhibition of their activity may be used as a promising therapeutic strategy against glioblastoma (GBM). Although certain proteasome inhibitors (PIs) have been approved for the treatment of other malignancies, they have limited effectiveness against GBM due to low brain bioavailability. Marizomib (MZB) is an irreversible, second-generation proteasome inhibitor, which unlike other PIs can penetrate through the blood-brain barrier, making it a promising therapeutic tool in brain malignancies. The antitumor activity of MZB was investigated in LN229 and U118 cells. The MTT test and the ATP-based assay were performed to evaluate cytotoxicity. Flow cytometry analysis was used to determine the apoptotic death of GBM cells. Luminescent assays were used to assess levels of reactive oxygen species (ROS) and the activity of caspase 3/7. RT-qPCR and Western blot analyses were used to determine gene and protein expressions. Marizomib decreased the viability and caused apoptotic death of GBM cells. The proapoptotic effect was accompanied by activation of caspase 3 and overexpression of cl-PARP, Noxa, Cyt C, and DR5. Moreover, treatment with MZB triggered endoplasmic reticulum (ER) stress, as shown by increased expressions of GRP78, IRE1α, p-EIF2α, p-SAPK/JNK, CHOP, ATF6α, and ATF4. On the contrary, overproduction of ROS or increased expressions of ERO1α, LC3 II, Beclin 1, and ATG5 were not detected, suggesting that neither oxidative stress nor autophagy were involved in the process of MZB-induced cell death. Thus, marizomib represents a potentially promising compound for facilitating further progress in brain cancer therapy.
Collapse
Affiliation(s)
- Magdalena Kusaczuk
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland; (N.T.); (R.K.)
| | | | | | - Marzanna Cechowska-Pasko
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland; (N.T.); (R.K.)
| |
Collapse
|
11
|
Tian Y, Liu X, Wang J, Zhang C, Yang W. Antitumor Effects and the Potential Mechanism of 10-HDA against SU-DHL-2 Cells. Pharmaceuticals (Basel) 2024; 17:1088. [PMID: 39204193 PMCID: PMC11357620 DOI: 10.3390/ph17081088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
10-hydroxy-2-decenoic acid (10-HDA), which is a unique bioactive fatty acid of royal jelly synthesized by nurse bees for larvae and adult queen bees, is recognized for its dual utility in medicinal and nutritional applications. Previous research has indicated that 10-HDA exerts antitumor effects on numerous tumor cell lines, including colon cancer cells, A549 human lung cancer cells, and human hepatoma cells. The present study extends this inquiry to lymphoma, specifically evaluating the impact of 10-HDA on the SU-DHL-2 cell line. Our findings revealed dose-dependent suppression of SU-DHL-2 cell survival, with an IC50 of 496.8 μg/mL at a density of 3 × 106 cells/well after 24 h. For normal liver LO2 cells and human fibroblasts (HSFs), the IC50 values were approximately 1000 μg/mL and over 1000 μg/mL, respectively. The results of label-free proteomics revealed 147 upregulated and 347 downregulated differentially expressed proteins that were significantly enriched in the complement and coagulation cascades pathway (adjusted p-value = 0.012), including the differentially expressed proteins prothrombin, plasminogen, plasminogen, carboxypeptidase B2, fibrinogen beta chain, fibrinogen gamma chain, and coagulation factor V. The top three hub proteins, ribosomal protein L5, tumor protein p53, and ribosomal protein L24, were identified via protein-protein interaction (PPI) analysis. This result showed that the complement and coagulation cascade pathways might play a key role in the antitumor process of 10-HDA, suggesting a potential therapeutic avenue for lymphoma treatment. However, the specificity of the effect of 10-HDA on SU-DHL-2 cells warrants further investigation.
Collapse
Affiliation(s)
- Yuanyuan Tian
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.T.); (X.L.); (J.W.); (C.Z.)
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoqing Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.T.); (X.L.); (J.W.); (C.Z.)
| | - Jie Wang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.T.); (X.L.); (J.W.); (C.Z.)
| | - Chuang Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.T.); (X.L.); (J.W.); (C.Z.)
| | - Wenchao Yang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.T.); (X.L.); (J.W.); (C.Z.)
| |
Collapse
|
12
|
Loy CA, Trader DJ. Primed for Interactions: Investigating the Primed Substrate Channel of the Proteasome for Improved Molecular Engagement. Molecules 2024; 29:3356. [PMID: 39064934 PMCID: PMC11279888 DOI: 10.3390/molecules29143356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Protein homeostasis is a tightly conserved process that is regulated through the ubiquitin proteasome system (UPS) in a ubiquitin-independent or ubiquitin-dependent manner. Over the past two decades, the proteasome has become an excellent therapeutic target through inhibition of the catalytic core particle, inhibition of subunits responsible for recognizing and binding ubiquitinated proteins, and more recently, through targeted protein degradation using proteolysis targeting chimeras (PROTACs). The majority of the developed inhibitors of the proteasome's core particle rely on gaining selectivity through binding interactions within the unprimed substrate channel. Although this has allowed for selective inhibitors and chemical probes to be generated for the different proteasome isoforms, much remains unknown about the interactions that could be harnessed within the primed substrate channel to increase potency or selectivity. Herein, we discuss small molecules that interact with the primed substrate pocket and how their differences may give rise to altered activity. Taking advantage of additional interactions with the primed substrate pocket of the proteasome could allow for the generation of improved chemical tools for perturbing or monitoring proteasome activity.
Collapse
Affiliation(s)
| | - Darci J. Trader
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92617, USA;
| |
Collapse
|
13
|
Henderson LW, Gautam AKS, Sharon EM, Johnson CR, Rommel NG, Anthony AJ, Russell DH, Jarrold MF, Matouschek A, Clemmer DE. Bortezomib Inhibits Open Configurations of the 20S Proteasome. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1063-1068. [PMID: 38748611 PMCID: PMC11886992 DOI: 10.1021/jasms.4c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Bortezomib, a small dipeptide-like molecule, is a proteasome inhibitor used widely in the treatment of myeloma and lymphoma. This molecule reacts with threonine side chains near the center of the 20S proteasome and disrupts proteostasis by blocking enzymatic sites that are responsible for protein degradation. In this work, we use novel mass-spectrometry-based techniques to examine the influence of bortezomib on the structures and stabilities of the 20S core particle. These studies indicate that bortezomib binding dramatically favors compact 20S structures (in which the axial gate is closed) over larger structures (in which the axial gate is open)─suppressing gate opening by factors of at least ∼400 to 1300 over the temperature range that is studied. Thus, bortezomib may also restrict degradation in the 20S proteasome by preventing substrates from entering the catalytic pore. That bortezomib influences structures at the entrance region of the pore at such a long distance (∼65 to 75 Å) from its binding sites raises a number of interesting biophysical issues.
Collapse
Affiliation(s)
- Lucas W Henderson
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Amit K S Gautam
- Department of Molecular Biosciences, University of Texas, Austin, Texas 78712, United States
| | - Edie M Sharon
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Colin R Johnson
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Nicholas G Rommel
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Adam J Anthony
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Martin F Jarrold
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Andreas Matouschek
- Department of Molecular Biosciences, University of Texas, Austin, Texas 78712, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| |
Collapse
|
14
|
Beng TK, Kaur J, Anosike IS, Rentfro B, Newgard S. Revisiting the 1,3-azadiene-succinic anhydride annulation reaction for the stereocontrolled synthesis of allylic 2-oxopyrrolidines bearing up to four contiguous stereocenters. RSC Adv 2024; 14:16678-16684. [PMID: 38784414 PMCID: PMC11110166 DOI: 10.1039/d4ra03156c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Polysubstituted 2-oxopyrrolidines bearing at least two contiguous stereocenters constitute the core of several pharmaceuticals, including clausenamide (antidementia). Here, we describe a flexible annulation strategy, which unites succinic anhydride and 1,3-azadienes to produce allylic 2-oxopyrrolidines bearing contiguous stereocenters. The approach is chemoselective, efficient, modular, scalable, and diastereoselective. The scalable nature of the reactions offers the opportunity for post-diversification, leading to incorporation of motifs with either known pharmaceutical value or that permit subsequent conversion to medicinally relevant entities.
Collapse
Affiliation(s)
- Timothy K Beng
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Jasleen Kaur
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Ifeyinwa S Anosike
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Benjamin Rentfro
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Shae Newgard
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| |
Collapse
|
15
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 424] [Impact Index Per Article: 424.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Dalisay DS, Tenebro CP, Sabido EM, Suarez AFL, Paderog MJV, Reyes-Salarda R, Saludes JP. Marine-Derived Anticancer Agents Targeting Apoptotic Pathways: Exploring the Depths for Novel Cancer Therapies. Mar Drugs 2024; 22:114. [PMID: 38535455 PMCID: PMC10972102 DOI: 10.3390/md22030114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 04/13/2024] Open
Abstract
Extensive research has been conducted on the isolation and study of bioactive compounds derived from marine sources. Several natural products have demonstrated potential as inducers of apoptosis and are currently under investigation in clinical trials. These marine-derived compounds selectively interact with extrinsic and intrinsic apoptotic pathways using a variety of molecular mechanisms, resulting in cell shrinkage, chromatin condensation, cytoplasmic blebs, apoptotic bodies, and phagocytosis by adjacent parenchymal cells, neoplastic cells, or macrophages. Numerous marine-derived compounds are currently undergoing rigorous examination for their potential application in cancer therapy. This review examines a total of 21 marine-derived compounds, along with their synthetic derivatives, sourced from marine organisms such as sponges, corals, tunicates, mollusks, ascidians, algae, cyanobacteria, fungi, and actinobacteria. These compounds are currently undergoing preclinical and clinical trials to evaluate their potential as apoptosis inducers for the treatment of different types of cancer. This review further examined the compound's properties and mode of action, preclinical investigations, clinical trial studies on single or combination therapy, and the prospective development of marine-derived anticancer therapies.
Collapse
Affiliation(s)
- Doralyn S. Dalisay
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
| | - Chuckcris P. Tenebro
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Edna M. Sabido
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Angelica Faith L. Suarez
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
| | - Melissa June V. Paderog
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Pharmacy, University of San Agustin, Iloilo City 5000, Philippines
| | - Rikka Reyes-Salarda
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
| | - Jonel P. Saludes
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
- Department of Chemistry, University of San Agustin, Iloilo City 5000, Philippines
| |
Collapse
|
17
|
Fernandes PMP, Guedes RA, Victor BL, Salvador JAR, Guedes RC. Decoding the secrets: how conformational and structural regulators inhibit the human 20S proteasome. Front Chem 2024; 11:1322628. [PMID: 38260042 PMCID: PMC10801056 DOI: 10.3389/fchem.2023.1322628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Acquired resistance to drugs that modulate specific protein functions, such as the human proteasome, presents a significant challenge in targeted therapies. This underscores the importance of devising new methodologies to predict drug binding and potential resistance due to specific protein mutations. In this work, we conducted an extensive computational analysis to ascertain the effects of selected mutations (Ala49Thr, Ala50Val, and Cys52Phe) within the active site of the human proteasome. Specifically, we sought to understand how these mutations might disrupt protein function either by altering protein stability or by impeding interactions with a clinical administered drug. Leveraging molecular dynamics simulations and molecular docking calculations, we assessed the effect of these mutations on protein stability and ligand affinity. Notably, our results indicate that the Cys52Phe mutation critically impacts protein-ligand binding, providing valuable insights into potential proteasome inhibitor resistance.
Collapse
Affiliation(s)
- Pedro M. P. Fernandes
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Romina A. Guedes
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Bruno L. Victor
- BioISI─Biosystems & Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, Lisboa, Portugal
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Rita C. Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
18
|
Gazzaroli G, Angeli A, Giacomini A, Ronca R. Proteasome inhibitors as anticancer agents. Expert Opin Ther Pat 2023; 33:775-796. [PMID: 37847492 DOI: 10.1080/13543776.2023.2272648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION The therapeutic targeting of the ubiquitin-proteasome pathway (UPP) through inhibitors of the 20S proteasome core proteolytic activities has revolutionized the treatment of hematological malignancies and is paving the way for its extension to solid tumors. AREAS COVERED This review covers the progress made in the field of proteasome inhibitors, ranging from the first-generation bortezomib to the latest second-generation inhibitors such as carfilzomib and ixazomib as well as the proteasome inhibitors in clinical phase such as oprozomib and marizomib. The development of selective and potent proteasome inhibitors with improved pharmacological properties is described from the synthesis to their basic biological, and clinical validation. EXPERT OPINION Proteasome inhibitors have transformed the treatment landscape for hematological malignancies and hold great promise for cancer therapy. Combination therapies targeting multiple pathways, the development of novel inhibitors or 'hybrid-inhibitors,' and the optimization of treatment protocols are key areas for future exploration. The extension of proteasome inhibitors for the treatment of solid tumors, and their ability to pass the blood-brain barrier open new possibilities for treating central nervous system cancers. However, managing adverse effects, particularly those affecting the central nervous system, remains a critical consideration and a strategic 'working on' aspect for the near future.
Collapse
Affiliation(s)
- Giorgia Gazzaroli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Andrea Angeli
- Neurofarba Department, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
19
|
Ochiai M, Fierstein S, XsSali F, DeVito N, Purkey LR, May R, Correa-Medina A, Kelley M, Page TD, DeCicco-Skinner K. Unlocking Drug Resistance in Multiple Myeloma: Adipocytes as Modulators of Treatment Response. Cancers (Basel) 2023; 15:4347. [PMID: 37686623 PMCID: PMC10486466 DOI: 10.3390/cancers15174347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Multiple myeloma (MM) is an incurable hematological malignancy characterized by the clonal proliferation of malignant plasma cells. Despite the development of a diverse array of targeted drug therapies over the last decade, patients often relapse and develop refractory disease due to multidrug resistance. Obesity is a growing public health threat and a risk factor for multiple myeloma, although the mechanisms by which obesity contributes to MM growth and progression have not been fully elucidated. In the present study, we evaluated whether crosstalk between adipocytes and MM cells promoted drug resistance and whether this was amplified by obesity. Human adipose-derived stem cells (ASCs) from nineteen normal (BMI = 20-25 kg/m2), overweight (25-30 kg/m2), or obese (30-35 kg/m2) patients undergoing elective liposuction were utilized. Cells were differentiated into adipocytes, co-cultured with RPMI 8226 or U266B1 multiple myeloma cell lines, and treated with standard MM therapies, including bortezomib or a triple combination of bortezomib, dexamethasone, and lenalidomide. We found that adipocytes from overweight and obese individuals increased cell adhesion-mediated drug resistance (CAM-DR) survival signals in MM cells, and P-glycoprotein (P-gp) and multidrug resistance-associated protein (MRP) drug transporter expression. Further, co-culture enhanced in vitro angiogenesis, MMP-2 activity, and protected MM cells from drug-induced decreases in viability. In summary, we provide an underlying mechanism by which obesity can impair the drug response to MM and allow for recurrence and/or disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kathleen DeCicco-Skinner
- Department of Biology, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA
| |
Collapse
|
20
|
Do M, Anosike SI, Beng TK. Diastereospecific arylation and cascade deconstructive amidation/thioesterification of readily available lactam-fused bromolactones. RSC Adv 2023; 13:25691-25698. [PMID: 37649665 PMCID: PMC10463012 DOI: 10.1039/d3ra04690g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
An intrinsic goal when designing synthetic methodology is to identify approaches whereby readily accessible precursors are converted into an array of products, which efficiently tap into new 3D-chemical space. In these studies, readily available bicyclic lactam-bromolactones have been interrogated in several fragment growth protocols by utilizing the halogen and lactone motifs as versatile linchpins for strategic construction of C-C, C-N, C-O, and C-S bonds. Diastereospecific C(sp3)-C(sp2) Kumada coupling of sterically imposing [5,5]-bicyclic lactam-bromolactones with several aryl Grignard reagents, under palladium catalysis, furnishes diarylmethane-tethered lactam-lactones in synthetically attractive yields, stereoinvertive fashion, and with a tolerance for many functional groups. When [5,6]-bicyclic lactam-bromolactones, which are prone to β-hydride elimination are employed, efficient arylation is observed only under Co(acac)3-catalyzed conditions. Importantly, these [5,6]-bicyclic lactam-bromolactones undergo retentive arylation, independent of the transition metal catalyst. A base-mediated cascade deconstructive amidation of the [5,6]-bicyclic lactam-bromolactones with primary aliphatic amines proceeds efficiently to afford epoxide-tethered lactam carboxamides, which bear four contiguous stereocenters. Furthermore, an unusual route to homoallylic thioesters has been uncovered through deconstructive contra-thermodynamic thioesterification of the lactam-fused bromolactone precursors.
Collapse
Affiliation(s)
- Minh Do
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Stella I Anosike
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Timothy K Beng
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| |
Collapse
|
21
|
Guedes RA, Grilo JH, Carvalho AN, Fernandes PMP, Ressurreição AS, Brito V, Santos AO, Silvestre S, Gallerani E, Gama MJ, Gavioli R, Salvador JAR, Guedes RC. New Scaffolds of Proteasome Inhibitors: Boosting Anticancer Potential by Exploiting the Synergy of In Silico and In Vitro Methodologies. Pharmaceuticals (Basel) 2023; 16:1096. [PMID: 37631011 PMCID: PMC10458307 DOI: 10.3390/ph16081096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is a complex multifactorial disease whose pathophysiology involves multiple metabolic pathways, including the ubiquitin-proteasome system, for which several proteasome inhibitors have already been approved for clinical use. However, the resistance to existing therapies and the occurrence of severe adverse effects is still a concern. The purpose of this study was the discovery of novel scaffolds of proteasome inhibitors with anticancer activity, aiming to overcome the limitations of the existing proteasome inhibitors. Thus, a structure-based virtual screening protocol was developed using the structure of the human 20S proteasome, and 246 compounds from virtual databases were selected for in vitro evaluation, namely proteasome inhibition assays and cell viability assays. Compound 4 (JHG58) was shortlisted as the best hit compound based on its potential in terms of proteasome inhibitory activity and its ability to induce cell death (both with IC50 values in the low micromolar range). Molecular docking studies revealed that compound 4 interacts with key residues, namely with the catalytic Thr1, Ala20, Thr21, Lys33, and Asp125 at the chymotrypsin-like catalytic active site. The hit compound is a good candidate for additional optimization through a hit-to-lead campaign.
Collapse
Affiliation(s)
- Romina A. Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal or (R.A.G.); (J.H.G.); (A.N.C.); (P.M.P.F.); (A.S.R.); (M.J.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Jorge H. Grilo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal or (R.A.G.); (J.H.G.); (A.N.C.); (P.M.P.F.); (A.S.R.); (M.J.G.)
| | - Andreia N. Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal or (R.A.G.); (J.H.G.); (A.N.C.); (P.M.P.F.); (A.S.R.); (M.J.G.)
| | - Pedro M. P. Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal or (R.A.G.); (J.H.G.); (A.N.C.); (P.M.P.F.); (A.S.R.); (M.J.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana S. Ressurreição
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal or (R.A.G.); (J.H.G.); (A.N.C.); (P.M.P.F.); (A.S.R.); (M.J.G.)
| | - Vanessa Brito
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal; (V.B.); (A.O.S.); (S.S.)
| | - Adriana O. Santos
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal; (V.B.); (A.O.S.); (S.S.)
| | - Samuel Silvestre
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal; (V.B.); (A.O.S.); (S.S.)
| | - Eleonora Gallerani
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Maria João Gama
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal or (R.A.G.); (J.H.G.); (A.N.C.); (P.M.P.F.); (A.S.R.); (M.J.G.)
| | - Riccardo Gavioli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Jorge A. R. Salvador
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Rita C. Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal or (R.A.G.); (J.H.G.); (A.N.C.); (P.M.P.F.); (A.S.R.); (M.J.G.)
| |
Collapse
|
22
|
Wen T, Geng M, Bai E, Wang X, Miao H, Chen Z, Zhou H, Wang J, Shi J, Zhang Y, Lei M, Zhu Y. KPT-330 and Y219 exert a synergistic antitumor effect in triple-negative breast cancer through inhibiting NF-κB signaling. FEBS Open Bio 2023; 13:751-762. [PMID: 36847599 PMCID: PMC10068319 DOI: 10.1002/2211-5463.13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/09/2023] [Accepted: 02/24/2023] [Indexed: 03/01/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype, which has poor prognosis due to the lack of effective targeted drugs. KPT-330, an inhibitor of the nuclear export protein CRM-1, has been widely used in clinical medicine. Y219, a novel proteasome inhibitor designed by our group, shows superior efficacy, reduced toxicity, and reduced off-target effects as compared to the proteasome inhibitor bortezomib. In this study, we investigated the synergistic effect of KPT-330 and Y219 against TNBC cells, as well as the underlying mechanisms. We report that combination treatment with KPT-330 and Y219 synergistically inhibited the viability of TNBC cells in vitro and in vivo. Further analysis revealed that the combined use of KPT-330 and Y219 induced G2-M phase arrest and apoptosis in TNBC cells, and attenuated nuclear factor kappa B (NF-κB) signaling by facilitating nuclear localization of IκB-α. Collectively, these results suggest that the combined use of KPT-330 and Y219 may be an effective therapeutic strategy for the treatment of TNBC.
Collapse
Affiliation(s)
- Tiantian Wen
- College of Life Science, Nanjing Normal University, China
| | - Mengzhu Geng
- College of Life Science, Nanjing Normal University, China
| | - Enhe Bai
- College of Life Science, Nanjing Normal University, China
| | - Xueyuan Wang
- College of Life Science, Nanjing Normal University, China
| | - Hang Miao
- College of Science, Nanjing Forestry University, China
| | - Zhimeng Chen
- College of Science, Nanjing Forestry University, China
| | - Hui Zhou
- College of Life Science, Nanjing Normal University, China
| | - Jia Wang
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing, China
| | - Jingmiao Shi
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing, China
| | - Yin Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, China
| | - Meng Lei
- College of Science, Nanjing Forestry University, China
| | - Yongqiang Zhu
- College of Life Science, Nanjing Normal University, China
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, China
| |
Collapse
|
23
|
Mir RH, Mir PA, Uppal J, Chawla A, Patel M, Bardakci F, Adnan M, Mohi-ud-din R. Evolution of Natural Product Scaffolds as Potential Proteasome Inhibitors in Developing Cancer Therapeutics. Metabolites 2023; 13:metabo13040509. [PMID: 37110167 PMCID: PMC10142660 DOI: 10.3390/metabo13040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Homeostasis between protein synthesis and degradation is a critical biological function involving a lot of precise and intricate regulatory systems. The ubiquitin-proteasome pathway (UPP) is a large, multi-protease complex that degrades most intracellular proteins and accounts for about 80% of cellular protein degradation. The proteasome, a massive multi-catalytic proteinase complex that plays a substantial role in protein processing, has been shown to have a wide range of catalytic activity and is at the center of this eukaryotic protein breakdown mechanism. As cancer cells overexpress proteins that induce cell proliferation, while blocking cell death pathways, UPP inhibition has been used as an anticancer therapy to change the balance between protein production and degradation towards cell death. Natural products have a long history of being used to prevent and treat various illnesses. Modern research has shown that the pharmacological actions of several natural products are involved in the engagement of UPP. Over the past few years, numerous natural compounds have been found that target the UPP pathway. These molecules could lead to the clinical development of novel and potent anticancer medications to combat the onslaught of adverse effects and resistance mechanisms caused by already approved proteasome inhibitors. In this review, we report the importance of UPP in anticancer therapy and the regulatory effects of diverse natural metabolites, their semi-synthetic analogs, and SAR studies on proteasome components, which may aid in discovering a new proteasome regulator for drug development and clinical applications.
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Prince Ahad Mir
- Khalsa College of Pharmacy, G.T. Road, Amritsar 143001, Punjab, India
| | - Jasreen Uppal
- Khalsa College of Pharmacy, G.T. Road, Amritsar 143001, Punjab, India
| | - Apporva Chawla
- Khalsa College of Pharmacy, G.T. Road, Amritsar 143001, Punjab, India
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, Gujarat, India
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Roohi Mohi-ud-din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar 190001, Jammu and Kashmir, India
| |
Collapse
|
24
|
Exploring the Past, Present, and Future of Anti-Angiogenic Therapy in Glioblastoma. Cancers (Basel) 2023; 15:cancers15030830. [PMID: 36765787 PMCID: PMC9913517 DOI: 10.3390/cancers15030830] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Glioblastoma, a WHO grade IV astrocytoma, constitutes approximately half of malignant tumors of the central nervous system. Despite technological advancements and aggressive multimodal treatment, prognosis remains dismal. The highly vascularized nature of glioblastoma enables the tumor cells to grow and invade the surrounding tissue, and vascular endothelial growth factor-A (VEGF-A) is a critical mediator of this process. Therefore, over the past decade, angiogenesis, and more specifically, the VEGF signaling pathway, has emerged as a therapeutic target for glioblastoma therapy. This led to the FDA approval of bevacizumab, a monoclonal antibody designed against VEGF-A, for treatment of recurrent glioblastoma. Despite the promising preclinical data and its theoretical effectiveness, bevacizumab has failed to improve patients' overall survival. Furthermore, several other anti-angiogenic agents that target the VEGF signaling pathway have also not demonstrated survival improvement. This suggests the presence of other compensatory angiogenic signaling pathways that surpass the anti-angiogenic effects of these agents and facilitate vascularization despite ongoing VEGF signaling inhibition. Herein, we review the current state of anti-angiogenic agents, discuss potential mechanisms of anti-angiogenic resistance, and suggest potential avenues to increase the efficacy of this therapeutic approach.
Collapse
|
25
|
Patrad E, Khalighfard S, Amiriani T, Khori V, Alizadeh AM. Molecular mechanisms underlying the action of carcinogens in gastric cancer with a glimpse into targeted therapy. Cell Oncol 2022; 45:1073-1117. [PMID: 36149600 DOI: 10.1007/s13402-022-00715-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer imposes a substantial global health burden despite its overall incidence decrease. A broad spectrum of inherited, environmental and infectious factors contributes to the development of gastric cancer. A profound understanding of the molecular underpinnings of gastric cancer has lagged compared to several other tumors with similar incidence and morbidity rates, owing to our limited knowledge of the role of carcinogens in this malignancy. The International Agency for Research on Cancer (IARC) has classified gastric carcinogenic agents into four groups based on scientific evidence from human and experimental animal studies. This review aims to explore the potential comprehensive molecular and biological impacts of carcinogens on gastric cancer development and their interactions and interferences with various cellular signaling pathways. CONCLUSIONS In this review, we highlight recent clinical trial data reported in the literature dealing with different ways to target various carcinogens in gastric cancer. Moreover, we touch upon other multidisciplinary therapeutic approaches such as surgery, adjuvant and neoadjuvant chemotherapy. Rational clinical trials focusing on identifying suitable patient populations are imperative to the success of single-agent therapeutics. Novel insights regarding signaling pathways that regulate gastric cancer can potentially improve treatment responses to targeted therapy alone or in combination with other/conventional treatments. Preventive strategies such as control of H. pylori infection through eradication or immunization as well as dietary habit and lifestyle changes may reduce the incidence of this multifactorial disease, especially in high prevalence areas. Further in-depth understanding of the molecular mechanisms involved in the role of carcinogenic agents in gastric cancer development may offer valuable information and update state-of-the-art resources for physicians and researchers to explore novel ways to combat this disease, from bench to bedside. A schematic outlining of the interaction between gastric carcinogenic agents and intracellular pathways in gastric cancer H. pylori stimulates multiple intracellular pathways, including PI3K/AKT, NF-κB, Wnt, Shh, Ras/Raf, c-MET, and JAK/STAT, leading to epithelial cell proliferation and differentiation, apoptosis, survival, motility, and inflammatory cytokine release. EBV can stimulate intracellular pathways such as the PI3K/Akt, RAS/RAF, JAK/STAT, Notch, TGF-β, and NF-κB, leading to cell survival and motility, proliferation, invasion, metastasis, and the transcription of anti-apoptotic genes and pro-inflammatory cytokines. Nicotine and alcohol can lead to angiogenesis, metastasis, survival, proliferation, pro-inflammatory, migration, and chemotactic by stimulating various intracellular signaling pathways such as PI3K/AKT, NF-κB, Ras/Raf, ROS, and JAK/STAT. Processed meat contains numerous carcinogenic compounds that affect multiple intracellular pathways such as sGC/cGMP, p38 MAPK, ERK, and PI3K/AKT, leading to anti-apoptosis, angiogenesis, metastasis, inflammatory responses, proliferation, and invasion. Lead compounds may interact with multiple signaling pathways such as PI3K/AKT, NF-κB, Ras/Raf, DNA methylation-dependent, and epigenetic-dependent, leading to tumorigenesis, carcinogenesis, malignancy, angiogenesis, DNA hypermethylation, cell survival, and cell proliferation. Stimulating signaling pathways such as PI3K/Akt, RAS/RAF, JAK/STAT, WNT, TGF-β, EGF, FGFR2, and E-cadherin through UV ionizing radiation leads to cell survival, proliferation, and immortalization in gastric cancer. The consequence of PI3K/AKT, NF-κB, Ras/Raf, ROS, JAK/STAT, and WNT signaling stimulation by the carcinogenic component of Pickled vegetables and salted fish is the Warburg effect, tumorigenesis, angiogenesis, proliferation, inflammatory response, and migration.
Collapse
Affiliation(s)
- Elham Patrad
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Khalighfard
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Taghi Amiriani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Breast Disease Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Liu Y, Zhang H, Xiao H, Li Y, Liu Y. Expression, purification and structure determination of the chlorinase ClA2. Biochem Biophys Res Commun 2022; 628:64-67. [DOI: 10.1016/j.bbrc.2022.08.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
|
27
|
Kolobynina KG, Rapp A, Cardoso MC. Chromatin Ubiquitination Guides DNA Double Strand Break Signaling and Repair. Front Cell Dev Biol 2022; 10:928113. [PMID: 35865631 PMCID: PMC9294282 DOI: 10.3389/fcell.2022.928113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatin is the context for all DNA-based molecular processes taking place in the cell nucleus. The initial chromatin structure at the site of the DNA damage determines both, lesion generation and subsequent activation of the DNA damage response (DDR) pathway. In turn, proceeding DDR changes the chromatin at the damaged site and across large fractions of the genome. Ubiquitination, besides phosphorylation and methylation, was characterized as an important chromatin post-translational modification (PTM) occurring at the DNA damage site and persisting during the duration of the DDR. Ubiquitination appears to function as a highly versatile “signal-response” network involving several types of players performing various functions. Here we discuss how ubiquitin modifiers fine-tune the DNA damage recognition and response and how the interaction with other chromatin modifications ensures cell survival.
Collapse
|
28
|
Evaluation of Proteasome Inhibitors in the Treatment of Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11091543. [PMID: 35563849 PMCID: PMC9099509 DOI: 10.3390/cells11091543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common form of idiopathic interstitial pneumonia, and it has a worse prognosis than non-small cell lung cancer. The pathomechanism of IPF is not fully understood, but it has been suggested that repeated microinjuries of epithelial cells induce a wound healing response, during which fibroblasts differentiate into myofibroblasts. These activated myofibroblasts express α smooth muscle actin and release extracellular matrix to promote matrix deposition and tissue remodeling. Under physiological conditions, the remodeling process stops once wound healing is complete. However, in the lungs of IPF patients, myofibroblasts re-main active and deposit excess extracellular matrix. This leads to the destruction of alveolar tissue, the loss of lung elastic recoil, and a rapid decrease in lung function. Some evidence has indicated that proteasomal inhibition combats fibrosis by inhibiting the expressions of extracellular matrix proteins and metalloproteinases. However, the mechanisms by which proteasome inhibitors may protect against fibrosis are not known. This review summarizes the current research on proteasome inhibitors for pulmonary fibrosis, and provides a reference for whether proteasome inhibitors have the potential to become new drugs for the treatment of pulmonary fibrosis.
Collapse
|
29
|
Mercier R, LaPointe P. The role of cellular proteostasis in anti-tumor immunity. J Biol Chem 2022; 298:101930. [PMID: 35421375 PMCID: PMC9108985 DOI: 10.1016/j.jbc.2022.101930] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 12/25/2022] Open
Abstract
Immune checkpoint blockade therapy is perhaps the most important development in cancer treatment in recent memory. It is based on decades of investigation into the biology of immune cells and the role of the immune system in controlling cancer growth. While the molecular circuitry that governs the immune system in general - and anti-tumor immunity in particular - is intensely studied, far less attention has been paid to the role of cellular stress in this process. Proteostasis, intimately linked to cell stress responses, refers to the dynamic regulation of the cellular proteome and is maintained through a complex network of systems that govern the synthesis, folding, and degradation of proteins in the cell. Disruption of these systems can result in the loss of protein function, altered protein function, the formation of toxic aggregates, or pathologies associated with cell stress. However, the importance of proteostasis extends beyond its role in maintaining proper protein function; proteostasis governs how tolerant cells may be to mutations in protein coding genes and the overall half-life of proteins. Such gene expression changes may be associated with human diseases including neurodegenerative diseases, metabolic disease, and cancer and manifest at the protein level against the backdrop of the proteostasis network in any given cellular environment. In this review, we focus on the role of proteostasis in regulating immune responses against cancer as well the role of proteostasis in determining immunogenicity of cancer cells.
Collapse
Affiliation(s)
- Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
30
|
Wang XJ, Cheng J, Zhang LY, Zhang JG. Self-assembling peptides-based nano-cargos for targeted chemotherapy and immunotherapy of tumors: recent developments, challenges, and future perspectives. Drug Deliv 2022; 29:1184-1200. [PMID: 35403517 PMCID: PMC9004497 DOI: 10.1080/10717544.2022.2058647] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Xue-Jun Wang
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Jian Cheng
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital of Hangzhou Medical College), Hangzhou, China
| | - Le-Yi Zhang
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Jun-Gang Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital of Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
31
|
Zhou L. Caspase-8: Friend or Foe in Bortezomib/Lenalidomide-Based Therapy for Myeloma. Front Oncol 2022; 12:861709. [PMID: 35321428 PMCID: PMC8936587 DOI: 10.3389/fonc.2022.861709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 11/21/2022] Open
Abstract
Antiproliferation and proapoptosis are two major molecular mechanisms of action of drugs used for the treatment of multiple myeloma. Proteasome inhibitors, such as bortezomib (PS-341), and immunomodulatory drugs (IMiDs), such as lenalidomide, are the two drug types approved for the treatment of myeloma. Bortezomib and lenalidomide activate caspase-8 and promote the apoptosis of myeloma cells. However, caspase-8 inhibition potentiated the antiproliferative effect of lenalidomide and bortezomib in myeloma cells, suggesting that caspase-8 could regulate proliferation and apoptosis in the opposite pathway. In this mini-review, I summarized recent advances in determining the molecular mechanisms of caspase-8 in bortezomib–lenalidomide-based therapy for myeloma and explored the possible functions of caspase-8 in the proliferation and apoptosis of myeloma cells. Furthermore, future directions of caspase-8-based therapy for myeloma have been discussed.
Collapse
Affiliation(s)
- Liang Zhou
- *Correspondence: Liang Zhou, ; orcid.org/0000-0003-0820-1520
| |
Collapse
|
32
|
Bhatia S, Makkar R, Behl T, Sehgal A, Singh S, Rachamalla M, Mani V, Iqbal MS, Bungau SG. Biotechnological Innovations from Ocean: Transpiring Role of Marine Drugs in Management of Chronic Disorders. Molecules 2022; 27:1539. [PMID: 35268639 PMCID: PMC8911953 DOI: 10.3390/molecules27051539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Marine drugs are abundant in number, comprise of a diverse range of structures with corresponding mechanisms of action, and hold promise for the discovery of new and better treatment approaches for the management of several chronic diseases. There are huge reserves of natural marine biological compounds, as 70 percent of the Earth is covered with oceans, indicating a diversity of chemical entities on the planet. The marine ecosystems are a rich source of bioactive products and have been explored for lead drug molecules that have proven to be novel therapeutic targets. Over the last 70 years, many structurally diverse drug products and their secondary metabolites have been isolated from marine sources. The drugs obtained from marine sources have displayed an exceptional potential in the management of a wide array of diseases, ranging from acute to chronic conditions. A beneficial role of marine drugs in human health has been recently proposed. The current review highlights various marine drugs and their compounds and role in the management of chronic diseases such as cancer, diabetes, neurodegenerative diseases, and cardiovascular disorders, which has led to the development of new drug treatment approaches.
Collapse
Affiliation(s)
- Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz 616, Nizwa P.O. Box 33, Oman;
- School of Health Science, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Rashita Makkar
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, India; (R.M.); (A.S.); (S.S.)
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, India; (R.M.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, India; (R.M.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, India; (R.M.); (A.S.); (S.S.)
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada;
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
33
|
Targeted inhibition of the immunoproteasome blocks endothelial MHC class II antigen presentation to CD4 + T cells in chronic liver injury. Int Immunopharmacol 2022; 107:108639. [PMID: 35219165 DOI: 10.1016/j.intimp.2022.108639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023]
Abstract
Chronic or overwhelming liver injury is frequently associated with fibrosis, which is the main histological characteristic of non-alcoholic steatohepatitis (NASH). Currently, there is no effective treatment for liver fibrosis. Adaptive immunity is one of the perpetrators of liver inflammation and involves the antigen-specific activation of lymphocytes. Targeting adaptive immunity has been proposed as a novel therapeutic approach for NASH. In this study, we demonstrated that liver endothelial cells contribute to MHC class II (MHC-II) antigen presentation to CD4+ T cells after chronic liver injury. In human cirrhotic liver samples, we observed an increased expression of endothelial MHC-II and of the antigen presentation-associated protein LMP7, which is one of the proteolytically active subunits of the immunoproteasome. In a CCl4-induced chronic injury model or a diet- and chemical-induced NASH model, endothelial MHC-II and LMP7 expression was induced to increase. PR-957, a selective inhibitor of the immunoproteasome, inhibited MHC-II expression in endothelial cells and CD4+ T cell response after chronic liver injury. In vitro experiment demonstrated PR-957 also reversed IFN-γ-induced upregulation of MHC-II in endothelial cells. Furthermore, PR-957 treatment or CD4+ T cell depletion in chronic liver injury alleviated liver fibrosis and reduced inflammation, as indicated by the downregulation of inflammatory response markers (F4/80, IL-1, IL-6 and IL-18). In conclusion, targeted inhibition of the immunoproteasome blocks endothelial MHC-II antigen presentation to CD4+ T cells in chronic liver injury. In this regard, the PR-957 inhibitor is a promising candidate for the development of future therapies against NASH.
Collapse
|
34
|
Wang F, Ning S, Yu B, Wang Y. USP14: Structure, Function, and Target Inhibition. Front Pharmacol 2022; 12:801328. [PMID: 35069211 PMCID: PMC8766727 DOI: 10.3389/fphar.2021.801328] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
Ubiquitin-specific protease 14 (USP14), a deubiquitinating enzyme (DUB), is associated with proteasomes and exerts a dual function in regulating protein degradation. USP14 protects protein substrates from degradation by removing ubiquitin chains from proteasome-bound substrates, whereas promotes protein degradation by activating the proteasome. Increasing evidence have shown that USP14 is involved in several canonical signaling pathways, correlating with cancer, neurodegenerative diseases, autophagy, immune responses, and viral infections. The activity of USP14 is tightly regulated to ensure its function in various cellular processes. Structural studies have demonstrated that free USP14 exists in an autoinhibited state with two surface loops, BL1 and BL2, partially hovering above and blocking the active site cleft binding to the C-terminus of ubiquitin. Hence, both proteasome-bound and phosphorylated forms of USP14 require the induction of conformational changes in the BL2 loop to activate its deubiquitinating function. Due to its intriguing roles in the stabilization of disease-causing proteins and oncology targets, USP14 has garnered widespread interest as a therapeutic target. In recent years, significant progress has been made on identifying inhibitors targeting USP14, despite the complexity and challenges in improving their selectivity and affinity for USP14. In particular, the crystal structures of USP14 complexed with IU1-series inhibitors revealed the underlying allosteric regulatory mechanism and enabled the further design of potent inhibitors. In this review, we summarize the current knowledge regarding the structure, regulation, pathophysiological function, and selective inhibition of USP14, including disease associations and inhibitor development.
Collapse
Affiliation(s)
| | | | | | - Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
35
|
Killing by Degradation: Regulation of Apoptosis by the Ubiquitin-Proteasome-System. Cells 2021; 10:cells10123465. [PMID: 34943974 PMCID: PMC8700063 DOI: 10.3390/cells10123465] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is a cell suicide process that is essential for development, tissue homeostasis and human health. Impaired apoptosis is associated with a variety of human diseases, including neurodegenerative disorders, autoimmunity and cancer. As the levels of pro- and anti-apoptotic proteins can determine the life or death of cells, tight regulation of these proteins is critical. The ubiquitin proteasome system (UPS) is essential for maintaining protein turnover, which can either trigger or inhibit apoptosis. In this review, we will describe the E3 ligases that regulate the levels of pro- and anti-apoptotic proteins and assisting proteins that regulate the levels of these E3 ligases. We will provide examples of apoptotic cell death modulations using the UPS, determined by positive and negative feedback loop reactions. Specifically, we will review how the stability of p53, Bcl-2 family members and IAPs (Inhibitor of Apoptosis proteins) are regulated upon initiation of apoptosis. As increased levels of oncogenes and decreased levels of tumor suppressor proteins can promote tumorigenesis, targeting these pathways offers opportunities to develop novel anti-cancer therapies, which act by recruiting the UPS for the effective and selective killing of cancer cells.
Collapse
|
36
|
Moscvin M, Ho M, Bianchi G. Overcoming drug resistance by targeting protein homeostasis in multiple myeloma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:1028-1046. [PMID: 35265794 PMCID: PMC8903187 DOI: 10.20517/cdr.2021.93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Multiple myeloma (MM) is a plasma cell disorder typically characterized by abundant synthesis of clonal immunoglobulin or free light chains. Although incurable, a deeper understanding of MM pathobiology has fueled major therapeutical advances over the past two decades, significantly improving patient outcomes. Proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies are among the most effective anti-MM drugs, targeting not only the cancerous cells, but also the bone marrow microenvironment. However, de novo resistance has been reported, and acquired resistance is inevitable for most patients over time, leading to relapsed/refractory disease and poor outcomes. Sustained protein synthesis coupled with impaired/insufficient proteolytic mechanisms makes MM cells exquisitely sensitive to perturbations in protein homeostasis, offering us the opportunity to target this intrinsic vulnerability for therapeutic purposes. This review highlights the scientific rationale for the clinical use of FDA-approved and investigational agents targeting protein homeostasis in MM.
Collapse
Affiliation(s)
- Maria Moscvin
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Matthew Ho
- Department of Medicine, Mayo Clinic, Rochester, MN 240010, USA
| | - Giada Bianchi
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
37
|
Zhou L, Huang X, Niesvizky R, Pu Z, Xu G. Caspase-8 Regulates the Antimyeloma Activity of Bortezomib and Lenalidomide. J Pharmacol Exp Ther 2021; 379:303-309. [PMID: 34588172 DOI: 10.1124/jpet.121.000818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
Proteasome inhibitors and immunomodulatory drugs (IMiDs) are two major types of drugs for the treatment of multiple myeloma. Although different combination therapies for myeloma have been developed and achieved high responsive rate, these strategies frequently result in drug resistance. Therefore, it is necessary to explore new molecular mechanisms and therapeutic approaches to fulfill this unmet medical need. Here, we find that proteasome inhibitor bortezomib (Btz) causes cereblon (CRBN) cleavage and that caspase-8 (CASP-8) is responsible for this cleavage. Either inhibition or genetic depletion of CASP-8 decreased the CRBN cleavage upon Btz treatment, which could potentiate the antimyeloma activity of IMiD lenalidomide (Len). This work suggests that administration of CASP-8 inhibitors might enhance the overall effectiveness of Btz/Len-based therapeutic treatment of patients with myeloma. SIGNIFICANCE STATEMENT: Caspase-8 activation upon bortezomib treatment results in the cleavage of cereblon, a substrate receptor of the cullin-4 RING E3 ligase, which is responsible for the degradation of two transcription factors, Ikaros family zinc finger protein (IKZF) 1 and IKZF3, in the presence of immunomodulatory drugs including lenalidomide. The administration of caspase-8 inhibitor may enhance the antimyeloma activity of the combination therapy with bortezomib and lenalidomide.
Collapse
Affiliation(s)
- Liang Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, China (L.Z., G.X.); Department of Pathology and Laboratory Medicine (X.H.) and Department of Medicine (R.N.), Weill Cornell Medicine, New York, New York; Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China (Z.P.)
| | - Xiangao Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, China (L.Z., G.X.); Department of Pathology and Laboratory Medicine (X.H.) and Department of Medicine (R.N.), Weill Cornell Medicine, New York, New York; Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China (Z.P.)
| | - Ruben Niesvizky
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, China (L.Z., G.X.); Department of Pathology and Laboratory Medicine (X.H.) and Department of Medicine (R.N.), Weill Cornell Medicine, New York, New York; Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China (Z.P.)
| | - Zhongjian Pu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, China (L.Z., G.X.); Department of Pathology and Laboratory Medicine (X.H.) and Department of Medicine (R.N.), Weill Cornell Medicine, New York, New York; Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China (Z.P.)
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, China (L.Z., G.X.); Department of Pathology and Laboratory Medicine (X.H.) and Department of Medicine (R.N.), Weill Cornell Medicine, New York, New York; Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China (Z.P.)
| |
Collapse
|
38
|
Metabolomics Tools Assisting Classic Screening Methods in Discovering New Antibiotics from Mangrove Actinomycetia in Leizhou Peninsula. Mar Drugs 2021; 19:md19120688. [PMID: 34940687 PMCID: PMC8707991 DOI: 10.3390/md19120688] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 12/22/2022] Open
Abstract
Mangrove actinomycetia are considered one of the promising sources for discovering novel biologically active compounds. Traditional bioactivity- and/or taxonomy-based methods are inefficient and usually result in the re-discovery of known metabolites. Thus, improving selection efficiency among strain candidates is of interest especially in the early stage of the antibiotic discovery program. In this study, an integrated strategy of combining phylogenetic data and bioactivity tests with a metabolomics-based dereplication approach was applied to fast track the selection process. A total of 521 actinomycetial strains affiliated to 40 genera in 23 families were isolated from 13 different mangrove soil samples by the culture-dependent method. A total of 179 strains affiliated to 40 different genera with a unique colony morphology were selected to evaluate antibacterial activity against 12 indicator bacteria. Of the 179 tested isolates, 47 showed activities against at least one of the tested pathogens. Analysis of 23 out of 47 active isolates using UPLC-HRMS-PCA revealed six outliers. Further analysis using the OPLS-DA model identified five compounds from two outliers contributing to the bioactivity against drug-sensitive A. baumannii. Molecular networking was used to determine the relationship of significant metabolites in six outliers and to find their potentially new congeners. Finally, two Streptomyces strains (M22, H37) producing potentially new compounds were rapidly prioritized on the basis of their distinct chemistry profiles, dereplication results, and antibacterial activities, as well as taxonomical information. Two new trioxacarcins with keto-reduced trioxacarcinose B, gutingimycin B (16) and trioxacarcin G (20), together with known gutingimycin (12), were isolated from the scale-up fermentation broth of Streptomyces sp. M22. Our study demonstrated that metabolomics tools could greatly assist classic antibiotic discovery methods in strain prioritization to improve efficiency in discovering novel antibiotics from those highly productive and rich diversity ecosystems.
Collapse
|
39
|
Hommen F, Bilican S, Vilchez D. Protein clearance strategies for disease intervention. J Neural Transm (Vienna) 2021; 129:141-172. [PMID: 34689261 PMCID: PMC8541819 DOI: 10.1007/s00702-021-02431-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023]
Abstract
Protein homeostasis, or proteostasis, is essential for cell function and viability. Unwanted, damaged, misfolded and aggregated proteins are degraded by the ubiquitin–proteasome system (UPS) and the autophagy-lysosome pathway. Growing evidence indicates that alterations in these major proteolytic mechanisms lead to a demise in proteostasis, contributing to the onset and development of distinct diseases. Indeed, dysregulation of the UPS or autophagy is linked to several neurodegenerative, infectious and inflammatory disorders as well as cancer. Thus, modulation of protein clearance pathways is a promising approach for therapeutics. In this review, we discuss recent findings and open questions on how targeting proteolytic mechanisms could be applied for disease intervention.
Collapse
Affiliation(s)
- Franziska Hommen
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - Saygın Bilican
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany. .,Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
40
|
Seyed MA, Ayesha S. Marine-derived pipeline anticancer natural products: a review of their pharmacotherapeutic potential and molecular mechanisms. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00350-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Cancer is a complex and most widespread disease and its prevalence is increasing worldwide, more in countries that are witnessing urbanization and rapid industrialization changes. Although tremendous progress has been made, the interest in targeting cancer has grown rapidly every year. This review underscores the importance of preventive and therapeutic strategies.
Main text
Natural products (NPs) from various sources including plants have always played a crucial role in cancer treatment. In this growing list, numerous unique secondary metabolites from marine sources have added and gaining attention and became potential players in drug discovery and development for various biomedical applications. Many NPs found in nature that normally contain both pharmacological and biological activity employed in pharmaceutical industry predominantly in anticancer pharmaceuticals because of their enormous range of structure entities with unique functional groups that attract and inspire for the creation of several new drug leads through synthetic chemistry. Although terrestrial medicinal plants have been the focus for the development of NPs, however, in the last three decades, marine origins that include invertebrates, plants, algae, and bacteria have unearthed numerous novel pharmaceutical compounds, generally referred as marine NPs and are evolving continuously as discipline in the molecular targeted drug discovery with the inclusion of advanced screening tools which revolutionized and became the component of antitumor modern research.
Conclusions
This comprehensive review summarizes some important and interesting pipeline marine NPs such as Salinosporamide A, Dolastatin derivatives, Aplidine/plitidepsin (Aplidin®) and Coibamide A, their anticancer properties and describes their mechanisms of action (MoA) with their efficacy and clinical potential as they have attracted interest for potential use in the treatment of various types of cancers.
Collapse
|
41
|
Advances in the Treatment of Relapsed and Refractory Multiple Myeloma in Patients with Renal Insufficiency: Novel Agents, Immunotherapies and Beyond. Cancers (Basel) 2021; 13:cancers13205036. [PMID: 34680184 PMCID: PMC8533858 DOI: 10.3390/cancers13205036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Renal insufficiency is one of the most frequent complications in multiple myeloma. The incidence of renal insufficiency in patients with multiple myeloma ranges from 20% to 50%. Renal impairment in patients with multiple myeloma results primarily from the toxic effects of monoclonal light chains on the kidneys. Dehydration, hypercalcemia, hyperuricemia, the application of nephrotoxic NSARs, antibiotics, contrast agents, etc., all play a major role in the deterioration of renal function in patients with multiple myeloma. The diagnosis and treatment of these patients use an interdisciplinary approach in consultation with hematologist-oncologists, radiologists, nephrologists and intensive care specialists. Using new drugs in the treatment of patients with refractory/relapsed multiple myeloma and renal insufficiency markedly improves progression-free survival and overall survival in these patients. CONCLUSIONS New drugs have helped to widen the treatment options available for patients with renal impairment and refractory/relapsed multiple myeloma, since dose adjustments are unnecessary with carfilzomib as well as with panobinostat, elotuzumab, pomalidomide or daratumumab in patients with renal impairment. Several new substances for the treatment of refractory/relapsed multiple myeloma have been approved in the meantime, including belantamab mafodotin, selinexor, melflufen, venetoclax, CAR T-cell therapy and checkpoint inhibitors. Ongoing studies are investigating their administration in patients with renal impairment.
Collapse
|
42
|
Majhi S. Applications of ultrasound in total synthesis of bioactive natural products: A promising green tool. ULTRASONICS SONOCHEMISTRY 2021; 77:105665. [PMID: 34298310 PMCID: PMC8322467 DOI: 10.1016/j.ultsonch.2021.105665] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 05/04/2023]
Abstract
Total synthesisis frequently compared to climbing as it provides a suitable route to reach a high point from the floor, the complex natural product from simple and commercially available materials. The total synthesis has a privileged position of trust in confirming the hypothetical complex structures of natural products despite sophisticated analytical and spectroscopic instrumentation and techniques that are available presently. Moreover, total synthesis is also useful to prepare rare bioactive natural products in the laboratory as several bioactive secondary metabolites are obtained in small quantities from natural sources. The artistic aspect of the total synthesis of bioactive natural products continues to be praised today as it may provide environmental protection through the concept of green or clean chemistry. The use of ultrasound waves as a non-polluting source of energy is of great interest in the field of sustainable and pharmaceutical chemistry as it differs from conventional energy sources in terms of reaction rates, yields, selectivities, and purity of the products. The present review highlights the application of ultrasound as a green tool in the total synthesis of bioactive natural products as well as this article is also aimed to offer an overview of natural sources, structures, and biological activities of the promising natural products for the first time from 2005 to 2020 elegantly.
Collapse
Affiliation(s)
- Sasadhar Majhi
- Department of Chemistry (UG & PG), Triveni Devi Bhalotia College, Raniganj, West Bengal 713347, India.
| |
Collapse
|
43
|
Wu L, Ye K, Jiang S, Zhou G. Marine Power on Cancer: Drugs, Lead Compounds, and Mechanisms. Mar Drugs 2021; 19:md19090488. [PMID: 34564150 PMCID: PMC8472172 DOI: 10.3390/md19090488] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Worldwide, 19.3 million new cancer cases and almost 10.0 million cancer deaths occur each year. Recently, much attention has been paid to the ocean, the largest biosphere of the earth that harbors a great many different organisms and natural products, to identify novel drugs and drug candidates to fight against malignant neoplasms. The marine compounds show potent anticancer activity in vitro and in vivo, and relatively few drugs have been approved by the U.S. Food and Drug Administration for the treatment of metastatic malignant lymphoma, breast cancer, or Hodgkin's disease. This review provides a summary of the anticancer effects and mechanisms of action of selected marine compounds, including cytarabine, eribulin, marizomib, plitidepsin, trabectedin, zalypsis, adcetris, and OKI-179. The future development of anticancer marine drugs requires innovative biochemical biology approaches and introduction of novel therapeutic targets, as well as efficient isolation and synthesis of marine-derived natural compounds and derivatives.
Collapse
Affiliation(s)
- Lichuan Wu
- Medical College, Guangxi University, Nanning 530004, China;
| | - Ke Ye
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
| | - Sheng Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
- Correspondence: (S.J.); (G.Z.)
| | - Guangbiao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Correspondence: (S.J.); (G.Z.)
| |
Collapse
|
44
|
Penke LRK, Speth J, Wettlaufer S, Draijer C, Peters-Golden M. Bortezomib Inhibits Lung Fibrosis and Fibroblast Activation Without Proteasome Inhibition. Am J Respir Cell Mol Biol 2021; 66:23-37. [PMID: 34236953 DOI: 10.1165/rcmb.2021-0112oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The FDA-approved proteasomal inhibitor bortezomib (BTZ) has attracted interest for its potential anti-fibrotic actions. However, neither its in vivo efficacy in lung fibrosis nor its dependence on proteasome inhibition has been conclusively defined. In this study, we assessed the therapeutic efficacy of BTZ in a mouse model of pulmonary fibrosis, developed an in vitro protocol to define its actions on diverse fibroblast activation parameters, determined its reliance on proteasome inhibition for these actions in vivo and in vitro and explored alternative mechanisms of action. The therapeutic administration of BTZ diminished the severity of pulmonary fibrosis without reducing proteasome activity in the lung. In experiments designed to mimic this lack of proteasome inhibition in vitro, BTZ reduced fibroblast proliferation, differentiation into myofibroblasts, and collagen synthesis. It promoted de-differentiation of myofibroblasts and overcame their characteristic resistance to apoptosis. Mechanistically, BTZ inhibited kinases important for fibroblast activation while inducing expression of dual-specificity phosphatase 1 or DUSP1, and knockdown of DUSP1 abolished its anti-fibrotic actions in fibroblasts. Collectively, these findings suggest that BTZ exhibits a multidimensional profile of robust inhibitory actions on lung fibroblasts as well as anti-fibrotic actions in vivo. Unexpectedly, these actions appear to be independent of proteasome inhibition, and instead attributable to induction of DUSP1.
Collapse
Affiliation(s)
| | - Jennifer Speth
- University of Michigan, 1259, Ann Arbor, Michigan, United States
| | - Scott Wettlaufer
- University of Michigan, 1259, Division of Pulmonary and Critical Care Medicine, Ann Arbor, Michigan, United States
| | | | - Marc Peters-Golden
- University of Michigan Health System, 21707, Ann Arbor, Michigan, United States;
| |
Collapse
|
45
|
Zhu S, Cheng Q, Yang H, Chen X, Han Y, Yan C, Shi Y, Hou H. Three-Component Radical Iodonitrosylative Cyclization of 1,6-Enynes under Metal-Free Conditions. Org Lett 2021; 23:5044-5048. [PMID: 34110172 DOI: 10.1021/acs.orglett.1c01576] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A three-component, metal-free radical cascade iodonitrosylative cyclization reaction was described. The nitroso radical was generated from tert-butyl nitrite and triggered the radical addition/cyclization/iodination/oxidation sequences. A variety of 1,6-enynes were tested and proved to be compatible, delivering various highly functionalized hetero- and all-carbon cycles and nitro and vinyl C-I bonds containing pyrrolidines, tetrahydrofuran, and cyclopentane in moderate to excellent isolated yields.
Collapse
Affiliation(s)
- Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Qi Cheng
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Haibo Yang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
46
|
Immunoproteasome Function in Normal and Malignant Hematopoiesis. Cells 2021; 10:cells10071577. [PMID: 34206607 PMCID: PMC8305381 DOI: 10.3390/cells10071577] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is a central part of protein homeostasis, degrading not only misfolded or oxidized proteins but also proteins with essential functions. The fact that a healthy hematopoietic system relies on the regulation of protein homeostasis and that alterations in the UPS can lead to malignant transformation makes the UPS an attractive therapeutic target for the treatment of hematologic malignancies. Herein, inhibitors of the proteasome, the last and most important component of the UPS enzymatic cascade, have been approved for the treatment of these malignancies. However, their use has been associated with side effects, drug resistance, and relapse. Inhibitors of the immunoproteasome, a proteasomal variant constitutively expressed in the cells of hematopoietic origin, could potentially overcome the encountered problems of non-selective proteasome inhibition. Immunoproteasome inhibitors have demonstrated their efficacy and safety against inflammatory and autoimmune diseases, even though their development for the treatment of hematologic malignancies is still in the early phases. Various immunoproteasome inhibitors have shown promising preliminary results in pre-clinical studies, and one inhibitor is currently being investigated in clinical trials for the treatment of multiple myeloma. Here, we will review data on immunoproteasome function and inhibition in hematopoietic cells and hematologic cancers.
Collapse
|
47
|
Aliabadi F, Sohrabi B, Mostafavi E, Pazoki-Toroudi H, Webster TJ. Ubiquitin-proteasome system and the role of its inhibitors in cancer therapy. Open Biol 2021; 11:200390. [PMID: 33906413 PMCID: PMC8080017 DOI: 10.1098/rsob.200390] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite all the other cells that have the potential to prevent cancer development and metastasis through tumour suppressor proteins, cancer cells can upregulate the ubiquitin–proteasome system (UPS) by which they can degrade tumour suppressor proteins and avoid apoptosis. This system plays an extensive role in cell regulation organized in two steps. Each step has an important role in controlling cancer. This demonstrates the importance of understanding UPS inhibitors and improving these inhibitors to foster a new hope in cancer therapy. UPS inhibitors, as less invasive chemotherapy drugs, are increasingly used to alleviate symptoms of various cancers in malignant states. Despite their success in reducing the development of cancer with the lowest side effects, thus far, an appropriate inhibitor that can effectively inactivate this system with the least drug resistance has not yet been fully investigated. A fundamental understanding of the system is necessary to fully elucidate its role in causing/controlling cancer. In this review, we first comprehensively investigate this system, and then each step containing ubiquitination and protein degradation as well as their inhibitors are discussed. Ultimately, its advantages and disadvantages and some perspectives for improving the efficiency of these inhibitors are discussed.
Collapse
Affiliation(s)
- Fatemeh Aliabadi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Beheshteh Sohrabi
- Department of Chemistry, Surface Chemistry Research Laboratory, Iran University of Science and Technology, PO Box 16846-13114, Tehran, Iran
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
48
|
Emerging Therapeutic Strategies to Overcome Drug Resistance in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13071686. [PMID: 33918370 PMCID: PMC8038312 DOI: 10.3390/cancers13071686] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Multiple myeloma is a deadly blood cancer, but fortunately drug development has substantially prolonged the lifespan of patients to average more than a decade after diagnosis with optimal therapy. As a result, the population of patients living with multiple myeloma has grown considerably. Through its course, patients suffer repeated relapses for which they require new lines of treatment. Currently, the key drug classes for treatment are immunomodulatory drugs, proteasome inhibitors, and monoclonal antibodies. The goal of this review is to summarize the understanding of the problem of resistance to these drugs, which is ultimately responsible for patient fatality. In addition, we will focus on how new agents that are promising in clinical trials overcome resistance. Abstract Multiple myeloma is a malignant plasma cell neoplasm that remains incurable and is ultimately fatal when patients acquire multi-drug resistance. Thus, advancing our understanding of the mechanisms behind drug resistance in multi-relapsed patients is critical for developing better strategies to extend their lifespan. Here, we review the understanding of resistance to the three key drug classes approved for multiple myeloma treatment: immunomodulatory drugs, proteasome inhibitors, and monoclonal antibodies. We consider how the complex, heterogenous biology of multiple myeloma may influence the acquisition of drug resistance and reflect on the gaps in knowledge where additional research is needed to improve our treatment approaches. Fortunately, many agents are currently being evaluated preclinically and in clinical trials that have the potential to overcome or delay drug resistance, including next-generation immunomodulatory drugs and proteasome inhibitors, novel small molecule drugs, chimeric antigen receptor T cells, antibody-drug conjugates, and bispecific antibodies. For each class, we discuss the potential of these strategies to overcome resistance through modifying agents within each class or new classes without cross-resistance to currently available drugs.
Collapse
|
49
|
Song R, Qiao W, He J, Huang J, Luo Y, Yang T. Proteases and Their Modulators in Cancer Therapy: Challenges and Opportunities. J Med Chem 2021; 64:2851-2877. [PMID: 33656892 DOI: 10.1021/acs.jmedchem.0c01640] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteostasis is the process of regulating intracellular proteins to maintain the balance of the cell proteome, which is crucial for cancer cell survival. Several proteases located in the cytoplasm, mitochondria, lysosome, and extracellular environment have been identified as potential antitumor targets because of their involvement in proteostasis. Although the discovery of small-molecule inhibitors targeting proteases faces particular challenges, rapid advances in chemical biology and structural biology, and the new technology of drug discovery have facilitated the development of promising protease modulators. In this review, the protein structure and function of important tumor-related proteases and their inhibitors are presented. We also provide a prospective on advances and the outlook of new drug strategies that target these proteases.
Collapse
Affiliation(s)
- Rao Song
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Jun He
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiasheng Huang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
50
|
The paradoxical pharmacological mechanisms of lenalidomide and bortezomib in the treatment of multiple myeloma. Anticancer Drugs 2021; 32:227-232. [PMID: 33534410 DOI: 10.1097/cad.0000000000001041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The combination of bortezomib (Velcade, PS-341) and lenalidomide (Revlimid) for the treatment of multiple myeloma was proved by USA Food and Drug Administration in 2006. Lenalidomide prevents the proliferation of multiple myeloma cells through binding to cereblon and promoting the ubiquitinational degradation of IKZF1 (Ikaros)/IKZF3 (Aiolos). However, the proteasome inhibitor bortezomib would inhibit the ubiquitinational degradation of IKZF1/IKZF3. How bortezomib could not block the antiproliferative effect of lenalidomide on multiple myeloma cells, which is the paradoxical pharmacological mechanisms in multiple myeloma. In this review, we summarized recent advances in molecular mechanisms underlying the combination of bortezomib and lenalidomide for the treatment multiple myeloma, discussed the paradoxical pharmacological mechanisms of lenalidomide and bortezomib in the treatment of multiple myeloma.
Collapse
|