1
|
Jaffray EG, Tatham MH, Mojsa B, Plechanovová A, Rojas-Fernandez A, Liu JC, Mailand N, Ibrahim AF, Ball G, Porter IM, Hay RT. PML mutants from arsenic-resistant patients reveal SUMO1-TOPORS and SUMO2/3-RNF4 degradation pathways. J Cell Biol 2025; 224:e202407133. [PMID: 40239066 PMCID: PMC12002637 DOI: 10.1083/jcb.202407133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 01/31/2025] [Accepted: 03/10/2025] [Indexed: 04/18/2025] Open
Abstract
Arsenic effectively treats acute promyelocytic leukemia by inducing SUMO and ubiquitin-dependent degradation of the promyelocytic leukemia (PML)-retinoic acid receptor alpha oncogenic fusion protein. However, some patients relapse with arsenic-resistant disease because of missense mutations in PML. To determine the mechanistic basis for arsenic resistance, PML-/- cells were reconstituted with YFP fusions of wild-type PML-V and two common patient mutants: A216T and L217F. Both mutants were resistant to degradation by arsenic but for different biochemical reasons. Arsenic did not trigger SUMOylation of A216T PML, which failed to recruit the SUMO-targeting ubiquitin ligases RNF4 and TOPORS. L217F PML did respond with increased SUMO2/3 conjugation that facilitated RNF4 engagement but failed to reach the threshold of SUMO1 conjugation required to recruit TOPORS. Thus, neither mutant accumulated the appropriate polyubiquitin signal required for p97 binding. These PML mutants have revealed a convergence of SUMO1, SUMO2/3, TOPORS, and RNF4 that facilitates the arsenic-induced degradation of PML.
Collapse
Affiliation(s)
- Ellis G. Jaffray
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Michael H. Tatham
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Barbara Mojsa
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Anna Plechanovová
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Julio C.Y. Liu
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Niels Mailand
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Adel F.M. Ibrahim
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Graeme Ball
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Ronald T. Hay
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
2
|
Wang F, Zhao L, Tan Y, Cen X, Gao H, Jiang H, Liu Y, Li Y, Zhang T, Zhao C, Shi T, Xu G, Wang C, Hu J, Li X, Qin YZ, Wang K, Zhu HH, Li K. Oncogenic role of RARG rearrangements in acute myeloid leukemia resembling acute promyelocytic leukemia. Nat Commun 2025; 16:617. [PMID: 39805831 PMCID: PMC11729897 DOI: 10.1038/s41467-024-55047-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 11/27/2024] [Indexed: 01/30/2025] Open
Abstract
Acute myeloid leukemia (AML) featuring retinoic acid receptor-gamma (RARG) rearrangements exhibits morphological features resembling those of acute promyelocytic leukemia but is associated with drug resistance and poor clinical outcomes. However, the mechanisms underlying the role of RARG fusions in leukemogenesis remain elusive. Here, we show that RARG fusions disrupt myeloid differentiation and promote proliferation and self-renewal of hematopoietic stem and progenitor cells (HSPCs) by upregulating BCL2 and ATF3. RARG fusions overexpression leads to preleukemic phenotypes but fails to induce oncogenic transformation. However, the co-occurrence of RARG fusions and heterozygous Wt1 loss induce fully penetrant AML by activating MYC and HOXA9/MEIS1 targets. Leveraging Connectivity Map resources and high-throughput screening, we identify venetoclax, homoharringtonine, and daunorubicin as potential therapeutic options for RARG-AML. Overall, our findings provide pivotal insights into the molecular mechanisms governed by RARG fusions and enhanced by WT1 loss in AML development and propose a rational therapeutic strategy for RARG-AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Leukemia, Promyelocytic, Acute/drug therapy
- Animals
- WT1 Proteins/genetics
- WT1 Proteins/metabolism
- Retinoic Acid Receptor gamma/genetics
- Mice
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Myeloid Ecotropic Viral Integration Site 1 Protein/genetics
- Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism
- Daunorubicin/pharmacology
- Daunorubicin/therapeutic use
- Homoharringtonine/pharmacology
- Homeodomain Proteins/metabolism
- Homeodomain Proteins/genetics
- Cell Differentiation/genetics
- Hematopoietic Stem Cells/metabolism
- Proto-Oncogene Proteins c-myc/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Cell Proliferation/genetics
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Gene Rearrangement
- Cell Line, Tumor
- Antineoplastic Agents/pharmacology
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Luyao Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xufeng Cen
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Huan Gao
- Marine College, Shandong University, Weihai, China
| | - Huimin Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunxuan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tingting Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenxi Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Shi
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Chinese Institutes for Medical Research, Beijing, China
| | - Guilin Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Churan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiong Hu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Li
- Marine College, Shandong University, Weihai, China
| | - Ya-Zhen Qin
- National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hong-Hu Zhu
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
- Chinese Institutes for Medical Research, Beijing, China.
| | - Ke Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Bercier P, de Thé H. History of Developing Acute Promyelocytic Leukemia Treatment and Role of Promyelocytic Leukemia Bodies. Cancers (Basel) 2024; 16:1351. [PMID: 38611029 PMCID: PMC11011038 DOI: 10.3390/cancers16071351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The story of acute promyelocytic leukemia (APL) discovery, physiopathology, and treatment is a unique journey, transforming the most aggressive form of leukemia to the most curable. It followed an empirical route fueled by clinical breakthroughs driving major advances in biochemistry and cell biology, including the discovery of PML nuclear bodies (PML NBs) and their central role in APL physiopathology. Beyond APL, PML NBs have emerged as key players in a wide variety of biological functions, including tumor-suppression and SUMO-initiated protein degradation, underscoring their broad importance. The APL story is an example of how clinical observations led to the incremental development of the first targeted leukemia therapy. The understanding of APL pathogenesis and the basis for cure now opens new insights in the treatment of other diseases, especially other acute myeloid leukemias.
Collapse
Affiliation(s)
- Pierre Bercier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75231 Paris, France;
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, 75010 Paris, France
| | - Hugues de Thé
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75231 Paris, France;
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, 75010 Paris, France
- Hematology Laboratory, Hôpital St Louis, AP/HP, 75010 Paris, France
| |
Collapse
|
4
|
Jaffray EG, Tatham MH, Mojsa B, Liczmanska M, Rojas-Fernandez A, Yin Y, Ball G, Hay RT. The p97/VCP segregase is essential for arsenic-induced degradation of PML and PML-RARA. J Cell Biol 2023; 222:e202201027. [PMID: 36880596 PMCID: PMC10005898 DOI: 10.1083/jcb.202201027] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 10/27/2022] [Accepted: 01/04/2023] [Indexed: 03/04/2023] Open
Abstract
Acute Promyelocytic Leukemia is caused by expression of the oncogenic Promyelocytic Leukemia (PML)-Retinoic Acid Receptor Alpha (RARA) fusion protein. Therapy with arsenic trioxide results in degradation of PML-RARA and PML and cures the disease. Modification of PML and PML-RARA with SUMO and ubiquitin precedes ubiquitin-mediated proteolysis. To identify additional components of this pathway, we performed proteomics on PML bodies. This revealed that association of p97/VCP segregase with PML bodies is increased after arsenic treatment. Pharmacological inhibition of p97 altered the number, morphology, and size of PML bodies, accumulated SUMO and ubiquitin modified PML and blocked arsenic-induced degradation of PML-RARA and PML. p97 localized to PML bodies in response to arsenic, and siRNA-mediated depletion showed that p97 cofactors UFD1 and NPLOC4 were critical for PML degradation. Thus, the UFD1-NPLOC4-p97 segregase complex is required to extract poly-ubiquitinated, poly-SUMOylated PML from PML bodies, prior to degradation by the proteasome.
Collapse
Affiliation(s)
- Ellis G. Jaffray
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Michael H. Tatham
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Barbara Mojsa
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Magda Liczmanska
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Alejandro Rojas-Fernandez
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Yili Yin
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Graeme Ball
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ronald T. Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
5
|
Huang X, Yang Y, Zhu D, Zhao Y, Wei M, Li K, Zhu HH, Zheng X. PRMT5-mediated RNF4 methylation promotes therapeutic resistance of APL cells to As 2O 3 by stabilizing oncoprotein PML-RARα. Cell Mol Life Sci 2022; 79:319. [PMID: 35622143 PMCID: PMC11072021 DOI: 10.1007/s00018-022-04358-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/23/2022] [Accepted: 05/08/2022] [Indexed: 11/03/2022]
Abstract
Acute promyelocytic leukemia (APL) is a hematological malignancy driven by the oncoprotein PML-RARα, which can be treated with arsenic trioxide (As2O3) or/and all-trans retinoic acid. The protein arginine methyltransferase 5 (PRMT5) is involved in tumorigenesis. However, little is known about the biological function and therapeutic potential of PRMT5 in APL. Here, we show that PRMT5 is highly expressed in APL patients. PRMT5 promotes APL by interacting with PML-RARα and suppressing its ubiquitination and degradation. Mechanistically, PRMT5 attenuates the interaction between PML-RARα and its ubiquitin E3 ligase RNF4 by methylating RNF4 at Arg164. Notably, As2O3 treatment triggers the dissociation of PRMT5 from PML nuclear bodies, attenuating RNF4 methylation and promoting RNF4-mediated PML-RARα ubiquitination and degradation. Moreover, knockdown of PRMT5 and pharmacological inhibition of PRMT5 with the specific inhibitor EPZ015666 significantly inhibit APL cells growth. The combination of EPZ015666 with As2O3 shows synergistic effects on As2O3-induced differentiation of bone marrow cells from APL mice, as well as on apoptosis and differentiation of primary APL cells from APL patients. These findings provide mechanistic insight into the function of PRMT5 in APL pathogenesis and demonstrate that inhibition of PRMT5, alone or in combination with As2O3, might be a promising therapeutic strategy against APL.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Arsenic Trioxide/pharmacology
- Arsenic Trioxide/therapeutic use
- Cell Line, Tumor/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/physiology
- Humans
- Isoquinolines/pharmacology
- Isoquinolines/therapeutic use
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Methylation
- Mice
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/therapeutic use
- Protein-Arginine N-Methyltransferases/antagonists & inhibitors
- Protein-Arginine N-Methyltransferases/genetics
- Protein-Arginine N-Methyltransferases/metabolism
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Ubiquitination
Collapse
Affiliation(s)
- Xinping Huang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Yongfeng Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Dan Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Yan Zhao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Min Wei
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Ke Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Hu Zhu
- Department of Hematology and Institute of Hematology, Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiaofeng Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
6
|
Sabari BR. Biomolecular Condensates and Gene Activation in Development and Disease. Dev Cell 2021; 55:84-96. [PMID: 33049213 DOI: 10.1016/j.devcel.2020.09.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/18/2020] [Accepted: 09/04/2020] [Indexed: 01/04/2023]
Abstract
Activating the right gene at the right time and place is essential for development. Emerging evidence suggests that this process is regulated by the mesoscale compartmentalization of the gene-control machinery, RNA polymerase II and its cofactors, within biomolecular condensates. Coupling gene activity to the reversible and dynamic process of condensate formation is proposed to enable the robust and precise changes in gene-regulatory programs during signaling and development. The macromolecular features that enable condensates and the regulatory pathways that control them are dysregulated in disease, highlighting their importance for normal physiology. In this review, we will discuss the role of condensates in gene activation; the multivalent features of protein, RNA, and DNA that enable reversible condensate formation; and how these processes are utilized in normal and disease biology. Understanding the regulation of condensates promises to provide novel insights into how organization of the gene-control machinery regulates development and disease.
Collapse
Affiliation(s)
- Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
7
|
Gurnari C, Voso MT, Girardi K, Mastronuzzi A, Strocchio L. Acute Promyelocytic Leukemia in Children: A Model of Precision Medicine and Chemotherapy-Free Therapy. Int J Mol Sci 2021; 22:ijms22020642. [PMID: 33440683 PMCID: PMC7826974 DOI: 10.3390/ijms22020642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
Acute promyelocytic leukemia (APL) represents a paradigm of precision medicine. Indeed, in the last decades, the introduction of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) completely revolutionized the therapeutic approach to this previously highly fatal disorder. This entirely chemotherapy-free treatment, which provided excellent survival rates, has been initially validated in adults and, recently, translated in the pediatric setting. This review summarizes currently available data on the use of ATRA and ATO combination in pediatric APL, providing a particular focus on peculiar issues and challenges, such as the occurrence of pseudotumor cerebri and death during induction (early death), as well as the advantage offered by the ATO/ATRA combination in sparing long-term sequelae.
Collapse
Affiliation(s)
- Carmelo Gurnari
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.G.); (K.G.); (A.M.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
- Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
- Laboratorio di Neuro-Oncoematologia, Fondazione Santa Lucia, 00179 Rome, Italy
| | - Katia Girardi
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.G.); (K.G.); (A.M.)
| | - Angela Mastronuzzi
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.G.); (K.G.); (A.M.)
| | - Luisa Strocchio
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.G.); (K.G.); (A.M.)
- Correspondence:
| |
Collapse
|
8
|
Gurnari C, De Bellis E, Divona M, Ottone T, Lavorgna S, Voso MT. When Poisons Cure: The Case of Arsenic in Acute Promyelocytic Leukemia. Chemotherapy 2020; 64:238-247. [PMID: 32521534 DOI: 10.1159/000507805] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 11/19/2022]
Abstract
Arsenic has been known for centuries for its double-edged potential: a poison and at the same time a therapeutic agent. The name "arsenikon," meaning "potent," speaks itself for the pharmaceutical properties of this compound, questioned and analyzed for at least 2000 years. In the last decades, acute promyelocytic leukemia (APL) has evolved from a highly fatal to a curable disease, due to the use of all-trans-retinoic acid and, more recently, arsenic trioxide combinations. The success of these entirely chemo-free regimens increased the awareness of APL and reduced the prevalence of early deaths, which was an impending issue in this disease. Further improvements are expected with the next use of oral arsenic formulations, which will allow a complete outpatient approach, at least in the post-induction settings, further improving patients' quality of life. The wide use of standardized approaches in APL will also help unravel long-standing open questions, including the pathogenesis, prevention, and treatment of the differentiation syndrome and of short-term organ toxicities. In the long term, the study of survivorship issues, such as fertility and organ-related and psychological damages, in the increasing number of survivors will help further improve their life after APL.
Collapse
Affiliation(s)
- Carmelo Gurnari
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora De Bellis
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Mariadomenica Divona
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Serena Lavorgna
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy, .,Fondazione Santa Lucia, Laboratorio di Neuro-Oncoematologia, Roma, Italy,
| |
Collapse
|
9
|
Geoffroy MC, de Thé H. Classic and Variants APLs, as Viewed from a Therapy Response. Cancers (Basel) 2020; 12:E967. [PMID: 32295268 PMCID: PMC7226009 DOI: 10.3390/cancers12040967] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Most acute promyelocytic leukemia (APL) are caused by PML-RARA, a translocation-driven fusion oncoprotein discovered three decades ago. Over the years, several other types of rare X-RARA fusions have been described, while recently, oncogenic fusion proteins involving other retinoic acid receptors (RARB or RARG) have been associated to very rare cases of acute promyelocytic leukemia. PML-RARA driven pathogenesis and the molecular basis for therapy response have been the focus of many studies, which have now converged into an integrated physio-pathological model. The latter is well supported by clinical and molecular studies on patients, making APL one of the rare hematological disorder cured by targeted therapies. Here we review recent data on APL-like diseases not driven by the PML-RARA fusion and discuss these in view of current understanding of "classic" APL pathogenesis and therapy response.
Collapse
Affiliation(s)
- Marie-Claude Geoffroy
- Institut National de la Santé et de la Recherche Médicale (INSERM) U944, Equipe Labellisée par la Ligue Nationale contre le Cancer, 75010 Paris, France;
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 7212, Institut Universitaire d'Hématologie (IUH), 75010 Paris, France
- Institut de Recherche Saint-Louis, Université de Paris, 75010 Paris, France
| | - Hugues de Thé
- Institut National de la Santé et de la Recherche Médicale (INSERM) U944, Equipe Labellisée par la Ligue Nationale contre le Cancer, 75010 Paris, France;
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 7212, Institut Universitaire d'Hématologie (IUH), 75010 Paris, France
- Institut de Recherche Saint-Louis, Université de Paris, 75010 Paris, France
- Assistance Publique-Hôpitaux de Paris, Service de Biochimie, Hôpital St-Louis, 75010 Paris, France
- Collège de France, PSL Research University, INSERM U1050, CNRS UMR 7241, 75005 Paris, France
| |
Collapse
|
10
|
Li Y, Ma X, Chen Z, Wu H, Wang P, Wu W, Cheng N, Zeng L, Zhang H, Cai X, Chen SJ, Chen Z, Meng G. B1 oligomerization regulates PML nuclear body biogenesis and leukemogenesis. Nat Commun 2019; 10:3789. [PMID: 31439836 PMCID: PMC6706441 DOI: 10.1038/s41467-019-11746-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 08/02/2019] [Indexed: 02/06/2023] Open
Abstract
ProMyelocyticLeukemia (PML) protein can polymerize into a mega-Dalton nuclear assembly of 0.1-2 μm in diameter. The mechanism of PML nuclear body biogenesis remains elusive. Here, PMLRBCC is successfully purified. The gel filtration and ultracentrifugation analysis suggest a previously unrecognized sequential oligomerization mechanism via PML monomer, dimer, tetramer and N-mer. Consistently, PML B1-box structure (2.0 Å) and SAXS characterization reveal an unexpected networking by W157-, F158- and SD1-interfaces. Structure-based perturbations in these B1 interfaces not only impair oligomerization in vitro but also abolish PML sumoylation and nuclear body biogenesis in HeLaPml-/- cell. More importantly, as demonstrated by in vivo study using transgenic mice, PML-RARα (PR) F158E precludes leukemogenesis. In addition, single cell RNA sequencing analysis shows that B1 oligomerization is an important regulator in PML-RARα-driven transactivation. Altogether, these results not only define a previously unrecognized B1-box oligomerization in PML, but also highlight oligomerization as an important factor in carcinogenesis.
Collapse
MESH Headings
- Animals
- Carcinogenesis
- Gene Knockout Techniques
- HeLa Cells
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Mice
- Mice, Transgenic
- Mutation
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/ultrastructure
- Promyelocytic Leukemia Protein/genetics
- Promyelocytic Leukemia Protein/metabolism
- Promyelocytic Leukemia Protein/ultrastructure
- Protein Domains/genetics
- Protein Multimerization
- Retinoic Acid Receptor alpha/genetics
- Retinoic Acid Receptor alpha/metabolism
- Retinoic Acid Receptor alpha/ultrastructure
- Scattering, Small Angle
- Sequence Analysis, RNA
- Single-Cell Analysis
- Sumoylation
- X-Ray Diffraction
Collapse
Grants
- Shanghai Municipal Education Commission
- National Natural Science Foundation of China (National Science Foundation of China)
- This work was supported by research grants 81770142, 81370620, 81570120, 31070645, 81800144, 31800642 from National Natural Science Foundation of China, a research grant 20152504 from “Shanghai Municipal Education Commission—Gaofeng Clinical Medicine Grant Support”, “The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institute of Higher Learning”, a research grant 11JC1407200 from SMSTC, a research grant 12ZZ109 from SME, “Program for New Century Excellent Talents in University (NCET-10-9571).
Collapse
Affiliation(s)
- Yuwen Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xiaodan Ma
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Zhiming Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Haiyan Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Pengran Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Wenyu Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Nuo Cheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Longhui Zeng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Hao Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xun Cai
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Guoyu Meng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
11
|
Pallavi R, Mazzarella L, Pelicci PG. Advances in precision epigenetic treatment for acute promyelocytic leukemia. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1612238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rani Pallavi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Mazzarella
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Division of Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
12
|
Abstract
Recurrent chromosomal rearrangements leading to the generation of oncogenic fusion proteins are a common feature of many cancers. These aberrations are particularly prevalent in sarcomas and haematopoietic malignancies and frequently involve genes required for chromatin regulation and transcriptional control. In many cases, these fusion proteins are thought to be the primary driver of cancer development, altering chromatin dynamics to initiate oncogenic gene expression programmes. In recent years, mechanistic insights into the underlying molecular functions of a number of these oncogenic fusion proteins have been discovered. These insights have allowed the design of mechanistically anchored therapeutic approaches promising substantial treatment advances. In this Review, we discuss how our understanding of fusion protein function is informing therapeutic innovations and illuminating mechanisms of chromatin and transcriptional regulation in cancer and normal cells.
Collapse
Affiliation(s)
- Gerard L Brien
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
- Department of Pediatric Oncology, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Qiu JJ, Zeisig BB, Li S, Liu W, Chu H, Song Y, Giordano A, Schwaller J, Gronemeyer H, Dong S, So CWE. Critical role of retinoid/rexinoid signaling in mediating transformation and therapeutic response of NUP98-RARG leukemia. Leukemia 2015; 29:1153-62. [PMID: 25510432 DOI: 10.1038/leu.2014.334] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 01/12/2023]
Abstract
While the nucleoporin 98-retinoic acid receptor gamma (NUP98-RARG) is the first RARG fusion protein found in acute leukemia, its roles and the molecular basis in oncogenic transformation are currently unknown. Here, we showed that homodimeric NUP98-RARG not only acquired unique nuclear localization pattern and ability of recruiting both RXRA and wild-type NUP98, but also exhibited similar transcriptional properties as RARA fusions found in acute promyelocytic leukemia (APL). Using murine bone marrow retroviral transduction/transformation assay, we further demonstrated that NUP98-RARG fusion protein had gained transformation ability of primary hematopoietic stem/progenitor cells, which was critically dependent on the C-terminal GLFG domain of NUP98 and the DNA binding domain (DBD) of RARG. In contrast to other NUP98 fusions, cells transformed by the NUP98-RARG fusion were extremely sensitive to all-trans retinoic acid (ATRA) treatment. Interestingly, while pan-RXR agonists, SR11237 and LGD1069 could specifically inhibit NUP98-RARG transformed cells, mutation of the RXR interaction domain in NUP98-RARG had little effect on its transformation, revealing that therapeutic functions of rexinoid can be independent of the direct biochemical interaction between RXR and the fusion. Together, these results indicate that deregulation of the retinoid/rexinoid signaling pathway has a major role and may represent a potential therapeutic target for NUP98-RARG-mediated transformation.
Collapse
Affiliation(s)
- J J Qiu
- 1] Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA [2] Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - B B Zeisig
- King's College London, Leukaemia and Stem Cell Biology Group, Department of Haematologial Medicine, London UK
| | - S Li
- 1] Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA [2] Department of Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - W Liu
- Department of Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - H Chu
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Y Song
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - A Giordano
- 1] Sbarro Institute for Cancer Research and Molecular Medicine & Center for Biotechology, Temple University, Philadelphia, PA, USA [2] Department of Medicine, Surgery & Neuroscience, University of Siena, Siena, Italy
| | - J Schwaller
- University Children's Hospital Basel (UKBB), Department of Biomedicine, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - H Gronemeyer
- Equipe Labellisée Ligue Contre le Cancer, Department of Functional Genomics and Cancer, Institut Génétique de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/UdS/CERBM, C.U. de Strasbourg, BP 10142, Illkirch-Cedex, France
| | - S Dong
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - C W E So
- King's College London, Leukaemia and Stem Cell Biology Group, Department of Haematologial Medicine, London UK
| |
Collapse
|
14
|
Arteaga MF, Mikesch JH, Fung TK, So CWE. Epigenetics in acute promyelocytic leukaemia pathogenesis and treatment response: a TRAnsition to targeted therapies. Br J Cancer 2015; 112:413-8. [PMID: 25247321 PMCID: PMC4453638 DOI: 10.1038/bjc.2014.374] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 05/06/2014] [Accepted: 06/03/2014] [Indexed: 01/09/2023] Open
Abstract
Transcriptional deregulation plays a key role in a large array of cancers, and successful targeting of oncogenic transcription factors that sustain diseases has been a holy grail in the field. Acute promyelocytic leukaemia (APL) driven by chimeric transcription factors encoding retinoic acid receptor alpha fusions is the paradigm of targeted cancer therapy, in which the application of all-trans retinoic acid (ATRA) treatments have markedly transformed this highly fatal cancer to a highly manageable disease. The extremely high complete remission rate resulted from targeted therapies using ATRA in combination with arsenic trioxide will likely be able to minimise or even totally eliminate the use of highly toxic chemotherapeutic agents in APL. In this article, we will review the molecular basis and the upcoming challenges of these targeted therapies in APL, and discuss the recent advance in our understanding of epigenetics underlying ATRA response and their potential use to further improve treatment response and overcome resistance.
Collapse
Affiliation(s)
- M F Arteaga
- Leukaemia and Stem Cell Biology Group, Department of Haematological Medicine, King's College London, Denmark Hill, London SE5 9NU, UK
| | - J-H Mikesch
- Leukaemia and Stem Cell Biology Group, Department of Haematological Medicine, King's College London, Denmark Hill, London SE5 9NU, UK
| | - T-K Fung
- Leukaemia and Stem Cell Biology Group, Department of Haematological Medicine, King's College London, Denmark Hill, London SE5 9NU, UK
| | - C W E So
- Leukaemia and Stem Cell Biology Group, Department of Haematological Medicine, King's College London, Denmark Hill, London SE5 9NU, UK
| |
Collapse
|
15
|
Esposito MT, So CWE. DNA damage accumulation and repair defects in acute myeloid leukemia: implications for pathogenesis, disease progression, and chemotherapy resistance. Chromosoma 2014; 123:545-61. [PMID: 25112726 DOI: 10.1007/s00412-014-0482-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 12/15/2022]
Abstract
DNA damage repair mechanisms are vital to maintain genomic integrity. Mutations in genes involved in the DNA damage response (DDR) can increase the risk of developing cancer. In recent years, a variety of polymorphisms in DDR genes have been associated with increased risk of developing acute myeloid leukemia (AML) or of disease relapse. Moreover, a growing body of literature has indicated that epigenetic silencing of DDR genes could contribute to the leukemogenic process. In addition, a variety of AML oncogenes have been shown to induce replication and oxidative stress leading to accumulation of DNA damage, which affects the balance between proliferation and differentiation. Conversely, upregulation of DDR genes can provide AML cells with escape mechanisms to the DDR anticancer barrier and induce chemotherapy resistance. The current review summarizes the DDR pathways in the context of AML and describes how aberrant DNA damage response can affect AML pathogenesis, disease progression, and resistance to standard chemotherapy, and how defects in DDR pathways may provide a new avenue for personalized therapeutic strategies in AML.
Collapse
Affiliation(s)
- Maria Teresa Esposito
- Leukemia and Stem Cell Biology Group, Department of Hematological Medicine, King's College London, Denmark Hill campus, SE5 9NU, London, UK
| | | |
Collapse
|
16
|
Chattopadhyay A, Hood BL, Conrads TP, Redner RL. Extrinsic apoptosis is impeded by direct binding of the APL fusion protein NPM-RAR to TRADD. Mol Cancer Res 2014; 12:1283-91. [PMID: 25033841 DOI: 10.1158/1541-7786.mcr-14-0080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED A subset of acute promyelocytic leukemia (APL) cases has been characterized by the t(5;17)(q35;q21) translocation variant, which fuses nucleophosmin (NPM) to retinoic acid receptor α (RARA). The resultant NPM-RAR fusion protein blocks myeloid differentiation and leads to a leukemic phenotype similar to that caused by the t(15;17)(q22;q21) PML-RAR fusion. The contribution of the N-terminal 117 amino acids of NPM contained within NPM-RAR has not been well studied. As a molecular chaperone, NPM interacts with a variety of proteins implicated in leukemogenesis. Therefore, a proteomic analysis was conducted to identify novel NPM-RAR-associated proteins. TNF receptor type I-associated DEATH domain protein (TRADD) was identified as a relevant binding partner for NPM-RAR. This interaction was validated by coprecipitation and colocalization analysis. Biologic assessment found that NPM-RAR expression impaired TNF-induced signaling through TRADD, blunting TNF-mediated activation of caspase-3 (CASP3) and caspase-8 (CASP8), to ultimately block apoptosis. IMPLICATIONS This study identifies a novel mechanism through which NPM-RAR affects leukemogenesis.
Collapse
Affiliation(s)
| | - Brian L Hood
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Women's Health Integrated Research Center at Inova Health System, Annandale, Virginia
| | - Thomas P Conrads
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Women's Health Integrated Research Center at Inova Health System, Annandale, Virginia
| | - Robert L Redner
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.
| |
Collapse
|
17
|
Rice KL, de Thé H. The acute promyelocytic leukaemia success story: curing leukaemia through targeted therapies. J Intern Med 2014; 276:61-70. [PMID: 24635409 DOI: 10.1111/joim.12208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The recent finding that almost all patients with acute promyelocytic leukaemia (APL) may be cured using a combination of retinoic acid (RA) and arsenic trioxide (As(2)O(3)) (N Engl J Med, 369, 2013 and 111) highlights the progress made in our understanding of APL pathogenesis and therapeutic approaches over the past 25 years. The study of APL has revealed many important lessons related to transcriptional control, nuclear organization, epigenetics and the role of proteolysis in biological control. Even more important has been the clinical demonstration that molecularly targeted therapy can eradicate disease.
Collapse
Affiliation(s)
- K L Rice
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis, Paris Cedex, France; INSERM UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris Cedex, France; CNRS UMR 7212, Hôpital St. Louis, Paris Cedex, France
| | | |
Collapse
|
18
|
De Braekeleer E, Douet-Guilbert N, De Braekeleer M. RARA fusion genes in acute promyelocytic leukemia: a review. Expert Rev Hematol 2014; 7:347-57. [PMID: 24720386 DOI: 10.1586/17474086.2014.903794] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The t(15;17)(q24;q21), generating a PML-RARA fusion gene, is the hallmark of acute promyelocytic leukemia (APL). At present, eight other genes fusing with RARA have been identified. The resulting fusion proteins retain domains of the RARA protein allowing binding to retinoic acid response elements (RARE) and dimerization with the retinoid X receptor protein (RXRA). They participate in protein-protein interactions, associating with RXRA to form hetero-oligomeric complexes that can bind to RARE. They have a dominant-negative effect on wild-type RARA/RXRA transcriptional activity. Moreover, RARA fusion proteins can homodimerize, conferring the ability to regulate an expanded repertoire of genes normally not affected by RARA. RARA fusion proteins behave as potent transcriptional repressors of retinoic acid signalling, inducing a differentiation blockage at the promyelocyte stage which can be overcome with therapeutic doses of ATRA or arsenic trioxide. However, resistance to these two drugs is a major problem, which necessitates development of new therapies.
Collapse
Affiliation(s)
- Etienne De Braekeleer
- Laboratoire d'Histologie, Embryologie et Cytogénétique, Faculté de Médecine et des Sciences de la Santé, Université de Brest, Brest, France
| | | | | |
Collapse
|
19
|
Lo-Coco F, Hasan SK. Understanding the molecular pathogenesis of acute promyelocytic leukemia. Best Pract Res Clin Haematol 2014; 27:3-9. [DOI: 10.1016/j.beha.2014.04.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Rush EA, Pollock SL, Abecassis I, Redner RL. Interaction with RXR is necessary for NPM-RAR-induced myeloid differentiation blockade. Leuk Res 2013; 37:1704-10. [PMID: 24183235 DOI: 10.1016/j.leukres.2013.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 08/07/2013] [Accepted: 09/21/2013] [Indexed: 01/05/2023]
Abstract
The t(5;17)(q35;q21) APL variant results in expression of a fusion protein linking the N-terminus of nucleophosmin (NPM) to the C-terminus of the retinoic acid receptor alpha (RAR). We have previously shown that NPM-RAR is capable of binding to DNA either as a homodimer or heterodimer with RXR. To determine the biological significance of NPM-RAR/RXR interaction, we developed two mutants of NPM-RAR that showed markedly diminished ability to bind RXR. U937 subclones expressing the NPM-RAR mutants showed significantly less inhibition of vitamin D3/TGFbeta-induced differentiation, compared with NPM-RAR. These results support the hypothesis that RXR interaction is necessary for NPM-RAR-mediated myeloid maturation arrest.
Collapse
Affiliation(s)
- Elizabeth A Rush
- Department of Medicine and University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
21
|
Salomoni P. The PML-Interacting Protein DAXX: Histone Loading Gets into the Picture. Front Oncol 2013; 3:152. [PMID: 23760585 PMCID: PMC3675705 DOI: 10.3389/fonc.2013.00152] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/24/2013] [Indexed: 12/23/2022] Open
Abstract
The promyelocytic leukemia (PML) protein has been implicated in regulation of multiple key cellular functions, from transcription to calcium homeostasis. PML pleiotropic role is in part related to its ability to localize to both the nucleus and cytoplasm. In the nucleus, PML is known to regulate gene transcription, a role linked to its ability to associate with transcription factors as well as chromatin-remodelers. A new twist came from the discovery that the PML-interacting protein death-associated protein 6 (DAXX) acts as chaperone for the histone H3.3 variant. H3.3 is found enriched at active genes, centromeric heterochromatin, and telomeres, and has been proposed to act as important carrier of epigenetic information. Our recent work has implicated DAXX in regulation of H3.3 loading and transcription in the central nervous system (CNS). Remarkably, driver mutations in H3.3 and/or its loading machinery have been identified in brain cancer, thus suggesting a role for altered H3.3 function/deposition in CNS tumorigenesis. Aberrant H3.3 deposition may also play a role in leukemia pathogenesis, given DAXX role in PML-RARα-driven transformation and the identification of a DAXX missense mutation in acute myeloid leukemia. This review aims to critically discuss the existing literature and propose new avenues for investigation.
Collapse
Affiliation(s)
- Paolo Salomoni
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute , University College London, London , UK
| |
Collapse
|
22
|
Arteaga MF, Mikesch JH, Qiu J, Christensen J, Helin K, Kogan SC, Dong S, So CWE. The histone demethylase PHF8 governs retinoic acid response in acute promyelocytic leukemia. Cancer Cell 2013; 23:376-89. [PMID: 23518351 PMCID: PMC6812572 DOI: 10.1016/j.ccr.2013.02.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 11/26/2012] [Accepted: 02/15/2013] [Indexed: 10/27/2022]
Abstract
While all-trans retinoic acid (ATRA) treatment in acute promyelocytic leukemia (APL) has been the paradigm of targeted therapy for oncogenic transcription factors, the underlying mechanisms remain largely unknown, and a significant number of patients still relapse and become ATRA resistant. We identified the histone demethylase PHF8 as a coactivator that is specifically recruited by RARα fusions to activate expression of their downstream targets upon ATRA treatment. Forced expression of PHF8 resensitizes ATRA-resistant APL cells, whereas its downregulation confers resistance. ATRA sensitivity depends on the enzymatic activity and phosphorylation status of PHF8, which can be pharmacologically manipulated to resurrect ATRA sensitivity to resistant cells. These findings provide important molecular insights into ATRA response and a promising avenue for overcoming ATRA resistance.
Collapse
MESH Headings
- Animals
- Drug Resistance, Neoplasm
- Histone Demethylases/genetics
- Histone Demethylases/metabolism
- Histones
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Proteins/metabolism
- Okadaic Acid/pharmacology
- Oncogene Proteins, Fusion/metabolism
- Phosphorylation
- RNA Interference
- RNA, Small Interfering
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Tretinoin/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Maria Francisca Arteaga
- Leukaemia and Stem Cell Biology Group, Department of Haematological Medicine, King’s College London, Denmark Hill, London SE5 9NU, UK
| | - Jan-Henrik Mikesch
- Leukaemia and Stem Cell Biology Group, Department of Haematological Medicine, King’s College London, Denmark Hill, London SE5 9NU, UK
| | - Jihui Qiu
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC)
- Centre for Epigenetics
- The Danish Stem Cell Center (Danstem), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Scott C. Kogan
- Helen Diller Family Comprehensive Cancer Center and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shuo Dong
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chi Wai Eric So
- Leukaemia and Stem Cell Biology Group, Department of Haematological Medicine, King’s College London, Denmark Hill, London SE5 9NU, UK
- Correspondence:
| |
Collapse
|
23
|
Smith LL, Yeung J, Zeisig BB, Popov N, Huijbers I, Barnes J, Wilson AJ, Taskesen E, Delwel R, Gil J, Van Lohuizen M, So CWE. Functional crosstalk between Bmi1 and MLL/Hoxa9 axis in establishment of normal hematopoietic and leukemic stem cells. Cell Stem Cell 2012; 8:649-62. [PMID: 21624810 DOI: 10.1016/j.stem.2011.05.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 01/07/2011] [Accepted: 05/06/2011] [Indexed: 10/18/2022]
Abstract
Bmi1 is required for efficient self-renewal of hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs). In this study, we investigated whether leukemia-associated fusion proteins, which differ in their ability to activate Hox expression, could initiate leukemia in the absence of Bmi1. AML1-ETO and PLZF-RARα, which do not activate Hox, triggered senescence in Bmi1(-/-) cells. In contrast, MLL-AF9, which drives expression of Hoxa7 and Hoxa9, readily transformed Bmi1(-/-) cells. MLL-AF9 could not initiate leukemia in Bmi1(-/-)Hoxa9(-/-) mice, which have further compromised HSC functions. But either gene could restore the ability of MLL-AF9 to establish LSCs in the double null background. As reported for Bmi1, Hoxa9 regulates expression of p16(Ink4a)/p19(ARF) locus and could overcome senescence induced by AML1-ETO. Together, these results reveal an important functional interplay between MLL/Hox and Bmi1 in regulating cellular senescence for LSC development, suggesting that a synergistic targeting of both molecules is required to eradicate a broader spectrum of LSCs.
Collapse
Affiliation(s)
- Lan-Lan Smith
- Leukaemia and Stem Cell Biology Lab, Department of Haematological Medicine, King's College London, London SE5 9NU, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Spicuglia S, Vincent-Fabert C, Benoukraf T, Tibéri G, Saurin AJ, Zacarias-Cabeza J, Grimwade D, Mills K, Calmels B, Bertucci F, Sieweke M, Ferrier P, Duprez E. Characterisation of genome-wide PLZF/RARA target genes. PLoS One 2011; 6:e24176. [PMID: 21949697 PMCID: PMC3176768 DOI: 10.1371/journal.pone.0024176] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 08/02/2011] [Indexed: 01/30/2023] Open
Abstract
The PLZF/RARA fusion protein generated by the t(11;17)(q23;q21) translocation in acute promyelocytic leukaemia (APL) is believed to act as an oncogenic transcriptional regulator recruiting epigenetic factors to genes important for its transforming potential. However, molecular mechanisms associated with PLZF/RARA-dependent leukaemogenesis still remain unclear. We searched for specific PLZF/RARA target genes by ChIP-on-chip in the haematopoietic cell line U937 conditionally expressing PLZF/RARA. By comparing bound regions found in U937 cells expressing endogenous PLZF with PLZF/RARA-induced U937 cells, we isolated specific PLZF/RARA target gene promoters. We next analysed gene expression profiles of our identified target genes in PLZF/RARA APL patients and analysed DNA sequences and epigenetic modification at PLZF/RARA binding sites. We identify 413 specific PLZF/RARA target genes including a number encoding transcription factors involved in the regulation of haematopoiesis. Among these genes, 22 were significantly down regulated in primary PLZF/RARA APL cells. In addition, repressed PLZF/RARA target genes were associated with increased levels of H3K27me3 and decreased levels of H3K9K14ac. Finally, sequence analysis of PLZF/RARA bound sequences reveals the presence of both consensus and degenerated RAREs as well as enrichment for tissue-specific transcription factor motifs, highlighting the complexity of targeting fusion protein to chromatin. Our study suggests that PLZF/RARA directly targets genes important for haematopoietic development and supports the notion that PLZF/RARA acts mainly as an epigenetic regulator of its direct target genes.
Collapse
MESH Headings
- Acetylation
- Binding Sites/genetics
- Chromatin Immunoprecipitation/methods
- Cluster Analysis
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Genome-Wide Association Study
- Histones/metabolism
- Humans
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Methylation
- Oligonucleotide Array Sequence Analysis/methods
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Promoter Regions, Genetic/genetics
- Promyelocytic Leukemia Zinc Finger Protein
- Protein Binding
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- U937 Cells
Collapse
Affiliation(s)
- Salvatore Spicuglia
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, Campus de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U631, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR 6102, Marseille, France
| | - Christelle Vincent-Fabert
- Institut National de la Santé et de la Recherche Médicale (INSERM) U891, Centre de Recherche en Cancérologie de Marseille, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
| | - Touati Benoukraf
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, Campus de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U631, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR 6102, Marseille, France
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Guillaume Tibéri
- Institut National de la Santé et de la Recherche Médicale (INSERM) U891, Centre de Recherche en Cancérologie de Marseille, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
| | - Andrew J. Saurin
- Institut de Biologie du Développement de Marseille Luminy, Université de la Méditerranée, Campus de Luminy, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR 6216, Marseille, France
| | - Joaquin Zacarias-Cabeza
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, Campus de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U631, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR 6102, Marseille, France
| | - David Grimwade
- Department of Medical and Molecular Genetics, King's College London School of Medicine, London, United Kingdom
| | - Ken Mills
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Boris Calmels
- Institut National de la Santé et de la Recherche Médicale (INSERM) U891, Centre de Recherche en Cancérologie de Marseille, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
| | - François Bertucci
- Institut National de la Santé et de la Recherche Médicale (INSERM) U891, Centre de Recherche en Cancérologie de Marseille, Marseille, France
- Oncologie Moléculaire, Institut Paoli-Calmettes, Marseille, France
| | - Michael Sieweke
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, Campus de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U631, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR 6102, Marseille, France
| | - Pierre Ferrier
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, Campus de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U631, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR 6102, Marseille, France
| | - Estelle Duprez
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, Campus de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U631, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR 6102, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U891, Centre de Recherche en Cancérologie de Marseille, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- * E-mail:
| |
Collapse
|
25
|
Menezes J, Acquadro F, Perez-Pons de la Villa C, García-Sánchez F, Álvarez S, Cigudosa JC. FIP1L1/RARA with breakpoint at FIP1L1 intron 13: a variant translocation in acute promyelocytic leukemia. Haematologica 2011; 96:1565-6. [PMID: 21750086 DOI: 10.3324/haematol.2011.047134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
26
|
Tang XH, Gudas LJ. Retinoids, retinoic acid receptors, and cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 6:345-64. [PMID: 21073338 DOI: 10.1146/annurev-pathol-011110-130303] [Citation(s) in RCA: 440] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Retinoids (i.e., vitamin A, all-trans retinoic acid, and related signaling molecules) induce the differentiation of various types of stem cells. Nuclear retinoic acid receptors mediate most but not all of the effects of retinoids. Retinoid signaling is often compromised early in carcinogenesis, which suggests that a reduction in retinoid signaling may be required for tumor development. Retinoids interact with other signaling pathways, including estrogen signaling in breast cancer. Retinoids are used to treat cancer, in part because of their ability to induce differentiation and arrest proliferation. Delivery of retinoids to patients is challenging because of the rapid metabolism of some retinoids and because epigenetic changes can render cells retinoid resistant. Successful cancer therapy with retinoids is likely to require combination therapy with drugs that regulate the epigenome, such as DNA methyltransferase and histone deacetylase inhibitors, as well as classical chemotherapeutic agents. Thus, retinoid research benefits both cancer prevention and cancer treatment.
Collapse
Affiliation(s)
- Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065, USA
| | | |
Collapse
|
27
|
Cheung N, So CWE. Transcriptional and epigenetic networks in haematological malignancy. FEBS Lett 2011; 585:2100-11. [DOI: 10.1016/j.febslet.2011.03.068] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 12/16/2022]
|
28
|
The self-association coiled-coil domain of PML is sufficient for the oncogenic conversion of the retinoic acid receptor (RAR) alpha. Leukemia 2011; 25:814-20. [DOI: 10.1038/leu.2011.18] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Mengeling BJ, Phan TQ, Goodson ML, Privalsky ML. Aberrant corepressor interactions implicated in PML-RAR(alpha) and PLZF-RAR(alpha) leukemogenesis reflect an altered recruitment and release of specific NCoR and SMRT splice variants. J Biol Chem 2010; 286:4236-47. [PMID: 21131350 DOI: 10.1074/jbc.m110.200964] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human acute promyelocytic leukemia is causally linked to chromosomal translocations that generate chimeric retinoic acid receptor-α proteins (x-RARα fusions). Wild-type RARα is a transcription factor that binds to the SMRT/NCoR family of corepressors in the absence of hormone but releases from corepressor and binds coactivators in response to retinoic acid. In contrast, the x-RARα fusions are impaired for corepressor release and operate in acute promyelocytic leukemia as dominant-negative inhibitors of wild-type RARα. We report that the two most common x-RARα fusions, PML-RARα and PLZF-RARα, have gained the ability to recognize specific splice variants of SMRT and NCoR that are poorly recognized by RARα. These differences in corepressor specificity between the normal and oncogenic receptors are further magnified in the presence of a retinoid X receptor heteromeric partner. The ability of retinoids to fully release corepressor from PML-RARα differs for the different splice variants, a phenomenon relevant to the requirement for supraphysiological levels of this hormone in differentiation therapy of leukemic cells. We propose that this shift in the specificity of the x-RARα fusions to a novel repertoire of corepressors contributes to the dominant-negative and oncogenic properties of these oncoproteins and helps explain previously paradoxical aspects of their behavior.
Collapse
Affiliation(s)
- Brenda J Mengeling
- Department of Microbiology, College of Biological Sciences, University of California at Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
30
|
Corpora T, Roudaia L, Oo ZM, Chen W, Manuylova E, Cai X, Chen MJ, Cierpicki T, Speck NA, Bushweller JH. Structure of the AML1-ETO NHR3-PKA(RIIα) complex and its contribution to AML1-ETO activity. J Mol Biol 2010; 402:560-77. [PMID: 20708017 DOI: 10.1016/j.jmb.2010.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 08/04/2010] [Indexed: 02/08/2023]
Abstract
AML1-ETO is the chimeric protein product of t(8;21) in acute myeloid leukemia. The ETO portion of the fusion protein includes the nervy homology region (NHR) 3 domain, which shares homology with A-kinase anchoring proteins and interacts with the regulatory subunit of type II cAMP-dependent protein kinase A (PKA(RIIα)). We determined the solution structure of a complex between the AML1-ETO NHR3 domain and PKA(RIIα). Based on this structure, a key residue in AML1-ETO for PKA(RIIα) association was mutated. This mutation did not disrupt AML1-ETO's ability to enhance the clonogenic capacity of primary mouse bone marrow cells or its ability to repress proliferation or granulocyte differentiation. Introduction of the mutation into AML1-ETO had minimal impact on in vivo leukemogenesis. Therefore, the NHR3-PKA(RIIα) protein interaction does not appear to significantly contribute to AML1-ETO's ability to induce leukemia.
Collapse
Affiliation(s)
- Takeshi Corpora
- Department of Chemistry, University of Virginia, Charlottesville, VA 22906, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jeanne M, Lallemand-Breitenbach V, Ferhi O, Koken M, Le Bras M, Duffort S, Peres L, Berthier C, Soilihi H, Raught B, de Thé H. PML/RARA oxidation and arsenic binding initiate the antileukemia response of As2O3. Cancer Cell 2010; 18:88-98. [PMID: 20609355 DOI: 10.1016/j.ccr.2010.06.003] [Citation(s) in RCA: 253] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/05/2010] [Accepted: 06/10/2010] [Indexed: 11/26/2022]
Abstract
As(2)O(3) cures acute promyelocytic leukemia (APL) by initiating PML/RARA oncoprotein degradation, through sumoylation of its PML moiety. However, how As(2)O(3) initiates PML sumoylation has remained largely unexplained. As(2)O(3) binds vicinal cysteines and increases reactive oxygen species (ROS) production. We demonstrate that upon As(2)O(3) exposure, PML undergoes ROS-initiated intermolecular disulfide formation and binds arsenic directly. Disulfide-linked PML or PML/RARA multimers form nuclear matrix-associated nuclear bodies (NBs), become sumoylated and are degraded. Hematopoietic progenitors transformed by an As(2)O(3)-binding PML/RARA mutant exhibit defective As(2)O(3) response. Conversely, nonarsenical oxidants elicit PML/RARA multimerization, NB-association, degradation, and leukemia response in vivo, but do not affect PLZF/RARA-driven APLs. Thus, PML oxidation regulates NB-biogenesis, while oxidation-enforced PML/RARA multimerization and direct arsenic-binding cooperate to enforce APL's exquisite As(2)O(3) sensitivity.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Arsenic Trioxide
- Arsenicals/pharmacology
- Blotting, Western
- CHO Cells
- COS Cells
- Chlorocebus aethiops
- Cricetinae
- Cricetulus
- Disulfides/metabolism
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Humans
- Intranuclear Inclusion Bodies/metabolism
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Mice
- Mice, Knockout
- Mutation/genetics
- Nuclear Proteins/physiology
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oxides/pharmacology
- Promyelocytic Leukemia Protein
- Proteasome Endopeptidase Complex/metabolism
- Proteasome Inhibitors
- Protein Processing, Post-Translational
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Small Ubiquitin-Related Modifier Proteins/metabolism
- Transcription Factors/physiology
- Tumor Suppressor Proteins/physiology
Collapse
Affiliation(s)
- Marion Jeanne
- Inserm/Centre National de la Recherche Scientifique (CNRS)/Université Paris Diderot/Institut Universitaire Hématologie U944/UMR7212, Laboratoire associé de la Ligue Nationale contre le Cancer, Hôpital St Louis, 1, Av. C. Vellefaux, 75475 Paris, Cedex 10, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Martens JHA, Stunnenberg HG. The molecular signature of oncofusion proteins in acute myeloid leukemia. FEBS Lett 2010; 584:2662-9. [PMID: 20388510 DOI: 10.1016/j.febslet.2010.04.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 04/03/2010] [Indexed: 02/02/2023]
Abstract
Acute myeloid leukemia (AML) associated translocations often cause gene fusions that encode oncofusion proteins. Although many of the breakpoints involved in chromosomal translocations have been cloned, in most cases the role of the chimeric proteins in tumorigenesis is not elucidated. Here we will discuss the fusion proteins of the 4 most common translocations associated with AML as well as the common molecular mechanisms that these four and other fusion proteins utilize to transform progenitor cells. Intriguingly, although the individual partners within the fusion proteins represent a wide variety of cellular functions, at the molecular level many commodities can be found.
Collapse
Affiliation(s)
- Joost H A Martens
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | | |
Collapse
|
33
|
Martens JHA, Brinkman AB, Simmer F, Francoijs KJ, Nebbioso A, Ferrara F, Altucci L, Stunnenberg HG. PML-RARalpha/RXR Alters the Epigenetic Landscape in Acute Promyelocytic Leukemia. Cancer Cell 2010; 17:173-85. [PMID: 20159609 DOI: 10.1016/j.ccr.2009.12.042] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 09/09/2009] [Accepted: 12/14/2009] [Indexed: 01/20/2023]
Abstract
Many different molecular mechanisms have been associated with PML-RARalpha-dependent transformation of hematopoietic progenitors. Here, we identified high confidence PML-RARalpha binding sites in an acute promyelocytic leukemia (APL) cell line and in two APL primary blasts. We found colocalization of PML-RARalpha with RXR to the vast majority of these binding regions. Genome-wide epigenetic studies revealed that treatment with pharmacological doses of all-trans retinoic acid induces changes in H3 acetylation, but not H3K27me3, H3K9me3, or DNA methylation at the PML-RARalpha/RXR binding sites or at nearby target genes. Our results suggest that PML-RARalpha/RXR functions as a local chromatin modulator and that specific recruitment of histone deacetylase activities to genes important for hematopoietic differentiation, RAR signaling, and epigenetic control is crucial to its transforming potential.
Collapse
Affiliation(s)
- Joost H A Martens
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Leukemic transformation by the APL fusion protein PRKAR1A-RARα critically depends on recruitment of RXRα. Blood 2010; 115:643-52. [PMID: 19965660 DOI: 10.1182/blood-2009-07-232652] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
PRKAR1A (R1A)–retinoic acid receptor-α (R1A-RARα) is the sixth RARα–containing fusion protein in acute promyelocytic leukemia (APL). Using the murine bone-marrow retroviral transduction/transformation assay, we showed that R1A-RARα fusion protein could transform bone-marrow progenitor/stem cells. In gel-shift assays, R1A-RARα was able to bind to a panel of retinoic acid response elements both as a homodimer and as a heterodimer with RXRα, and demonstrated distinct DNA-binding characteristics compared with wild-type RARα/RXRα or other X-RARα chimeric proteins. The ratio of R1A-RARα to RXRα proteins affected the retinoic acid response element interaction pattern of R1A-RARα/RXRα complexes. Studies comparing R1A-RARα with R1A-RARα(ΔRIIa) demonstrated that the RIIa protein interaction domain located within R1A was responsible for R1A-RARα homodimeric DNA binding and interaction with wild-type R1A protein. However, the RIIa domain was not required for R1A-RARα–mediated transformation because its deletion in R1A-RARα(ΔRIIa) did not compromise its transformation capability. In contrast, introduction of point mutations within the RARα portion of either R1A-RARα or R1A-RARα(ΔRIIa), previously demonstrated to eliminate RXRα interaction or treatment of transduced cells with RXRα shRNA or a RXRα agonist, reduced transformation capability. Thus, leukemic transformation by APL fusion protein PRKAR1A-RARα is critically dependent on RXRα, which suggests RXRα is a promising target for APL.
Collapse
|
35
|
Comprehensive genomic screens identify a role for PLZF-RARalpha as a positive regulator of cell proliferation via direct regulation of c-MYC. Blood 2009; 114:5499-511. [PMID: 19855079 DOI: 10.1182/blood-2009-03-206524] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The t(11;17)(q23;q21) translocation is associated with a retinoic acid (RA)-insensitive form of acute promyelocytic leukemia (APL), involving the production of reciprocal fusion proteins, promyelocytic leukemia zinc finger-retinoic acid receptor alpha (PLZF-RARalpha) and RARalpha-PLZF. Using a combination of chromatin immunoprecipitation promotor arrays (ChIP-chip) and gene expression profiling, we identify novel, direct target genes of PLZF-RARalpha that tend to be repressed in APL compared with other myeloid leukemias, supporting the role of PLZF-RARalpha as an aberrant repressor in APL. In primary murine hematopoietic progenitors, PLZF-RARalpha promotes cell growth, and represses Dusp6 and Cdkn2d, while inducing c-Myc expression, consistent with its role in leukemogenesis. PLZF-RARalpha binds to a region of the c-MYC promoter overlapping a functional PLZF site and antagonizes PLZF-mediated repression, suggesting that PLZF-RARalpha may act as a dominant-negative version of PLZF by affecting the regulation of shared targets. RA induced the differentiation of PLZF-RARalpha-transformed murine hematopoietic cells and reduced the frequency of clonogenic progenitors, concomitant with c-Myc down-regulation. Surviving RA-treated cells retained the ability to be replated and this was associated with sustained c-Myc expression and repression of Dusp6, suggesting a role for these genes in maintaining a self-renewal pathway triggered by PLZF-RARalpha.
Collapse
|
36
|
Boukarabila H, Saurin AJ, Batsché E, Mossadegh N, van Lohuizen M, Otte AP, Pradel J, Muchardt C, Sieweke M, Duprez E. The PRC1 Polycomb group complex interacts with PLZF/RARA to mediate leukemic transformation. Genes Dev 2009; 23:1195-206. [PMID: 19451220 DOI: 10.1101/gad.512009] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ectopic repression of retinoic acid (RA) receptor target genes by PML/RARA and PLZF/RARA fusion proteins through aberrant recruitment of nuclear corepressor complexes drives cellular transformation and acute promyelocytic leukemia (APL) development. In the case of PML/RARA, this repression can be reversed through treatment with all-trans RA (ATRA), leading to leukemic remission. However, PLZF/RARA ectopic repression is insensitive to ATRA, resulting in persistence of the leukemic diseased state after treatment, a phenomenon that is still poorly understood. Here we show that, like PML/RARA, PLZF/RARA expression leads to recruitment of the Polycomb-repressive complex 2 (PRC2) Polycomb group (PcG) complex to RA response elements. However, unlike PML/RARA, PLZF/RARA directly interacts with the PcG protein Bmi-1 and forms a stable component of the PRC1 PcG complex, resulting in PLZF/RARA-dependent ectopic recruitment of PRC1 to RA response elements. Upon treatment with ATRA, ectopic recruitment of PRC2 by either PML/RARA or PLZF/RARA is lost, whereas PRC1 recruited by PLZF/RARA remains, resulting in persistent RA-insensitive gene repression. We further show that Bmi-1 is essential for the PLZF/RARA cellular transformation property and implicates a central role for PRC1 in PLZF/RARA-mediated myeloid leukemic development.
Collapse
Affiliation(s)
- Hanane Boukarabila
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, Campus de Luminy, 13288 Marseille Cedex 09, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Transforming activity of AML1-ETO is independent of CBFbeta and ETO interaction but requires formation of homo-oligomeric complexes. Proc Natl Acad Sci U S A 2009; 106:2853-8. [PMID: 19202074 DOI: 10.1073/pnas.0810558106] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although both heterodimeric subunits of core binding factors (AML1/RUNX1 and CBFbeta) essential for normal hematopoiesis are frequently mutated to form different chimeric fusion proteins in acute leukemia, the underlying molecular mechanisms and structural domains required for cellular transformation remain largely unknown. Despite the critical role of CBFbeta for wild-type AML1 function and its direct involvement in chromosomal translocation, we demonstrate that both the expression and interaction with CBFbeta are superfluous for AML1-ETO (AE)-mediated transformation of primary hematopoietic cells. Similarly, the hetero-oligomeric interaction with transcriptional repressor ETO family proteins and the highly conserved NHR1 domain in AE fusion are also dispensable for transforming activity. In contrast, AE-mediated transformation is critically dependent on the DNA binding and homo-oligomeric properties of the fusion. Abolishment of homo-oligomerization by a small-molecule inhibitor could specifically suppress AML1 fusion-mediated transformation of primary hematopoietic cells. Together, these results not only identify the essential molecular components but also potential avenues for therapeutic targeting of AE-mediated leukemogenesis.
Collapse
|
38
|
Grimwade D, Mistry AR, Solomon E, Guidez F. Acute promyelocytic leukemia: a paradigm for differentiation therapy. Cancer Treat Res 2009; 145:219-35. [PMID: 20306254 DOI: 10.1007/978-0-387-69259-3_13] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Acute promyelocytic leukemia(APL) is characterized by the t(15;17) chromosomal translocation leading to the formation of the PML-RARalpha oncoprotein. This leukemia has attracted considerable interest in recent years, being the first in which therapies that specifically target the underlying molecular lesion, i.e., all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), leading to induction of differentiation and apoptosis have been successfully used in clinical practice. The advent of ATRA therapy has transformed APL from being a disease with a poor outlook to one of the most prognostically favorable subsets of acute myeloid leukemia. Further improvements in outcome may be achieved with the use of ATO, which achieves high rates of remission in the relatively small proportion of patients now relapsing following standard first-line therapy with ATRA and anthracycline-based chemotherapy. Moreover, recent studies have suggested that ATO and ATRA, or even ATO alone, used as front-line treatment of PML-RARA- associated APL can induce long-term remissions. This raises the possibility that some patients can be cured using differentiation therapies alone, without the need for chemotherapy, thereby potentially reducing treatment-related toxicity. It is clear that the success of such an approach is critically dependent upon molecular diagnostics and monitoring for minimal residual disease (MRD) to distinguish those patients who can potentially be cured with differentiation therapy from those requiring additional myelosuppressive agents. This represents an exciting new phase in the treatment of acute leukemia, highlighting the potential of molecularly targeted and MRD-directed therapies to achieve an individualized approach to patient management.
Collapse
Affiliation(s)
- David Grimwade
- Department of Medical and Molecular Genetics, King's College London School of Medicine, London, UK.
| | | | | | | |
Collapse
|
39
|
|
40
|
RARalpha-PLZF overcomes PLZF-mediated repression of CRABPI, contributing to retinoid resistance in t(11;17) acute promyelocytic leukemia. Proc Natl Acad Sci U S A 2007; 104:18694-9. [PMID: 18000064 DOI: 10.1073/pnas.0704433104] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Leukemia-associated chimeric oncoproteins often act as transcriptional repressors, targeting promoters of master genes involved in hematopoiesis. We show that CRABPI (encoding cellular retinoic acid binding protein I) is a target of PLZF, which is fused to RARalpha by the t(11;17)(q23;q21) translocation associated with retinoic acid (RA)-resistant acute promyelocytic leukemia (APL). PLZF represses the CRABPI locus through propagation of chromatin condensation from a remote intronic binding element culminating in silencing of the promoter. Although the canonical, PLZF-RARalpha oncoprotein has no impact on PLZF-mediated repression, the reciprocal translocation product RARalpha-PLZF binds to this remote binding site, recruiting p300, inducing promoter hypomethylation and CRABPI gene up-regulation. In line with these observations, RA-resistant murine PLZF/RARalpha+RARalpha/PLZF APL blasts express much higher levels of CRABPI than standard RA-sensitive PML/RARalpha APL. RARalpha-PLZF confers RA resistance to a retinoid-sensitive acute myeloid leukemia (AML) cell line in a CRABPI-dependent fashion. This study supports an active role for PLZF and RARalpha-PLZF in leukemogenesis, identifies up-regulation of CRABPI as a mechanism contributing to retinoid resistance, and reveals the ability of the reciprocal fusion gene products to mediate distinct epigenetic effects contributing to the leukemic phenotype.
Collapse
|
41
|
Huang Y, Qiu J, Chen G, Dong S. Coiled-coil domain of PML is essential for the aberrant dynamics of PML-RARalpha, resulting in sequestration and decreased mobility of SMRT. Biochem Biophys Res Commun 2007; 365:258-65. [PMID: 17991421 DOI: 10.1016/j.bbrc.2007.10.184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2007] [Accepted: 10/26/2007] [Indexed: 11/18/2022]
Abstract
Promyelocytic leukemia-retinoic acid receptor alpha (PML-RARalpha) is the most frequent RARalpha fusion protein in acute promyelocytic leukemia (APL). Our previous study has demonstrated that, compared with RARalpha, PML-RARalpha had reduced intranuclear mobility accompanied with mislocalization. To understand the molecular basis for the altered dynamics of PML-RARalpha fusion protein, we performed FRAP analysis at a single cell level. Results indicated that three known sumoylation site mutated PML-RARalpha had same intracellular localization and reduced mobility as wild-type counterpart. The coiled-coil domain of PML is responsible for the aberrant dynamics of PML-RARalpha. In addition, we revealed that co-repressor SMRT co-localized with PML-RARalpha, resulting in the immobilization of SMRT while ATRA treatment eliminated their association and reversed the immobile effect of SMRT. Furthermore, co-activator CBP, co-localized with PML-RARalpha in an ATRA-independent way, was demonstrated as a high dynamic intranuclear molecule. These results would shed new insights for the molecular mechanisms of PML-RARalpha-associated leukemogenesis.
Collapse
Affiliation(s)
- Ying Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine (SJTU-SM), No. 280, Chong-Qing South Road, Shanghai 200025, China
| | | | | | | |
Collapse
|
42
|
Cheung N, Chan LC, Thompson A, Cleary ML, So CWE. Protein arginine-methyltransferase-dependent oncogenesis. Nat Cell Biol 2007; 9:1208-15. [PMID: 17891136 DOI: 10.1038/ncb1642] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 07/24/2007] [Indexed: 12/20/2022]
Abstract
Enzymes that mediate reversible epigenetic modifications have not only been recognized as key in regulating gene expression and oncogenesis, but also provide potential targets for molecular therapy. Although the methylation of arginine 3 of histone 4 (H4R3) by protein arginine methyltransferase 1 (PRMT1) is a critical modification for active chromatin and prevention of heterochromatin spread, there has been no direct evidence of any role of PRMTs in cancer. Here, we show that PRMT1 is an essential component of a novel Mixed Lineage Leukaemia (MLL) oncogenic transcriptional complex with both histone acetylation and H4R3 methylation activities, which also correlate with the expression of critical MLL downstream targets. Direct fusion of MLL with PRMT1 or Sam68, a bridging molecule in the complex for PRMT1 interaction, could enhance self-renewal of primary haematopoietic cells. Conversely, specific knockdown of PRMT1 or Sam68 expression suppressed MLL-mediated transformation. This study not only functionally dissects the oncogenic transcriptional machinery associated with an MLL fusion complex, but also uncovers--for the first time--an essential function of PRMTs in oncogenesis and reveals their potential as novel therapeutic targets in human cancer.
Collapse
Affiliation(s)
- Ngai Cheung
- Haemato-Oncology Section, The Institute of Cancer Research, Sutton, Greater London SM2 5NG, UK
| | | | | | | | | |
Collapse
|
43
|
Qiu J, Huang Y, Chen G, Chen Z, Tweardy DJ, Dong S. Aberrant chromatin remodeling by retinoic acid receptor alpha fusion proteins assessed at the single-cell level. Mol Biol Cell 2007; 18:3941-51. [PMID: 17671166 PMCID: PMC1995740 DOI: 10.1091/mbc.e07-03-0245] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is characterized by specific chromosomal translocations, which generate fusion proteins such as promyelocytic leukemia (PML)-retinoic acid receptor (RAR)alpha and promyelocytic leukemia zinc finger (PLZF)-RARalpha (X-RARalpha). In this study, we have applied lac operator array systems to study the effects of X-RARalpha versus wild-type RARalpha on large-scale chromatin structure. The targeting of these enhanced cyan fluorescent protein-lac repressor-tagged RARalpha-containing proteins to the gene-amplification chromosomal region by lac operator repeats led to local chromatin condensation, recruitment of nuclear receptor corepressor, and histone deacetylase complex. The addition of retinoic acid (RA) induced large-scale chromatin decondensation in cells expressing RARalpha; however, cells expressing X-RARalpha, especially PML-RARalpha, demonstrated insensitive response to this effect of all-trans retinoic acid (ATRA). Although we did not reveal differences in RA-dependent colocalization of either silencing mediator for retinoid and thyroid or steroid receptor coactivator (SRC)-1 with RARalpha versus X-RARalpha, the hormone-independent association between SRC-1 and X-RARalpha on the array has been identified. Rather, compared with cells expressing RARalpha, fluorescence recovery after photobleaching of live transfected cells, demonstrated decreased mobility of SRC-1 on the X-RARalpha-bound chromatin. Thus, the impaired ability of APL fusion proteins to activate gene transcription in response to ATRA corresponds to their reduced ability to remodel chromatin, which may link to their ability to impair the mobility of key nuclear receptor coregulators.
Collapse
Affiliation(s)
- Jihui Qiu
- *Department of Medicine, Section of Infectious Disease, and
| | - Ying Huang
- Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Guoqiang Chen
- Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Zhu Chen
- Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - David J. Tweardy
- *Department of Medicine, Section of Infectious Disease, and
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; and
| | - Shuo Dong
- *Department of Medicine, Section of Infectious Disease, and
- Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
44
|
Abstract
Retinoids (retinol [vitamin A] and its biologically active metabolites) are essential signaling molecules that control various developmental pathways and influence the proliferation and differentiation of a variety of cell types. The physiological actions of retinoids are mediated primarily by the retinoic acid receptors alpha, beta, and gamma (RARs) and rexinoid receptors alpha, beta, and gamma. Although mutations in RARalpha, via the PML-RARalpha fusion proteins, result in acute promyelocytic leukemia, RARs have generally not been reported to be mutated or part of fusion proteins in carcinomas. However, the retinoid signaling pathway is often compromised in carcinomas. Altered retinol metabolism, including low levels of lecithin:retinol acyl trasferase and retinaldehyde dehydrogenase 2, and higher levels of CYP26A1, has been observed in various tumors. RARbeta(2) expression is also reduced or is absent in many types of cancer. A greater understanding of the molecular mechanisms by which retinoids induce cell differentiation, and in particular stem cell differentiation, is required in order to solve the issue of retinoid resistance in tumors, and thereby to utilize RA and synthetic retinoids more effectively in combination therapies for human cancer.
Collapse
Affiliation(s)
- Nigel P Mongan
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10021, USA
| | | |
Collapse
|
45
|
Minucci S, Pelicci PG. Determinants of oncogenic transformation in acute promyelocytic leukemia: the hetero-union makes the force. Cancer Cell 2007; 12:1-3. [PMID: 17613430 DOI: 10.1016/j.ccr.2007.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acute promyelocytic leukemia (APL) is caused by chromosomal translocations that involve the retinoic acid receptor alpha (RAR) and several other genes to yield X-RAR fusion proteins. Unlike wild-type RARs, which require heterodimerization with the retinoid X receptor (RXR) for their function as DNA-binding transcriptional regulators, X-RAR fusion proteins bind DNA and deregulate transcription as homo-oligomers. In this issue of Cancer Cell, however, Zeisig et al. and Zhu et al. show that RXR recruitment is a critical determinant for the transforming potential of oligomeric X-RAR fusion proteins and explore the possibility for targeted interventions in APL with either RAR or RXR ligands.
Collapse
Affiliation(s)
- Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy.
| | | |
Collapse
|
46
|
Zeisig BB, Kwok C, Zelent A, Shankaranarayanan P, Gronemeyer H, Dong S, So CWE. Recruitment of RXR by homotetrameric RARalpha fusion proteins is essential for transformation. Cancer Cell 2007; 12:36-51. [PMID: 17613435 DOI: 10.1016/j.ccr.2007.06.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 04/10/2007] [Accepted: 06/01/2007] [Indexed: 10/23/2022]
Abstract
While formation of higher-order oncogenic transcriptional complexes is critical for RARalpha fusion proteins in acute promyelocytic leukemia, the essential components and their roles in mediating transformation are still largely unknown. To this end, the present study demonstrates that homodimerization is not sufficient for RARalpha fusion-mediated transformation, which requires higher-order homotetramerization. Surprisingly, intrinsic homo-oligomeric DNA binding by the fusion proteins is also dispensable. Importantly, higher-order RXR/RARalpha fusion hetero-oligomeric complexes that aberrantly recruit transcriptional corepressors to downstream targets are essential for transformation. Intervention of RXR-dependent pathways by panRXR-agonists or RXRalpha shRNAs suppresses RARalpha fusion-mediated transformation. Taken together, these results define the oncogenic threshold for self-association and reveal the pathological significance of higher-order RARalpha fusion/RXR hetero-oligomeric complexes and their potential value as a therapeutic target.
Collapse
Affiliation(s)
- Bernd B Zeisig
- Haemato-Oncology Section, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Greater London SM2 5NG, UK
| | | | | | | | | | | | | |
Collapse
|
47
|
Zhu J, Nasr R, Pérès L, Riaucoux-Lormière F, Honoré N, Berthier C, Kamashev D, Zhou J, Vitoux D, Lavau C, de Thé H. RXR is an essential component of the oncogenic PML/RARA complex in vivo. Cancer Cell 2007; 12:23-35. [PMID: 17613434 DOI: 10.1016/j.ccr.2007.06.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 04/04/2007] [Accepted: 06/01/2007] [Indexed: 11/19/2022]
Abstract
Although PML-enforced RARA homodimerization allows PML/RARA to bind DNA independently of its coreceptor RXR, the latter was identified within the PML/RARA complex. We demonstrate that a PML/RARA mutant defective for RXR binding fails to trigger APL development in transgenic mice, although it still transforms primary hematopoietic progenitors ex vivo. RXR enhances PML/RARA binding to DNA and is required for rexinoid-induced APL differentiation. In RA-treated PML/RARA-transformed cells, the absence of RXR binding results in monocytic, rather than granulocytic, differentiation. PML/RARA enhances posttranslational modifications of RXRA, including its sumoylation, suggesting that PML-bound sumoylation enzymes target RXRA and possibly other PML/RARA-bound chromatin proteins, further contributing to deregulated transcription. Thus, unexpectedly, RXR contributes to several critical aspects of in vivo transformation.
Collapse
Affiliation(s)
- Jun Zhu
- CNRS/University Paris VII UMR 7151, laboratoire associé N11 de la Ligue contre le Cancer, Hôpital St. Louis, 1, avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Villa R, Pasini D, Gutierrez A, Morey L, Occhionorelli M, Viré E, Nomdedeu JF, Jenuwein T, Pelicci PG, Minucci S, Fuks F, Helin K, Di Croce L. Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell 2007; 11:513-25. [PMID: 17560333 DOI: 10.1016/j.ccr.2007.04.009] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 12/02/2006] [Accepted: 04/06/2007] [Indexed: 12/31/2022]
Abstract
Epigenetic changes are common alterations in cancer cells. Here, we have investigated the role of Polycomb group proteins in the establishment and maintenance of the aberrant silencing of tumor suppressor genes during transformation induced by the leukemia-associated PML-RARalpha fusion protein. We show that in leukemic cells knockdown of SUZ12, a key component of Polycomb repressive complex 2 (PRC2), reverts not only histone modification but also induces DNA demethylation of PML-RARalpha target genes. This results in promoter reactivation and granulocytic differentiation. Importantly, the epigenetic alterations caused by PML-RARalpha can be reverted by retinoic acid treatment of primary blasts from leukemic patients. Our results demonstrate that the direct targeting of Polycomb group proteins by an oncogene plays a key role during carcinogenesis.
Collapse
Affiliation(s)
- Raffaella Villa
- Centre de Regulacio Genomica, c/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Buijs A, Bruin M. Fusion of FIP1L1 and RARA as a result of a novel t(4;17)(q12;q21) in a case of juvenile myelomonocytic leukemia. Leukemia 2007; 21:1104-8. [PMID: 17301809 DOI: 10.1038/sj.leu.2404596] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
MESH Headings
- Chromosomes, Human, Pair 17
- Chromosomes, Human, Pair 4
- Dimerization
- Gene Fusion
- Humans
- Infant
- Leukemia, Myelomonocytic, Chronic/genetics
- Male
- Oncogene Proteins, Fusion/chemistry
- Receptor, Platelet-Derived Growth Factor alpha/chemistry
- Receptors, Retinoic Acid/genetics
- Retinoic Acid Receptor alpha
- Translocation, Genetic
- mRNA Cleavage and Polyadenylation Factors/chemistry
- mRNA Cleavage and Polyadenylation Factors/genetics
Collapse
|
50
|
Ohnuma-Ishikawa K, Morio T, Yamada T, Sugawara Y, Ono M, Nagasawa M, Yasuda A, Morimoto C, Ohnuma K, Dang NH, Hosoi H, Verdin E, Mizutani S. Knockdown of XAB2 Enhances All-Trans Retinoic Acid–Induced Cellular Differentiation in All-Trans Retinoic Acid–Sensitive and –Resistant Cancer Cells. Cancer Res 2007; 67:1019-29. [PMID: 17283134 DOI: 10.1158/0008-5472.can-06-1638] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Xeroderma pigmentosum group A (XPA)-binding protein 2 (XAB2) is composed of 855 amino acids, contains 15 tetratricopeptide repeat motifs, and associates with Cockayne syndrome group A and B proteins and RNA polymerase II, as well as XPA. In vitro and in vivo studies showed that XAB2 is involved in pre-mRNA splicing, transcription, and transcription-coupled DNA repair, leading to preimplantation lethality, and is essential for mouse embryogenesis. Retinoids are effective for the treatment of preneoplastic diseases including xeroderma pigmentosum and other dermatologic diseases such as photoaging. We therefore focused on defining the effect of XAB2 on cellular differentiation in the presence of ATRA treatment. In the present study, we showed that overexpression of XAB2 inhibited ATRA-induced cellular differentiation in human rhabdomyosarcoma cell line, and that knockdown of XAB2 by small interfering RNA (siRNA) increased ATRA-sensitive cellular differentiation in the human promyelocytic leukemia cell line HL60 at both physiologic (10(-9)-10(-8) mol/L) and therapeutic (10(-7) mol/L) concentrations of ATRA. Moreover, we found that XAB2 was associated with retinoic acid receptor alpha (RARalpha) and histone deacetylase 3 in the nuclei. Finally, using siRNA against XAB2, we showed that the ATRA-resistant neuroblastoma cell line IMR-32 underwent cellular differentiation induced by ATRA at a therapeutic concentration (10(-6) mol/L). These results strongly suggest that XAB2 is a component of the RAR corepressor complex with an inhibitory effect on ATRA-induced cellular differentiation and that XAB2 plays a role in ATRA-mediated cellular differentiation as an important aspect of cancer therapy.
Collapse
Affiliation(s)
- Kumiko Ohnuma-Ishikawa
- Department of Pediatrics, Graduate Medical School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 11308519, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|