1
|
Asamoah S, Pravda M, Matonohová J, Bártová T, Šnejdrová E, Spiegel S, Chan A, Pernet V, Velebný V. Iron(II)-catalysed tyrosinase crosslinked hyaluronic acid hydrogel for the controlled release of human antibodies. J Mater Chem B 2025. [PMID: 40395034 DOI: 10.1039/d4tb02606c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Tyrosinase is a common crosslinker used in the formation of in situ hydrogels, often resulting in significantly longer gelation times. The rate-determining step for the interconversion between the four discrete states of the enzyme is characterized by a lag phase, which contributes to its slow gelation kinetics. In this study, we report, for the first time, the use of a catalytic amount of iron(II) to produce fast in situ-gellable tyramine-conjugated hyaluronic acid hydrogels (HATA), which are prospectively applicable for nasal drug delivery. We observed gelation times ranging from 886 to 538 seconds, depending on the polymer and enzyme concentrations, irrespective of the pH level tested. The presence of iron(II) significantly reduced the gelation time by an order of magnitude, ranging from 86 seconds to 25.46 seconds, depending on the polymer concentration, pH, and enzyme activity. Based on our findings, we propose a double crosslinking mechanism involving catechol-catechol coupling and catechol-iron(II) complex formation, as evidenced by improvements in the rheological properties of the hydrogels. These novel hydrogels can encapsulate antibodies and provide prolonged release for up to two weeks. Additionally, we confirmed that the crosslinking chemistry did not affect the bioactivity of the antibodies. Given their improved mucoadhesive properties, we envision these hydrogels as promising candidates for the formulation of bioadhesive drug delivery systems.
Collapse
Affiliation(s)
- Seth Asamoah
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203/8, 500 03 Hradec Králové 3, Czech Republic
- Contipro a.s., Dolní Dobrouč 401, 56102, Dolní Dobrouč, Czech Republic
| | - Martin Pravda
- Contipro a.s., Dolní Dobrouč 401, 56102, Dolní Dobrouč, Czech Republic
| | - Jana Matonohová
- Contipro a.s., Dolní Dobrouč 401, 56102, Dolní Dobrouč, Czech Republic
| | - Tereza Bártová
- Contipro a.s., Dolní Dobrouč 401, 56102, Dolní Dobrouč, Czech Republic
| | - Eva Šnejdrová
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203/8, 500 03 Hradec Králové 3, Czech Republic
| | - Sebastian Spiegel
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Experimental Neurology Center (ZEN), Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3010 Bern, Switzerland
| | - Andrew Chan
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Experimental Neurology Center (ZEN), Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Vincent Pernet
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Experimental Neurology Center (ZEN), Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, Qc, Canada
- Centre de Recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Québec, Québec City, Canada
| | - Vladimír Velebný
- Contipro a.s., Dolní Dobrouč 401, 56102, Dolní Dobrouč, Czech Republic
| |
Collapse
|
2
|
Wang Z, Bao W, Wujieti B, Liu M, Li X, Ma Z, Cui W, Tian Z. Molecular Photoswitching Unlocks Glucose Oxidase for Synergistically Reinforcing Fenton Reactions for Antitumor Chemodynamic Therapy. Angew Chem Int Ed Engl 2025; 64:e202413633. [PMID: 39312192 DOI: 10.1002/anie.202413633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Indexed: 11/08/2024]
Abstract
We have developed a new type of nanoparticles with potent antitumor activity photoactivatable via the combination of molecular photoswitching of spiropyran (SP) and enzymatic reaction of glucose oxidase (GOx). As two key processes involved therein, Fe(III)-to-Fe(II) photoreduction in Fe(III) metal-organic frameworks (MOFs) brings about the release of free Fe2+/Fe3+ while the photoswitching of SP to merocyanine (MC) unlocks the enzymatic activity of GOx that was pre-passivated by SP. The release of free Fe3+ boosts its hydrolysis and therefore enables the acidification of microenvironment, which is further reinforced by one of the products of the GOx-mediated glucose oxidation reaction, gluconic acid (GlcA). Based on the generation of Fe2+ and acidic milieu together with another product of the oxidation reaction, hydrogen peroxide (H2O2), these two processes jointly present triple enabling factors for generating lethal hydroxyl radicals (⋅OH) species via Fenton reactions and therefore oxidative stress capable of inhibiting tumor. The antitumor potency of such nanoparticle is verified in tumor-bearing model mice in vivo, proclaiming its potential as a potent and safe agent based on the unique mechanism of optically manipulating enzyme activity for synergistic antitumor therapeutics with high spatial precision, enhanced efficacy and minimized side effects.
Collapse
Affiliation(s)
- Zicheng Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), 100049, Beijing, P. R. China
| | - Weier Bao
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), 100049, Beijing, P. R. China
| | - Baerlike Wujieti
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), 100049, Beijing, P. R. China
| | - Ming Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), 100049, Beijing, P. R. China
| | | | - Zhecheng Ma
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), 100049, Beijing, P. R. China
| | - Wei Cui
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), 100049, Beijing, P. R. China
| | - Zhiyuan Tian
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), 100049, Beijing, P. R. China
| |
Collapse
|
3
|
Pall AE, Bond S, Bailey DK, Stoj CS, Deschamps I, Huggins P, Parsons J, Bradbury MJ, Kosman DJ, Stemmler TL. ATH434, a promising iron-targeting compound for treating iron regulation disorders. Metallomics 2024; 16:mfae044. [PMID: 39317669 DOI: 10.1093/mtomcs/mfae044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/22/2024] [Indexed: 09/26/2024]
Abstract
Cytotoxic accumulation of loosely bound mitochondrial Fe2+ is a hallmark of Friedreich's Ataxia (FA), a rare and fatal neuromuscular disorder with limited therapeutic options. There are no clinically approved medications targeting excess Fe2+ associated with FA or the neurological disorders Parkinson's disease and Multiple System Atrophy. Traditional iron-chelating drugs clinically approved for systemic iron overload that target ferritin-stored Fe3+ for urinary excretion demonstrated limited efficacy in FA and exacerbated ataxia. Poor treatment outcomes reflect inadequate binding to excess toxic Fe2+ or exceptionally high affinities (i.e. ≤10-31) for non-pathologic Fe3+ that disrupts intrinsic iron homeostasis. To understand previous treatment failures and identify beneficial factors for Fe2+-targeted therapeutics, we compared traditional Fe3+ chelators deferiprone (DFP) and deferasirox (DFX) with additional iron-binding compounds including ATH434, DMOG, and IOX3. ATH434 and DFX had moderate Fe2+ binding affinities (Kd's of 1-4 µM), similar to endogenous iron chaperones, while the remaining had weaker divalent metal interactions. These compounds had low/moderate affinities for Fe3+(0.46-9.59 µM) relative to DFX and DFP. While all compounds coordinated iron using molecular oxygen and/or nitrogen ligands, thermodynamic analyses suggest ATH434 completes Fe2+ coordination using H2O. ATH434 significantly stabilized bound Fe2+ from ligand-induced autooxidation, reducing reactive oxygen species (ROS) production, whereas DFP and DFX promoted production. The comparable affinity of ATH434 for Fe2+ and Fe3+ position it to sequester excess Fe2+ and facilitate drug-to-protein iron metal exchange, mimicking natural endogenous iron binding proteins, at a reduced risk of autooxidation-induced ROS generation or perturbation of cellular iron stores.
Collapse
Affiliation(s)
- Ashley E Pall
- De partment of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Silas Bond
- Alterity Therapeutics Limited, Melbourne, 3000, Australia
| | - Danielle K Bailey
- Department of Biochemistry, University of Buffalo, Buffalo, NY14203, USA
| | - Christopher S Stoj
- Department of Biochemistry, Chemistry and Physics, Niagara University, Lewiston, NY 14109, USA
| | - Isabel Deschamps
- Department of Biochemistry, Chemistry and Physics, Niagara University, Lewiston, NY 14109, USA
| | - Penny Huggins
- Alterity Therapeutics Limited, Melbourne, 3000, Australia
| | - Jack Parsons
- Alterity Therapeutics Limited, Melbourne, 3000, Australia
| | | | - Daniel J Kosman
- Department of Biochemistry, University of Buffalo, Buffalo, NY14203, USA
| | - Timothy L Stemmler
- De partment of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
4
|
Li Y, Pavanram P, Bühring J, Rütten S, Schröder KU, Zhou J, Pufe T, Wang LN, Zadpoor AA, Jahr H. Physiomimetic biocompatibility evaluation of directly printed degradable porous iron implants using various cell types. Acta Biomater 2023; 169:589-604. [PMID: 37536493 DOI: 10.1016/j.actbio.2023.07.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/04/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Additively manufactured (AM) degradable porous metallic biomaterials offer unique opportunities for satisfying the design requirements of an ideal bone substitute. Among the currently available biodegradable metals, iron has the highest elastic modulus, meaning that it would benefit the most from porous design. Given the successful preclinical applications of such biomaterials for the treatment of cardiovascular diseases, the moderate compatibility of AM porous iron with osteoblast-like cells, reported in earlier studies, has been surprising. This may be because, as opposed to static in vitro conditions, the biodegradation products of iron in vivo are transported away and excreted. To better mimic the in situ situations of biodegradable biomaterials after implantation, we compared the biodegradation behavior and cytocompatibility of AM porous iron under static conditions to the conditions with dynamic in situ-like fluid flow perfusion in a bioreactor. Furthermore, the compatibility of these scaffolds with four different cell types was evaluated to better understand the implications of these implants for the complex process of natural wound healing. These included endothelial cells, L929 fibroblasts, RAW264.7 macrophage-like cells, and osteoblastic MG-63 cells. The biodegradation rate of the scaffolds was significantly increased in the perfusion bioreactor as compared to static immersion. Under either condition, the compatibility with L929 cells was the best. Moreover, the compatibility with all the cell types was much enhanced under physiomimetic dynamic flow conditions as compared to static biodegradation. Our study highlights the importance of physiomimetic culture conditions and cell type selection when evaluating the cytocompatibility of degradable biomaterials in vitro. STATEMENT OF SIGNIFICANCE: Additively manufactured (AM) degradable porous metals offer unique opportunities for the treatment of large bony defects. Despite the successful preclinical applications of biodegradable iron in the cardiovascular field, the moderate compatibility of AM porous iron with osteoblast-like cells was reported. To better mimic the in vivo condition, we compared the biodegradation behavior and cytocompatibility of AM porous iron under static condition to dynamic perfusion. Furthermore, the compatibility of these scaffolds with various cell types was evaluated to better simulate the process of natural wound healing. Our study suggests that AM porous iron holds great promise for orthopedic applications, while also highlighting the importance of physio-mimetic culture conditions and cell type selection when evaluating the cytocompatibility of degradable biomaterials in vitro.
Collapse
Affiliation(s)
- Y Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Department of Biomechanical Engineering, Delft University of Technology, Delft 2628CD, the Netherlands.
| | - P Pavanram
- Institute of Anatomy and Cell Biology, University Hospital RWTH Aachen, Aachen 52074, Germany
| | - J Bühring
- Institute of Structural Mechanics and Lightweight Design, RWTH Aachen University, 52062 Aachen, Germany
| | - S Rütten
- Institute of Pathology, Electron Microscopy Unit, University Hospital RWTH Aachen, Aachen 52074, Germany
| | - K-U Schröder
- Institute of Structural Mechanics and Lightweight Design, RWTH Aachen University, 52062 Aachen, Germany
| | - J Zhou
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628CD, the Netherlands
| | - T Pufe
- Institute of Anatomy and Cell Biology, University Hospital RWTH Aachen, Aachen 52074, Germany
| | - L-N Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - A A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628CD, the Netherlands
| | - H Jahr
- Institute of Anatomy and Cell Biology, University Hospital RWTH Aachen, Aachen 52074, Germany.; Institute of Structural Mechanics and Lightweight Design, RWTH Aachen University, 52062 Aachen, Germany.
| |
Collapse
|
5
|
Wu Z, Ji S, Li YY, Liu J. A review of iron use and recycling in municipal wastewater treatment plants and a novel applicable integrated process. BIORESOURCE TECHNOLOGY 2023; 379:129037. [PMID: 37037337 DOI: 10.1016/j.biortech.2023.129037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Chemical methods are expected to play an increasingly important role in carbon-neutral municipal wastewater treatment plants. This paper briefly summarises the enhancement effects of using iron salts in wastewater and sludge treatment processes. The costs and environmental concerns associated with the widespread use of iron salts have also been highlighted. Fortunately, the iron recovery from iron-rich sludge provides an opportunity to solve these problems. Existing iron recovery methods, including direct acidification and thermal treatment, are summarised and show that acidification treatment of FeS digestate from the anaerobic digestion-sulfate reduction process can increase the iron and sulphur recycling efficiency. Therefore, a novel applicable integrated process based on iron use and recycling is proposed, and it reduces the iron salts dosage to 4.2 mg/L and sludge amount by 80%. Current experimental research and economic analysis of iron recycling show that this process has broad application prospects in resource recovery and sludge reduction.
Collapse
Affiliation(s)
- Zhangsong Wu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Shenghao Ji
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
6
|
Deb L, Dutta P, Mandal MK, Singh SB. Antimicrobial Traits of Beauveria bassiana Against Rhizoctonia solani, the Causal Agent of Sheath Blight of Rice Under Field Conditions. PLANT DISEASE 2023:PDIS04220806RE. [PMID: 37327392 DOI: 10.1094/pdis-04-22-0806-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Beauveria bassiana, an entomopathogenic fungus, has recently drawn attention worldwide not only as a potential biocontrol agent against insect pests but also for its other beneficial roles as plant disease antagonist, endophyte, plant growth promoter, and beneficial rhizosphere colonizer. In the present study, 53 native isolates of B. bassiana were screened for antifungal ability against Rhizoctonia solani, the causal agent of sheath blight of rice. Also, the mechanisms underlying such interaction and the responsible antimicrobial traits involved were studied. Following this, potential B. bassiana isolates were assayed against the reduction of sheath blight of rice under field conditions. The results showed that B. bassiana exhibited antagonistic behavior against R. solani with a percent mycelial inhibition recorded maximum of up to 71.15%. Mechanisms behind antagonism were the production of cell-wall-degrading enzymes, mycoparasitism, and the release of secondary metabolites. The study also deciphered several antimicrobial traits and the presence of virulent genes in B. bassiana as a determinant of potential plant disease antagonists. Under field conditions, combined application of the B. bassiana microbial consortium as a seed treatment, seedling root dip, and foliar sprays showed reduced sheath blight disease incidence and severity up to 69.26 and 60.50%, respectively, along with enhanced plant-growth-promoting attributes. This is one of the few studies investigating the antagonistic abilities of the entomopathogenic fungus B. bassiana against phytopathogen R. solani and the underlying mechanisms involved.
Collapse
Affiliation(s)
- Lipa Deb
- School of Crop Protection, College of Post-Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya 793103, India
| | - Pranab Dutta
- School of Crop Protection, College of Post-Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya 793103, India
| | - Mihir Kumar Mandal
- Department of Plant Pathology, University of California-Davis, Salinas, CA 93905, U.S.A
| | | |
Collapse
|
7
|
Abstract
Iron is an essential micronutrient for all types of organisms; however, iron has chemical properties that can be harmful to cells. Because iron is both necessary and potentially damaging, insects have homeostatic processes that control the redox state, quantity, and location of iron in the body. These processes include uptake of iron from the diet, intracellular and extracellular iron transport, and iron storage. Early studies of iron-binding proteins in insects suggested that insects and mammals have surprisingly different mechanisms of iron homeostasis, including different primary mechanisms for exporting iron from cells and for transporting iron from one cell to another, and subsequent studies have continued to support this view. This review summarizes current knowledge about iron homeostasis in insects, compares insect and mammalian iron homeostasis mechanisms, and calls attention to key remaining knowledge gaps.
Collapse
Affiliation(s)
- Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA;
| |
Collapse
|
8
|
Wu N, Lyu Y, Lu B, Cai D, Meng X, Li X. Oxidative potential induced by metal-organic interaction from PM 2.5 in simulated biological fluids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157768. [PMID: 35931153 DOI: 10.1016/j.scitotenv.2022.157768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The oxidative potential (OP) of fine particulate matter (PM2.5) has recently been proposed as a metric that may prove more indicative of human health effects than the routinely measured PM2.5 concentration. Observations of exposure to PM2.5 show most OP are originated from the contribution of transition metals and organics, but the pertinent coupling mechanisms are unclear. Here, we report laboratory observations in four simulated biological fluids (i.e., simulated saliva, surrogate lung fluid, artificial lysosomal fluid, and synthetic serum) that reveal OP of PM2.5 are significantly induced by prevalent metal complexes formed with nitrogen- and oxygen-containing compounds in low acid environments. Analyses of mass spectra and interaction factors indicate that organic-metal mixture effect in PM2.5, leading to synergistic, additive to antagonistic effects, which may serve as the dominant mechanism for this OP formation. A metal-organic mixtures origin for OP could explain why PM2.5 emission controls should emphasize the reduction of key toxic components, rather than just PM2.5 mass concentration control. SYNOPSIS: This study has investigated the oxidative potential of inhaled atmospheric particulate matter (PM) in four simulated biological fluids, which highlight the importance of metal-organic complexes to the formation of oxidative potential (OP).
Collapse
Affiliation(s)
- Na Wu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200032, PR China
| | - Yan Lyu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Bingqing Lu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200032, PR China
| | - Dongmei Cai
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200032, PR China
| | - Xue Meng
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200032, PR China
| | - Xiang Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
9
|
Naumann C, Heisters M, Brandt W, Janitza P, Alfs C, Tang N, Toto Nienguesso A, Ziegler J, Imre R, Mechtler K, Dagdas Y, Hoehenwarter W, Sawers G, Quint M, Abel S. Bacterial-type ferroxidase tunes iron-dependent phosphate sensing during Arabidopsis root development. Curr Biol 2022; 32:2189-2205.e6. [PMID: 35472311 PMCID: PMC9168544 DOI: 10.1016/j.cub.2022.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/21/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022]
Abstract
Access to inorganic phosphate (Pi), a principal intermediate of energy and nucleotide metabolism, profoundly affects cellular activities and plant performance. In most soils, antagonistic Pi-metal interactions restrict Pi bioavailability, which guides local root development to maximize Pi interception. Growing root tips scout the essential but immobile mineral nutrient; however, the mechanisms monitoring external Pi status are unknown. Here, we show that Arabidopsis LOW PHOSPHATE ROOT 1 (LPR1), one key determinant of Fe-dependent Pi sensing in root meristems, encodes a novel ferroxidase of high substrate specificity and affinity (apparent KM ∼ 2 μM Fe2+). LPR1 typifies an ancient, Fe-oxidizing multicopper protein family that evolved early upon bacterial land colonization. The ancestor of streptophyte algae and embryophytes (land plants) acquired LPR1-type ferroxidase from soil bacteria via horizontal gene transfer, a hypothesis supported by phylogenomics, homology modeling, and biochemistry. Our molecular and kinetic data on LPR1 regulation indicate that Pi-dependent Fe substrate availability determines LPR1 activity and function. Guided by the metabolic lifestyle of extant sister bacterial genera, we propose that Arabidopsis LPR1 monitors subtle concentration differentials of external Fe availability as a Pi-dependent cue to adjust root meristem maintenance via Fe redox signaling and cell wall modification. We further hypothesize that the acquisition of bacterial LPR1-type ferroxidase by embryophyte progenitors facilitated the evolution of local Pi sensing and acquisition during plant terrestrialization.
Collapse
Affiliation(s)
- Christin Naumann
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Marcus Heisters
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Philipp Janitza
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse, 06120 Halle (Saale), Germany
| | - Carolin Alfs
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Nancy Tang
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Alicia Toto Nienguesso
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Richard Imre
- Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr Gasse 3, 1030 Vienna, Austria; Research Institute of Molecular Pathology, Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Karl Mechtler
- Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr Gasse 3, 1030 Vienna, Austria; Research Institute of Molecular Pathology, Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Yasin Dagdas
- Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Wolfgang Hoehenwarter
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Gary Sawers
- Institute of Biology/Microbiology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse, 06120 Halle (Saale), Germany; German Center for Integrative Biodiversity Research, Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany; Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA.
| |
Collapse
|
10
|
Peng YJ, Hou J, Zhang H, Lei JH, Lin HY, Ding JL, Feng MG, Ying SH. Systematic contributions of CFEM domain-containing proteins to iron acquisition are essential for interspecies interaction of the filamentous pathogenic fungus Beauveria bassiana. Environ Microbiol 2022; 24:3693-3704. [PMID: 35523457 DOI: 10.1111/1462-2920.16032] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
Common in fungal extracellular membrane (CFEM) domain is unique in fungal proteins and some of which contribute to iron acquisition in yeast. However, their roles in iron acquisition remain largely unknown in filamentous fungi. In this study, 12 CFEM-containing proteins were bioinformatically identified in the filamentous entomopathogenic fungus Beauveria bassiana, and the roles of 11 genes were genetically characterized. Transmembrane helices were critical for their association with intracellular membranes, and their number varied among proteins. Eleven CFEM genes significantly contribute to vegetative growth under iron starvation and virulence. Notably, the virulence of most disruptants could be significantly weakened by a decrease in iron availability, in which the virulence of ΔBbcfem7 and 8 strains was partially recovered by exogenous hemin. ΔBbcfem7 and 8 mutants displayed defective competitiveness against the sister entomopathogenic fungus Beauveria brongniartii. All 11 disruptants displayed impaired growth in the antagonistic assay with the saprotrophic fungus Aspergillus niger, which could be repressed by exogenous ferric ions. These findings not only reveal the systematic contributions of CFEM proteins to acquire two forms of iron (i.e. heme and ferric ion) in the entire lifecycle of entomopathogenic fungi but also help to better understand the mechanisms of fungus-host and inter-fungus interactions.
Collapse
Affiliation(s)
- Yue-Jin Peng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jia Hou
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Hui Lei
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hai-Yan Lin
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jin-Li Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
11
|
Yang Y, Fan X, Zhang J, Qiao S, Wang X, Zhang X, Miao L, Hou J. A critical review on the interaction of iron-based nanoparticles with blue-green algae and their metabolites: From mechanisms to applications. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Fan Q, Caserta G, Lorent C, Zebger I, Neubauer P, Lenz O, Gimpel M. High-Yield Production of Catalytically Active Regulatory [NiFe]-Hydrogenase From Cupriavidus necator in Escherichia coli. Front Microbiol 2022; 13:894375. [PMID: 35572669 PMCID: PMC9100943 DOI: 10.3389/fmicb.2022.894375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Hydrogenases are biotechnologically relevant metalloenzymes that catalyze the reversible conversion of molecular hydrogen into protons and electrons. The O2-tolerant [NiFe]-hydrogenases from Cupriavidus necator (formerly Ralstonia eutropha) are of particular interest as they maintain catalysis even in the presence of molecular oxygen. However, to meet the demands of biotechnological applications and scientific research, a heterologous production strategy is required to overcome the low production yields in their native host. We have previously used the regulatory hydrogenase (RH) from C. necator as a model for the development of such a heterologous hydrogenase production process in E. coli. Although high protein yields were obtained, the purified enzyme was inactive due to the lack of the catalytic center, which contains an inorganic nickel-iron cofactor. In the present study, we significantly improved the production process to obtain catalytically active RH. We optimized important factors such as O2 content, metal availability, production temperature and time as well as the co-expression of RH-specific maturase genes. The RH was successfully matured during aerobic cultivation of E. coli by co-production of seven hydrogenase-specific maturases and a nickel permease, which was confirmed by activity measurements and spectroscopic investigations of the purified enzyme. The improved production conditions resulted in a high yield of about 80 mg L–1 of catalytically active RH and an up to 160-fold space-time yield in E. coli compared to that in the native host C. necator [<0.1 U (L d) –1]. Our strategy has important implications for the use of E. coli K-12 and B strains in the recombinant production of complex metalloenzymes, and provides a blueprint for the production of catalytically active [NiFe]-hydrogenases in biotechnologically relevant quantities.
Collapse
Affiliation(s)
- Qin Fan
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Giorgio Caserta
- Department of Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Christian Lorent
- Department of Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Ingo Zebger
- Department of Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Oliver Lenz
- Department of Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Matthias Gimpel
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Berlin, Germany
- *Correspondence: Matthias Gimpel,
| |
Collapse
|
13
|
Nitric oxide biosensor uncovers diminished ferrous iron-dependency of cultured cells adapted to physiological oxygen levels. Redox Biol 2022; 53:102319. [PMID: 35525027 PMCID: PMC9079701 DOI: 10.1016/j.redox.2022.102319] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 01/18/2023] Open
|
14
|
Kamnev AA, Tugarova AV. Bioanalytical applications of Mössbauer spectroscopy. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
Data on the applications of Mössbauer spectroscopy in the transmission (mainly on 57Fe nuclei) and emission (on 57Co nuclei) variants for analytical studies at the molecular level of metal-containing components in a wide range of biological objects (from biocomplexes and biomacromolecules to supramolecular structures, cells, tissues and organisms) and of objects that are participants or products of biological processes, published in the last 15 years are discussed and systematized. The prospects of the technique in its biological applications, including the developing fields (emission variant, use of synchrotron radiation), are formulated.
The bibliography includes 248 references.
Collapse
|
15
|
Kosman DJ. A holistic view of mammalian (vertebrate) cellular iron uptake. Metallomics 2021; 12:1323-1334. [PMID: 32766655 DOI: 10.1039/d0mt00065e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell iron uptake in mammals is commonly distinguished by whether the iron is presented to the cell as transferrin-bound or not: TBI or NTBI. This generic perspective conflates TBI with canonical transferrin receptor, endosomal iron uptake, and NTBI with uptake supported by a plasma membrane-localized divalent metal ion transporter, most often identified as DMT1. In fact, iron uptake by mammalian cells is far more nuanced than this somewhat proscribed view suggests. This view fails to accommodate the substantial role that ZIP8 and ZIP14 play in iron uptake, while adhering to the traditional premise that a relatively high endosomal [H+] is thermodynamically required for release of iron from holo-Tf. The canonical view of iron uptake also does not encompass the fact that plasma membrane electron transport - PMET - has long been linked to cell iron uptake. In fact, the known mammalian metallo-reductases - Dcytb and the STEAP proteins - are members of this cohort of cytochrome-dependent oxido-reductases that shuttle reducing equivalents across the plasma membrane. A not commonly appreciated fact is the reduction potential of ferric iron in holo-Tf is accessible to cytoplasmic reducing equivalents - reduced pyridine and flavin mono- and di-nucleotides and dihydroascorbic acid. This allows for the reductive release of Fe2+ at the extracellular surface of the PM and subsequent transport into the cytoplasm by a neutral pH transporter - a ZIP protein. What this perspective emphasizes is that there are two TfR-dependent uptake pathways, one which does and one which does not involve clathrin-dependent, endolysosomal trafficking. This raises the question as to the selective advantage of having two Tf, TfR-dependent routes of iron accumulation. This review of canonical and non-canonical iron uptake uses cerebral iron trafficking as a point of discussion, a focus that encourages inclusion also of the importance of ferritin as a circulating 'chaperone' of ferric iron.
Collapse
Affiliation(s)
- Daniel J Kosman
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University of Buffalo, Suite 4102, 995 Main St., Buffalo, NY 14203, USA.
| |
Collapse
|
16
|
Ozuna H, Uriarte SM, Demuth DR. The Hunger Games: Aggregatibacter actinomycetemcomitans Exploits Human Neutrophils As an Epinephrine Source for Survival. Front Immunol 2021; 12:707096. [PMID: 34456916 PMCID: PMC8387626 DOI: 10.3389/fimmu.2021.707096] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is a gram-negative facultative anaerobe and an opportunistic oral pathogen, strongly associated with periodontitis and other inflammatory diseases. Periodontitis is a chronic inflammation of the periodontium resulting from the inflammatory response of the host towards the dysbiotic microbial community present at the gingival crevice. Previously, our group identified catecholamines and iron as the signals that activate the QseBC two-component system in A. actinomycetemcomitans, necessary for the organism to acquire iron as a nutrient to survive in the anaerobic environment. However, the source of catecholamines has not been identified. It has been reported that mouse neutrophils can release catecholamines. In periodontitis, large infiltration of neutrophils is found at the subgingival pocket; hence, we wanted to test the hypothesis that A. actinomycetemcomitans exploits human neutrophils as a source for catecholamines. In the present study, we showed that human neutrophils synthesize, store, and release epinephrine, one of the three main types of catecholamines. Human neutrophil challenge with A. actinomycetemcomitans induced exocytosis of neutrophil granule subtypes: secretory vesicles, specific granules, gelatinase granules, and azurophilic granules. In addition, by selectively inhibiting granule exocytosis, we present the first evidence that epinephrine is stored in azurophilic granules. Using QseC mutants, we showed that the periplasmic domain of the QseC sensor kinase is required for the interaction between A. actinomycetemcomitans and epinephrine. Finally, epinephrine-containing supernatants collected from human neutrophils promoted A. actinomycetemcomitans growth and induced the expression of the qseBC operon under anaerobic conditions. Based on our findings, we propose that A. actinomycetemcomitans promotes azurophilic granule exocytosis by neutrophils as an epinephrine source to promote bacterial survival.
Collapse
Affiliation(s)
- Hazel Ozuna
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Silvia M. Uriarte
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, United States
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Donald R. Demuth
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, United States
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| |
Collapse
|
17
|
Bailey DK, Clark W, Kosman DJ. The iron chelator, PBT434, modulates transcellular iron trafficking in brain microvascular endothelial cells. PLoS One 2021; 16:e0254794. [PMID: 34310628 PMCID: PMC8312958 DOI: 10.1371/journal.pone.0254794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/03/2021] [Indexed: 12/28/2022] Open
Abstract
Iron and other transition metals, such as copper and manganese, are essential for supporting brain function, yet over-accumulation is cytotoxic. This over-accumulation of metals, particularly iron, is common to several neurological disorders; these include Alzheimer’s disease, Parkinson’s disease, Friedrich’s ataxia and other disorders presenting with neurodegeneration and associated brain iron accumulation. The management of iron flux by the blood-brain barrier provides the first line of defense against the over-accumulation of iron in normal physiology and in these pathological conditions. In this study, we determined that the iron chelator PBT434, which is currently being developed for treatment of Parkinson’s disease and multiple system atrophy, modulates the uptake of iron by human brain microvascular endothelial cells (hBMVEC) by chelation of extracellular Fe2+. Treatment of hBMVEC with PBT434 results in an increase in the abundance of the transcripts for transferrin receptor (TfR) and ceruloplasmin (Cp). Western blot and ELISA analyses reveal a corresponding increase in the proteins as well. Within the cell, PBT434 increases the detectable level of chelatable, labile Fe2+; data indicate that this Fe2+ is released from ferritin. In addition, PBT434 potentiates iron efflux likely due to the increase in cytosolic ferrous iron, the substrate for the iron exporter, ferroportin. PBT434 equilibrates rapidly and bi-directionally across an hBMVEC blood-brain barrier. These results indicate that the PBT434-iron complex is not substrate for hBMVEC uptake and thus support a model in which PBT434 would chelate interstitial iron and inhibit re-uptake of iron by endothelial cells of the blood-brain barrier, as well as inhibit its uptake by the other cells of the neurovascular unit. Overall, this presents a novel and promising mechanism for therapeutic iron chelation.
Collapse
Affiliation(s)
- Danielle K. Bailey
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Whitney Clark
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Daniel J. Kosman
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States of America
- * E-mail:
| |
Collapse
|
18
|
The antagonistic Metschnikowia andauensis produces extracellular enzymes and pulcherrimin, whose production can be promoted by the culture factors. Sci Rep 2021; 11:10593. [PMID: 34011985 PMCID: PMC8134588 DOI: 10.1038/s41598-021-89982-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/05/2021] [Indexed: 11/29/2022] Open
Abstract
Biological control against microbial infections has a great potential as an alternative approach instead of fungicidal chemicals, which can cause environmental pollution. The pigment producer Metschnikowia andauensis belongs to the antagonistic yeasts, but details of the mechanism by which it inhibits growth of other microbes are less known. Our results confirmed its antagonistic capacity on other yeast species isolated from fruits or flowers and demonstrated that the antagonistic capacity was well correlated with the size of the red pigmented zone. We have isolated and characterized its red pigment, which proved to be the iron chelating pulcherrimin. Its production was possible even in the presence of 0.05 mg/ml copper sulphate, which is widely used in organic vineyards because of its antimicrobial properties. Production and localisation of the pulcherrimin strongly depended on composition of the media and other culture factors. Glucose, galactose, disaccharides and the presence of pectin or certain amino acids clearly promoted pigment production. Higher temperatures and iron concentration decreased the diameter of red pigmented zones. The effect of pH on pigment production varied depending of whether it was tested in liquid or solid media. In addition, our results suggest that other mechanisms besides the iron depletion of the culture media may contribute to the antagonistic capacity of M. andauensis.
Collapse
|
19
|
Karami-Darehnaranji M, Taghizadeh SM, Mirzaei E, Berenjian A, Ebrahiminezhad A. Size Tuned Synthesis of FeOOH Nanorods toward Self-Assembled Nanoarchitectonics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:115-123. [PMID: 33346669 DOI: 10.1021/acs.langmuir.0c02466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Various studies were performed to fabricate self-assembling nanoobjects out of noble metals, but a few efforts were made for engineering iron-based nanorods toward sell-assembling blocks. In this regard β-FeOOH nanorods were fabricated in various sizes to achieve iron-based rod nanoblocks with self-assembling potential. Hydrolysis of ferric ions in various concentrations was successfully developed as a novel approach to control the growth of β-FeOOH crystals and tuning the length of rods in the nano range, below 100 nm. It was found that the concentration of ferric ion has no effect on the widths of nanorods, but the length was affected. By increasing the concentration of ferric ions, an increase in the length of nanorods and an increase of aspect ratio occurred. All sizes of the resulting FeOOH nanorods exhibited mesoporous feature, but interestingly the hysteresis loops were different due to different pore patterns. In fact, pores on the larger particles were more uniform in size and shape. Nanorods of small length did not make suitable interactions toward ordered phase formation, but rods with the mean length of about 90 nm or longer, at a certain concentration, were able to form nematic phases. The large (∼+40 mV) zeta-potential of nanorods prevents formation of dense arrays, and just bundle-like structures were observed. These findings highlight the importance of size, surface charge, and concentration of nanoobjects in the formation of 3D structures. The developed technique in the fabrication of β-FeOOH nanorods provides pure structures that are free from any size-controlling agent. These pure structures are suitable for further functionalization or coating. Self-assembling nanoobjects is a developing field in nanotechnology, and therefore studies can help our understanding over the assembling process.
Collapse
Affiliation(s)
- Mahboubeh Karami-Darehnaranji
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh-Masoumeh Taghizadeh
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aydin Berenjian
- School of Engineering, Faculty of Science and Engineering, The University of Waikato, Hamilton, New Zealand
| | - Alireza Ebrahiminezhad
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Misslinger M, Hortschansky P, Brakhage AA, Haas H. Fungal iron homeostasis with a focus on Aspergillus fumigatus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118885. [PMID: 33045305 DOI: 10.1016/j.bbamcr.2020.118885] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 02/08/2023]
Abstract
To maintain iron homeostasis, fungi have to balance iron acquisition, storage, and utilization to ensure sufficient supply and to avoid toxic excess of this essential trace element. As pathogens usually encounter iron limitation in the host niche, this metal plays a particular role during virulence. Siderophores are iron-chelators synthesized by most, but not all fungal species to sequester iron extra- and intracellularly. In recent years, the facultative human pathogen Aspergillus fumigatus has become a model for fungal iron homeostasis of siderophore-producing fungal species. This article summarizes the knowledge on fungal iron homeostasis and its links to virulence with a focus on A. fumigatus. It covers mechanisms for iron acquisition, storage, and detoxification, as well as the modes of transcriptional iron regulation and iron sensing in A. fumigatus in comparison to other fungal species. Moreover, potential translational applications of the peculiarities of fungal iron metabolism for treatment and diagnosis of fungal infections is addressed.
Collapse
Affiliation(s)
- Matthias Misslinger
- Institute of Molecular Biology - Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany; Department Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Hubertus Haas
- Institute of Molecular Biology - Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
21
|
Bashir S, Banday SM, Mustafa M, Rizvi MA. Complexation Modulated Iron Redox Systems for Waste Water Treatment: A Natural Attenuation Model. ChemistrySelect 2020. [DOI: 10.1002/slct.202002241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shabnum Bashir
- Department of Chemistry University of Kashmir Hazratbal Srinagar 190006, J&K India
| | - Shazia M. Banday
- Department of Chemistry University of Kashmir Hazratbal Srinagar 190006, J&K India
| | - Mohd Mustafa
- Department of Chemistry University of Kashmir Hazratbal Srinagar 190006, J&K India
| | - Masood A. Rizvi
- Department of Chemistry University of Kashmir Hazratbal Srinagar 190006, J&K India
| |
Collapse
|
22
|
A Hybrid Extracellular Electron Transfer Pathway Enhances the Survival of Vibrio natriegens. Appl Environ Microbiol 2020; 86:AEM.01253-20. [PMID: 32737131 DOI: 10.1128/aem.01253-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Vibrio natriegens is the fastest-growing microorganism discovered to date, making it a useful model for biotechnology and basic research. While it is recognized for its rapid aerobic metabolism, less is known about anaerobic adaptations in V. natriegens or how the organism survives when oxygen is limited. Here, we describe and characterize extracellular electron transfer (EET) in V. natriegens, a metabolism that requires movement of electrons across protective cellular barriers to reach the extracellular space. V. natriegens performs extracellular electron transfer under fermentative conditions with gluconate, glucosamine, and pyruvate. We characterized a pathway in V. natriegens that requires CymA, PdsA, and MtrCAB for Fe(III) citrate and Fe(III) oxide reduction, which represents a hybrid of strategies previously discovered in Shewanella and Aeromonas Expression of these V. natriegens genes functionally complemented Shewanella oneidensis mutants. Phylogenetic analysis of the inner membrane quinol dehydrogenases CymA and NapC in gammaproteobacteria suggests that CymA from Shewanella diverged from Vibrionaceae CymA and NapC. Analysis of sequenced Vibrionaceae revealed that the genetic potential to perform EET is conserved in some members of the Harveyi and Vulnificus clades but is more variable in other clades. We provide evidence that EET enhances anaerobic survival of V. natriegens, which may be the primary physiological function for EET in Vibrionaceae IMPORTANCE Bacteria from the genus Vibrio occupy a variety of marine and brackish niches with fluctuating nutrient and energy sources. When oxygen is limited, fermentation or alternative respiration pathways must be used to conserve energy. In sedimentary environments, insoluble oxide minerals (primarily iron and manganese) are able to serve as electron acceptors for anaerobic respiration by microorganisms capable of extracellular electron transfer, a metabolism that enables the use of these insoluble substrates. Here, we identify the mechanism for extracellular electron transfer in Vibrio natriegens, which uses a combination of strategies previously identified in Shewanella and Aeromonas We show that extracellular electron transfer enhanced survival of V. natriegens under fermentative conditions, which may be a generalized strategy among Vibrio spp. predicted to have this metabolism.
Collapse
|
23
|
Defects in the Ferroxidase That Participates in the Reductive Iron Assimilation System Results in Hypervirulence in Botrytis Cinerea. mBio 2020; 11:mBio.01379-20. [PMID: 32753496 PMCID: PMC7407086 DOI: 10.1128/mbio.01379-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The plant-pathogenic fungus B. cinerea causes enormous economic losses, estimated at anywhere between $10 billion and $100 billion worldwide, under both pre- and postharvest conditions. Here, we present the characterization of a loss-of-function mutant in a component involved in iron acquisition that displays hypervirulence. While in different microbial systems iron uptake mechanisms appear to be critical to achieve full pathogenic potential, we found that the absence of the ferroxidase that is part of the reductive iron assimilation system leads to hypervirulence in this fungus. This is an unusual and rather underrepresented phenotype, which can be modulated by iron levels in the plant and provides an unexpected link between iron acquisition, reactive oxygen species (ROS) production, and pathogenesis in the Botrytis-plant interaction. The plant pathogen Botrytis cinerea is responsible for gray-mold disease, which infects a wide variety of species. The outcome of this host-pathogen interaction, a result of the interplay between plant defense and fungal virulence pathways, can be modulated by various environmental factors. Among these, iron availability and acquisition play a crucial role in diverse biological functions. How B. cinerea obtains iron, an essential micronutrient, during infection is unknown. We set out to determine the role of the reductive iron assimilation (RIA) system during B. cinerea infection. This system comprises the BcFET1 ferroxidase, which belongs to the multicopper oxidase (MCO) family of proteins, and the BcFTR1 membrane-bound iron permease. Gene knockout and complementation studies revealed that, compared to the wild type, the bcfet1 mutant displays delayed conidiation, iron-dependent sclerotium production, and significantly reduced whole-cell iron content. Remarkably, this mutant exhibited a hypervirulence phenotype, whereas the bcftr1 mutant presents normal virulence and unaffected whole-cell iron levels and developmental programs. Interestingly, while in iron-starved plants wild-type B. cinerea produced slightly reduced necrotic lesions, the hypervirulence phenotype of the bcfet1 mutant is no longer observed in iron-deprived plants. This suggests that B. cinerea bcfet1 knockout mutants require plant-derived iron to achieve larger necrotic lesions, whereas in planta analyses of reactive oxygen species (ROS) revealed increased ROS levels only for infections caused by the bcfet1 mutant. These results suggest that increased ROS production, under an iron sufficiency environment, at least partly underlie the observed infection phenotype in this mutant.
Collapse
|
24
|
Revealing the main factors and two-way interactions contributing to food discolouration caused by iron-catechol complexation. Sci Rep 2020; 10:8288. [PMID: 32427917 PMCID: PMC7237488 DOI: 10.1038/s41598-020-65171-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/24/2020] [Indexed: 11/29/2022] Open
Abstract
Fortification of food with iron is considered to be an effective approach to counter the global health problem caused by iron deficiency. However, reactivity of iron with the catechol moiety of food phenolics leads to discolouration and impairs bioavailability. In this study, we investigated the interplay between intrinsic and extrinsic factors on food discolouration caused by iron-catechol complexation. To this end, a three-level fractional factorial design was implemented. Absorbance spectra were analysed using statistical methods, including PCA, HCA, and ANOVA. Furthermore, a direct link between absorbance spectra and stoichiometry of the iron-catechol complexes was confirmed by ESI-Q-TOF-MS. All statistical methods confirm that the main effects affecting discolouration were type of iron salt, pH, and temperature. Additionally, several two-way interactions, such as type of iron salt × pH, pH × temperature, and type of iron salt × concentration significantly affected iron-catechol complexation. Our findings provide insight into iron-phenolic complexation-mediated discolouration, and facilitate the design of iron-fortified foods.
Collapse
|
25
|
Li J, Tong L, Xia Y, Yang H, Sand W, Xie H, Lan B, Zhong S, Auwalu A. Microbial synergy and stoichiometry in heap biooxidation of low-grade porphyry arsenic-bearing gold ore. Extremophiles 2020; 24:355-364. [PMID: 32108913 DOI: 10.1007/s00792-020-01160-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 02/06/2020] [Indexed: 11/27/2022]
Abstract
Heap biooxidation method was used to evaluate the availability of Paodaoling gold ore in Anhui province, China. 15,000 tons of gold ores (≤ 10 mm in diameter) were bioxidized under mesophilic conditions. Under the synergistic effect of microbial community, arsenic and sulfur were oxidized by 42% and 38% after 80 days. Relatively, leaching of gold was improved from 36 to 78% after heap biooxidation. The sequencing results showed there were 28 operational taxonomic units identified the microbial community in the heap. The main genera were Acidithiobacillus, Ferroplasma, Acidiferrobacter and Nitrospira. According to stoichiometry, the content of microorganisms with various functions tended to be balanced. The biomass production rate was 10 g/s, the CO2 fixation rate was 18 g/s, and the oxygen consumption rate was 60 g/s. This study provides a good basis for the further design and application of heap biooxidation technology.
Collapse
Affiliation(s)
- Jiafeng Li
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Linlin Tong
- School of Metallurgy, Northeastern University, Shenyang, 110819, China.
| | - Yu Xia
- School of Chemical and Environmental, China University of Mining and Technology, Beijing, 100083, China
| | - Hongying Yang
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Wolfgang Sand
- Biofilm Centre, Aquatische Biotechnologie, Universität Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Hongzhen Xie
- State Key Laboratory of Comprehensive Utilization of Low-Grade Refractory Gold Ores, Zijin Mining Group Co., Ltd, Shanghang, 364200, China
| | - Bibo Lan
- State Key Laboratory of Comprehensive Utilization of Low-Grade Refractory Gold Ores, Zijin Mining Group Co., Ltd, Shanghang, 364200, China
| | - Shuiping Zhong
- State Key Laboratory of Comprehensive Utilization of Low-Grade Refractory Gold Ores, Zijin Mining Group Co., Ltd, Shanghang, 364200, China
| | - Ali Auwalu
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
26
|
Lin M, Yu JZ. Assessment of Interactions between Transition Metals and Atmospheric Organics: Ascorbic Acid Depletion and Hydroxyl Radical Formation in Organic-Metal Mixtures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1431-1442. [PMID: 31917554 DOI: 10.1021/acs.est.9b07478] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Excessive oxidative stress has been recognized as an important cause of the adverse health effects associated with exposure to ambient particulate matter (PM). Transition metals (TMs) (e.g., iron (Fe) and copper (Cu)) are known catalysts in the formation of reactive oxygen species (ROS) in surrogate lung fluid containing antioxidants. Humic-like substances (HULIS), extracted from atmospheric aerosols, retain the compositional complexity of real-world samples. It contains mixtures of organics that chelate TMs and was used in this work to examine the roles of atmospheric organics in affecting ROS formation and antioxidant depletion by TMs. Two types of metal-binding organics known to be present in HULIS, oxygen-containing (i.e., carboxylic acids) and reduced-nitrogen-containing organics (i.e., imidazoles), were first investigated for their effects on the ascorbic acid depletion (denoted as OPAA) and hydroxyl radical formation (denoted as OP•OH) from both Fe(II) and Cu(II) in phosphate buffered saline (pH 7.40) containing ascorbic acid. Our results show that carboxylic acids enhance the OPAA and OP•OH by TMs while imidazoles suppress them. Similar experiments using three HULIS samples with distinctly different chemical compositions revealed complexity in metal-organics interactions. While ambient HULIS showed negligible impacts, two biomass burning source HULIS samples from rice straw and sugar cane leaf burning displayed unambiguous suppression or enhancement effects on OPAA and OP•OH by TMs. The effect was metal-specific and source HULIS-specific. The distinct behaviors of the three HULIS types can be explained by their different chemical compositions, for example, outstanding higher level of alkaloid compounds (e.g., imidazoles) in rice straw burning HULIS was consistent with the suppression effect exerted by this source of HULIS. In addition, we found OPAA and OP•OH are well-correlated while the proportion of OP•OH/OPAA by Cu is noticeably lower than that by Fe, indicating varying sensitivity of the metals to different OP end points. Our work highlights the importance and complexity of metal-organics interactions and the advantages of comeasurements of ROS generation and antioxidant depletion when assessing oxidative stress elicited by atmospheric PM.
Collapse
|
27
|
Heme-iron acquisition in fungi. Curr Opin Microbiol 2019; 52:77-83. [DOI: 10.1016/j.mib.2019.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 01/09/2023]
|
28
|
Bactericidal effect of pyridine-2-thiol 1-oxide sodium salt and its complex with iron against resistant clinical isolates of Mycobacterium tuberculosis. J Antibiot (Tokyo) 2019; 73:120-124. [DOI: 10.1038/s41429-019-0243-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/19/2019] [Accepted: 09/01/2019] [Indexed: 02/02/2023]
|
29
|
Kariuki CK, Stijlemans B, Magez S. The Trypanosomal Transferrin Receptor of Trypanosoma Brucei-A Review. Trop Med Infect Dis 2019; 4:tropicalmed4040126. [PMID: 31581506 PMCID: PMC6958415 DOI: 10.3390/tropicalmed4040126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Iron is an essential element for life. Its uptake and utility requires a careful balancing with its toxic capacity, with mammals evolving a safe and bio-viable means of its transport and storage. This transport and storage is also utilized as part of the iron-sequestration arsenal employed by the mammalian hosts’ ‘nutritional immunity’ against parasites. Interestingly, a key element of iron transport, i.e., serum transferrin (Tf), is an essential growth factor for parasitic haemo-protozoans of the genus Trypanosoma. These are major mammalian parasites causing the diseases human African trypanosomosis (HAT) and animal trypanosomosis (AT). Using components of their well-characterized immune evasion system, bloodstream Trypanosoma brucei parasites adapt and scavenge for the mammalian host serum transferrin within their broad host range. The expression site associated genes (ESAG6 and 7) are utilized to construct a heterodimeric serum Tf binding complex which, within its niche in the flagellar pocket, and coupled to the trypanosomes’ fast endocytic rate, allows receptor-mediated acquisition of essential iron from their environment. This review summarizes current knowledge of the trypanosomal transferrin receptor (TfR), with emphasis on the structure and function of the receptor, both in physiological conditions as well as in conditions where the iron supply to parasites is being limited. Potential applications using current knowledge of the parasite receptor are also briefly discussed, primarily focused on potential therapeutic interventions.
Collapse
Affiliation(s)
- Christopher K. Kariuki
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, 1050 Ixelles, Belgium;
- Department of Tropical and Infectious Diseases, Institute of Primate Research (IPR), 00502 Nairobi, Kenya
- Correspondence: (C.K.K.); (S.M.); Tel.: +322-629-1975 (C.K.K.); +82-32626-4207 (S.M.)
| | - Benoit Stijlemans
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, 1050 Ixelles, Belgium;
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, 9052 Gent, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, 1050 Ixelles, Belgium;
- Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon 219220, Korea
- Correspondence: (C.K.K.); (S.M.); Tel.: +322-629-1975 (C.K.K.); +82-32626-4207 (S.M.)
| |
Collapse
|
30
|
Is brain iron trafficking part of the physiology of the amyloid precursor protein? J Biol Inorg Chem 2019; 24:1171-1177. [PMID: 31578640 DOI: 10.1007/s00775-019-01684-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/19/2019] [Indexed: 12/11/2022]
Abstract
The amyloid precursor protein is so named, because a proteolytic fragment of it was found associated with a neuropathic disorder now known as Alzheimer's disease. This fragment, Aβ, along with tau makes up the plaques and tangles that are the hallmark of AD. Iron (and other first-row transition metals) is found associated with these proteinaceous deposits. Much research has focused on the relationship of the plaques and iron to the etiology of the disease. This commentary asks another question, one only more recently addressed namely, what is the physiologic function of the amyloid precursor protein (APP) and of its secretase-generated soluble species? Overall, the data make clear that APP and its products have neurotrophic functions and some data indicate one of these may be to modulate the trafficking of iron in the brain.
Collapse
|
31
|
Zhou DR, Eid R, Miller KA, Boucher E, Mandato CA, Greenwood MT. Intracellular second messengers mediate stress inducible hormesis and Programmed Cell Death: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:773-792. [PMID: 30716408 DOI: 10.1016/j.bbamcr.2019.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
|
32
|
Kosman DJ. Energy metabolism, oxygen flux, and iron in bacteria: The Mössbauer report. J Biol Chem 2019; 294:63-64. [PMID: 30610120 DOI: 10.1074/jbc.h118.006703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron is the most common transition metal cofactor across biological systems. As the earth transitioned from an anaerobic to aerobic environment, cellular mechanisms evolved to protect against iron-mediated oxidative damage, but the molecular details of these protective strategies remain unclear. In this report, the Lindahl group has combined spectroscopic, biochemical, and genetic approaches to inventory iron in Escherichia coli as a function of bacterial oxygen metabolism. Their results suggest that ferrous iron functions as an oxygen sink that is modulated by a "respiratory shield" of electron flux in the bacterial plasma membrane.
Collapse
Affiliation(s)
- Daniel J Kosman
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203.
| |
Collapse
|
33
|
Le Govic Y, Papon N, Le Gal S, Lelièvre B, Bouchara JP, Vandeputte P. Genomic Organization and Expression of Iron Metabolism Genes in the Emerging Pathogenic Mold Scedosporium apiospermum. Front Microbiol 2018; 9:827. [PMID: 29755443 PMCID: PMC5932178 DOI: 10.3389/fmicb.2018.00827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
The ubiquitous mold Scedosporium apiospermum is increasingly recognized as an emerging pathogen, especially among patients with underlying disorders such as immunodeficiency or cystic fibrosis (CF). Indeed, it ranks the second among the filamentous fungi colonizing the respiratory tract of CF patients. However, our knowledge about virulence factors of this fungus is still limited. The role of iron-uptake systems may be critical for establishment of Scedosporium infections, notably in the iron-rich environment of the CF lung. Two main strategies are employed by fungi to efficiently acquire iron from their host or from their ecological niche: siderophore production and reductive iron assimilation (RIA) systems. The aim of this study was to assess the existence of orthologous genes involved in iron metabolism in the recently sequenced genome of S. apiospermum. At first, a tBLASTn analysis using A. fumigatus iron-related proteins as query revealed orthologs of almost all relevant loci in the S. apiospermum genome. Whereas the genes putatively involved in RIA were randomly distributed, siderophore biosynthesis and transport genes were organized in two clusters, each containing a non-ribosomal peptide synthetase (NRPS) whose orthologs in A. fumigatus have been described to catalyze hydroxamate siderophore synthesis. Nevertheless, comparative genomic analysis of siderophore-related clusters showed greater similarity between S. apiospermum and phylogenetically close molds than with Aspergillus species. The expression level of these genes was then evaluated by exposing conidia to iron starvation and iron excess. The expression of several orthologs of A. fumigatus genes involved in siderophore-based iron uptake or RIA was significantly induced during iron starvation, and conversely repressed in iron excess conditions. Altogether, these results indicate that S. apiospermum possesses the genetic information required for efficient and competitive iron uptake. They also suggest an important role of the siderophore production system in iron uptake by S. apiospermum.
Collapse
Affiliation(s)
- Yohann Le Govic
- Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Angers, France
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Angers, France
| | - Nicolas Papon
- Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Angers, France
| | - Solène Le Gal
- Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Brest, France
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Brest, France
| | - Bénédicte Lelièvre
- Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Angers, France
- Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalier Universitaire, Angers, France
| | - Jean-Philippe Bouchara
- Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Angers, France
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Angers, France
| | - Patrick Vandeputte
- Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Angers, France
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Angers, France
| |
Collapse
|
34
|
Jin N. The effect of phosphate buffer on improving the performance of autothermal thermophilic aerobic digestion for sewage sludge. RSC Adv 2018; 8:9175-9180. [PMID: 35541838 PMCID: PMC9078640 DOI: 10.1039/c8ra00793d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/27/2018] [Indexed: 11/21/2022] Open
Abstract
The influence of phosphate buffer on the stabilization of sewage sludge was investigated in autothermal thermophilic aerobic digestion (ATAD). A concentration series of 0.005, 0.01, 0.02 and 0.03 mol phosphate buffer for each liter of sludge was adopted. The phosphate buffer significantly enhanced the performance of the ATAD for sewage sludge. The highest VS removal was achieved by the group with 0.01 mol L-1 phosphate buffer, and the stabilization time of the sludge was shortened by 9 days compared with that of the control. The group with the optimal dosage obtained the deepest stabilization level of sludge, which was reflected by the distribution of the particle size, and achieved 6.08% VS removal higher than that of the control in the end. Lower concentrations of carbon, nitrogen and phosphate in the supernatant were also achieved by proper dosing compared with those of the control.
Collapse
Affiliation(s)
- Ningben Jin
- Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd Shanghai 200232 China +86 21 54085205 +86 21 54085205
| |
Collapse
|
35
|
Abstract
The ferric-uptake regulator (Fur) is an Fe2+-responsive transcription factor that coordinates iron homeostasis in many bacteria. Recently, we reported that expression of the Escherichia coli Fur regulon is also impacted by O2 tension. Here, we show that for most of the Fur regulon, Fur binding and transcriptional repression increase under anaerobic conditions, suggesting that Fur is controlled by O2 availability. We found that the intracellular, labile Fe2+ pool was higher under anaerobic conditions compared with aerobic conditions, suggesting that higher Fe2+ availability drove the formation of more Fe2+-Fur and, accordingly, more DNA binding. O2 regulation of Fur activity required the anaerobically induced FeoABC Fe2+ uptake system, linking increased Fur activity to ferrous import under iron-sufficient conditions. The increased activity of Fur under anaerobic conditions led to a decrease in expression of ferric import systems. However, the combined positive regulation of the feoABC operon by ArcA and FNR partially antagonized Fur-mediated repression of feoABC under anaerobic conditions, allowing ferrous transport to increase even though Fur is more active. This design feature promotes a switch from ferric import to the more physiological relevant ferrous iron under anaerobic conditions. Taken together, we propose that the influence of O2 availability on the levels of active Fur adds a previously undescribed layer of regulation in maintaining cellular iron homeostasis.
Collapse
|
36
|
Manfiolli AO, de Castro PA, dos Reis TF, Dolan S, Doyle S, Jones G, Riaño Pachón DM, Ulaş M, Noble LM, Mattern DJ, Brakhage AA, Valiante V, Silva-Rocha R, Bayram O, Goldman GH. Aspergillus fumigatusprotein phosphatase PpzA is involved in iron assimilation, secondary metabolite production, and virulence. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12770] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/28/2017] [Accepted: 07/14/2017] [Indexed: 01/19/2023]
Affiliation(s)
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto Brazil
| | - Thaila Fernanda dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto Brazil
| | - Stephen Dolan
- Department of Biology; Maynooth University; Maynooth Co. Kildare Ireland
| | - Sean Doyle
- Department of Biology; Maynooth University; Maynooth Co. Kildare Ireland
| | - Gary Jones
- Department of Biology; Maynooth University; Maynooth Co. Kildare Ireland
| | - Diego M. Riaño Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas São Paulo Brazil
| | - Mevlüt Ulaş
- Department of Biology; Maynooth University; Maynooth Co. Kildare Ireland
| | | | - Derek J. Mattern
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute; Jena Germany
- University of Jena; Jena Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute; Jena Germany
- University of Jena; Jena Germany
| | - Vito Valiante
- Leibniz Research Group-Biobricks of Microbial Natural Product Syntheses; Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute; Jena Germany
| | - Rafael Silva-Rocha
- Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto Brazil
| | - Ozgur Bayram
- Department of Biology; Maynooth University; Maynooth Co. Kildare Ireland
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto Brazil
| |
Collapse
|
37
|
Duyn JH, Schenck J. Contributions to magnetic susceptibility of brain tissue. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3546. [PMID: 27240118 PMCID: PMC5131875 DOI: 10.1002/nbm.3546] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/19/2016] [Accepted: 03/31/2016] [Indexed: 05/08/2023]
Abstract
This review discusses the major contributors to the subtle magnetic properties of brain tissue and how they affect MRI contrast. With the increased availability of high-field scanners, the use of magnetic susceptibility contrast for the study of human brain anatomy and function has increased dramatically. This has not only led to novel applications, but has also improved our understanding of the complex relationship between MRI contrast and magnetic susceptibility. Chief contributors to the magnetic susceptibility of brain tissue have been found to include myelin as well as iron. In the brain, iron exists in various forms with diverse biological roles, many of which are now only starting to be uncovered. An interesting aspect of magnetic susceptibility contrast is its sensitivity to the microscopic distribution of iron and myelin, which provides opportunities to extract information at spatial scales well below MRI resolution. For example, in white matter, the myelin sheath that surrounds the axons can provide tissue contrast that is dependent on the axonal orientation and reflects the relative size of intra- and extra-axonal water compartments. The extraction of such ultrastructural information, together with quantitative information about iron and myelin concentrations, is an active area of research geared towards the characterization of brain structure and function, and their alteration in disease. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jeff H. Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular
Imaging, National Institutes of Neurological Disorders and Stroke, National
Institutes of Health, Bethesda, Maryland 20892, USA
| | - John Schenck
- MRI Technologies and Systems, General Electric
Global Research Center, 1 Research Circle, Schenectady, New York 12309, USA
| |
Collapse
|
38
|
Duyn JH, Schenck J. Contributions to magnetic susceptibility of brain tissue. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3546. [PMID: 27240118 PMCID: PMC5131875 DOI: 10.1002/nbm.3546 10.1002/nbm.3546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/19/2016] [Accepted: 03/31/2016] [Indexed: 11/17/2023]
Abstract
This review discusses the major contributors to the subtle magnetic properties of brain tissue and how they affect MRI contrast. With the increased availability of high-field scanners, the use of magnetic susceptibility contrast for the study of human brain anatomy and function has increased dramatically. This has not only led to novel applications, but has also improved our understanding of the complex relationship between MRI contrast and magnetic susceptibility. Chief contributors to the magnetic susceptibility of brain tissue have been found to include myelin as well as iron. In the brain, iron exists in various forms with diverse biological roles, many of which are now only starting to be uncovered. An interesting aspect of magnetic susceptibility contrast is its sensitivity to the microscopic distribution of iron and myelin, which provides opportunities to extract information at spatial scales well below MRI resolution. For example, in white matter, the myelin sheath that surrounds the axons can provide tissue contrast that is dependent on the axonal orientation and reflects the relative size of intra- and extra-axonal water compartments. The extraction of such ultrastructural information, together with quantitative information about iron and myelin concentrations, is an active area of research geared towards the characterization of brain structure and function, and their alteration in disease. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jeff H. Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular
Imaging, National Institutes of Neurological Disorders and Stroke, National
Institutes of Health, Bethesda, Maryland 20892, USA
| | - John Schenck
- MRI Technologies and Systems, General Electric
Global Research Center, 1 Research Circle, Schenectady, New York 12309, USA
| |
Collapse
|
39
|
Matias C, Belnap DW, Smith MT, Stewart MG, Torres IF, Gross AJ, Watt RK. Citrate and albumin facilitate transferrin iron loading in the presence of phosphate. J Inorg Biochem 2016; 168:107-113. [PMID: 28110161 DOI: 10.1016/j.jinorgbio.2016.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/28/2016] [Accepted: 12/09/2016] [Indexed: 12/31/2022]
Abstract
Labile plasma iron (LPI) is redox active, exchangeable iron that catalyzes the formation of reactive oxygen species. Serum transferrin binds iron in a non-exchangeable form and delivers iron to cells. In several inflammatory diseases serum LPI increases but the reason LPI forms is unknown. This work evaluates possible pathways leading to LPI and examines potential mediators of apo transferrin iron loading to prevent LPI. Previously phosphate was shown to inhibit iron loading into apo transferrin by competitively binding free Fe3+. The reaction of Fe3+ with phosphate produced a soluble ferric phosphate complex. In this study we evaluate iron loading into transferrin under physiologically relevant phosphate conditions to evaluate the roles of citrate and albumin in mediating iron delivery into apo transferrin. We report that preformed Fe3+-citrate was loaded into apo transferrin and was not inhibited by phosphate. A competition study evaluated reactions when Fe3+ was added to a solution with citrate, phosphate and apo transferrin. The results showed citrate marginally improved the delivery of Fe3+ to apo transferrin. Studies adding Fe3+ to a solution with phosphate, albumin and apo transferrin showed that albumin improved Fe3+ loading into apo transferrin. The most efficient Fe3+ loading into apo transferrin in a phosphate solution occurred when both citrate and albumin were present at physiological concentrations. Citrate and albumin overcame phosphate inhibition and loaded apo transferrin equal to the control of Fe3+ added to apo transferrin. Our results suggest a physiologically important role for albumin and citrate for apo transferrin iron loading.
Collapse
Affiliation(s)
- Catalina Matias
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States; College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, United States
| | - Devin W Belnap
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States; College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, United States
| | - Michael T Smith
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States; College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, United States
| | - Michael G Stewart
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States; College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, United States
| | - Isaac F Torres
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States; College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, United States
| | - Andrew J Gross
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States; College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, United States.
| | - Richard K Watt
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States; College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, United States.
| |
Collapse
|
40
|
Eid R, Arab NTT, Greenwood MT. Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:399-430. [PMID: 27939167 DOI: 10.1016/j.bbamcr.2016.12.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/08/2016] [Accepted: 12/04/2016] [Indexed: 12/11/2022]
Abstract
Iron is an essential micronutrient that is problematic for biological systems since it is toxic as it generates free radicals by interconverting between ferrous (Fe2+) and ferric (Fe3+) forms. Additionally, even though iron is abundant, it is largely insoluble so cells must treat biologically available iron as a valuable commodity. Thus elaborate mechanisms have evolved to absorb, re-cycle and store iron while minimizing toxicity. Focusing on rarely encountered situations, most of the existing literature suggests that iron toxicity is common. A more nuanced examination clearly demonstrates that existing regulatory processes are more than adequate to limit the toxicity of iron even in response to iron overload. Only under pathological or artificially harsh situations of exposure to excess iron does it become problematic. Here we review iron metabolism and its toxicity as well as the literature demonstrating that intracellular iron is not toxic but a stress responsive programmed cell death-inducing second messenger.
Collapse
Affiliation(s)
- Rawan Eid
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Nagla T T Arab
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Michael T Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada.
| |
Collapse
|
41
|
Comparison of effects of ferric nitrate additions in thermophilic, mesophilic and psychrophilic aerobic digestion for sewage sludge. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.07.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Romani A, Trentini A, Passaro A, Bosi C, Bellini T, Ferrari C, Cervellati C, Zuliani G. Mutual relationship between serum ferroxidase activity and hemoglobin levels in elderly individuals. Ann Hematol 2016; 95:1333-9. [PMID: 27235174 DOI: 10.1007/s00277-016-2709-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/23/2016] [Indexed: 11/28/2022]
Abstract
The identification of hemoglobin (Hb) biological determinants is of primary clinical interest, in particular in the elderly because of the well-documented relationship between anemia and cognitive and functional decline. Ceruloplasmin (Cp) and non-Cp ferroxidase activity might influence Hb production because of its role in modulating iron mobilization. This potential connection has never been explored so far. Therefore, in the present study, we evaluated the possible association between serum ferroxidase activity (sFeOx) and Hb in a sample of 136 apparently healthy older individuals. The results revealed that nonlinear (quadratic) regression explained the relationship between the two variables of interest better than did the linear one (R (2) = 0.09 vs. R (2) = 0.03). The same analysis highlighted a linear behavior for the relationship between Hb and sFeOx, for two separate subsamples stratified on the basis of the Hb value (141 g/L) corresponding to the parabola vertex. In the subset with higher Hb (high Hb), sFeOx was positively associated (r = 0.44, p = 0.003) while in the low Hb subset, the association was negative (r = -0.26, p = 0.01). Notably, we found that the concentration of Cp was significantly higher in Low Hb compared to High Hb subsample (p < 0.05), with this multicopper oxidase selectively contributing to sFeOx in the former group (r = 0.348, p = 0.001). Collectively, this exploratory study suggests that ferroxidases might play a role in dispatching the body's iron toward erythropoietic tissues, with Cp contribution that might become more important in stress-like conditions.
Collapse
Affiliation(s)
- Arianna Romani
- Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Alessandro Trentini
- Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Angelina Passaro
- Department of Medical Science, Section of Internal and Cardiopulmonary Medicine, University of Ferrara, Via Savonarola 9, 44100, Ferrara, Italy
| | - Cristina Bosi
- Department of Medical Science, Section of Internal and Cardiopulmonary Medicine, University of Ferrara, Via Savonarola 9, 44100, Ferrara, Italy
| | - Tiziana Bellini
- Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Carlo Ferrari
- Department of Clinical and Molecular Sciences, Faculty of Medicine, Le Marche Polytechnic University, Via Tronto 10/A, IT-60126, Ancona, Italy
| | - Carlo Cervellati
- Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Giovanni Zuliani
- Department of Medical Science, Section of Internal and Cardiopulmonary Medicine, University of Ferrara, Via Savonarola 9, 44100, Ferrara, Italy
| |
Collapse
|
43
|
Jin N, Shou Z, Yuan H, Lou Z, Zhu N. Selective simplification and reinforcement of microbial community in autothermal thermophilic aerobic digestion to enhancing stabilization process of sewage sludge by conditioning with ferric nitrate. BIORESOURCE TECHNOLOGY 2016; 204:106-113. [PMID: 26773954 DOI: 10.1016/j.biortech.2016.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 12/31/2015] [Accepted: 01/05/2016] [Indexed: 06/05/2023]
Abstract
The effect of ferric nitrate on microbial community and enhancement of stabilization process for sewage sludge was investigated in autothermal thermophilic aerobic digestion. The disinhibition of volatile fatty acids (VFA) was obtained with alteration of individual VFA concentration order. Bacterial taxonomic identification by 454 high-throughput pyrosequencing found the dominant phylum Proteobacteria in non-dosing group was converted to phylum Firmicutes in dosing group after ferric nitrate added and simplification of bacteria phylotypes was achieved. The preponderant Tepidiphilus sp. vanished, and Symbiobacterium sp. and Tepidimicrobium sp. were the most advantageous phylotypes with conditioning of ferric nitrate. Consequently, biodegradable substances in dissolved organic matters increased, which contributed to the favorable environment for microbial metabolism and resulted in acceleration of sludge stabilization. Ultimately, higher stabilization level was achieved as ratio of soluble chemical oxygen demand to total chemical oxygen demand (TCOD) decreased while TCOD reduced as well in dosing group comparing to non-dosing group.
Collapse
Affiliation(s)
- Ningben Jin
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zongqi Shou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiping Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyang Lou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
44
|
Kosman D, Bailão EF, Silva-Bailão M, Soares CM. 59Fe Uptake Assays in Paracoccidioides Species. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
45
|
Wofford JD, Lindahl PA. Mitochondrial Iron-Sulfur Cluster Activity and Cytosolic Iron Regulate Iron Traffic in Saccharomyces cerevisiae. J Biol Chem 2015; 290:26968-26977. [PMID: 26306041 PMCID: PMC4646409 DOI: 10.1074/jbc.m115.676668] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/17/2015] [Indexed: 11/06/2022] Open
Abstract
An ordinary differential equation-based mathematical model was developed to describe trafficking and regulation of iron in growing fermenting budding yeast. Accordingly, environmental iron enters the cytosol and moves into mitochondria and vacuoles. Dilution caused by increasing cell volume is included. Four sites are regulated, including those in which iron is imported into the cytosol, mitochondria, and vacuoles, and the site at which vacuolar Fe(II) is oxidized to Fe(III). The objective of this study was to determine whether cytosolic iron (Fecyt) and/or a putative sulfur-based product of iron-sulfur cluster (ISC) activity was/were being sensed in regulation. The model assumes that the matrix of healthy mitochondria is anaerobic, and that in ISC mutants, O2 diffuses into the matrix where it reacts with nonheme high spin Fe(II) ions, oxidizing them to nanoparticles and generating reactive oxygen species. This reactivity causes a further decline in ISC/heme biosynthesis, which ultimately gives rise to the diseased state. The ordinary differential equations that define this model were numerically integrated, and concentrations of each component were plotted versus the concentration of iron in the growth medium and versus the rate of ISC/heme biosynthesis. Model parameters were optimized by fitting simulations to literature data. The model variant that assumed that both Fecyt and ISC biosynthesis activity were sensed in regulation mimicked observed behavior best. Such "dual sensing" probably arises in real cells because regulation involves assembly of an ISC on a cytosolic protein using Fecyt and a sulfur species generated in mitochondria during ISC biosynthesis and exported into the cytosol.
Collapse
Affiliation(s)
- Joshua D Wofford
- Departments of Chemistry, Texas A & M University, College Station, Texas 77843
| | - Paul A Lindahl
- Departments of Chemistry, Texas A & M University, College Station, Texas 77843; Departments of Chemistry, Biochemistry and Biophysics, Texas A & M University, College Station, Texas 77843.
| |
Collapse
|
46
|
Bailão EFLC, Lima PDS, Silva-Bailão MG, Bailão AM, Fernandes GDR, Kosman DJ, Soares CMDA. Paracoccidioides spp. ferrous and ferric iron assimilation pathways. Front Microbiol 2015; 6:821. [PMID: 26441843 PMCID: PMC4585334 DOI: 10.3389/fmicb.2015.00821] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/27/2015] [Indexed: 12/25/2022] Open
Abstract
Iron is an essential micronutrient for almost all organisms, including fungi. Usually, fungi can uptake iron through receptor-mediated internalization of a siderophore or heme, and/or reductive iron assimilation (RIA). Traditionally, the RIA pathway consists of ferric reductases (Fres), ferroxidase (Fet3) and a high-affinity iron permease (Ftr1). Paracoccidioides spp. genomes do not present an Ftr1 homolog. However, this fungus expresses zinc regulated transporter homologs (Zrts), members of the ZIP family of membrane transporters that are able in some organisms to transport zinc and iron. A 2,3,5-triphenyltetrazolium chloride (TTC)-overlay assay indicates that both Pb01 and Pb18 express a ferric reductase activity; however, 59Fe uptake assays indicate that only in Pb18 is this activity coupled to a reductase-dependent iron uptake pathway. In addition, Zrts are up-regulated in iron deprivation, as indicated by RNAseq and qRT-PCR using Pb01 transcripts. RNAseq strategy also demonstrated that transcripts related to siderophore uptake and biosynthesis are up-regulated in iron-deprived condition. The data suggest that the fungus could use both a non-classical RIA, comprising ferric reductases and Fe/Zn permeases (Zrts), and siderophore uptake pathways under iron-limited conditions. The study of iron metabolism reveals novel surface molecules that could function as accessible targets for drugs to block iron uptake and, consequently, inhibit pathogen's proliferation.
Collapse
Affiliation(s)
- Elisa Flávia L C Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás Goiânia, Brazil
| | - Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás Goiânia, Brazil
| | - Mirelle G Silva-Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás Goiânia, Brazil
| | - Alexandre M Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás Goiânia, Brazil
| | | | - Daniel J Kosman
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo Buffalo, NY, USA
| | | |
Collapse
|
47
|
|
48
|
Ost KS, O’Meara TR, Huda N, Esher SK, Alspaugh JA. The Cryptococcus neoformans alkaline response pathway: identification of a novel rim pathway activator. PLoS Genet 2015; 11:e1005159. [PMID: 25859664 PMCID: PMC4393102 DOI: 10.1371/journal.pgen.1005159] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 03/19/2015] [Indexed: 12/28/2022] Open
Abstract
The Rim101/PacC transcription factor acts in a fungal-specific signaling pathway responsible for sensing extracellular pH signals. First characterized in ascomycete fungi such as Aspergillus nidulans and Saccharomyces cerevisiae, the Rim/Pal pathway maintains conserved features among very distantly related fungi, where it coordinates cellular adaptation to alkaline pH signals and micronutrient deprivation. However, it also directs species-specific functions in fungal pathogens such as Cryptococcus neoformans, where it controls surface capsule expression. Moreover, disruption of the Rim pathway central transcription factor, Rim101, results in a strain that causes a hyper-inflammatory response in animal infection models. Using targeted gene deletions, we demonstrate that several genes encoding components of the classical Rim/Pal pathway are present in the C. neoformans genome. Many of these genes are in fact required for Rim101 activation, including members of the ESCRT complex (Vps23 and Snf7), ESCRT-interacting proteins (Rim20 and Rim23), and the predicted Rim13 protease. We demonstrate that in neutral/alkaline pH, Rim23 is recruited to punctate regions on the plasma membrane. This change in Rim23 localization requires upstream ESCRT complex components but does not require other Rim101 proteolysis components, such as Rim20 or Rim13. Using a forward genetics screen, we identified the RRA1 gene encoding a novel membrane protein that is also required for Rim101 protein activation and, like the ESCRT complex, is functionally upstream of Rim23-membrane localization. Homologs of RRA1 are present in other Cryptococcus species as well as other basidiomycetes, but closely related genes are not present in ascomycetes. These findings suggest that major branches of the fungal Kingdom developed different mechanisms to sense and respond to very elemental extracellular signals such as changing pH levels.
Collapse
Affiliation(s)
- Kyla S. Ost
- Departments of Medicine/ Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Teresa R. O’Meara
- Departments of Medicine/ Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Naureen Huda
- Departments of Medicine/ Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Shannon K. Esher
- Departments of Medicine/ Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - J. Andrew Alspaugh
- Departments of Medicine/ Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
49
|
Jin N, Shou Z, Yuan H, Lou Z, Zhu N. Effects of ferric nitrate additions under different pH conditions on autothermal thermophilic aerobic digestion for sewage sludge. RSC Adv 2015. [DOI: 10.1039/c5ra16761b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Effects of ferric nitrate additions under different pH conditions on disinhibition of excessive VFAs for enhancement of ATAD performance.
Collapse
Affiliation(s)
- Ningben Jin
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Zongqi Shou
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Haiping Yuan
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Ziyang Lou
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Nanwen Zhu
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|
50
|
Wong BX, Tsatsanis A, Lim LQ, Adlard PA, Bush AI, Duce JA. β-Amyloid precursor protein does not possess ferroxidase activity but does stabilize the cell surface ferrous iron exporter ferroportin. PLoS One 2014; 9:e114174. [PMID: 25464026 PMCID: PMC4252103 DOI: 10.1371/journal.pone.0114174] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/04/2014] [Indexed: 01/24/2023] Open
Abstract
Ceruloplasmin is a ferroxidase that interacts with ferroportin to export cellular iron, but is not expressed in neurons. We recently reported that the amyloid precursor protein (APP) is the analogous iron-exporting chaperone for neurons and other cells. The ferroxidase activity of APP has since been called into question. Using a triplex Fe2+ oxidation assay, we analyzed the activity of a soluble form of APP (sAPPα) within a buffer of physiological pH and anionic charge, and determined that iron oxidation originated from phosphate. Using various techniques such as flow-cytometry to measure surface presented proteins, we confirmed that endogenous APP is essential for ferroportin persistence on the neuronal surface. Therefore, despite lacking ferroxidase activity, APP still supports iron export from neurons.
Collapse
Affiliation(s)
- Bruce X. Wong
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Tsatsanis
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Linh Q. Lim
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul A. Adlard
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I. Bush
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (AIB); (JAD)
| | - James A. Duce
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, United Kingdom
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (AIB); (JAD)
| |
Collapse
|