1
|
Reigosa-Chamorro F, Cordeiro S, Pereira MT, Filipe B, Baptista PV, Fernandes AR, Vila JM. Effect of mono- and dinuclear thiosemicarbazone platinacycles in the proliferation of a colorectal carcinoma cell line. Dalton Trans 2024; 53:17803-17818. [PMID: 39233530 DOI: 10.1039/d4dt01490a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Herein, we describe the synthesis and characterization of a series of thiosemicarbazone platinacycles. Their activity towards HCT116 and A2780 cancer cell lines as well as normal fibroblasts was explored and conclusions about the influence of their structures were drawn based on the results. Ligands L1-3, tetranuclear compounds [Pt(L1-3)]4, [Pt(L1-3)(PPh3)], and [Pt(L1-L3)2{Ph2P(CH2)4PPh2}], and phosphine derivatives, were deemed unpromising owing to their lack of activity. However, mono-coordinated diphosphine complexes [Pt(L1-L3)(Ph2PCH2PPh2-P)] showed high selectivity and low IC50 values, and their antiproliferative activity was further studied. The three studied derivatives 3a, 3b and 3c showed a fast internalization of HCT116 colorectal cancer cells with similar IC50 values, which induced a depolarization of mitochondrial membrane potential, with the subsequent triggering of apoptosis and autophagy in the case of 3c. In the case of compounds 3a and 3b, cell death mechanisms (extrinsic and intrinsic apoptosis, respectively) were triggered via the induction of reactive oxygen species (ROS). The three compounds were not toxic to a chicken embryo in vivo (after 48 h), and, importantly, showed an anti-angiogenic potential after exposure to the IC50 of compounds 3a, 3b and 3c.
Collapse
Affiliation(s)
- Francisco Reigosa-Chamorro
- Departamento de Química Inorgánica, Universidade de Santiago de Compostela, Avenida das Ciencias s/n, 15782 Santiago de Compostela, Spain.
| | - Sandra Cordeiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal
| | - M Teresa Pereira
- Departamento de Química Inorgánica, Universidade de Santiago de Compostela, Avenida das Ciencias s/n, 15782 Santiago de Compostela, Spain.
| | - Beatriz Filipe
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal
| | - Pedro V Baptista
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal
| | - Alexandra R Fernandes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal
| | - José M Vila
- Departamento de Química Inorgánica, Universidade de Santiago de Compostela, Avenida das Ciencias s/n, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Abramov VM, Tokhtueva MD, Melekhin VV, Eltsov OS. Acetonyl C^N^N platinum(II) complexes of arylbipyridines. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:757-764. [PMID: 38982634 DOI: 10.1002/mrc.5475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
This paper presents the first example of the formation of acetonyl tridentate CˆNˆN complexes of arylbipyridines in the reaction of chloroplatinum complexes with acetone in the presence of alkali. The chemical structure of obtained substances was established by means of 1H,13C NMR, COSY, HSQC, and HMBC techniques. The attribution of all proton and carbon signals in NMR spectra was performed using 1D and 2D NMR experiments for the synthesized acetonyl cycloplatinated complexes. A comparative analysis of the values of the C-Pt spin-spin coupling constants of the same order was carried out, which showed a significant difference in bond lengths and valence angles inthe cyclic fragments of the arylbipyridine ligand.
Collapse
Affiliation(s)
- Vladislav M Abramov
- Chemical Technology Institute, Ural Federal University, Yekaterinburg, Russian Federation
| | - Maria D Tokhtueva
- Chemical Technology Institute, Ural Federal University, Yekaterinburg, Russian Federation
| | - Vsevolod V Melekhin
- Chemical Technology Institute, Ural Federal University, Yekaterinburg, Russian Federation
| | - Oleg S Eltsov
- Chemical Technology Institute, Ural Federal University, Yekaterinburg, Russian Federation
| |
Collapse
|
3
|
Lv Z, Ali A, Wang N, Ren H, Liu L, Yan F, Shad M, Hao H, Zhang Y, Rahman FU. Co-targeting CDK 4/6 and C-MYC/STAT3/CCND1 axis and inhibition of tumorigenesis and epithelial-mesenchymal-transition in triple negative breast cancer by Pt(II) complexes bearing NH 3 as trans-co-ligand. J Inorg Biochem 2024; 259:112661. [PMID: 39018748 DOI: 10.1016/j.jinorgbio.2024.112661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
In search of potential anticancer agents, we synthesized SNO-donor salicylaldimine main ligand-based Pt(II) complexes bearing NH3 as co-ligand at trans-position (C1-C6). These complexes showed similarity in structure with transplatin as the two N donor atoms of the main ligand and NH3 co-ligand were coordinated to Pt in trans position to each other. Each complex with different substituents on the main ligand was characterized thoroughly by detailed spectroscopic and spectrophotometric methods. Four of these complexes were studied in solid state by single crystal X-ray analysis. The stability of reference complex C1 was measured in solution state in DMSO‑d6 or its mixture with D2O using 1H NMR methods. These complexes were further investigated for their anticancer activity in triple-negative-breast (TNBC) cells including MDA-MB-231, MDA-MB-468 and MDA-MB-436 cells. All these complexes showed satisfactory cytotoxic effect as revealed by the MTT results. Importantly, the highly active complex C4 anticancer effect was compared to the standard chemotherapeutic agents including cisplatin, oxaliplatin and 5-fluorouracil (5-FU). Functionally, C4 suppressed invasion, spheroids formation ability and clonogenic potential of cancer cells. C4 showed synergistic anticancer effect when used in combination with palbociclib, JQ1 and paclitaxel in TNBC cells. Mechanistically, C4 inhibited cyclin-dependent kinase (CDK)4/6 pathway and targeted the expressions of MYC/STAT3/CCND1/CNNE1 axis. Furthermore, C4 suppressed the EMT signaling pathway that suggested a role of C4 in the inhibition of TNBC metastasis. Our findings may pave further in detailed mechanistic study on these complexes as potential chemotherapeutic agents in different types of human cancers.
Collapse
Affiliation(s)
- Zhimin Lv
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Amjad Ali
- Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, KPK, Pakistan; Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Na Wang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Haojie Ren
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Lijing Liu
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Fufu Yan
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Man Shad
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China; School of Life Sciences, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Huifang Hao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China; School of Life Sciences, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France.
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| |
Collapse
|
4
|
Durán-Carril ML, Fidalgo-Brandón JI, Lombao-Rodríguez D, Munín-Cruz P, Reigosa F, Vila JM. Breaking New Ground towards Innovative Synthesis of Palladacycles: The Electrochemical Synthesis of a Tetranuclear Thiosemicarbazone-[ C, N, S] Palladium(II) Complex. Molecules 2024; 29:4185. [PMID: 39275033 PMCID: PMC11397458 DOI: 10.3390/molecules29174185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/16/2024] Open
Abstract
The electrochemical oxidation of anodic metals (M = nickel and palladium) in an acetonitrile solution of the thiosemicarbazone ligands (E)-2-(1-(4-methoxyphenyl)ethylidene)-N-methylhydrazine-1-carbothioamide (a), (E)-2-(1-(p-tolyl)ethylidene)hydrazine-1-carbothioamide (b), and (E)-N-phenyl-2-(1-(p-tolyl)ethylidene)hydrazine-1-carbothioamide (c) yielded the homoleptic complexes [ML2], 1a, 1b, 1c, and 2c and [M4L4], 2a as air-stable solids. The crystal structures for 1a, 1b, 1c, and 2c show the ligands in a transoid disposition with the [S,S] and [N,N] donor atom pairs occupying cis positions on the nearly square planar coordination plane of the metal. The structure for 2a of S4 symmetry comprises a tetranuclear palladacycle where the metalated ligands are arranged around a central Pd4S4 environment: a crown ring with alternating palladium and sulfur atoms. The latter complex is the first example of an electrochemical preparation of a cyclometalated palladium compound, marking a milestone in the chemistry of such species. The compounds have been fully characterized by elemental microanalysis, mass spectrometry, infrared (IR), and 1H nuclear magnetic resonance (NMR) spectra.
Collapse
Affiliation(s)
- María L Durán-Carril
- Department of Inorganic Chemistry, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | | | - David Lombao-Rodríguez
- Department of Inorganic Chemistry, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Paula Munín-Cruz
- Department of Inorganic Chemistry, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Francisco Reigosa
- Department of Inorganic Chemistry, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - José M Vila
- Department of Inorganic Chemistry, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| |
Collapse
|
5
|
Song Y, Verma G, Tan K, Oyekan KA, Liu J, Strzelecki A, Guo X, Al-Enizi AM, Nafady A, Ma S. Tailoring the Coordination Micro-Environment in Nanotraps for Efficient Platinum/Palladium Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313747. [PMID: 38685565 DOI: 10.1002/adma.202313747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/01/2024] [Indexed: 05/02/2024]
Abstract
Recovering platinum group metals from secondary resources is crucial to meet the growing demand for high-tech applications. Various techniques are explored, and adsorption using porous materials has emerged as a promising technology due to its efficient performance and environmental beingness. However, the challenge lies in effectively recovering and separating individual platinum group metals (PGMs) given their similar chemical properties. Herein, a breakthrough approach is presented by sophisticatedly tailoring the coordination micro-environment in a series of aminopyridine-based porous organic polymers, which enables the creation of platinum-specific nanotraps for efficient separation of binary PGMs (platinum/palladium). The newly synthesized POP-o2NH2-Py demonstrates record uptakes and selectivity toward platinum over palladium, with the amino groups adjacent to the pyridine moieties being vital in improving platinum binding performance. Further breakthrough experiments underline its remarkable ability to separate platinum and palladium. Spectroscopic analysis reveals that POP-o2NH2-Py offers a more favorable coordination fashion to platinum ions compared to palladium ions owing to the greater interaction between N and Pt4+ and stronger intramolecular hydrogen bonding between the amino groups and four coordinating chlorines at platinum. These findings underscore the importance of fine-tuning the coordination micro-environment of nanotraps through subtle modifications that can greatly enhance the selectivity toward the desired metal ions.
Collapse
Affiliation(s)
- Yanpei Song
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA
| | - Gaurav Verma
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA
| | - Kui Tan
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA
| | - Kolade A Oyekan
- Department of Materials Science & Engineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Juejing Liu
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Andrew Strzelecki
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Xiaofeng Guo
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA
| |
Collapse
|
6
|
Reigosa F, Polo PM, Pereira MT, Vila JM. Reactivity of Schiff base-[C,N,S] pincer palladacycles: hydrolysis renders singular trinuclear, tetranuclear, and heteropentanuclear Pd 3W 2 coordinated complexes. Dalton Trans 2024; 53:9680-9691. [PMID: 38661315 DOI: 10.1039/d4dt00756e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Treatment of the Schiff base ligands a-f with Li2[PdCl4]/NaAcO in methanol under reflux gave the single nuclear palladacycles 1a-1f, with the metal atom bonded to a terdentate monoanionic [C,N,S] iminic ligand and to a chloride ligand that completes the palladium coordination sphere. Reaction of 1a-1c with silver perchlorate/triphenylphosphine in acetone at room temperature yielded the single nuclear complexes 2a-2c as the perchlorate salts, after substitution of the chloride ligand by a triphenylphosphine. However, reaction of a-c with Na2[PdCl4]/NaAcO in methanol at room temperature also gave compounds 1a-1c albeit contaminated with small amounts of the corresponding free aldehyde (mixture A). Reaction of mixture A with silver perchlorate/triphenylphosphine in acetone at room temperature gave analogously 2a-2c with some of the corresponding free aldehyde (mixture B). Attempts to purify mixtures A and B via recrystallization produced single crystals of 5 and 6 respectively: two serendipitously formed complexes, bearing thiomethyl aniline and/or acetate ligands, and void of aldehyde or iminic residue; the structures contain eight- and six-membered rings of alternating palladium and nitrogen atoms, respectively. To clarify this situation the aniline itself was reacted with palladium(II) acetate or with Na2[PdCl4]; in the latter case after recrystallization a unique behavior is revealed, giving rise to a tetranuclear complex containing a Pd4N4 ring with three differing coordination environments on the palladium atoms. Treatment of 1d with Ph2PCH2PPh2 (dppm)/AgClO4 or with Ph2PCH2(PPh2)W(CO)5/AgClO4 gave 3d, with a mono-coordinated dppm ligand, and 4d, respectively; complex 3d could not be converted into 4d by reaction with W(CO)5(THF). Recrystallization of 4d gave a still further noticeable species, complex 8: a pentanuclear trans-configured heterometallic mixed valent Pd(II)/W(0) linear complex with the palladium atoms supported by two acetate and two thiomethyl aniline bridging ligands. The complexes were fully characterized by microanalysis, IR, 1H, and 31P NMR spectroscopies, as appropriate. The X-ray single-crystal analyses for compounds 1b, 5, 6, 7 and 8 are described.
Collapse
Affiliation(s)
- Francisco Reigosa
- Departamento de Química Inorgánica, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Paula M Polo
- Departamento de Química Inorgánica, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - M Teresa Pereira
- Departamento de Química Inorgánica, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - José M Vila
- Departamento de Química Inorgánica, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
7
|
Park M, Schmidt C, Türck S, Hanusch F, Hirmer SV, Ott I, Casini A, Inoue S. Potent Anticancer Activity of a Dinuclear Gold(I) bis-N-Heterocyclic Imine Complex Related to Thioredoxin Reductase Inhibition in Vitro. Chempluschem 2024; 89:e202300557. [PMID: 37937471 DOI: 10.1002/cplu.202300557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
A dinuclear gold(I) complex featuring a strongly donating bis-N-heterocyclic imine ligand was synthesised and characterised by different methods, including single crystal X-ray diffraction (SC-XRD) analysis. The compound has been tested for its antiproliferative effects in a panel of human cancer cell lines in vitro, showing highly selective anticancer effects, particularly against human A549 non-small cell lung cancer cells (NSCLC), with respect to non-tumorigenic cells (VERO). The accumulation of the compound in A549 and VERO cells was studied by high-resolution continuum source atomic absorption spectrometry (HRCS-AAS), revealing that the anticancer effects are not particularly related to the different amounts of gold taken up by the cells over 72 h. Enzyme inhibition studies to evaluate the activity of the seleno-enzyme thioredoxin reductase (TrxR) in cancer cell extracts show that the gold(I) compound is a potent inhibitor (IC50=0.567±0.208 μM), while the free ligand is ineffective. This result correlates with the observed compound's selectivity towards A549 cells overexpressing the enzyme.
Collapse
Affiliation(s)
- Mihyun Park
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Claudia Schmidt
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Sebastian Türck
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, 38106, Braunschweig, Germany
| | - Franziska Hanusch
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Simone V Hirmer
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, 38106, Braunschweig, Germany
| | - Angela Casini
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Shigeyoshi Inoue
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching b. München, Germany
| |
Collapse
|
8
|
Gonzalo-Navarro C, Zafon E, Organero JA, Jalón FA, Lima JC, Espino G, Rodríguez AM, Santos L, Moro AJ, Barrabés S, Castro J, Camacho-Aguayo J, Massaguer A, Manzano BR, Durá G. Ir(III) Half-Sandwich Photosensitizers with a π-Expansive Ligand for Efficient Anticancer Photodynamic Therapy. J Med Chem 2024; 67:1783-1811. [PMID: 38291666 PMCID: PMC10859961 DOI: 10.1021/acs.jmedchem.3c01276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/12/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
One approach to reduce the side effects of chemotherapy in cancer treatment is photodynamic therapy (PDT), which allows spatiotemporal control of the cytotoxicity. We have used the strategy of coordinating π-expansive ligands to increase the excited state lifetimes of Ir(III) half-sandwich complexes in order to facilitate the generation of 1O2. We have obtained derivatives of formulas [Cp*Ir(C∧N)Cl] and [Cp*Ir(C∧N)L]BF4 with different degrees of π-expansion in the C∧N ligands. Complexes with the more π-expansive ligand are very effective photosensitizers with phototoxic indexes PI > 2000. Furthermore, PI values of 63 were achieved with red light. Time-dependent density functional theory (TD-DFT) calculations nicely explain the effect of the π-expansion. The complexes produce reactive oxygen species (ROS) at the cellular level, causing mitochondrial membrane depolarization, cleavage of DNA, nicotinamide adenine dinucleotide (NADH) oxidation, as well as lysosomal damage. Consequently, cell death by apoptosis and secondary necrosis is activated. Thus, we describe the first class of half-sandwich iridium cyclometalated complexes active in PDT.
Collapse
Affiliation(s)
- Carlos Gonzalo-Navarro
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Elisenda Zafon
- Departament
de Biologia, Facultat de Ciències, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Juan Angel Organero
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímicas and INAMOL, Universidad
de Castilla-La Mancha, 45071 Toledo, Spain
| | - Félix A. Jalón
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Joao Carlos Lima
- LAQV-REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Gustavo Espino
- Departamento
de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos, s/n, 09001 Burgos, Spain
| | - Ana María Rodríguez
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 3, 13071 Ciudad Real, Spain
| | - Lucía Santos
- Departamento
de Química Física, Facultad de Ciencias y Tecnologías
Químicas, Universidad de Castilla-La
Mancha, Avda. C. J. Cela,
s/n, 13071 Ciudad
Real, Spain
| | - Artur J. Moro
- LAQV-REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Sílvia Barrabés
- Departament
de Biologia, Facultat de Ciències, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Jessica Castro
- Departament
de Biologia, Facultat de Ciències, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Javier Camacho-Aguayo
- Analytical
Chemistry Department, Analytic Biosensors Group, Instituto de Nanociencia
y Nanomateriales de Aragon, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Spain
| | - Anna Massaguer
- Departament
de Biologia, Facultat de Ciències, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Blanca R. Manzano
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Gema Durá
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| |
Collapse
|
9
|
Greenberg M, Tulloch KM, Reynoso ME, Knapp JL, Sayem FH, Bartkus DD, Lum RH, LaFratta CN, Tanski JM, Anderson CM. Synthesis, Structure, and Photophysical Properties of Platinum Compounds with Thiophene-Derived Cyclohexyl Diimine Ligands. ACS OMEGA 2023; 8:38587-38596. [PMID: 37867690 PMCID: PMC10586441 DOI: 10.1021/acsomega.3c05567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023]
Abstract
Platinum(II) and platinum(IV) compounds were prepared by the stereoselective and regioselective reactions of thiophene-derived cyclohexyl diimine C^N^N-ligands with [Pt2Me4(μ-SMe2)2]. Newly synthesized ligands were characterized by NMR spectroscopy and elemental analysis, and Pt(II)/Pt(IV) compounds were characterized by NMR spectroscopy, elemental analysis, high-resolution mass spectrometry, and single-crystal X-ray diffraction. UV-vis absorbance and photoluminescence measurements were performed on newly synthesized complexes, as well as structurally related Pt(II)/Pt(IV) compounds with benzene-derived cyclohexyl diimine ligands, in dichloromethane solution, as solids, and as 5% by weight PMMA-doped films. DFT and TD-DFT calculations were performed, and the results were compared with the observed spectroscopic properties of the newly synthesized complexes. X-ray total scattering measurements and real space pair distribution function analysis were performed on the synthesized complexes to examine the local- and intermediate-range atomic structures of the emissive solid states.
Collapse
Affiliation(s)
- Matthew
W. Greenberg
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Kris M. Tulloch
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Michelle E. Reynoso
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Juliette L. Knapp
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Farman H. Sayem
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Daphne D. Bartkus
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Ryan H. Lum
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Christopher N. LaFratta
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Joseph M. Tanski
- Department
of Chemistry, Vassar College, Poughkeepsie, New York 12604, United States
| | - Craig M. Anderson
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| |
Collapse
|
10
|
Arojojoye AS, Walker B, Dewahare JC, Afrifa MAO, Parkin S, Awuah SG. Circumventing Physicochemical Barriers of Cyclometalated Gold(III) Dithiocarbamate Complexes with Protein-Based Nanoparticle Delivery to Enhance Anticancer Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43607-43620. [PMID: 37698293 PMCID: PMC11264193 DOI: 10.1021/acsami.3c10025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Optimizing the bioavailability of drug candidates is crucial to successful drug development campaigns, especially for metal-derived chemotherapeutic agents. Nanoparticle delivery strategies can be deployed to overcome physicochemical limitations associated with drugs to improve bioavailability, pharmacokinetics, efficacy, and minimize toxicity. Biodegradable albumin nanoconstructs offer pragmatic solutions for drug delivery of metallodrugs with translational benefits in the clinic. In this work, we explored a logical approach to investigate and resolve the physicochemical drawbacks of gold(III) complexes with albumin nanoparticle delivery to improve solubility, enhance intracellular accumulation, circumvent premature deactivation, and enhance anticancer activity. We synthesized and characterized stable gold(III) dithiocarbamate complexes with a variable degree of cyclometalation such as phenylpyridine (C^N) or biphenyl (C^C) Au(III) framework and different alkyl chain lengths. We noted that extended alkyl chain lengths impaired the solubility of these complexes in biological media, thus adversely impacting potency. Encapsulation of these complexes in bovine serum albumin (BSA) reversed solubility limitations and improved cancer cytotoxicity by ∼25-fold. Further speciation and mechanism of action studies demonstrate the stability of the compounds and alteration of mitochondria bioenergetics, respectively. We postulate that this nanodelivery strategy is a relevant approach for translational small-molecule gold drug delivery.
Collapse
Affiliation(s)
| | - Breyanna Walker
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA.
| | - James C. Dewahare
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA.
| | | | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA.
| | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA.
- Center for Pharmaceutical Research and Innovation and Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky, Lexington KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington KY 40536
| |
Collapse
|
11
|
Gómez de Segura D, Giménez N, Rincón-Montón D, Moreno MT, Pichel JG, López IP, Lalinde E. A new family of luminescent [Pt(pbt) 2(C 6F 5)L] n+ ( n = 1, 0) complexes: synthesis, optical and cytotoxic studies. Dalton Trans 2023; 52:12390-12403. [PMID: 37594064 DOI: 10.1039/d3dt01759a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Given the widely recognized bioactivity of 2-arylbenzothiazoles against tumor cells, we have designed a new family of luminescent heteroleptic pentafluorophenyl-bis(2-phenylbenzothiazolyl) PtIV derivatives, fac-[Pt(pbt)2(C6F5)L]n+ (n = 1, 0) [L = 4-Mepy 1, 4-pyridylbenzothiazole (pybt) 2, 4,4'-bipyridine (4,4'-bpy) 3, 1,2-bis-(4-pyridyl)ethylene (bpe) 4 (E/Z ratio: 90/10), 1,4-bis-(pyridyl)butadiyne (bpyb) 5, trifluoroacetate (-OCOCF3) 6] and a dinuclear complex [{Pt(pbt)2(C6F5)}2(μ-bpyb)](PF6)27, in which the trans ligand to the metalated C-(pbt) was varied to modify the optical properties and lipophilicity. Their photophysical properties were systematically studied through experimental and theoretical investigations, which were strongly dependent on the identity of the N-bonded ligand. Thus, complexes 1, 3 and 6 display, in different media, emission from the triplet excited states of primarily intraligand 3ILCT nature localized on the pbt ligand, while the emissions of 2, 5 and 7 were ascribed to a mixture of close 3IL'(N donor)/3ILCT(pbt) excited states, as supported by lifetime measurements and theoretical calculations. Irradiation of the initial E/Z mixture of 4 (15 min) led to a steady state composed of roughly 1 : 1.15 (E : Z) and this complex was not emissive at room temperature due to an enhanced intramolecular E to Z isomerization process of the 1,2-bis-(4-pyridyl)ethylene ligand. Complexes 1-3 and 6 showed excellent quantum yields for the generation of singlet oxygen in aerated MeCN solution with the values of ϕ(1O2) ranging from 0.66 to 0.86 using phenalenone as a reference. Cationic complexes 1-3 exhibited remarkable efficacy in the nanomolar range against A549 (lung carcinoma) and HeLa (cervix carcinoma) cell lines with notable selectivity relative to the non-tumorigenic BEAS-2B (bronchial epithelium) cells. In the A549 cell line, the neutral complex 6 showed low cytotoxicity (IC50: 29.40 μM) and high photocytotoxicity (IC50: 5.75) when cells were irradiated with blue light for 15 min. These complexes do not show evidence of DNA interaction.
Collapse
Affiliation(s)
- David Gómez de Segura
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| | - Nora Giménez
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| | - David Rincón-Montón
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| | - M Teresa Moreno
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| | - José G Pichel
- Lung Cancer and Respiratory Diseases Unit (CIBIR), Fundación Rioja Salud, 26006, Logroño, Spain.
- Spanish Biomedical Research Networking Centre in Respiratory Diseases (CIBERES), ISCIII, E-28029, Madrid, Spain
| | - Icíar P López
- Lung Cancer and Respiratory Diseases Unit (CIBIR), Fundación Rioja Salud, 26006, Logroño, Spain.
| | - Elena Lalinde
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| |
Collapse
|
12
|
Das S, Pal P, Ganguly T, Baitalik S. Influences of Both N,N,N- and N,N,C-Coordination Modes of Tolyl-terpyridine on the Photophysical Properties of Cyclometalated Ru(II) Complexes: Combined Experimental and Theoretical Investigations on Acid/Base-Dependent Reversible Cyclometalation. Inorg Chem 2023; 62:12872-12885. [PMID: 37506326 DOI: 10.1021/acs.inorgchem.3c01523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
With the goal of developing a new strategy for the synthesis of luminescent Ru(II) complexes, we have prepared herein a new set of bis-tridentate complexes of the type [(py-bpy-Ph-X)Ru(tpy-PhCH3)]ClO4 (X = -CH3, -CH2Br, and -CHO) incorporating both non-cyclometalated and cyclometalated coordination motifs of two isomeric forms of methylphenyl-terpyridine (tpy-PhCH3). Thorough characterization of the synthesized complexes is carried out using standard analytical tools and single crystal X-ray diffraction. Detailed investigations on their photophysical and electrochemical behaviors are carried out in MeCN. The presence of a carbanionic center in the cyclometalating unit increases the absorption spectral window of the complexes into a longer-wavelength region. The complexes also exhibit room-temperature luminescence in the NIR domain with enhanced excited-state lifetimes (up to 20.1 ns) compared to their non-cyclometalated counterpart, [Ru(tpy-PhCH3)2]2+. In the presence of acid, the non-coordinated nitrogen atom in the secondary coordination sphere of the complexes allows fine-tuning of the absorption and emission spectral properties. Excess acid induces de-coordination of the Ru-C bond, which is signaled by a remarkable alteration of their spectral profiles. Cleavage of the Ru-C bond is also possible upon treating the acidified solution of the complexes with visible light. Restoration of the Ru-C bond is again feasible upon treating the solution with base at an elevated temperature (∼70 °C). In essence, "on-off" and "off-on" switching of emission is facilitated upon alternating treatment of the Ru(II) complexes with acid, base, and temperature. DFT and TD-DFT calculations are also performed for assignments of the spectral bands as well as to understand structural changes associated with the switching behaviors of the complexes.
Collapse
Affiliation(s)
- Soumi Das
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Poulami Pal
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S C Mullick Road, Kolkata 700032, India
| | - Tanusree Ganguly
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
13
|
Martínez-Junquera M, Lalinde E, Moreno MT. cis/ trans-[Pt(C ∧N)(C≡CR)(CNBu t)] Isomers: Synthesis, Photophysical, DFT Studies, and Chemosensory Behavior. Inorg Chem 2023; 62:11849-11868. [PMID: 37458185 PMCID: PMC10394665 DOI: 10.1021/acs.inorgchem.3c01196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
cis/trans Isomerism can be a crucial factor for photophysical properties. Here, we report the synthesis and optical properties of a series of trans- and cis-alkynyl/isocyanide cycloplatinated compounds [Pt(C∧N)(C≡CR)(CNBut)] [R = C6H4-4-OMe 1, 3-C4H3S 2; C∧N = 2-(2,4-difluorophenyl)pyridine (dfppy) (a), 4-(2-pyridyl)benzaldehyde (ppy-CHO) (b)]. The trans-forms do not isomerize thermally in MeCN solution to the cis forms, but upon photochemical irradiation in this medium at 298 K, a variable isomerization to the cis forms was observed. This behavior is in good agreement with the theoretically calculated energy values. The trans/cis configuration, the identity of the cyclometalated, and the alkynyl ligand influence on the absorption and emission properties of the complexes in solution, polystyrene (PS) films, and solid state are reported. All complexes are efficient triplet emitters in all media (except for trans-1a and trans-2a in CH2Cl2 solution at 298 K), with emission wavelengths depending mainly on the cyclometalated ligand in the region 473-490 nm (dfppy), 510-550 (ppy-CHO), and quantum yields (ϕ) ranging from 18.5 to 40.7% in PS films. The combined photophysical data and time-dependent density functional theory calculations (TD-DFT) at the excited-state T1 geometry reveal triplet excited states of 3L'LCT (C≡CR → C∧N)/3IL (C∧N) character with minor 3MLCT contribution. The dfppy (a) complexes show a greater tendency to aggregate in rigid media than the ppy-CHO (b) and the cis with respect to the trans, showing red-shifted structureless bands of 3MMLCT and/or excimer-like nature. Interestingly, trans-1a,2a and cis-1a,2a undergo significant changes in the ultraviolet (UV) and emission spectra with Hg2+ ions enabling their use for sensing of Hg2+ ions in solution. This is clearly shown by the hypsochromic shift and substantial decrease of the low-energy absorption band and an increase of the intensity of the emission in the MeCN solution upon the addition of a solution of Hg(ClO4)2 (1:5 molar ratio). Job's plot analysis estimated a 1:1 stoichiometry in the complexation mode of Hg2+ by trans-2a. The binding constant (log K) calculated for this system from absorption titration data resulted to be 2.56, and the limit of the detection (LOD) was 6.54 × 10-7 M.
Collapse
Affiliation(s)
- Mónica Martínez-Junquera
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| | - Elena Lalinde
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| | - M Teresa Moreno
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| |
Collapse
|
14
|
Wang N, Ali A, Liu Z, Chi H, Lv Z, Zhao X, Zhang Z, Hao H, Zhang Y, Rahman FU. Monofunctional dimetallic Ru(η6-arene) complexes inhibit NOTCH1 signaling pathway and synergistically enhance anticancer effect in combination with cisplatin or vitamin C. Eur J Med Chem 2023; 258:115536. [PMID: 37295260 DOI: 10.1016/j.ejmech.2023.115536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
ONS donor ligands L1-L4 were utilized in the preparation of monofunctional dimetallic Ru(η6-arene) complexes (C1-C4). These ONS donor ligand based novel tricoordinated Ru(II) complexes bearing η6-arene co-ligand were prepared for the first time. The current methodology resulted in excellent isolated yields and these complexes were characterized in detail by different spectroscopic and spectrometric techniques. The structures of C1-C2 and C4 were characterized in solid state by single crystal X-ray analysis. The in vitro anticancer analyses showed these novel complexes suppressed the growth of breast (MCF-7), liver (HepG2) and lung (A549) cancer cells. C2 suppressed the growth of these cells in dose-dependent manner revealed form the MTT and crystal violet cell viability assays. Moreover, C2 was observed the most potent complex that was used further in detailed mechanistic analyses in cancer cells. C2 showed good cytotoxic activity at 10 μM dose level as compared to cisplatin or oxaliplatin in these cancer cells. We observed morphological changes in cancer cells upon treatment with C2. Moreover, C2 suppressed the invasion and migration ability of cancer cells. C2 induced cellular senescence to retard cell growth and suppressed the formation of cancer stem cells. Importantly, C2 showed synergistic anticancer effect in combination with cisplatin and Vitamin C to further inhibit cell growth which suggested the potential role of C2 in cancer therapy. Mechanistically, C2 inhibited NOTCH1 dependent signaling pathway to suppress cancer cell invasion, migration and cancer stem cells formation. Thus, these data suggested potential role of C2 in cancer therapy by targeting NOTCH1-dependent signaling to suppress tumorigenesis. The results obtained in this study for these novel monofunctional dimetallic Ru(η6-arene) complexes showed their high anticancer potency and this study will pave to further cytotoxicity exploration on this class of complexes.
Collapse
Affiliation(s)
- Na Wang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Amjad Ali
- Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, KPK, Pakistan; Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Zongwei Liu
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Huiqin Chi
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Zhimin Lv
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Xing Zhao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Zeqing Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Huifang Hao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China; School of Life Sciences, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France.
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China.
| |
Collapse
|
15
|
McGhie BS, Sakoff J, Gilbert J, Gordon CP, Aldrich-Wright JR. Synthesis and Characterisation of Fluorescent Novel Pt(II) Cyclometallated Complexes with Anticancer Activity. Int J Mol Sci 2023; 24:ijms24098049. [PMID: 37175756 PMCID: PMC10178562 DOI: 10.3390/ijms24098049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer poses a significant threat to global health and new treatments are required to improve the prognosis for patients. Previously, unconventional platinum complexes designed to incorporate polypyridyl ligands paired with diaminocyclohexane have demonstrated anticancer activity in KRAS mutated cells, previously thought to be undruggable and have cytotoxicity values up to 100 times better than cisplatin. In this work, these complexes were used as inspiration to design six novel cyclometallated examples, whose fluorescence could be exploited to better understand the mechanism of action of these kinds of platinum drugs. The cytotoxicity results revealed that these cyclometallated complexes (CMCs) have significantly different activity compared to the complexes that inspired them; they are as cytotoxic as cisplatin and have much higher selectivity indices in breast cancer cell lines (MCF10A/MCF-7). Complexes 1b, 2a, and 3b all had very high selectivity indexes compared to previous Pt(II) complexes. This prompted further investigation into their DNA binding properties, which revealed that they had good affinity to ctDNA, especially CMCs 1a and 3b. Their inherent fluorescence was successfully utilised in the calculation of their DNA binding affinity and could be useful in future work.
Collapse
Affiliation(s)
- Brondwyn S McGhie
- School of Science, Nanoscale Organisation and Dynamics Group, Western Sydney University, Locked Bag 1797 Penrith South DC, Penrith, NSW 2751, Australia
| | - Jennette Sakoff
- Calvary Mater Newcastle, Waratah, Newcastle, NSW 2298, Australia
| | - Jayne Gilbert
- Calvary Mater Newcastle, Waratah, Newcastle, NSW 2298, Australia
| | - Christopher P Gordon
- School of Science, Nanoscale Organisation and Dynamics Group, Western Sydney University, Locked Bag 1797 Penrith South DC, Penrith, NSW 2751, Australia
| | - Janice R Aldrich-Wright
- School of Science, Nanoscale Organisation and Dynamics Group, Western Sydney University, Locked Bag 1797 Penrith South DC, Penrith, NSW 2751, Australia
| |
Collapse
|
16
|
Anwer KE, Sayed GH, Kozakiewicz-Piekarz A, Ramadan RM. Novel annulated thiophene derivatives: Synthesis, spectroscopic, X-ray, Hirshfeld surface analysis, DFT, biological, cytotoxic and molecular docking studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Synthesis, spectral investigation, biological activities and docking stimulation of novel metal complexes of Trifluoro phenylthiazol derivative with computational studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Afandi ZS, Al-Jibori SA, Ferjani H, AlShammar RH, Hatshan MR, Al-Janabi AS. Ortho-palladated complexes with aromatic N-donor ligands, synthesis, characterization, molecular structures, antibacterial and anticancer activity. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Gómez de Segura D, Lalinde E, Moreno MT. Polymorphism and Mechanochromism in 2-Phenylbenzothiazole Cyclometalated Pt II Complexes with Chelating N ∧O Ligands. Inorg Chem 2022; 61:20043-20056. [PMID: 36442499 DOI: 10.1021/acs.inorgchem.2c03423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
New cyclometalated PtII complexes with 2-phenylbenzothiazole (pbt) and two different picolinate ligands [Pt(pbt)(R-pic-κN,O)] (R = H (1), OH (2)) were prepared. In contrast to 1, the OH substituent group on 2 allows modulation of the packing in the solid state through donor-acceptor H-bonding interactions with the CH2Cl2 solvent. Thus, three pseudopolymorphs of 2 with different aggregation degrees were isolated, including yellow 2-Y, orange-red 2-R (2·0.5CH2Cl2) and black 2-B (2·0.75CH2Cl2) with emissions at 540, 656, and 740 nm, respectively, in the solid state at 298 K. 2-R and 2-B can be transformed to the pristine solid 2. Studies of their crystal structures show that 1 and 2-Y stack in columns with only π···π stacking interactions, whereas 2-R displays strong aggregated 1D infinite chains based on Pt···Pt and π···π stacking interactions, consistent with the colors and the photophysical properties, measured in several media. Interestingly, 1 and 2 exhibit reversible mechanochromic behavior with high contrast in the color and color emission upon mechanical grinding due to a phase transition between a crystalline and an amorphous state, as confirmed by powder X-ray diffraction (PXRD) studies. Theoretical calculations indicate that Pt···Pt contacts are more relevant in the trimers and tetramers than in the dimers, particularly in their T1 states, associated with a change from a 3IL/3MLCT transition in the monomer to 3MM(L+L')CT in the oligomers. Noncovalent interaction (NCI) theoretical studies indicate that the π···π stacking among chelates also exerts a strong influence in the metal-metal-to-ligand charge transfer transition character.
Collapse
Affiliation(s)
- David Gómez de Segura
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| | - Elena Lalinde
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| | - M Teresa Moreno
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| |
Collapse
|
20
|
Rizk MG, Emara AA, Abou-Hussein A, Mahmoud NH. Novel metal complexes of N,N-bis(4-phenylthiazol-2-yl)phthalamide: Synthesis, spectroscopic, thermal and kinetic investigations, molecular modeling, computational calculations, anti-breast cancer studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Scarpelli F, Ionescu A, Crispini A, Marino N, Di Maio G, La Deda M, Godbert N, Aiello I. Structural investigation of anionic cyclometalated Pt(II)-tetrabromocatecholate complexes: quasi-halogen bonding and elusive polymorphism at play. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2132483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Francesca Scarpelli
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Dipartimento di Chimica e Tecnologie Chimiche, Universitá della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Andreea Ionescu
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Dipartimento di Chimica e Tecnologie Chimiche, Universitá della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Alessandra Crispini
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Dipartimento di Chimica e Tecnologie Chimiche, Universitá della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Nadia Marino
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Dipartimento di Chimica e Tecnologie Chimiche, Universitá della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Giuseppe Di Maio
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Dipartimento di Chimica e Tecnologie Chimiche, Universitá della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Massimo La Deda
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Dipartimento di Chimica e Tecnologie Chimiche, Universitá della Calabria, Arcavacata di Rende, Cosenza, Italy
- CNR NANOTEC-Istituto di Nanotecnologia U.O.S. Cosenza, Arcavacata di Rende, Cosenza, Italy
| | - Nicolas Godbert
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Dipartimento di Chimica e Tecnologie Chimiche, Universitá della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Iolinda Aiello
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Dipartimento di Chimica e Tecnologie Chimiche, Universitá della Calabria, Arcavacata di Rende, Cosenza, Italy
- CNR NANOTEC-Istituto di Nanotecnologia U.O.S. Cosenza, Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
22
|
Aoki S, Yokoi K, Hisamatsu Y, Balachandran C, Tamura Y, Tanaka T. Post-complexation Functionalization of Cyclometalated Iridium(III) Complexes and Applications to Biomedical and Material Sciences. Top Curr Chem (Cham) 2022; 380:36. [PMID: 35948812 DOI: 10.1007/s41061-022-00401-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
Abstract
Cyclometalated iridium(III) (Ir(III)) complexes exhibit excellent photophysical properties that include large Stokes shift, high emission quantum yields, and microsecond-order emission lifetimes, due to low-lying metal-to-ligand charge transfer (spin-forbidden singlet-triplet (3MLCT) transition). As a result, analogs have been applied for research not only in the material sciences, such as the development of organic light-emitting diodes (OLEDs), but also for photocatalysts, bioimaging probes, and anticancer reagents. Although a variety of methods for the synthesis and the applications of functionalized cyclometalated iridium complexes have been reported, functional groups are generally introduced to the ligands prior to the complexation with Ir salts. Therefore, it is difficult to introduce thermally unstable functional groups such as peptides and sugars due to the harsh reaction conditions such as the high temperatures used in the complexation with Ir salts. In this review, the functionalization of Ir complexes after the formation of cyclometalated Ir complexes and their biological and material applications are described. These methods are referred to as "post-complexation functionalization (PCF)." In this review, applications of PCF to the design and synthesis of Ir(III) complexes that exhibit blue -red and white color emissions, luminescence pH probes, luminescent probes of cancer cells, compounds that induce cell death in cancer cells, and luminescent complexes that have long emission lifetimes are summarized.
Collapse
Affiliation(s)
- Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan. .,Research Institute for Science and Technology, Tokyo University of Science, Tokyo, Japan. .,Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan.
| | - Kenta Yokoi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Yosuke Hisamatsu
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Chandrasekar Balachandran
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan.,Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Yuichi Tamura
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Tomohiro Tanaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
23
|
Ming J, Bhatti MZ, Ali A, Zhang Z, Wang N, Mohyuddin A, Chen J, Zhang Y, Rahman FU. Vitamin B6 based Pt(II) complexes: Biomolecule derived potential cytotoxic agents for thyroid cancer. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6649654. [PMID: 35876659 DOI: 10.1093/mtomcs/mfac053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 07/20/2022] [Indexed: 11/14/2022]
Abstract
Vitamin B6 is an essential vitamin that serves as a co-enzyme in a number of enzymatic reactions in metabolism of lipids, amino acids and glucose. In the current study, we synthesized vitamin B6 derived ligand (L) and its complex Pt(L)Cl (C1). The ancillary chloride ligand of C1 was exchanged with pyridine co-ligand and another complex Pt(L)(py).BF4 (C2) was obtained. Both these complexes were obtained in excellent isolated yields and characterized thoroughly by different analytical methods. Thyroid cancer is one of the most common malignancies of the endocrine system, we studied the in vitro anticancer activity and mechanism of these vitamin B6 derived L and Pt(II) complexes in thyroid cancer cell line (FTC). Based on MTT assay, cell proliferation rate was reduced in a dose-dependent manner. According to apoptosis analysis, vitamin B6 based Pt(II) complexes treated cells depicted necrotic effect and TUNEL based apoptosis was observed in cancer cells. Furthermore, qRT-PCR analyses of cancer cells treated with C1 and/or C2 showed regulated expression of anti-apoptotic, pro-apoptosis and autophagy related genes. Western blot results demonstrated that C1 and C2 induced the activation of p53 and the cleavage of Poly (ADP-ribose) polymerase (PARP). These results suggest that these complexes inhibit the growth of FTC cells and induce apoptosis through p53 signaling. Thus, vitamin B6 derived Pt(II) complexes C1 and C2 may be potential cytotoxic agents for the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Jialin Ming
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot People's Republic of China, Inner Mongolia 010031, China
| | - Muhammad Zeeshan Bhatti
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Amjad Ali
- Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, KPK 25000, Pakistan
| | - Zeqing Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot People's Republic of China, Inner Mongolia 010031, China
| | - Na Wang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot People's Republic of China, Inner Mongolia 010031, China
| | - Aisha Mohyuddin
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Jiwu Chen
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot People's Republic of China, Inner Mongolia 010031, China
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot People's Republic of China, Inner Mongolia 010031, China
| |
Collapse
|
24
|
Kopchuk DS, Slepukhin PA, Taniya OS, Krinochkin AP, Zyryanov GV, Chupakhin ON. Platinum(II) Acetylacetonate Complex Based on 5-(3-Aminophenyl)-2-(2-thienyl)pyridine: Synthesis, Crystal Structure, and Photophysical Properties. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422070053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
|
26
|
Wu Y, Wang Y, Sun Y, Li Z, Li X, Zhou Z, Tang D. Dissociation of Bipyridine and Coordination with Nitrosyl: Cyclometalated Ruthenium Nitrosyl Complex. Inorg Chem 2022; 61:8997-9011. [PMID: 35657382 DOI: 10.1021/acs.inorgchem.1c03770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A novel family of ruthenium nitrosyl complexes [Ru(bpy)(C∧N)(MeCN)NO](PF6)2 (2a-2e, bpy = 2,2'-bipyridine, HC∧N = 2-phenylpyridine and its derivatives) has been prepared by reacting cyclometalated ruthenium complexes [Ru(bpy)2(C∧N)][PF6] (1a-1e) with NO+, which were comprehensively characterized by mass, IR, NMR, and UV-vis spectra as well as the single-crystal X-ray structure determinations. Herein, the coordination geometry of Ru atoms in 2a-2e is a distorted octahedron and {RuII-NO+}6 is present in these complexes. Theoretical calculations suggest that the reactions involving dissociation of one bipyridine and coordination with NO+ proceed spontaneously (ΔG < 0) and the transformation from 1a-1e to the intermediates is dominated by substituents (ΔGRI varies from -1.19 to -1.53 eV), which influence the binding energy between Ru(II) and NO+ in complexes 2a-2e (-89.42 to -101.17 kcal/mol) and thus control the photorelease of NO on a certain scale. The weak absorption bands in the visible region could be attributed to the contribution of dπ(RuII) → π*(NO+), which were enhanced greatly under light, indicating the possible release of NO. The photoinduced NO, as well as singlet oxygen (1O2), was then confirmed by EPR spectra, and the amount of NO released from 2a-2e was estimated via Griess reagent assay. The cytotoxicity of these complexes with or without visible light irradiation was also investigated using an MTT assay.
Collapse
Affiliation(s)
- Yuhao Wu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Yirong Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Yun Sun
- College of Chemistry and Materials Science, International Joint Laboratory on Resource Chemistry of Ministry Education, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Zhen Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Xianghong Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China.,Key Laboratory of Analytical Chemistry of State Ethnic affairs Commission, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Zhiguo Zhou
- College of Chemistry and Materials Science, International Joint Laboratory on Resource Chemistry of Ministry Education, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Dingguo Tang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China
| |
Collapse
|
27
|
Almeida CM, S. Marcon PH, Nascimento ÉCM, Martins JBL, Chagas MAS, Fujimori M, De Marchi PGF, França EL, Honorio‐França AC, Gatto CC. Organometallic Gold (III) and Platinum (II) Complexes with Thiosemicarbazone: structural behavior, anticancer activity, and molecular docking. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Carolane M. Almeida
- Laboratory of Inorganic Synthesis and Crystallography University of Brasilia (IQ‐UnB). Campus Universitário Darcy Ribeiro Brasília DF Brazil
| | - Pedro H. S. Marcon
- Laboratory of Inorganic Synthesis and Crystallography University of Brasilia (IQ‐UnB). Campus Universitário Darcy Ribeiro Brasília DF Brazil
| | - Érica C. M. Nascimento
- Laboratory of Computational Chemistry University of Brasilia (IQ‐UnB). Campus Universitário Darcy Ribeiro Brasília DF Brazil
| | - João B. L. Martins
- Laboratory of Computational Chemistry University of Brasilia (IQ‐UnB). Campus Universitário Darcy Ribeiro Brasília DF Brazil
| | - Marcio A. S. Chagas
- Institute of Biological and Health Science, Federal University of Mato Grosso Barra do Garças Brazil
| | - Mahmi Fujimori
- Institute of Biological and Health Science, Federal University of Mato Grosso Barra do Garças Brazil
| | - Patrícia G. F. De Marchi
- Institute of Biological and Health Science, Federal University of Mato Grosso Barra do Garças Brazil
| | - Eduardo L. França
- Institute of Biological and Health Science, Federal University of Mato Grosso Barra do Garças Brazil
| | | | - Claudia C. Gatto
- Laboratory of Inorganic Synthesis and Crystallography University of Brasilia (IQ‐UnB). Campus Universitário Darcy Ribeiro Brasília DF Brazil
| |
Collapse
|
28
|
Bermúdez-Puente B, Adrio LA, Lucio-Martínez F, Reigosa F, Ortigueira JM, Vila JM. Imine Palladacycles: Synthesis, Structural Analysis and Application in Suzuki–Miyaura Cross Coupling in Semi-Aqueous Media. Molecules 2022; 27:molecules27103146. [PMID: 35630622 PMCID: PMC9144456 DOI: 10.3390/molecules27103146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment of the imines a–c with palladium(II) acetate in acetic acid yielded the μ-acetate dinuclear complexes 1a–c, which readily reacted with sodium chloride or bromide to provide μ-halide analogues. The reaction of the latter with nitrogen, phosphorus and oxygen donor nucleophiles yielded new imine palladacycles following the cleavage of the Pd2X2 unit. The complexes were fully characterized by microanalysis, 1H, 13C and 31P NMR spectroscopies, as appropriate. The compounds were applied as catalysts in the Suzuki–Miyaura coupling reaction in aqueous and semi-aqueous media.
Collapse
|
29
|
Xu R, Wu Y, Liu Z, Liu J, Liu X. Lysosomal Targeted Cyclometallic Iridium(Ⅲ) Salicylaldehyde-Coumarin Schiff Base Complexes and Anticancer Application. Front Chem 2022; 10:906954. [PMID: 35620650 PMCID: PMC9127163 DOI: 10.3389/fchem.2022.906954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/20/2022] [Indexed: 12/30/2022] Open
Abstract
Natural coumarin derivatives and cyclometallic iridium (Ⅲ) (IrⅢ) complexes have attracted much attention in the field of anticancer. In this study, six coumarin-modified cyclometallic IrⅢ salicylaldehyde Schiff base complexes ([(ppy)2Ir(O^N)]/[(ppy-CHO)2Ir(O^N)]) were designed and synthesized. Compared with coumarin and IrⅢ complex monomers, target complexes exhibited favorable cytotoxic activity toward A549 and BEAS-2B cells. These complexes could induce extensive apoptosis of A549 cell (late apoptosis), which was represented by the disturbance of cell cycle (G1-phase) and the accumulation of intracellular reactive oxygen species, exhibiting an anticancer mechanism of oxidation. With the help of suitable fluorescence of these complexes, no conflict with the probes, confocal detection confirmed that complexes showed an energy-dependent cellular uptake mechanism and triggered lysosome-mediated apoptosis in A549 cell line. Above all, our findings reveal the design of a lysosomal targeting cyclometallic IrⅢ Schiff base complexes and provide a new idea for the design of integrated drugs for diagnosis and treatment.
Collapse
Affiliation(s)
- Ruixi Xu
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Yuting Wu
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
- *Correspondence: Xicheng Liu, ; Zhe Liu,
| | - Jinfeng Liu
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Xicheng Liu
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
- *Correspondence: Xicheng Liu, ; Zhe Liu,
| |
Collapse
|
30
|
Anwer KE, Sayed GH, Ramadan RM. Synthesis, spectroscopic, DFT calculations, biological activities and molecular docking studies of new isoxazolone, pyrazolone, triazine, triazole and amide derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Nagarajan S, Srivastava AK, Ishtiyak M, Rani M, Pal S. Cycloruthenates(III) with CNO pincer-like ligands: Regioselective metallation of N-(4-R-benzoyl)-N′-(2-naphthylidene)hydrazines. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Jiang J, Cao B, Chen Y, Luo H, Xue J, Xiong X, Zou T. Alkylgold(III) Complexes Undergo Unprecedented Photo-Induced β-Hydride Elimination and Reduction for Targeted Cancer Therapy. Angew Chem Int Ed Engl 2022; 61:e202201103. [PMID: 35165986 DOI: 10.1002/anie.202201103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/07/2022]
Abstract
Spatiotemporally controllable activation of prodrugs within tumors is highly desirable for cancer therapy to minimize toxic side effects. Herein we report that stable alkylgold(III) complexes can undergo unprecedented photo-induced β-hydride elimination, releasing alkyl ligands and forming gold(III)-hydride intermediates that could be quickly converted into bioactive [AuIII -S] adducts; meanwhile, the remaining alkylgold(III) complexes can photo-catalytically reduce [AuIII -S] into more bioactive AuI species. Such photo-reactivities make it possible to functionalize gold complexes on the auxiliary alkyl ligands without attenuating the metal-biomacromolecule interactions. As a result, the gold(III) complexes containing glucose-functionalized alkyl ligands displayed efficient and tumor-selective uptake; notably, after one- or two-photon activation, the complexes exhibited high thioredoxin reductase (TrxR) inhibition, potent cytotoxicity, and strong antiangiogenesis and antitumor activities in vivo.
Collapse
Affiliation(s)
- Jia Jiang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education Division, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Yuting Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hejiang Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jiaying Xue
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
33
|
Britten NS, Butler JA. Ruthenium metallotherapeutics: novel approaches to combatting parasitic infections. Curr Med Chem 2022; 29:5159-5178. [PMID: 35366762 DOI: 10.2174/0929867329666220401105444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
Human parasitic infections cause a combined global mortality rate of over one million people per annum and represent some of the most challenging diseases for medical intervention. Current chemotherapeutic strategies often require prolonged treatment, coupled with subsequent drug-induced cytotoxic morbidity to the host, while resistance generation is also a major concern. Metals have been used extensively throughout the history of medicine, with more recent applications as anticancer and antimicrobial agents. Ruthenium metallotherapeutic antiparasitic agents are highly effective at targeting a range of key parasites, including the causative agents of malaria, trypanosomiasis, leishmaniasis, amoebiasis, toxoplasmosis and other orphan diseases, while demonstrating lower cytotoxicity profiles than current treatment strategies. Generally, such compounds also demonstrate activity against multiple cellular target sites within parasites, including inhibition of enzyme function, cell membrane perturbation, and alterations to metabolic pathways, therefore reducing the opportunity for resistance generation. This review provides a comprehensive and subjective analysis of the rapidly developing area of ruthenium metal-based antiparasitic chemotherapeutics, in the context of rational drug design and potential clinical approaches to combatting human parasitic infections.
Collapse
Affiliation(s)
- Nicole S. Britten
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Jonathan A. Butler
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
34
|
Mahesha P, Shetty NS, Kulkarni SD. A Review on Metal Ion Sensors Derived from Chalcone Precursor. J Fluoresc 2022; 32:835-862. [PMID: 35199297 PMCID: PMC9095558 DOI: 10.1007/s10895-022-02900-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/01/2022] [Indexed: 11/26/2022]
Abstract
Disclosure of new molecular probes as chromogenic and fluorogenic cation sensors is scientifically exigent work. Recently chalcone derivatives gained more attention because of their structural variability. A suitable donor and acceptor groups separated by delocalized π-orbitals display excellent chromogenic and fluorogenic properties because of intramolecular charge transfer (ICT). These designed molecular frameworks provide the coordination sites to the incoming metal ions results in small changes in the optical properties. In a typical sensing behavior, coordination leads to a large conjugation plane with the probe resulted in hypo/hyperchromic shifts or red/blue shifts. In this review, we tried to converge the reported chalcone-derived sensors and explored the design, synthesis, metal ion sensing mechanism, and practical application of the probes. We expect that this review gives a basic outline for researchers to explore the field of chalcone-based sensors further.
Collapse
Affiliation(s)
- Priyanka Mahesha
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Nitinkumar S Shetty
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.
| | - Suresh D Kulkarni
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
35
|
Bai X, Ali A, Wang N, Liu Z, Lv Z, Zhang Z, Zhao X, Hao H, Zhang Y, Rahman FU. Inhibition of SREBP-mediated lipid biosynthesis and activation of multiple anticancer mechanisms by platinum complexes: Ascribe possibilities of new antitumor strategies. Eur J Med Chem 2022; 227:113920. [PMID: 34742012 DOI: 10.1016/j.ejmech.2021.113920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022]
Abstract
Cancer is one of the most aggressive diseases with poor prognosis and survival rates. Lipids biogenesis play key role in cancer progression, metastasis and tumor development. Suppression of SREBP-mediated lipid biogenesis pathway has been linked with cancer inhibition. Platinum complexes bearing good anticancer effect and multiple genes activation properties are considered important and increase the chances for development of new platinum-based drugs. In this study, we synthesized pyridine co-ligand functionalized cationic complexes and characterized them using multiple spectroscopic and spectrophotometric methods. Two of these complexes were studied in solid state by single crystal X-ray analysis. The stability of these complexes were measured in solution state using 1H NMR methods. These complexes were further investigated for their anticancer activity against human breast, lung and liver cancer cells. MTT assay showed potential cytotoxic activity in dose-dependent manner and decrease survival rates of cancer cells was observed upon treatment with these complexes. Biological assays results revealed higher cytotoxicity as compared to cisplatin and oxaliplatin. Further we studied C2, C6 and C8 in detailed mechanistic anticancer analyses. Clonogenic assay showed decrease survival of MCF-7, HepG2 and A549 cancer cells treated with C2, C6 and C8 as compared to control cells treated with DMSO. TUNEL assay showed more cell death, these complexes suppressed invasion and migration ability of cancer cells and decreased tumor spheroids formation, thus suggesting a potential role in inhibition of cancer metastasis and cancer stem cells formation. Mechanistically, these complexes inhibited sterol regulatory element-binding protein 1 (SREBP-1) expression in cancer cells in dose-dependent manner and thereby reduced lipid biogenesis to suppress cancer progression. Furthermore, expression level was decreased for the key genes LDLR, FASN and HMGCR, those required for sterol biosynthesis. Taken together, these complexes suppressed cancer cell growth, migration, invasion and spheroids formation by inhibiting SREBP-1 mediated lipid biogenesis pathway.
Collapse
Affiliation(s)
- Xue Bai
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Amjad Ali
- Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, KPK, Pakistan; Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Na Wang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Zongwei Liu
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Zhimin Lv
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Zeqing Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Xing Zhao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Huifang Hao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China; School of Life Sciences, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France.
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China.
| |
Collapse
|
36
|
Jordaan L, Ndlovu MT, Mkhize S, Ngubane S, Loots L, Duffy S, Avery VM, Chellan P. Investigating the antiplasmodial activity of substituted cyclopentadienyl rhodium and iridium complexes of 2-(2-pyridyl)benzimidazole. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Orthopalladated tetralone oxime compounds bearing tertiary phosphines: Synthesis, structure, biological and in silico studies. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
The structure and spectroscopic properties of the metallophilic Pt/Pd complexes based on pyridine/pyrazol ligands: A computational investigation. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Tolbatov I, Marrone A, Coletti C, Re N. Computational Studies of Au(I) and Au(III) Anticancer MetalLodrugs: A Survey. Molecules 2021; 26:7600. [PMID: 34946684 PMCID: PMC8707411 DOI: 10.3390/molecules26247600] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022] Open
Abstract
Owing to the growing hardware capabilities and the enhancing efficacy of computational methodologies, computational chemistry approaches have constantly become more important in the development of novel anticancer metallodrugs. Besides traditional Pt-based drugs, inorganic and organometallic complexes of other transition metals are showing increasing potential in the treatment of cancer. Among them, Au(I)- and Au(III)-based compounds are promising candidates due to the strong affinity of Au(I) cations to cysteine and selenocysteine side chains of the protein residues and to Au(III) complexes being more labile and prone to the reduction to either Au(I) or Au(0) in the physiological milieu. A correct prediction of metal complexes' properties and of their bonding interactions with potential ligands requires QM computations, usually at the ab initio or DFT level. However, MM, MD, and docking approaches can also give useful information on their binding site on large biomolecular targets, such as proteins or DNA, provided a careful parametrization of the metal force field is employed. In this review, we provide an overview of the recent computational studies of Au(I) and Au(III) antitumor compounds and of their interactions with biomolecular targets, such as sulfur- and selenium-containing enzymes, like glutathione reductases, glutathione peroxidase, glutathione-S-transferase, cysteine protease, thioredoxin reductase and poly (ADP-ribose) polymerase 1.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Institut de Chimie Moleculaire de l’Université de Bourgogne (ICMUB), Université de Bourgogne Franche-Comté (UBFC), Avenue Alain Savary 9, 21078 Dijon, France;
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (A.M.); (C.C.)
| | - Cecilia Coletti
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (A.M.); (C.C.)
| | - Nazzareno Re
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (A.M.); (C.C.)
| |
Collapse
|
40
|
Lighvan ZM, Khonakdar HA, Akbari A, Jahromi MD, Ramezanpour A, Kermagoret A, Heydari A, Jabbari E. Synthesis and biological evaluation of novel tetranuclear cyclopalladated complex bearing thiosemicarbazone scaffold ligand: Interactions with double‐strand DNA, coronavirus, and molecular modeling studies. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zohreh Mehri Lighvan
- Department of Polymer Processing Iran Polymer and Petrochemical Institute Tehran Iran
| | - Hossein Ali Khonakdar
- Department of Polymer Processing Iran Polymer and Petrochemical Institute Tehran Iran
- Leibniz‐Institut für Polymerforschung Dresdene. V Dresden Germany
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute Urmia University of Medical Sciences Urmia Iran
| | | | - Azar Ramezanpour
- Department of Chemistry Isfahan University of Technology Isfahan Iran
| | | | - Abolfazl Heydari
- Polymer Institute of the Slovak Academy of Sciences Bratislava Slovakia
| | - Esmaiel Jabbari
- Department of Chemical Engineering University of South Carolina Columbia South Carolina USA
| |
Collapse
|
41
|
Lara R, Millán G, Moreno MT, Lalinde E, Alfaro‐Arnedo E, López IP, Larráyoz IM, Pichel JG. Investigation on Optical and Biological Properties of 2-(4-Dimethylaminophenyl)benzothiazole Based Cycloplatinated Complexes. Chemistry 2021; 27:15757-15772. [PMID: 34379830 PMCID: PMC9293083 DOI: 10.1002/chem.202102737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 11/08/2022]
Abstract
The optical and biological properties of 2-(4-dimethylaminophenyl)benzothiazole cycloplatinated complexes featuring bioactive ligands ([{Pt(Me2 N-pbt)(C6 F5 )}L] [L=Me2 N-pbtH 1, p-dpbH (4-(diphenylphosphino)benzoic acid) 2, o-dpbH (2-(diphenylphosphino)benzoic acid) 3), [Pt(Me2 N-pbt)(o-dpb)] 4, [{Pt(Me2 N-pbt)(C6 F5 )}2 (μ-PRn P)] [PR4 P=O(CH2 CH2 OC(O)C6 H4 PPh2 )2 5, PR12 P=O{(CH2 CH2 O)3 C(O)C6 H4 PPh2 }2 6] are presented. Complexes 1-6 display 1 ILCT and metal-perturbed 3 ILCT dual emissions. The ratio between both bands is excitation dependent, accomplishing warm-white emissions for 2, 5 and 6. The phosphorescent emission is lost in aerated solutions owing to photoinduced electron transfer to 3 O2 and the formation of 1 O2 , as confirmed in complexes 2 and 4. They also exhibit photoinduced phosphorescence enhancement in non-degassed DMSO due to local oxidation of DMSO by sensitized 1 O2 , which causes a local degassing. Me2 N-pbtH and the complexes specifically accumulate in the Golgi apparatus, although only 2, 3 and 6 were active against A549 and HeLa cancer cell lines, 6 being highly selective in respect to nontumoral cells. The potential photodynamic property of these complexes was demonstrated with complex 4.
Collapse
Affiliation(s)
- Rebeca Lara
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ)Universidad de La Rioja26006LogroñoSpain
| | - Gonzalo Millán
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ)Universidad de La Rioja26006LogroñoSpain
| | - M. Teresa Moreno
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ)Universidad de La Rioja26006LogroñoSpain
| | - Elena Lalinde
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ)Universidad de La Rioja26006LogroñoSpain
| | - Elvira Alfaro‐Arnedo
- Lung Cancer and Respiratory Diseases Unit (CIBIR)Fundación Rioja Salud26006LogroñoSpain
| | - Icíar P. López
- Lung Cancer and Respiratory Diseases Unit (CIBIR)Fundación Rioja Salud26006LogroñoSpain
| | - Ignacio M. Larráyoz
- Biomarkers and Molecular Signaling Unit (CIBIR)Fundación Rioja Salud26006LogroñoSpain
| | - José G. Pichel
- Lung Cancer and Respiratory Diseases Unit (CIBIR)Fundación Rioja Salud26006LogroñoSpain
- Biomedical Research Networking Center in Respiratory Diseases (CIBERES)ISCIII Av. Monforte de Lemos, 3-5. Pab. 11.28029 MadridSpain
| |
Collapse
|
42
|
Scoditti S, Mazzone G, Sicilia E. Computational Analysis of Photophysical Properties and Reactivity of a New Phototherapeutic Cyclometalated Au(III)-Hydride Complex. Chemistry 2021; 27:15528-15535. [PMID: 34546592 DOI: 10.1002/chem.202102701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Indexed: 01/25/2023]
Abstract
Gold(III) complexes have recently emerged as new versatile and efficacious metal containing anticancer agents. In an attempt to reconcile the specific affinity of such complexes for target sulfur containing biomolecules with their capability to strongly bind thiol-containing compounds widely distributed in non-tumoral cells, a new series of cyclometalated Au(III)-hydride complexes has been proposed as photoactivatable anticancer prodrugs. Here, the computational exploration of the photophysical properties and reactivity in dark and under light irradiation of the first member of the series, named 1 a, is reported. Complex 1 a low hydricity in dark together with facile hydride substitution leading to H2 elimination under excitation by visible light have been examined by means of DFT and TD-DFT computations. Both singlet and triplet excited states have been characterized, allowing the identification of the active species involved in photoactivation pathways leading to the controlled detachment of the hydride ligand. Also the viable two-photon activation at the ideal phototherapeutic window has been investigated.
Collapse
Affiliation(s)
- Stefano Scoditti
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036, Rende, CS, Italy
| | - Gloria Mazzone
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036, Rende, CS, Italy
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036, Rende, CS, Italy
| |
Collapse
|
43
|
Radisavljević S, Scheurer A, Bockfeld D, Ćoćić D, Puchta R, Senft L, Pešić M, Damljanović I, Petrović B. New mononuclear gold(III) complexes: Synthesis, characterization, kinetic, mechanistic, DNA/BSA/HSA binding, DFT and molecular docking studies. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Zalevskaya O, Gur'eva Y, Kutchin A, Aleksandrova Y, Yandulova E, Nikolaeva N, Neganova M. Palladium complexes with terpene derivatives of ethylenediamine and benzylamine: Synthesis and study of antitumor properties. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
van der Westhuizen D, Bezuidenhout DI, Munro OQ. Cancer molecular biology and strategies for the design of cytotoxic gold(I) and gold(III) complexes: a tutorial review. Dalton Trans 2021; 50:17413-17437. [PMID: 34693422 DOI: 10.1039/d1dt02783b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This tutorial review highlights key principles underpinning the design of selected metallodrugs to target specific biological macromolecules (DNA and proteins). The review commences with a descriptive overview of the eukaryotic cell cycle and the molecular biology of cancer, particularly apoptosis, which is provided as a necessary foundation for the discovery, design, and targeting of metal-based anticancer agents. Drugs which target DNA have been highlighted and clinically approved metallodrugs discussed. A brief history of the development of mainly gold-based metallodrugs is presented prior to addressing ligand systems for stabilizing and adding functionality to bio-active gold(I) and gold(III) complexes, particularly in the burgeoning field of anticancer metallodrugs. Concepts such as multi-modal and selective cytotoxic agents are covered where necessary for selected compounds. The emerging role of carbenes as the ligand system of choice to achieve these goals for gold-based metallodrug candidates is highlighted prior to closing the review with comments on some future directions that this research field might follow. The latter section ultimately emphasizes the importance of understanding the fate of metal complexes in cells to garner key mechanistic insights.
Collapse
Affiliation(s)
- Danielle van der Westhuizen
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Daniela I Bezuidenhout
- Laboratory of Inorganic Chemistry, Environmental and Chemical Engineering, University of Oulu, P. O. Box 3000, 90014 Oulu, Finland.
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
46
|
Chanda K. Significance of chalcone synthons as lead molecules in anticancer drug discovery. Anticancer Agents Med Chem 2021; 22:1240. [PMID: 34515011 DOI: 10.2174/1871520621666210910084829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/22/2022]
Affiliation(s)
- Kaushik Chanda
- Vellore Institute of Technology Department of Chemistry Vellore. India
| |
Collapse
|
47
|
Gao H, Yu R, Ma Z, Gong Y, Zhao B, Lv Q, Tan Z. Recent advances of organometallic complexes in emerging photovoltaics. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Huaizhi Gao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Runnan Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Zongwen Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Yongshuai Gong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Biao Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Qianglong Lv
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Zhan'ao Tan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| |
Collapse
|
48
|
Shen J, Rees TW, Ji L, Chao H. Recent advances in ruthenium(II) and iridium(III) complexes containing nanosystems for cancer treatment and bioimaging. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Zhou X, Mytiliniou M, Hilgendorf J, Zeng Y, Papadopoulou P, Shao Y, Dominguez MP, Zhang L, Hesselberth MBS, Bos E, Siegler MA, Buda F, Brouwer AM, Kros A, Koning RI, Heinrich D, Bonnet S. Intracellular Dynamic Assembly of Deep-Red Emitting Supramolecular Nanostructures Based on the Pt…Pt Metallophilic Interaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008613. [PMID: 34338371 PMCID: PMC11469088 DOI: 10.1002/adma.202008613] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Many drug delivery systems end up in the lysosome because they are built from covalent or kinetically inert supramolecular bonds. To reach other organelles, nanoparticles hence need to either be made from a kinetically labile interaction that allows re-assembly of the nanoparticles inside the cell following endocytic uptake, or, be taken up by a mechanism that short-circuits the classical endocytosis pathway. In this work, the intracellular fate of nanorods that self-assemble via the Pt…Pt interaction of cyclometalated platinum(II) compounds, is studied. These deep-red emissive nanostructures (638 nm excitation, ≈700 nm emission) are stabilized by proteins in cell medium. Once in contact with cancer cells, they cross the cell membrane via dynamin- and clathrin-dependent endocytosis. However, time-dependent confocal colocalization and cellular electron microscopy demonstrate that they directly move to mitochondria without passing by the lysosomes. Altogether, this study suggests that Pt…Pt interaction is strong enough to generate emissive, aggregated nanoparticles inside cells, but labile enough to allow these nanostructures to reach the mitochondria without being trapped in the lysosomes. These findings open new venues to the development of bioimaging nanoplatforms based on the Pt…Pt interaction.
Collapse
Affiliation(s)
- Xue‐Quan Zhou
- Leiden Institute of ChemistryUniversiteit LeidenEinsteinweg 55Leiden2333 CCNetherlands
| | - Maria Mytiliniou
- Leiden Institute of PhysicsHuygens‐Kamerlingh Onnes LaboratoryUniversiteit LeidenLeiden2300 RAThe Netherlands
| | - Jonathan Hilgendorf
- Leiden Institute of ChemistryUniversiteit LeidenEinsteinweg 55Leiden2333 CCNetherlands
| | - Ye Zeng
- Leiden Institute of ChemistryUniversiteit LeidenEinsteinweg 55Leiden2333 CCNetherlands
| | | | - Yang Shao
- Leiden Institute of ChemistryUniversiteit LeidenEinsteinweg 55Leiden2333 CCNetherlands
| | - Maximilian Paradiz Dominguez
- Molecular Photonics GroupVan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van AmsterdamScience Park 904Amsterdam1098 XHNetherlands
| | - Liyan Zhang
- Leiden Institute of ChemistryUniversiteit LeidenEinsteinweg 55Leiden2333 CCNetherlands
| | - Marcel B. S. Hesselberth
- Leiden Institute of PhysicsHuygens‐Kamerlingh Onnes LaboratoryUniversiteit LeidenLeiden2300 RAThe Netherlands
| | - Erik Bos
- Department of Cell and Chemical BiologyLeiden University Medical CenterEinthovenweg 20Leiden2333 ZCThe Netherlands
| | | | - Francesco Buda
- Leiden Institute of ChemistryUniversiteit LeidenEinsteinweg 55Leiden2333 CCNetherlands
| | - Albert M. Brouwer
- Molecular Photonics GroupVan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van AmsterdamScience Park 904Amsterdam1098 XHNetherlands
- Materials DepartmentAdvanced Research Center for NanolithographyScience Park 106Amsterdam1098 XGThe Netherlands
| | - Alexander Kros
- Leiden Institute of ChemistryUniversiteit LeidenEinsteinweg 55Leiden2333 CCNetherlands
| | - Roman I. Koning
- Department of Cell and Chemical BiologyLeiden University Medical CenterEinthovenweg 20Leiden2333 ZCThe Netherlands
| | - Doris Heinrich
- Leiden Institute of PhysicsHuygens‐Kamerlingh Onnes LaboratoryUniversiteit LeidenLeiden2300 RAThe Netherlands
- Institute for Bioprocessing and Analytical Measurement TechniquesRosenhof37308Heilbad HeiligenstadtGermany
- Faculty for Mathematics and Natural SciencesIlmenau University of Technology98693IlmenauGermany
- Frauenhofer Attract 3DNanoCellFraunhofer Institute for Silicate Research ISC97082WürzburgGermany
| | - Sylvestre Bonnet
- Leiden Institute of ChemistryUniversiteit LeidenEinsteinweg 55Leiden2333 CCNetherlands
| |
Collapse
|
50
|
Bai X, Ali A, Lv Z, Wang N, Zhao X, Hao H, Zhang Y, Rahman FU. Platinum complexes inhibit HER-2 enriched and triple-negative breast cancer cells metabolism to suppress growth, stemness and migration by targeting PKM/LDHA and CCND1/BCL2/ATG3 signaling pathways. Eur J Med Chem 2021; 224:113689. [PMID: 34293698 DOI: 10.1016/j.ejmech.2021.113689] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/31/2021] [Accepted: 07/04/2021] [Indexed: 12/17/2022]
Abstract
Triple-negative-breast cancer (TNBC) and HER-2 enriched positive aggressive types of breast cancer and are highly metastatic in nature. Anticancer agents those target TNBC and HER-2 enriched positive breast cancers are considered important in the field of breast cancer research. In search of the effective anticancer agents, we synthesized Pt(II) complexes to target these cancers. Platinum complexes (C1-C8) were prepared in single step by the reaction of commercially available K2PtCl4 with the readily prepared ligands (L1-L8). All these compounds were characterized successfully by different spectroscopic and spectrophotometric analyses. Structures of C1, C3 and C8 were characterized by single crystal X-ray analysis that confirmed the exact chelation mode of the SNO-triply coordinated ligand. All these complexes inhibited the in vitro growth of MCF-7 (luminal-like), MDA-MB-231 (TNBC) and SKBR3 (HER-2 enriched) breast cancer cells. C1, C3 and C7 induced cell death and suppressed the clonogenic potential of these cancer cells. Importantly, C1, C3 and C7 showed potentials to suppress cancer stem cells/mammosphere formation and cell migration ability of MDA-MB-231 and SKBR3 breast cancer cells. These complexes also induced cellular senescence in MDA-MB-231 and SKBR3 cells, thus suggesting a cell retardation mechanism. Similarly, these complexes induced DNA damage by activating p-H2AX expression and promoted autophagy via ATG3/LC3B axis activation in MDA-MB-231 and SKBR3 cells. Furthermore, these complexes decreased the expression of oncogenic proteins such as BCL2 and cylin-D1 those are involved in cancer cell survival and cell cycle progression. To further gain insight, we found that C1 and C7 targeted glycolytic pathways by regulating PKM and LDHA expression, which are involved in glycolysis. Moreover, C1 and C7 suppressed the formation of ATP production that is required for cancer cell growth. Taken together, the easy synthesis and biological assays results point towards the importance of these complexes in MDA-MB-231 (TNBC) and SKBR3 (HER-2 enriched) breast cancer cells by targeting multiple signaling pathways those are considered important during breast cancer progression. This study produces bases for further deeper in vitro or in vivo study that could lead to the effective breast cancer agents which we are working on.
Collapse
Affiliation(s)
- Xue Bai
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Amjad Ali
- Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, KPK, Pakistan; Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Zhimin Lv
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Na Wang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Xing Zhao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Huifang Hao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China; School of Life Sciences, Inner Mongolia University, Hohhot, 010021, PR China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France.
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China.
| |
Collapse
|