1
|
Zeng J, Zhou H, Wan H, Yang J. Single-cell omics: moving towards a new era in ischemic stroke research. Eur J Pharmacol 2025; 1000:177725. [PMID: 40350018 DOI: 10.1016/j.ejphar.2025.177725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
Ischemic stroke (IS) is a highly complex and heterogeneous disease involving multiple pathophysiological events. A better understanding of the pathophysiology of IS will enhance preventive, diagnostic and therapeutic strategies. Despite significant advances in modern medicine, the molecular mechanisms of IS are still largely unknown. The high-throughput omics approach opens new avenues for identifying IS biomarkers and elucidating disease pathogenesis mechanisms. Single-cell omics enables a more thorough and in-depth analysis of the cellular interactions and properties in IS. This will lead to a better understanding of the onset, treatment and prognosis of IS. In this paper, we first reviewed the disease signatures and mechanisms research of IS. Subsequently, the use of single-cell omics to comprehend the mechanisms of IS was discussed, along with some recent developments in the field. To further delineate the upstream pathogenic alterations and downstream molecular impacts of IS, we also discussed the current use of machine learning approaches to single-cell omics data analysis. Particularly, single-cell omics is being used to inform risk assessment, early patient diagnosis and treatment strategies, and their potential impact on precision medicine. Thus, we summarized the role of single-cell omics in precision medicine. Despite the relative youth of the field, the development of single-cell omics promises to provide a powerful tool for elucidating the pathogenesis of IS.
Collapse
Affiliation(s)
- Jieqiong Zeng
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Ecological and Environmental, Hubei Industrial Polytechnic, Shiyan, 442000, China
| | - Huifen Zhou
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haitong Wan
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Jiehong Yang
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
2
|
Levinson A, Shannon K, Huang BJ. Targeting Hyperactive Ras Signaling in Pediatric Cancer. Cold Spring Harb Perspect Med 2025; 15:a041572. [PMID: 39009442 PMCID: PMC12047744 DOI: 10.1101/cshperspect.a041572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Somatic RAS mutations are among the most frequent drivers in pediatric and adult cancers. Somatic KRAS, NRAS, and HRAS mutations exhibit distinct tissue-specific predilections. Germline NF1 and RAS mutations in children with neurofibromatosis type 1 and other RASopathy developmental disorders have provided new insights into Ras biology. In many cases, these germline mutations are associated with increased cancer risk. Promising targeted therapeutic strategies for pediatric cancers and neoplasms with NF1 or RAS mutations include inhibition of downstream Ras effector pathways, directly inhibiting the signal output of oncogenic Ras proteins and associated pathway members, and therapeutically targeting Ras posttranslational modifications and intracellular trafficking. Acquired drug resistance to targeted drugs remains a significant challenge but, increasingly, rational drug combination approaches have shown promise in overcoming resistance. Developing predictive preclinical models of childhood cancers for drug testing is a high priority for the field of pediatric oncology.
Collapse
Affiliation(s)
- Anya Levinson
- Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA
| | - Kevin Shannon
- Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA
| | - Benjamin J Huang
- Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
3
|
Shahar Gabay T, Stolero N, Rabhun N, Sabah R, Raz O, Neumeier Y, Marx Z, Tao L, Biezuner T, Amir S, Adar R, Levy R, Chapal-Ilani N, Evtiugina N, Shlush LI, Shapiro E, Yehudai-Resheff S, Zuckerman T. GMP-like and MLP-like Subpopulations of Hematopoietic Stem and Progenitor Cells Harboring Mutated EZH2 and TP53 at Diagnosis Promote Acute Myeloid Leukemia Relapse: Data of Combined Molecular, Functional, and Genomic Single-Stem-Cell Analyses. Int J Mol Sci 2025; 26:4224. [PMID: 40362463 PMCID: PMC12072498 DOI: 10.3390/ijms26094224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/20/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Acute myeloid leukemia (AML) is associated with unfavorable patient outcomes primarily related to disease relapse. Since specific types of leukemic hematopoietic stem and progenitor cells (HSPCs) are suggested to contribute to AML propagation, this study aimed to identify and explore relapse-initiating HSPC subpopulations present at diagnosis, using single-cell analysis (SCA). We developed unique high-resolution techniques capable of tracking single-HSPC-derived subclones during AML evolution. Each subclone was evaluated for chemo-resistance, in vivo leukemogenic potential, mutational profile, and the cell of origin. In BM samples of 15 AML patients, GMP-like and MLP-like HSPC subpopulations were identified as prevalent at relapse, exhibiting chemo-resistance to commonly used chemotherapy agents cytosine arabinoside (Ara-C) and daunorubicin. Reconstruction of phylogenetic lineage trees combined with genetic analysis of single HSPCs and single-HSPC-derived subclones demonstrated two distinct clusters, originating from MLP-like or GMP-like subpopulations, observed both at diagnosis and relapse. These subpopulations induced leukemia development ex vivo and in vivo. Genetic SCA showed that these relapse-related subpopulations harbored mutated EZH2 and TP53, detected already at diagnosis. This study, using combined molecular, functional, and genomic analyses at the level of single cells, identified patient-specific chemo-resistant HSPC subpopulations at the time of diagnosis, promoting AML relapse.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Humans
- Enhancer of Zeste Homolog 2 Protein/genetics
- Single-Cell Analysis/methods
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Tumor Suppressor Protein p53/genetics
- Mutation
- Animals
- Male
- Female
- Middle Aged
- Mice
- Recurrence
- Adult
- Cytarabine/pharmacology
- Drug Resistance, Neoplasm/genetics
- Aged
- Neoplastic Stem Cells/metabolism
Collapse
Affiliation(s)
- Tal Shahar Gabay
- Hematology Research Center, Clinical Research Institute at Rambam, Rambam Health Care Campus, Haifa 3109601, Israel; (T.S.G.); (R.S.); (S.Y.-R.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa 3109601, Israel
| | - Nofar Stolero
- Hematology Research Center, Clinical Research Institute at Rambam, Rambam Health Care Campus, Haifa 3109601, Israel; (T.S.G.); (R.S.); (S.Y.-R.)
| | - Niv Rabhun
- Hematology Research Center, Clinical Research Institute at Rambam, Rambam Health Care Campus, Haifa 3109601, Israel; (T.S.G.); (R.S.); (S.Y.-R.)
| | - Rawan Sabah
- Hematology Research Center, Clinical Research Institute at Rambam, Rambam Health Care Campus, Haifa 3109601, Israel; (T.S.G.); (R.S.); (S.Y.-R.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa 3109601, Israel
| | - Ofir Raz
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel; (O.R.); (Y.N.); (L.T.); (R.L.); (E.S.)
| | - Yaara Neumeier
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel; (O.R.); (Y.N.); (L.T.); (R.L.); (E.S.)
- Department of Immunology, Weizmann Institute of Science, Rehovot 761001, Israel; (T.B.); (N.C.-I.); (L.I.S.)
| | - Zipora Marx
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel; (O.R.); (Y.N.); (L.T.); (R.L.); (E.S.)
| | - Liming Tao
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel; (O.R.); (Y.N.); (L.T.); (R.L.); (E.S.)
| | - Tamir Biezuner
- Department of Immunology, Weizmann Institute of Science, Rehovot 761001, Israel; (T.B.); (N.C.-I.); (L.I.S.)
| | - Shiran Amir
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel; (O.R.); (Y.N.); (L.T.); (R.L.); (E.S.)
| | - Rivka Adar
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel; (O.R.); (Y.N.); (L.T.); (R.L.); (E.S.)
| | - Ron Levy
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel; (O.R.); (Y.N.); (L.T.); (R.L.); (E.S.)
| | - Noa Chapal-Ilani
- Department of Immunology, Weizmann Institute of Science, Rehovot 761001, Israel; (T.B.); (N.C.-I.); (L.I.S.)
| | - Natalia Evtiugina
- Hematology Research Center, Clinical Research Institute at Rambam, Rambam Health Care Campus, Haifa 3109601, Israel; (T.S.G.); (R.S.); (S.Y.-R.)
| | - Liran I. Shlush
- Department of Immunology, Weizmann Institute of Science, Rehovot 761001, Israel; (T.B.); (N.C.-I.); (L.I.S.)
| | - Ehud Shapiro
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel; (O.R.); (Y.N.); (L.T.); (R.L.); (E.S.)
| | - Shlomit Yehudai-Resheff
- Hematology Research Center, Clinical Research Institute at Rambam, Rambam Health Care Campus, Haifa 3109601, Israel; (T.S.G.); (R.S.); (S.Y.-R.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa 3109601, Israel
| | - Tsila Zuckerman
- Hematology Research Center, Clinical Research Institute at Rambam, Rambam Health Care Campus, Haifa 3109601, Israel; (T.S.G.); (R.S.); (S.Y.-R.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa 3109601, Israel
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa 3109601, Israel
| |
Collapse
|
4
|
Fiore D, Cappelli LV, Zhaoqi L, Kotlov N, Sorokina M, Phillip J, Zumbo P, Yoffe L, Ghione P, Wang A, Han X, Taylor A, Chiu W, Fragliasso V, Tabbo F, Zamponi N, Di Siervi N, Kayembe C, Medico G, Patel RP, Gaudiano M, Machiorlatti R, Astone G, Cacciapuoti MT, Zanetti G, Pignataro C, Eric RA, Patel S, Zammarchi F, Zanettini C, Queiroz L, Nikitina A, Kudryashova O, Karelin A, Nikitin D, Tychinin D, Postovalova E, Bagaev A, Svekolkin V, Belova E, Tikhonova K, Degryse S, Xu C, Novero D, Ponzoni M, Tiacci E, Falini B, Song J, Khodos I, De Stanchina E, Macari G, Cafforio L, Gardini S, Piva R, Medico E, Ng SY, Moskowitz A, Epstein Z, Intlekofer A, Ahmed D, Chan WC, Martin P, Ruan J, Bertoni F, Foà R, Brody JD, Weinstock DM, Osan J, Santambrogio L, Elemento O, Betel D, Tam W, Ruella M, Cerchietti L, Rabadan R, Horwitz S, Inghirami G. A patient-derived T cell lymphoma biorepository uncovers pathogenetic mechanisms and host-related therapeutic vulnerabilities. Cell Rep Med 2025; 6:102029. [PMID: 40147445 PMCID: PMC12047492 DOI: 10.1016/j.xcrm.2025.102029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 04/24/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
Peripheral T cell lymphomas (PTCLs) comprise heterogeneous malignancies with limited therapeutic options. To uncover targetable vulnerabilities, we generate a collection of PTCL patient-derived tumor xenografts (PDXs) retaining histomorphology and molecular donor-tumor features over serial xenografting. PDX demonstrates remarkable heterogeneity, complex intratumor architecture, and stepwise trajectories mimicking primary evolutions. Combining functional transcriptional stratification and multiparametric imaging, we identify four distinct PTCL microenvironment subtypes with prognostic value. Mechanistically, we discover a subset of PTCLs expressing Epstein-Barr virus-specific T cell receptors and uncover the capacity of cancer-associated fibroblasts of counteracting treatments. PDXs' pre-clinical testing captures individual vulnerabilities, mirrors donor patients' clinical responses, and defines effective patient-tailored treatments. Ultimately, we assess the efficacy of CD5KO- and CD30- Chimeric Antigen Receptor T Cells (CD5KO-CART and CD30_CART, respectively), demonstrating their therapeutic potential and the synergistic role of immune checkpoint inhibitors for PTCL treatment. This repository represents a resource for discovering and validating intrinsic and extrinsic factors and improving the selection of drugs/combinations and immune-based therapies.
Collapse
Affiliation(s)
- Danilo Fiore
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; Institute for Experimental Endocrinology and Oncology, "G.Salvatore" IEOS, Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy
| | - Luca Vincenzo Cappelli
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Liu Zhaoqi
- Program for Mathematical Genomics, Department of Systems Biology, Department of Biomedical Informatics, Columbia University, New York, NY 10027 USA; China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | | | | | - Jude Phillip
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065 US; Chemical and Biomolecular Engineering, Oncology, Sidney Kimmel Comprehensive Cancer Center, Core Member, Institute for Nanobiotechnology (INBT), Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Paul Zumbo
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, US
| | - Liron Yoffe
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Paola Ghione
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anqi Wang
- Program for Mathematical Genomics, Department of Systems Biology, Department of Biomedical Informatics, Columbia University, New York, NY 10027 USA
| | - Xueshuai Han
- Program for Mathematical Genomics, Department of Systems Biology, Department of Biomedical Informatics, Columbia University, New York, NY 10027 USA; China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Abigail Taylor
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - William Chiu
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Valentina Fragliasso
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Laboratory of translational research, Azienda USL - IRCCS di Reggio Emilia, 42122 Reggio Emila, Italy
| | - Fabrizio Tabbo
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; SC Oncologia ASL CN2 Alba Bra Ospedale Michele e Pietro Ferrero, 12060 Verduno, (CN), Italy
| | - Nahuel Zamponi
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065 US
| | - Nicolás Di Siervi
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065 US
| | - Clarisse Kayembe
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Giovanni Medico
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ruchi P Patel
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA 19104, USA; Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcello Gaudiano
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rodolfo Machiorlatti
- Department of Pathology, Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy
| | - Giuseppina Astone
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Maria Teresa Cacciapuoti
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Giorgia Zanetti
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Claudia Pignataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Ruiz Arvin Eric
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sanjay Patel
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Claudio Zanettini
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lucio Queiroz
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Chengqi Xu
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Domenico Novero
- Division of Pathological Anatomy, Quality and Safety of Diagnosis and Treatment, Città della Salute e della Scienza, 10126 Turin, Italy
| | - Maurilio Ponzoni
- Pathology Unit, San Raffaele Scientific Institute, Milan, Italy; Unit of Lymphoid Malignancies, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Enrico Tiacci
- Institute of Hematology, University of Perugia, Ospedale S. Maria della Misericordia, S. Andrea delle Fratte, 06156 Perugia Italy
| | - Brunangelo Falini
- Institute of Hematology, University of Perugia, Ospedale S. Maria della Misericordia, S. Andrea delle Fratte, 06156 Perugia Italy
| | - Joo Song
- Department of Pathology, City of Hope Medical Center, Duarte, CA 91010, US
| | - Inna Khodos
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, US
| | - Elisa De Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, US
| | | | | | | | - Roberto Piva
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| | - Enzo Medico
- Department of Oncology, University of Torino, Candiolo, TO, Italy; Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy
| | - Samuel Y Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; National Cancer Institute, Bethesda, MD 20892, USA
| | - Allison Moskowitz
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zachary Epstein
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew Intlekofer
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dogan Ahmed
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Wing C Chan
- Department of Pathology, City of Hope Medical Center, Duarte, CA 91010, US
| | - Peter Martin
- Lymphoma Service, Weill Cornell Medical Center, New York, NY 10065, USA
| | - Jia Ruan
- Lymphoma Service, Weill Cornell Medical Center, New York, NY 10065, USA
| | - Francesco Bertoni
- Lymphoma Genomics, Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; Oncology Institute of Southern Switzerland, EOC,6500 Bellinzona, Switzerland
| | - Robin Foà
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Joshua D Brody
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, US; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Jaspreet Osan
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Oliver Elemento
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Doron Betel
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065 US; Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, US
| | - Wayne Tam
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Division of Hematopathology, Northwell Health, New York, NY 11740, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA 19104, USA; Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leandro Cerchietti
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065 US
| | - Raul Rabadan
- Program for Mathematical Genomics, Department of Systems Biology, Department of Biomedical Informatics, Columbia University, New York, NY 10027 USA
| | - Steven Horwitz
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Giorgio Inghirami
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
5
|
Sheth AS, Chan KK, Liu S, Wan J, Angus SP, Rhodes SD, Mitchell DK, Davis C, Ridinger M, Croucher PJ, Zeidan AM, Wijeratne A, Qian S, Tran NT, Sierra Potchanant EA. PLK1 Inhibition Induces Synthetic Lethality in Fanconi Anemia Pathway-Deficient Acute Myeloid Leukemia. CANCER RESEARCH COMMUNICATIONS 2025; 5:648-667. [PMID: 40111122 PMCID: PMC12011380 DOI: 10.1158/2767-9764.crc-24-0260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/29/2024] [Accepted: 03/18/2025] [Indexed: 03/22/2025]
Abstract
SIGNIFICANCE This work demonstrates that FA pathway mutations, which are frequently observed in sporadic AML, induce hypersensitivity to PLK1 inhibition, providing rationale for a novel synthetic lethal therapeutic strategy for this patient population.
Collapse
Affiliation(s)
- Aditya S. Sheth
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ka-Kui Chan
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Steve P. Angus
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Steven D. Rhodes
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Dana K. Mitchell
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Christopher Davis
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | - Amer M. Zeidan
- Yale University and Yale Cancer Center, New Haven, Connecticut
| | - Aruna Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Shaomin Qian
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ngoc Tung Tran
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Elizabeth A. Sierra Potchanant
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
6
|
Sturgeon CM, Wagenblast E, Izzo F, Papapetrou EP. The Crossroads of Clonal Evolution, Differentiation Hierarchy, and Ontogeny in Leukemia Development. Blood Cancer Discov 2025; 6:94-109. [PMID: 39652739 PMCID: PMC11876951 DOI: 10.1158/2643-3230.bcd-24-0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/19/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
SIGNIFICANCE In recent years, remarkable technological advances have illuminated aspects of the pathogenesis of myeloid malignancies-yet outcomes for patients with these devastating diseases have not significantly improved. We posit that a synthesized view of the three dimensions through which hematopoietic cells transit during their healthy and diseased life-clonal evolution, stem cell hierarchy, and ontogeny-promises high yields in new insights into disease pathogenesis and new therapeutic avenues.
Collapse
Affiliation(s)
- Christopher M. Sturgeon
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Elvin Wagenblast
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Pediatrics, Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Franco Izzo
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eirini P. Papapetrou
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
7
|
Fleming TJ, Antoszewski M, Lambo S, Gundry MC, Piussi R, Wahlster L, Shah S, Reed FE, Dong KD, Paulo JA, Gygi SP, Mimoso C, Goldman SR, Adelman K, Perry JA, Pikman Y, Stegmaier K, Barrachina MN, Machlus KR, Hovestadt V, Arruda A, Minden MD, Voit RA, Sankaran VG. CEBPA repression by MECOM blocks differentiation to drive aggressive leukemias. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.30.630680. [PMID: 39803492 PMCID: PMC11722404 DOI: 10.1101/2024.12.30.630680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Acute myeloid leukemias (AMLs) have an overall poor prognosis with many high-risk cases co-opting stem cell gene regulatory programs, yet the mechanisms through which this occurs remain poorly understood. Increased expression of the stem cell transcription factor, MECOM, underlies one key driver mechanism in largely incurable AMLs. How MECOM results in such aggressive AML phenotypes remains unknown. To address existing experimental limitations, we engineered and applied targeted protein degradation with functional genomic readouts to demonstrate that MECOM promotes malignant stem cell-like states by directly repressing pro-differentiation gene regulatory programs. Remarkably and unexpectedly, a single node in this network, a MECOM-bound cis-regulatory element located 42 kb downstream of the myeloid differentiation regulator CEBPA, is both necessary and sufficient for maintaining MECOM-driven leukemias. Importantly, targeted activation of this regulatory element promotes differentiation of these aggressive AMLs and reduces leukemia burden in vivo, suggesting a broadly applicable differentiation-based approach for improving therapy.
Collapse
Affiliation(s)
- Travis J. Fleming
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mateusz Antoszewski
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- These authors contributed equally to this work
| | - Sander Lambo
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- These authors contributed equally to this work
| | - Michael C. Gundry
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Riccardo Piussi
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lara Wahlster
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sanjana Shah
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Fiona E. Reed
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kevin D. Dong
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Claudia Mimoso
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Seth R. Goldman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jennifer A. Perry
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yana Pikman
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kimberly Stegmaier
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Maria N. Barrachina
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kellie R. Machlus
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Volker Hovestadt
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Andrea Arruda
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Mark D. Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Richard A. Voit
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Present Address: UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vijay G. Sankaran
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA 02142, USA
- Lead contact
| |
Collapse
|
8
|
Wemyss C, Jones E, Stentz R, Carding SR. Acute Myeloid Leukaemia and Acute Lymphoblastic Leukaemia Classification and Metabolic Characteristics for Informing and Advancing Treatment. Cancers (Basel) 2024; 16:4136. [PMID: 39766036 PMCID: PMC11675077 DOI: 10.3390/cancers16244136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Acute myeloid leukaemia (AML) and acute lymphoblastic leukaemia (ALL) remain significant challenges in haematological oncology. This review examines the pathophysiology, classification, and risk stratification of these aggressive malignancies, emphasising their impact on treatment strategies and prognosis. We discuss current standard-of-care treatments, including chemotherapy regimens and targeted therapies, while addressing the associated adverse effects and hypersensitivity reactions. Delving into the metabolic characteristics and vulnerabilities of leukaemia cells, the review highlights the key differences between lymphoid and myeloid leukaemia and how metabolic insights can be utilised for therapeutic purposes, with special focus on asparaginase therapy and its potential for improvement in both ALL and AML treatment. The review conveys the importance of personalised medicine approaches based on individual metabolic profiles and the challenges posed by metabolic heterogeneity and plasticity in leukaemia cells. Combining molecular and metabolic profiling can enhance and refine treatment strategies for acute leukaemia, potentially improving patient outcomes and quality of life. However, integrating these into routine clinical practice requires overcoming various practical, technical, and logistical issues.
Collapse
Affiliation(s)
- Carrie Wemyss
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (C.W.); (E.J.); (R.S.)
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Emily Jones
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (C.W.); (E.J.); (R.S.)
| | - Régis Stentz
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (C.W.); (E.J.); (R.S.)
| | - Simon R. Carding
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (C.W.); (E.J.); (R.S.)
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
9
|
Bonilla G, Morris A, Kundu S, DuCasse A, Kirkpatrick G, Jeffries NE, Chetal K, Yvanovich EE, Milosevic J, Zhao T, Xia J, Barghout R, Scadden D, Mansour MK, Kingston RE, Sykes DB, Mercier FE, Sadreyev RI. Leukemia aggressiveness is driven by chromatin remodeling and expression changes of core regulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582846. [PMID: 38496490 PMCID: PMC10942317 DOI: 10.1101/2024.02.29.582846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Molecular mechanisms driving clonal aggressiveness in leukemia are not fully understood. We tracked and analyzed MLL-rearranged leukemic clones independently evolving towards higher aggressiveness. More aggressive subclones lost their growth differential ex vivo but restored it upon secondary transplantation, suggesting molecular memory of aggressiveness. Development of aggressiveness was associated with clone-specific gradual modulation of chromatin states and expression levels across the genome, with a surprising preferential trend of reversing the earlier changes between normal and leukemic progenitors. To focus on the core aggressiveness program, we identified genes with consistent changes of expression and chromatin marks that were maintained in vivo and ex vivo in both clones. Overexpressing selected core genes (Smad1 as aggressiveness driver, Irx5 and Plag1 as suppressors) affected leukemic progenitor growth in the predicted way and had convergent downstream effects on central transcription factors and repressive epigenetic modifiers, suggesting a broader regulatory network of leukemic aggressiveness.
Collapse
|
10
|
Toma MM, Skorski T. Star wars against leukemia: attacking the clones. Leukemia 2024; 38:2293-2302. [PMID: 39223295 PMCID: PMC11519008 DOI: 10.1038/s41375-024-02369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Leukemia, although most likely starts as a monoclonal genetic/epigenetic anomaly, is a polyclonal disease at manifestation. This polyclonal nature results from ongoing evolutionary changes in the genome/epigenome of leukemia cells to promote their survival and proliferation advantages. We discuss here how genetic and/or epigenetic aberrations alter intracellular microenvironment in individual leukemia clones and how extracellular microenvironment selects the best fitted clones. This dynamic polyclonal composition of leukemia makes designing an effective therapy a challenging task especially because individual leukemia clones often display substantial differences in response to treatment. Here, we discuss novel therapeutic approach employing single cell multiomics to identify and eradicate all individual clones in a patient.
Collapse
Affiliation(s)
- Monika M Toma
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Janitri V, ArulJothi KN, Ravi Mythili VM, Singh SK, Prasher P, Gupta G, Dua K, Hanumanthappa R, Karthikeyan K, Anand K. The roles of patient-derived xenograft models and artificial intelligence toward precision medicine. MedComm (Beijing) 2024; 5:e745. [PMID: 39329017 PMCID: PMC11424683 DOI: 10.1002/mco2.745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Patient-derived xenografts (PDX) involve transplanting patient cells or tissues into immunodeficient mice, offering superior disease models compared with cell line xenografts and genetically engineered mice. In contrast to traditional cell-line xenografts and genetically engineered mice, PDX models harbor the molecular and biologic features from the original patient tumor and are generationally stable. This high fidelity makes PDX models particularly suitable for preclinical and coclinical drug testing, therefore better predicting therapeutic efficacy. Although PDX models are becoming more useful, the several factors influencing their reliability and predictive power are not well understood. Several existing studies have looked into the possibility that PDX models could be important in enhancing our knowledge with regard to tumor genetics, biomarker discovery, and personalized medicine; however, a number of problems still need to be addressed, such as the high cost and time-consuming processes involved, together with the variability in tumor take rates. This review addresses these gaps by detailing the methodologies to generate PDX models, their application in cancer research, and their advantages over other models. Further, it elaborates on how artificial intelligence and machine learning were incorporated into PDX studies to fast-track therapeutic evaluation. This review is an overview of the progress that has been done so far in using PDX models for cancer research and shows their potential to be further improved in improving our understanding of oncogenesis.
Collapse
Affiliation(s)
| | - Kandasamy Nagarajan ArulJothi
- Department of Genetic Engineering, College of Engineering and TechnologySRM Institute of Science and TechnologyChengalpattuTamil NaduIndia
| | - Vijay Murali Ravi Mythili
- Department of Genetic Engineering, College of Engineering and TechnologySRM Institute of Science and TechnologyChengalpattuTamil NaduIndia
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Parteek Prasher
- Department of ChemistryUniversity of Petroleum & Energy Studies, Energy AcresDehradunIndia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of PharmacyChitkara UniversityRajpuraPunjabIndia
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative, MedicineUniversity of Technology SydneyUltimoNSWAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNSWAustralia
| | - Rakshith Hanumanthappa
- JSS Banashankari Arts, Commerce, and SK Gubbi Science CollegeKarnatak UniversityDharwadKarnatakaIndia
| | - Karthikeyan Karthikeyan
- Centre of Excellence in PCB Design and Analysis, Department of Electronics and Communication EngineeringM. Kumarasamy College of EngineeringKarurTamil NaduIndia
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Office of the Dean, Faculty of Health SciencesUniversity of the Free StateBloemfonteinSouth Africa
| |
Collapse
|
12
|
Boutzen H, Murison A, Oriecuia A, Bansal S, Arlidge C, Wang JCY, Lupien M, Kaufmann KB, Dick JE. Identification of leukemia stem cell subsets with distinct transcriptional, epigenetic and functional properties. Leukemia 2024; 38:2090-2101. [PMID: 39169113 PMCID: PMC11436360 DOI: 10.1038/s41375-024-02358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
The leukemia stem cell (LSC) compartment is a complex reservoir fueling disease progression in acute myeloid leukemia (AML). The existence of heterogeneity within this compartment is well documented but prior studies have focused on genetic heterogeneity without being able to address functional heterogeneity. Understanding this heterogeneity is critical for the informed design of therapies targeting LSC, but has been hampered by LSC scarcity and the lack of reliable cell surface markers for viable LSC isolation. To overcome these challenges, we turned to the patient-derived OCI-AML22 cell model. This model includes functionally, transcriptionally and epigenetically characterized LSC broadly representative of LSC found in primary AML samples. Focusing on the pool of LSC, we used an integrated approach combining xenograft assays with single-cell analysis to identify two LSC subtypes with distinct transcriptional, epigenetic and functional properties. These LSC subtypes differed in depth of quiescence, differentiation potential, repopulation capacity, sensitivity to chemotherapy and could be isolated based on CD112 expression. A majority of AML patient samples had transcriptional signatures reflective of either LSC subtype, and some even showed coexistence within an individual sample. This work provides a framework for investigating the LSC compartment and designing combinatorial therapeutic strategies in AML.
Collapse
Affiliation(s)
- Héléna Boutzen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 0A3, Canada.
| | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 0A3, Canada
| | - Alexa Oriecuia
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 0A3, Canada
| | - Suraj Bansal
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 0A3, Canada
| | - Christopher Arlidge
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 0A3, Canada
| | - Jean C Y Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 0A3, Canada
- Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 0A3, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Kerstin B Kaufmann
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 0A3, Canada.
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 0A3, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
13
|
Kim J, Schanzer N, Singh RS, Zaman MI, Garcia-Medina JS, Proszynski J, Ganesan S, Dan Landau, Park CY, Melnick AM, Mason CE. DOGMA-seq and multimodal, single-cell analysis in acute myeloid leukemia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 390:67-108. [PMID: 39864897 DOI: 10.1016/bs.ircmb.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Acute myeloid leukemia (AML) is a complex cancer, yet advances in recent years from integrated genomics methods have helped improve diagnosis, treatment, and means of patient stratification. A recent example of a powerful, multimodal method is DOGMA-seq, which can measure chromatin accessibility, gene expression, and cell-surface protein levels from the same individual cell simultaneously. Previous bimodal single-cell techniques, such as CITE-seq (Cellular indexing of transcriptomes and epitopes), have only permitted the transcriptome and cell-surface protein expression measurement. DOGMA-seq, however, builds on this foundation and has implications for examining epigenomic, transcriptomic, and proteomic interactions between various cell types. This technique has the potential to be particularly useful in the study of cancers such as AML. This is because the cellular mechanisms that drive AML are rather heterogeneous and require a more complete understanding of the interplay between the genetic mutations, disruptions in RNA transcription and translation, and surface protein expression that cause these cancers to develop and evolve. This technique will hopefully contribute to a more clear and complete understanding of the growth and progression of complex cancers.
Collapse
Affiliation(s)
- JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Nathan Schanzer
- School of Medicine, New York Medical College, Valhalla, NY, United States
| | - Ruth Subhash Singh
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Mohammed I Zaman
- Department of Biophysics and Physiology, Stony Brook University, Stony Brook, NY, United States
| | - J Sebastian Garcia-Medina
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Jacqueline Proszynski
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Saravanan Ganesan
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States; New York Genome Center, New York, NY, United States
| | - Dan Landau
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | | | - Ari M Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
14
|
Schwede M, Jahn K, Kuipers J, Miles LA, Bowman RL, Robinson T, Furudate K, Uryu H, Tanaka T, Sasaki Y, Ediriwickrema A, Benard B, Gentles AJ, Levine R, Beerenwinkel N, Takahashi K, Majeti R. Mutation order in acute myeloid leukemia identifies uncommon patterns of evolution and illuminates phenotypic heterogeneity. Leukemia 2024; 38:1501-1510. [PMID: 38467769 PMCID: PMC11250774 DOI: 10.1038/s41375-024-02211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Acute myeloid leukemia (AML) has a poor prognosis and a heterogeneous mutation landscape. Although common mutations are well-studied, little research has characterized how the sequence of mutations relates to clinical features. Using published, single-cell DNA sequencing data from three institutions, we compared clonal evolution patterns in AML to patient characteristics, disease phenotype, and outcomes. Mutation trees, which represent the order of select mutations, were created for 207 patients from targeted panel sequencing data using 1 639 162 cells, 823 mutations, and 275 samples. In 224 distinct orderings of mutated genes, mutations related to DNA methylation typically preceded those related to cell signaling, but signaling-first cases did occur, and had higher peripheral cell counts, increased signaling mutation homozygosity, and younger patient age. Serial sample analysis suggested that NPM1 and DNA methylation mutations provide an advantage to signaling mutations in AML. Interestingly, WT1 mutation evolution shared features with signaling mutations, such as WT1-early being proliferative and occurring in younger individuals, trends that remained in multivariable regression. Some mutation orderings had a worse prognosis, but this was mediated by unfavorable mutations, not mutation order. These findings add a dimension to the mutation landscape of AML, identifying uncommon patterns of leukemogenesis and shedding light on heterogeneous phenotypes.
Collapse
Affiliation(s)
- Matthew Schwede
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, School of Medicine, Stanford, CA, USA
| | - Katharina Jahn
- Biomedical Data Science, Institute for Computer Science, Free University of Berlin, Berlin, Germany
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Linde A Miles
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Robert L Bowman
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Troy Robinson
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ken Furudate
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hidetaka Uryu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tomoyuki Tanaka
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuya Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Asiri Ediriwickrema
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
- Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Brooks Benard
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Andrew J Gentles
- Department of Biomedical Data Science, Stanford University, School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA
| | - Ross Levine
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA.
- Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
15
|
Hall T, Gurbuxani S, Crispino JD. Malignant progression of preleukemic disorders. Blood 2024; 143:2245-2255. [PMID: 38498034 PMCID: PMC11181356 DOI: 10.1182/blood.2023020817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
ABSTRACT The spectrum of myeloid disorders ranges from aplastic bone marrow failure characterized by an empty bone marrow completely lacking in hematopoiesis to acute myeloid leukemia in which the marrow space is replaced by undifferentiated leukemic blasts. Recent advances in the capacity to sequence bulk tumor population as well as at a single-cell level has provided significant insight into the stepwise process of transformation to acute myeloid leukemia. Using models of progression in the context of germ line predisposition (trisomy 21, GATA2 deficiency, and SAMD9/9L syndrome), premalignant states (clonal hematopoiesis and clonal cytopenia of unknown significance), and myelodysplastic syndrome, we review the mechanisms of progression focusing on the hierarchy of clonal mutation and potential roles of transcription factor alterations, splicing factor mutations, and the bone marrow environment in progression to acute myeloid leukemia. Despite major advances in our understanding, preventing the progression of these disorders or treating them at the acute leukemia phase remains a major area of unmet medical need.
Collapse
Affiliation(s)
- Trent Hall
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sandeep Gurbuxani
- Section of Hematopathology, Department of Pathology, University of Chicago, Chicago, IL
| | - John D. Crispino
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
16
|
Mendes M, Monteiro AC, Neto E, Barrias CC, Sobrinho-Simões MA, Duarte D, Caires HR. Transforming the Niche: The Emerging Role of Extracellular Vesicles in Acute Myeloid Leukaemia Progression. Int J Mol Sci 2024; 25:4430. [PMID: 38674015 PMCID: PMC11050723 DOI: 10.3390/ijms25084430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Acute myeloid leukaemia (AML) management remains a significant challenge in oncology due to its low survival rates and high post-treatment relapse rates, mainly attributed to treatment-resistant leukaemic stem cells (LSCs) residing in bone marrow (BM) niches. This review offers an in-depth analysis of AML progression, highlighting the pivotal role of extracellular vesicles (EVs) in the dynamic remodelling of BM niche intercellular communication. We explore recent advancements elucidating the mechanisms through which EVs facilitate complex crosstalk, effectively promoting AML hallmarks and drug resistance. Adopting a temporal view, we chart the evolving landscape of EV-mediated interactions within the AML niche, underscoring the transformative potential of these insights for therapeutic intervention. Furthermore, the review discusses the emerging understanding of endothelial cell subsets' impact across BM niches in shaping AML disease progression, adding another layer of complexity to the disease progression and treatment resistance. We highlight the potential of cutting-edge methodologies, such as organ-on-chip (OoC) and single-EV analysis technologies, to provide unprecedented insights into AML-niche interactions in a human setting. Leveraging accumulated insights into AML EV signalling to reconfigure BM niches and pioneer novel approaches to decipher the EV signalling networks that fuel AML within the human context could revolutionise the development of niche-targeted therapy for leukaemia eradication.
Collapse
Affiliation(s)
- Manuel Mendes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana C. Monteiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Estrela Neto
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Cristina C. Barrias
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Manuel A. Sobrinho-Simões
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Clinical Haematology, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
- Clinical Haematology, Department of Medicine, Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Delfim Duarte
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- Unit of Biochemistry, Department of Biomedicine, Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
- Department of Hematology and Bone Marrow Transplantation, Instituto Português de Oncologia (IPO)-Porto, 4200-072 Porto, Portugal
| | - Hugo R. Caires
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
| |
Collapse
|
17
|
Hollands CG, Boyd AL, Zhao X, Reid JC, Henly C, ElRafie A, Boylan D, Broder E, Kalau O, Johnson P, Mark A, McNicol J, Xenocostas A, Berg T, Foley R, Trus M, Leber B, Garcia-Horton A, Campbell C, Bhatia M. Identification of cells of leukemic stem cell origin with non-canonical regenerative properties. Cell Rep Med 2024; 5:101485. [PMID: 38582086 PMCID: PMC11031376 DOI: 10.1016/j.xcrm.2024.101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/19/2023] [Accepted: 03/04/2024] [Indexed: 04/08/2024]
Abstract
Despite most acute myeloid leukemia (AML) patients entering remission following chemotherapy, outcomes remain poor due to surviving leukemic cells that contribute to relapse. The nature of these enduring cells is poorly understood. Here, through temporal single-cell transcriptomic characterization of AML hierarchical regeneration in response to chemotherapy, we reveal a cell population: AML regeneration enriched cells (RECs). RECs are defined by CD74/CD68 expression, and although derived from leukemic stem cells (LSCs), are devoid of stem/progenitor capacity. Based on REC in situ proximity to CD34-expressing cells identified using spatial transcriptomics on AML patient bone marrow samples, RECs demonstrate the ability to augment or reduce leukemic regeneration in vivo based on transfusion or depletion, respectively. Furthermore, RECs are prognostic for patient survival as well as predictive of treatment failure in AML cohorts. Our study reveals RECs as a previously unknown functional catalyst of LSC-driven regeneration contributing to the non-canonical framework of AML regeneration.
Collapse
Affiliation(s)
- Cameron G Hollands
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Allison L Boyd
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Xueli Zhao
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Jennifer C Reid
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Charisa Henly
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Amro ElRafie
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - David Boylan
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Emily Broder
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Olivia Kalau
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Paige Johnson
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Alyssa Mark
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Jamie McNicol
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Anargyros Xenocostas
- Department of Medicine, Division of Hematology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 3K7, Canada; Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada
| | - Tobias Berg
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Oncology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Ronan Foley
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Oncology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael Trus
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Brian Leber
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Alejandro Garcia-Horton
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Oncology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Clinton Campbell
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Mickie Bhatia
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada.
| |
Collapse
|
18
|
Umeda M, Ma J, Westover T, Ni Y, Song G, Maciaszek JL, Rusch M, Rahbarinia D, Foy S, Huang BJ, Walsh MP, Kumar P, Liu Y, Yang W, Fan Y, Wu G, Baker SD, Ma X, Wang L, Alonzo TA, Rubnitz JE, Pounds S, Klco JM. A new genomic framework to categorize pediatric acute myeloid leukemia. Nat Genet 2024; 56:281-293. [PMID: 38212634 PMCID: PMC10864188 DOI: 10.1038/s41588-023-01640-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Recent studies on pediatric acute myeloid leukemia (pAML) have revealed pediatric-specific driver alterations, many of which are underrepresented in the current classification schemas. To comprehensively define the genomic landscape of pAML, we systematically categorized 887 pAML into 23 mutually distinct molecular categories, including new major entities such as UBTF or BCL11B, covering 91.4% of the cohort. These molecular categories were associated with unique expression profiles and mutational patterns. For instance, molecular categories characterized by specific HOXA or HOXB expression signatures showed distinct mutation patterns of RAS pathway genes, FLT3 or WT1, suggesting shared biological mechanisms. We show that molecular categories were strongly associated with clinical outcomes using two independent cohorts, leading to the establishment of a new prognostic framework for pAML based on these updated molecular categories and minimal residual disease. Together, this comprehensive diagnostic and prognostic framework forms the basis for future classification of pAML and treatment strategies.
Collapse
Affiliation(s)
- Masayuki Umeda
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tamara Westover
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yonghui Ni
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jamie L Maciaszek
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Delaram Rahbarinia
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott Foy
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Benjamin J Huang
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Michael P Walsh
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Priyadarshini Kumar
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenjian Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sharyn D Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lu Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Todd A Alonzo
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey E Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
19
|
Weinhäuser I, Pereira-Martins DA, Hilberink JR, Brouwers-Vos A, Rego EM, Huls G, Schuringa JJ. Thiostrepton induces cell death of acute myeloid leukemia blasts and the associated macrophage population. Haematologica 2024; 109:639-645. [PMID: 37646656 PMCID: PMC10828769 DOI: 10.3324/haematol.2023.283621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Affiliation(s)
- Isabel Weinhäuser
- Department of Experimental Hematology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands; Department of Internal Medicine, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil; Center for Cell Based Therapy, University of São Paulo, Ribeirao Preto, Brazil; Authors contributed equally to this study
| | - Diego A Pereira-Martins
- Department of Experimental Hematology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands; Department of Internal Medicine, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil; Center for Cell Based Therapy, University of São Paulo, Ribeirao Preto, Brazil; Authors contributed equally to this study
| | - Jacobien R Hilberink
- Department of Experimental Hematology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands; Authors contributed equally to this study
| | - Annet Brouwers-Vos
- Department of Experimental Hematology, University Medical Centre Groningen, University of Groningen, Groningen
| | - Eduardo M Rego
- Center for Cell Based Therapy, University of São Paulo, Ribeirao Preto
| | - Gerwin Huls
- Department of Experimental Hematology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands; Lead contact authors
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands; Lead contact authors.
| |
Collapse
|
20
|
Wang H, Sica RA, Kaur G, Galbo PM, Jing Z, Nishimura CD, Ren X, Tanwar A, Etemad-Gilbertson B, Will B, Zheng D, Fooksman D, Zang X. TMIGD2 is an orchestrator and therapeutic target on human acute myeloid leukemia stem cells. Nat Commun 2024; 15:11. [PMID: 38167704 PMCID: PMC10761673 DOI: 10.1038/s41467-023-43843-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/21/2023] [Indexed: 01/05/2024] Open
Abstract
Acute myeloid leukemia (AML) is initiated and sustained by a hierarchy of leukemia stem cells (LSCs), and elimination of this cell population is required for curative therapies. Here we show that transmembrane and immunoglobulin domain containing 2 (TMIGD2), a recently discovered co-stimulatory immune receptor, is aberrantly expressed by human AML cells, and can be used to identify and enrich functional LSCs. We demonstrate that TMIGD2 is required for the development and maintenance of AML and self-renewal of LSCs but is not essential for normal hematopoiesis. Mechanistically, TMIGD2 promotes proliferation, blocks myeloid differentiation and increases cell-cycle of AML cells via an ERK1/2-p90RSK-CREB signaling axis. Targeting TMIGD2 signaling with anti-TMIGD2 monoclonal antibodies attenuates LSC self-renewal and reduces leukemia burden in AML patient-derived xenograft models but has negligible effect on normal hematopoietic stem/progenitor cells. Thus, our studies reveal the function of TMIGD2 in LSCs and provide a promising therapeutic strategy for AML.
Collapse
Affiliation(s)
- Hao Wang
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - R Alejandro Sica
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Gurbakhash Kaur
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Phillip M Galbo
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Zhixin Jing
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Christopher D Nishimura
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Xiaoxin Ren
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ankit Tanwar
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Britta Will
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - David Fooksman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Xingxing Zang
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
21
|
Takahashi K, Tanaka T. Clonal evolution and hierarchy in myeloid malignancies. Trends Cancer 2023; 9:707-715. [PMID: 37302922 PMCID: PMC10766088 DOI: 10.1016/j.trecan.2023.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Myeloid malignancies, a group of hematopoietic disorders that includes acute myeloid leukemia (AML), myelodysplastic syndromes (MDS), and myeloproliferative neoplasms (MPNs), are caused by the accumulation of genetic and epigenetic changes in hematopoietic stem and progenitor cells (HSPCs) over time. Despite the relatively low number of genomic drivers compared with other forms of cancer, the process by which these changes shape the genomic architecture of myeloid malignancies remains elusive. Recent advancements in clonal hematopoiesis research and the use of cutting-edge single cell technologies have shed new light on the developmental process of myeloid malignancies. In this review, we delve into the intricacies of clonal evolution in myeloid malignancies and its implications for the development of new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Tomoyuki Tanaka
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
22
|
Gottesman MM, Robey RW, Ambudkar SV. New mechanisms of multidrug resistance: an introduction to the Cancer Drug Resistance special collection. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:590-595. [PMID: 37842242 PMCID: PMC10571052 DOI: 10.20517/cdr.2023.86] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 10/17/2023]
Abstract
Cancer Drug Resistance publishes contributions to understanding the biology and consequences of mechanisms that interfere with successful treatment of cancer. Since virtually all patients who die of metastatic cancer have multidrug-resistant tumors, improved treatment will require an understanding of the mechanisms of resistance to design therapies that circumvent these mechanisms, exploit these mechanisms, or inactivate these multidrug resistance mechanisms. One example of a resistance mechanism is the expression of ATP-binding cassette efflux pumps, but unfortunately, inhibition of these transporters has not proved to be the solution to overcome multidrug resistance in cancer. Other mechanisms that confer multidrug resistance, and the confluence of multiple different mechanisms (multifactorial multidrug resistance) have been identified, and it is the goal of this Special Collection to expand this catalog of potential multidrug resistance mechanisms, to explore novel ways to overcome resistance, and to present thoughtful reviews on the problem of multidrug resistance in cancer.
Collapse
Affiliation(s)
- Michael M. Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
23
|
Lang Y, Lyu Y, Tan Y, Hu Z. Progress in construction of mouse models to investigate the pathogenesis and immune therapy of human hematological malignancy. Front Immunol 2023; 14:1195194. [PMID: 37646021 PMCID: PMC10461088 DOI: 10.3389/fimmu.2023.1195194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023] Open
Abstract
Hematological malignancy is a disease arisen by complicate reasons that seriously endangers human health. The research on its pathogenesis and therapies depends on the usage of animal models. Conventional animal model cannot faithfully mirror some characteristics of human features due to the evolutionary divergence, whereas the mouse models hosting human hematological malignancy are more and more applied in basic as well as translational investigations in recent years. According to the construction methods, they can be divided into different types (e.g. cell-derived xenograft (CDX) and patient-derived xenograft model (PDX) model) that have diverse characteristics and application values. In addition, a variety of strategies have been developed to improve human hematological malignant cell engraftment and differentiation in vivo. Moreover, the humanized mouse model with both functional human immune system and autologous human hematological malignancy provides a unique tool for the evaluation of the efficacy of novel immunotherapeutic drugs/approaches. Herein, we first review the evolution of the mouse model of human hematological malignancy; Then, we analyze the characteristics of different types of models and summarize the ways to improve the models; Finally, the way and value of humanized mouse model of human immune system in the immunotherapy of human hematological malignancy are discussed.
Collapse
Affiliation(s)
- Yue Lang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, China
- Department of Dermatology, The First Hospital, Jilin University, Changchun, China
| | - Yanan Lyu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, China
| | - Yehui Tan
- Department of Hematology, The First Hospital, Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
24
|
Kotini AG, Carcamo S, Cruz-Rodriguez N, Olszewska M, Wang T, Demircioglu D, Chang CJ, Bernard E, Chao MP, Majeti R, Luo H, Kharas MG, Hasson D, Papapetrou EP. Patient-Derived iPSCs Faithfully Represent the Genetic Diversity and Cellular Architecture of Human Acute Myeloid Leukemia. Blood Cancer Discov 2023; 4:318-335. [PMID: 37067914 PMCID: PMC10320625 DOI: 10.1158/2643-3230.bcd-22-0167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 04/18/2023] Open
Abstract
The reprogramming of human acute myeloid leukemia (AML) cells into induced pluripotent stem cell (iPSC) lines could provide new faithful genetic models of AML, but is currently hindered by low success rates and uncertainty about whether iPSC-derived cells resemble their primary counterparts. Here we developed a reprogramming method tailored to cancer cells, with which we generated iPSCs from 15 patients representing all major genetic groups of AML. These AML-iPSCs retain genetic fidelity and produce transplantable hematopoietic cells with hallmark phenotypic leukemic features. Critically, single-cell transcriptomics reveal that, upon xenotransplantation, iPSC-derived leukemias faithfully mimic the primary patient-matched xenografts. Transplantation of iPSC-derived leukemias capturing a clone and subclone from the same patient allowed us to isolate the contribution of a FLT3-ITD mutation to the AML phenotype. The results and resources reported here can transform basic and preclinical cancer research of AML and other human cancers. SIGNIFICANCE We report the generation of patient-derived iPSC models of all major genetic groups of human AML. These exhibit phenotypic hallmarks of AML in vitro and in vivo, inform the clonal hierarchy and clonal dynamics of human AML, and exhibit striking similarity to patient-matched primary leukemias upon xenotransplantation. See related commentary by Doulatov, p. 252. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Andriana G. Kotini
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Saul Carcamo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Bioinformatics for Next-Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nataly Cruz-Rodriguez
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Malgorzata Olszewska
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tiansu Wang
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Deniz Demircioglu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Bioinformatics for Next-Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chan-Jung Chang
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Elsa Bernard
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark P. Chao
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Hanzhi Luo
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael G. Kharas
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Bioinformatics for Next-Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eirini P. Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
25
|
Tirado HA, Balasundaram N, Laaouimir L, Erdem A, van Gastel N. Metabolic crosstalk between stromal and malignant cells in the bone marrow niche. Bone Rep 2023; 18:101669. [PMID: 36909665 PMCID: PMC9996235 DOI: 10.1016/j.bonr.2023.101669] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/03/2023] Open
Abstract
Bone marrow is the primary site of blood cell production in adults and serves as the source of osteoblasts and osteoclasts that maintain bone homeostasis. The medullary microenvironment is also involved in malignancy, providing a fertile soil for the growth of blood cancers or solid tumors metastasizing to bone. The cellular composition of the bone marrow is highly complex, consisting of hematopoietic stem and progenitor cells, maturing blood cells, skeletal stem cells, osteoblasts, mesenchymal stromal cells, adipocytes, endothelial cells, lymphatic endothelial cells, perivascular cells, and nerve cells. Intercellular communication at different levels is essential to ensure proper skeletal and hematopoietic tissue function, but it is altered when malignant cells colonize the bone marrow niche. While communication often involves soluble factors such as cytokines, chemokines, and growth factors, as well as their respective cell-surface receptors, cells can also communicate by exchanging metabolic information. In this review, we discuss the importance of metabolic crosstalk between different cells in the bone marrow microenvironment, particularly concerning the malignant setting.
Collapse
Affiliation(s)
- Hernán A Tirado
- Cellular Metabolism and Microenvironment Laboratory, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Nithya Balasundaram
- Cellular Metabolism and Microenvironment Laboratory, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Lotfi Laaouimir
- Cellular Metabolism and Microenvironment Laboratory, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Ayşegül Erdem
- Cellular Metabolism and Microenvironment Laboratory, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Nick van Gastel
- Cellular Metabolism and Microenvironment Laboratory, de Duve Institute, UCLouvain, Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
26
|
Weinhäuser I, Pereira-Martins DA, Almeida LY, Hilberink JR, Silveira DR, Quek L, Ortiz C, Araujo CL, Bianco TM, Lucena-Araujo A, Mota JM, Hogeling SM, Sternadt D, Visser N, Diepstra A, Ammatuna E, Huls G, Rego EM, Schuringa JJ. M2 macrophages drive leukemic transformation by imposing resistance to phagocytosis and improving mitochondrial metabolism. SCIENCE ADVANCES 2023; 9:eadf8522. [PMID: 37058562 PMCID: PMC11801312 DOI: 10.1126/sciadv.adf8522] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
It is increasingly becoming clear that cancers are a symbiosis of diverse cell types and tumor clones. Combined single-cell RNA sequencing, flow cytometry, and immunohistochemistry studies of the innate immune compartment in the bone marrow of patients with acute myeloid leukemia (AML) reveal a shift toward a tumor-supportive M2-polarized macrophage landscape with an altered transcriptional program, with enhanced fatty acid oxidation and NAD+ generation. Functionally, these AML-associated macrophages display decreased phagocytic activity and intra-bone marrow coinjection of M2 macrophages together with leukemic blasts strongly enhances in vivo transformation potential. A 2-day in vitro exposure to M2 macrophages results in the accumulation of CALRlow leukemic blast cells, which are now protected against phagocytosis. Moreover, M2-exposed "trained" leukemic blasts display increased mitochondrial metabolism, in part mediated via mitochondrial transfer. Our study provides insight into the mechanisms by which the immune landscape contributes to aggressive leukemia development and provides alternatives for targeting strategies aimed at the tumor microenvironment.
Collapse
Affiliation(s)
- Isabel Weinhäuser
- Department of Experimental Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
- Department of Internal Medicine, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
- Center for Cell Based Therapy, University of São Paulo, Ribeirao Preto, Brazil
| | - Diego A. Pereira-Martins
- Department of Experimental Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
- Department of Internal Medicine, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
- Center for Cell Based Therapy, University of São Paulo, Ribeirao Preto, Brazil
| | - Luciana Y. Almeida
- Department of Internal Medicine, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Jacobien R. Hilberink
- Department of Experimental Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Douglas R. A. Silveira
- Myeloid Leukaemia Genomics and Biology Group, School of Cancer and Pharmaceutical Sciences, King’s College London, London, SE5 8AF, UK
| | - Lynn Quek
- Myeloid Leukaemia Genomics and Biology Group, School of Cancer and Pharmaceutical Sciences, King’s College London, London, SE5 8AF, UK
| | - Cesar Ortiz
- Department of Internal Medicine, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
- Center for Cell Based Therapy, University of São Paulo, Ribeirao Preto, Brazil
| | - Cleide L. Araujo
- Department of Internal Medicine, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Thiago M. Bianco
- Department of Internal Medicine, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | | | - Jose Mauricio Mota
- Medical Oncology Service, Sao Paulo State Cancer Institute, University of Sao Paulo, Brazil
| | - Shanna M. Hogeling
- Department of Experimental Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Dominique Sternadt
- Department of Experimental Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Nienke Visser
- Department of Experimental Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Emanuele Ammatuna
- Department of Experimental Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Gerwin Huls
- Department of Experimental Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Eduardo M. Rego
- Center for Cell Based Therapy, University of São Paulo, Ribeirao Preto, Brazil
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
27
|
Rimando JC, Chendamarai E, Rettig MP, Jayasinghe R, Christopher MJ, Ritchey JK, Christ S, Kim MY, Bonvini E, DiPersio JF. Flotetuzumab and other T-cell immunotherapies upregulate MHC class II expression on acute myeloid leukemia cells. Blood 2023; 141:1718-1723. [PMID: 36563336 PMCID: PMC10273090 DOI: 10.1182/blood.2022017795] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/27/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) relapse is one of the most common and significant adverse events following allogeneic hematopoietic cell transplantation (HCT). Downregulation of major histocompatibility class II (MHC-II) surface expression on AML blasts may represent a mechanism of escape from the graft-versus-malignancy effect and facilitate relapse. We hypothesized that T-cell immunotherapies targeting AML antigens would upregulate MHC-II surface expression via localized release of interferon gamma (IFN-γ), a protein known to upregulate MHC-II expression via JAK-STAT signaling. We demonstrate that flotetuzumab (FLZ), a CD123 × CD3 bispecific DART molecule, and chimeric antigen receptor expressing T cells targeting CD123, CD33, or CD371 upregulate MHC-II surface expression in vitro on a THP-1 AML cell line with intermediate MHC-II expression and 4 primary AML samples from patients relapsing after HCT with low MHC-II expression. We additionally show that FLZ upregulates MHC-II expression in a patient-derived xenograft model and in patients with relapsed or refractory AML who were treated with FLZ in a clinical trial. Finally, we report that FLZ-induced MHC-II upregulation is mediated by IFN-γ. In conclusion, we provide evidence that T-cell immunotherapies targeting relapsed AML can kill AML via both MHC-independent mechanisms and by an MHC-dependent mechanism through local release of IFN-γ and subsequent upregulation of MHC-II expression.
Collapse
Affiliation(s)
- Joseph C. Rimando
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Ezhilarasi Chendamarai
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Michael P. Rettig
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Reyka Jayasinghe
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Matthew J. Christopher
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Julie K. Ritchey
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Stephanie Christ
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Miriam Y. Kim
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - John F. DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
28
|
Cutler JA, Pugsley HR, Bennington R, Fritschle W, Hartmann L, Zaidi N, Menssen AJ, Singleton TP, Xu D, Loken MR, Wells DA, Brodersen LE, Zehentner BK. Integrated analysis of genotype and phenotype reveals clonal evolution and cytogenetically driven disruption of myeloid cell maturation in myelodysplastic syndromes. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2023; 104:183-194. [PMID: 34773362 DOI: 10.1002/cyto.b.22036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) are a heterogenous collection of clonal bone marrow diseases characterized by cytopenias, abnormal karyotypes, molecular abnormalities, and dysplasia by flow cytometry and/or morphology. The progression of MDS to severe cytopenias and/or overt leukemia is associated with the accumulation of additional cytogenetic abnormalities, suggesting clonal evolution. The impact of these accumulated abnormalities on myeloid maturation and the severity of the disease is poorly understood. METHODS Bone marrow specimens from 16 patients with cytogenetic abnormalities were flow cytometrically sorted into three myeloid populations: progenitors, immature myeloid cells, and mature myeloid cells. Fluorescence in situ hybridization analysis was performed on each to determine the distribution of chromosomal abnormalities during myeloid maturation. RESULTS Our findings revealed three distinct distributions of cytogenetic abnormalities across myeloid maturation, each of which corresponded to specific cytogenetic abnormalities. Group 1 had continuous distribution across all maturational stages and contained patients with a single cytogenetic aberration associated with good-to-intermediate prognosis; Group 2 had accumulation of abnormalities in immature cells and contained patients with high-risk monosomy 7; and Group 3 had abnormalities defining the founding clone equally distributed across maturational stages while subclonal abnormalities were enriched in progenitor cells and contained patients with multiple, non-monosomy 7, abnormalities with evidence of clonal evolution. CONCLUSIONS Our findings demonstrate that low-risk abnormalities (e.g., del(20q) and trisomy 8) occurring in the founding clone display a markedly different disease etiology, with respect to myeloid maturation, than monosomy 7 or abnormalities acquired in subclones, which result in a disruption of myeloid cell maturation in MDS.
Collapse
Affiliation(s)
- Jevon A Cutler
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | - Dongbin Xu
- Hematologics Inc., Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
29
|
Ediriwickrema A, Gentles AJ, Majeti R. Single-cell genomics in AML: extending the frontiers of AML research. Blood 2023; 141:345-355. [PMID: 35926108 PMCID: PMC10082362 DOI: 10.1182/blood.2021014670] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/06/2022] [Accepted: 07/23/2022] [Indexed: 01/31/2023] Open
Abstract
The era of genomic medicine has allowed acute myeloid leukemia (AML) researchers to improve disease characterization, optimize risk-stratification systems, and develop new treatments. Although there has been significant progress, AML remains a lethal cancer because of its remarkably complex and plastic cellular architecture. This degree of heterogeneity continues to pose a major challenge, because it limits the ability to identify and therefore eradicate the cells responsible for leukemogenesis and treatment failure. In recent years, the field of single-cell genomics has led to unprecedented strides in the ability to characterize cellular heterogeneity, and it holds promise for the study of AML. In this review, we highlight advancements in single-cell technologies, outline important shortcomings in our understanding of AML biology and clinical management, and discuss how single-cell genomics can address these shortcomings as well as provide unique opportunities in basic and translational AML research.
Collapse
Affiliation(s)
- Asiri Ediriwickrema
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Cancer Institute, Stanford University School of Medicine, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Andrew J. Gentles
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Cancer Institute, Stanford University School of Medicine, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
30
|
Saultz JN, Tyner JW. Chasing leukemia differentiation through induction therapy, relapse and transplantation. Blood Rev 2023; 57:101000. [PMID: 36041918 DOI: 10.1016/j.blre.2022.101000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/23/2022] [Accepted: 08/09/2022] [Indexed: 01/28/2023]
Abstract
Despite rapid advances in our understanding of acute myeloid leukemia (AML), the disease remains challenging to treat with 5-year survival for adult patients 20 years or older estimated to be 26% (Cancer 2021). The use of new targeted therapies including BCL2, IDH1/IDH2, and FLT3 inhibitors has revolutionized treatment approaches but also changed the disease trajectory with unique modes of resistance. Recent studies have shown that stem cell maturation state drives expression level and/or dependence on various pathways, critical to determining drug response. Instead of anticipating these changes, we remain behind the curve chasing the next expanded clone. This review will focus on current approaches to treatment in AML, including defining the significance of blast differentiation state on chemotherapeutic response, signaling pathway dependence, metabolism, immune response, and phenotypic changes. We conclude that multimodal treatment approaches are necessary to target both the immature and mature clones, thereby, sustaining drug response.
Collapse
Affiliation(s)
- Jennifer N Saultz
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States of America; Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, United States of America.
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States of America; Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, United States of America; Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States of America
| |
Collapse
|
31
|
Maetzig T, Lieske A, Dörpmund N, Rothe M, Kleppa MJ, Dziadek V, Hassan JJ, Dahlke J, Borchert D, Schambach A. Real-Time Characterization of Clonal Fate Decisions in Complex Leukemia Samples by Fluorescent Genetic Barcoding. Cells 2022; 11:cells11244045. [PMID: 36552809 PMCID: PMC9776743 DOI: 10.3390/cells11244045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Clonal heterogeneity in acute myeloid leukemia (AML) forms the basis for treatment failure and relapse. Attempts to decipher clonal evolution and clonal competition primarily depend on deep sequencing approaches. However, this prevents the experimental confirmation of the identified disease-relevant traits on the same cell material. Here, we describe the development and application of a complex fluorescent genetic barcoding (cFGB) lentiviral vector system for the labeling and subsequent multiplex tracking of up to 48 viable AML clones by flow cytometry. This approach allowed the visualization of longitudinal changes in the in vitro growth behavior of multiplexed color-coded AML clones for up to 137 days. Functional studies of flow cytometry-enriched clones documented their stably inherited increase in competitiveness, despite the absence of growth-promoting mutations in exome sequencing data. Transplantation of aliquots of a color-coded AML cell mix into mice revealed the initial engraftment of similar clones and their subsequent differential distribution in the animals over time. Targeted RNA-sequencing of paired pre-malignant and de novo expanded clones linked gene sets associated with Myc-targets, embryonic stem cells, and RAS signaling to the foundation of clonal expansion. These results demonstrate the potency of cFGB-mediated clonal tracking for the deconvolution of verifiable driver-mechanisms underlying clonal selection in leukemia.
Collapse
Affiliation(s)
- Tobias Maetzig
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
- Correspondence: ; Tel.: +49-511-532-7808
| | - Anna Lieske
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Nicole Dörpmund
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Marc-Jens Kleppa
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Violetta Dziadek
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Jacob Jalil Hassan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Julia Dahlke
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Dorit Borchert
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
32
|
Chen F, Zhang Z, Shen R, Chen M, Li G, Zhu X. Generation and characterization of patient-derived xenografts from patients with osteosarcoma. Tissue Cell 2022; 79:101911. [DOI: 10.1016/j.tice.2022.101911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/03/2022] [Accepted: 08/28/2022] [Indexed: 02/07/2023]
|
33
|
Dietary methionine starvation impairs acute myeloid leukemia progression. Blood 2022; 140:2037-2052. [PMID: 35984907 DOI: 10.1182/blood.2022017575] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022] Open
Abstract
Targeting altered tumor cell metabolism might provide an attractive opportunity for patients with acute myeloid leukemia (AML). An amino acid dropout screen on primary leukemic stem cells and progenitor populations revealed a number of amino acid dependencies, of which methionine was one of the strongest. By using various metabolite rescue experiments, nuclear magnetic resonance-based metabolite quantifications and 13C-tracing, polysomal profiling, and chromatin immunoprecipitation sequencing, we identified that methionine is used predominantly for protein translation and to provide methyl groups to histones via S-adenosylmethionine for epigenetic marking. H3K36me3 was consistently the most heavily impacted mark following loss of methionine. Methionine depletion also reduced total RNA levels, enhanced apoptosis, and induced a cell cycle block. Reactive oxygen species levels were not increased following methionine depletion, and replacement of methionine with glutathione or N-acetylcysteine could not rescue phenotypes, excluding a role for methionine in controlling redox balance control in AML. Although considered to be an essential amino acid, methionine can be recycled from homocysteine. We uncovered that this is primarily performed by the enzyme methionine synthase and only when methionine availability becomes limiting. In vivo, dietary methionine starvation was not only tolerated by mice, but also significantly delayed both cell line and patient-derived AML progression. Finally, we show that inhibition of the H3K36-specific methyltransferase SETD2 phenocopies much of the cytotoxic effects of methionine depletion, providing a more targeted therapeutic approach. In conclusion, we show that methionine depletion is a vulnerability in AML that can be exploited therapeutically, and we provide mechanistic insight into how cells metabolize and recycle methionine.
Collapse
|
34
|
Pilheden M, Ahlgren L, Hyrenius-Wittsten A, Gonzalez-Pena V, Sturesson H, Hansen Marquart HV, Lausen B, Castor A, Pronk CJ, Barbany G, Pokrovskaja Tamm K, Fogelstrand L, Lohi O, Norén-Nyström U, Asklin J, Chen Y, Song G, Walsh M, Ma J, Zhang J, Saal LH, Gawad C, Hagström-Andersson AK. Duplex Sequencing Uncovers Recurrent Low-frequency Cancer-associated Mutations in Infant and Childhood KMT2A-rearranged Acute Leukemia. Hemasphere 2022; 6:e785. [PMID: 36204688 PMCID: PMC9529062 DOI: 10.1097/hs9.0000000000000785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
Infant acute lymphoblastic leukemia (ALL) with KMT2A-gene rearrangements (KMT2A-r) have few mutations and a poor prognosis. To uncover mutations that are below the detection of standard next-generation sequencing (NGS), a combination of targeted duplex sequencing and NGS was applied on 20 infants and 7 children with KMT2A-r ALL, 5 longitudinal and 6 paired relapse samples. Of identified nonsynonymous mutations, 87 had been previously implicated in cancer and targeted genes recurrently altered in KMT2A-r leukemia and included mutations in KRAS, NRAS, FLT3, TP53, PIK3CA, PAX5, PIK3R1, and PTPN11, with infants having fewer such mutations. Of identified cancer-associated mutations, 62% were below the resolution of standard NGS. Only 33 of 87 mutations exceeded 2% of cellular prevalence and most-targeted PI3K/RAS genes (31/33) and typically KRAS/NRAS. Five patients only had low-frequency PI3K/RAS mutations without a higher-frequency signaling mutation. Further, drug-resistant clones with FLT3 D835H or NRAS G13D/G12S mutations that comprised only 0.06% to 0.34% of diagnostic cells, expanded at relapse. Finally, in longitudinal samples, the relapse clone persisted as a minor subclone from diagnosis and through treatment before expanding during the last month of disease. Together, we demonstrate that infant and childhood KMT2A-r ALL harbor low-frequency cancer-associated mutations, implying a vast subclonal genetic landscape.
Collapse
Affiliation(s)
- Mattias Pilheden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Louise Ahlgren
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Axel Hyrenius-Wittsten
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Veronica Gonzalez-Pena
- Division of Pediatric Hematology/Oncology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Helena Sturesson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Birgitte Lausen
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, Denmark
| | - Anders Castor
- Childhood Cancer Center, Skane University Hospital, Lund, Sweden
| | | | - Gisela Barbany
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Linda Fogelstrand
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Olli Lohi
- Tampere Center for Child, Adolescent and Maternal Health Research and Tays Cancer Center, Tampere University and Tampere University Hospital, Tampere, Finland
| | | | | | | | - Guangchun Song
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Michael Walsh
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Lao H. Saal
- SAGA Diagnostics, Lund, Sweden
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Charles Gawad
- Division of Pediatric Hematology/Oncology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Anna K. Hagström-Andersson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Center for Translational Genomics, Lund University, Lund, Sweden
| |
Collapse
|
35
|
Zou S, Ye M, Zhang JA, Ji H, Chen Y, Zhu X. Establishment and genetically characterization of patient-derived xenograft models of cervical cancer. BMC Med Genomics 2022; 15:191. [PMID: 36076209 PMCID: PMC9461207 DOI: 10.1186/s12920-022-01342-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Patient-derived xenograft (PDX) models were established to reproduce the clinical situation of original cancers and have increasingly been applied to preclinical cancer research. Our study was designed to establish and genetically characterize cervical cancer PDX models. METHODS A total of 91 fresh fragments obtained from 22 surgically resected cervical cancer tissues were subcutaneously engrafted into female NOD-SCID mice. Hematoxylin and eosin (H&E) staining was performed to assess whether the established PDX models conserved the histological features of original patient cervical cancer tissues. Moreover, a Venn diagram was applied to display the overlap of all mutations detected in whole-genome sequencing (WGS) data from patient original cervical cancer (F0) and F2-, F3-PDX models. The whole exome sequencing (WES) and the "maftools" package were applied to determine the somatic mutations among primary cervical cancers and the established PDX models. RESULTS Our study successfully developed a panel of cervical cancer PDX models and the latency time of cervical cancer PDX model establishment was variable with a progressive decrease as the passage number increased, with a mean time to initial growth of 94.71 days in F1 engraftment to 40.65 days in F3 engraftment. Moreover, the cervical cancer PDX models preserved the histological features of their original cervical cancer. WGS revealed that the genome of original cervical cancer was preserved with high fidelity in cervical cancer PDX models throughout the xenografting and passaging process. Furthermore, WES demonstrated that the cervical cancer PDX models maintained the majority somatic mutations of original cervical cancer, of which the KMT2D, LRP1B, NAV3, TP53, FAT1, MKI67 and PKHD1L1 genes were identified as the most frequently mutated genes. CONCLUSIONS The cervical cancer PDX models preserved the histologic and genetic characteristics of their original cervical cancer, which helped to gain a deeper insight into the genetic alterations and lay a foundation for further investigation of the molecular targeted therapy of cervical cancer.
Collapse
Affiliation(s)
- Shuangwei Zou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Jian-an Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Huihui Ji
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Yijie Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| |
Collapse
|
36
|
Vergez F, Largeaud L, Bertoli S, Nicolau ML, Rieu JB, Vergnolle I, Saland E, Sarry A, Tavitian S, Huguet F, Picard M, Vial JP, Lechevalier N, Bidet A, Dumas PY, Pigneux A, Luquet I, Mansat-De Mas V, Delabesse E, Carroll M, Danet-Desnoyers G, Sarry JE, Récher C. Phenotypically-defined stages of leukemia arrest predict main driver mutations subgroups, and outcome in acute myeloid leukemia. Blood Cancer J 2022; 12:117. [PMID: 35973983 PMCID: PMC9381519 DOI: 10.1038/s41408-022-00712-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Classifications of acute myeloid leukemia (AML) patients rely on morphologic, cytogenetic, and molecular features. Here we have established a novel flow cytometry-based immunophenotypic stratification showing that AML blasts are blocked at specific stages of differentiation where features of normal myelopoiesis are preserved. Six stages of leukemia differentiation-arrest categories based on CD34, CD117, CD13, CD33, MPO, and HLA-DR expression were identified in two independent cohorts of 2087 and 1209 AML patients. Hematopoietic stem cell/multipotent progenitor-like AMLs display low proliferation rate, inv(3) or RUNX1 mutations, and high leukemic stem cell frequency as well as poor outcome, whereas granulocyte-monocyte progenitor-like AMLs have CEBPA mutations, RUNX1-RUNX1T1 or CBFB-MYH11 translocations, lower leukemic stem cell frequency, higher chemosensitivity, and better outcome. NPM1 mutations correlate with most mature stages of leukemia arrest together with TET2 or IDH mutations in granulocyte progenitors-like AML or with DNMT3A mutations in monocyte progenitors-like AML. Overall, we demonstrate that AML is arrested at specific stages of myeloid differentiation (SLA classification) that significantly correlate with AML genetic lesions, clinical presentation, stem cell properties, chemosensitivity, response to therapy, and outcome.
Collapse
Affiliation(s)
- François Vergez
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France. .,Université Toulouse III Paul Sabatier, Toulouse, France. .,Cancer Research Center of Toulouse, UMR1037 INSERM, ERL5294 CNRS, Toulouse, France. .,Stem Cell and Xenograft Core, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| | - Laetitia Largeaud
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,Cancer Research Center of Toulouse, UMR1037 INSERM, ERL5294 CNRS, Toulouse, France
| | - Sarah Bertoli
- Cancer Research Center of Toulouse, UMR1037 INSERM, ERL5294 CNRS, Toulouse, France.,Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Marie-Laure Nicolau
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Jean-Baptiste Rieu
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Inès Vergnolle
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Estelle Saland
- Cancer Research Center of Toulouse, UMR1037 INSERM, ERL5294 CNRS, Toulouse, France
| | - Audrey Sarry
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Suzanne Tavitian
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Françoise Huguet
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Muriel Picard
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Jean-Philippe Vial
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Bordeaux, Pessac, France
| | - Nicolas Lechevalier
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Bordeaux, Pessac, France
| | - Audrey Bidet
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Bordeaux, Pessac, France
| | - Pierre-Yves Dumas
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Centre Hospitalier Universitaire de Bordeaux, Pessac, France
| | - Arnaud Pigneux
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Centre Hospitalier Universitaire de Bordeaux, Pessac, France
| | - Isabelle Luquet
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Véronique Mansat-De Mas
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Eric Delabesse
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Martin Carroll
- Stem Cell and Xenograft Core, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Gwenn Danet-Desnoyers
- Stem Cell and Xenograft Core, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Jean-Emmanuel Sarry
- Cancer Research Center of Toulouse, UMR1037 INSERM, ERL5294 CNRS, Toulouse, France.,Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Christian Récher
- Université Toulouse III Paul Sabatier, Toulouse, France. .,Cancer Research Center of Toulouse, UMR1037 INSERM, ERL5294 CNRS, Toulouse, France. .,Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France.
| |
Collapse
|
37
|
Dozzo A, Galvin A, Shin JW, Scalia S, O'Driscoll CM, Ryan KB. Modelling acute myeloid leukemia (AML): What's new? A transition from the classical to the modern. Drug Deliv Transl Res 2022:10.1007/s13346-022-01189-4. [PMID: 35930221 DOI: 10.1007/s13346-022-01189-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/24/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous malignancy affecting myeloid cells in the bone marrow (BM) but can spread giving rise to impaired hematopoiesis. AML incidence increases with age and is associated with poor prognostic outcomes. There has been a disconnect between the success of novel drug compounds observed in preclinical studies of hematological malignancy and less than exceptional therapeutic responses in clinical trials. This review aims to provide a state-of-the-art overview on the different preclinical models of AML available to expand insights into disease pathology and as preclinical screening tools. Deciphering the complex physiological and pathological processes and developing predictive preclinical models are key to understanding disease progression and fundamental in the development and testing of new effective drug treatments. Standard scaffold-free suspension models fail to recapitulate the complex environment where AML occurs. To this end, we review advances in scaffold/matrix-based 3D models and outline the most recent advances in on-chip technology. We also provide an overview of clinically relevant animal models and review the expanding use of patient-derived samples, which offer the prospect to create more "patient specific" screening tools either in the guise of 3D matrix models, microphysiological "organ-on-chip" tools or xenograft models and discuss representative examples.
Collapse
Affiliation(s)
| | - Aoife Galvin
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, 909 S. Wolcott Ave, Chicago, IL, 5091 COMRB, USA
| | - Santo Scalia
- Università degli Studi di Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Caitriona M O'Driscoll
- School of Pharmacy, University College Cork, Cork, Ireland.,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland
| | - Katie B Ryan
- School of Pharmacy, University College Cork, Cork, Ireland. .,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland.
| |
Collapse
|
38
|
Tanaka K, Kato I, Dobashi Y, Imai JI, Mikami T, Kubota H, Ueno H, Ito M, Ogawa S, Nakahata T, Takita J, Toyoda H, Ogawa C, Adachi S, Watanabe S, Goto H. The first Japanese biobank of patient-derived pediatric acute lymphoblastic leukemia xenograft models. Cancer Sci 2022; 113:3814-3825. [PMID: 35879192 DOI: 10.1111/cas.15506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022] Open
Abstract
A lack of practical resources in Japan has limited preclinical discovery and testing of therapies for pediatric relapsed and refractory acute lymphoblastic leukemia (ALL), which has poor outcomes. Here, we established 57 patient-derived xenografts (PDXs) in NOD.Cg-Prkdcscid ll2rgtm1Sug /ShiJic (NOG) mice and created a biobank by preserving PDX cells including 3 extramedullary relapsed ALL PDXs. We demonstrated that our PDX mice and PDX cells mimicked the biological features of relapsed ALL and that PDX models reproduced treatment-mediated clonal selection. Our PDX biobank is a useful scientific resource for capturing drug sensitivity features of pediatric patients with ALL, providing an essential tool for the development of targeted therapies.
Collapse
Affiliation(s)
- Kuniaki Tanaka
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Itaru Kato
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Japan Children's Cancer Group, Relapsed ALL Committee
| | - Yuu Dobashi
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Japan
| | - Jun-Ichi Imai
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Japan
| | - Takashi Mikami
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirohito Kubota
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroo Ueno
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mamoru Ito
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tatsutoshi Nakahata
- Central Institute for Experimental Animals, Kawasaki, Japan.,Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidemi Toyoda
- Japan Children's Cancer Group, Relapsed ALL Committee.,Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Chitose Ogawa
- Japan Children's Cancer Group, Relapsed ALL Committee.,Department of Pediatric Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinya Watanabe
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Japan
| | - Hiroaki Goto
- Japan Children's Cancer Group, Relapsed ALL Committee.,Division of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Japan
| |
Collapse
|
39
|
Guess T, Potts CR, Bhat P, Cartailler JA, Brooks A, Holt C, Yenamandra A, Wheeler FC, Savona MR, Cartailler JP, Ferrell PB. Distinct Patterns of Clonal Evolution Drive Myelodysplastic Syndrome Progression to Secondary Acute Myeloid Leukemia. Blood Cancer Discov 2022; 3:316-329. [PMID: 35522837 PMCID: PMC9610896 DOI: 10.1158/2643-3230.bcd-21-0128] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/22/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Clonal evolution in myelodysplastic syndrome (MDS) can result in clinical progression and secondary acute myeloid leukemia (sAML). To dissect changes in clonal architecture associated with this progression, we performed single-cell genotyping of paired MDS and sAML samples from 18 patients. Analysis of single-cell genotypes revealed patient-specific clonal evolution and enabled the assessment of single-cell mutational cooccurrence. We discovered that changes in clonal architecture proceed via distinct patterns, classified as static or dynamic, with dynamic clonal architectures having a more proliferative phenotype by blast count fold change. Proteogenomic analysis of a subset of patients confirmed that pathogenic mutations were primarily confined to primitive and mature myeloid cells, though we also identify rare but present mutations in lymphocyte subsets. Single-cell transcriptomic analysis of paired sample sets further identified gene sets and signaling pathways involved in two cases of progression. Together, these data define serial changes in the MDS clonal landscape with clinical and therapeutic implications. SIGNIFICANCE Precise clonal trajectories in MDS progression are made possible by single-cell genomic sequencing. Here we use this technology to uncover the patterns of clonal architecture and clonal evolution that drive the transformation to secondary AML. We further define the phenotypic and transcriptional changes of disease progression at the single-cell level. See related article by Menssen et al., p. 330 (31). See related commentary by Romine and van Galen, p. 270. This article is highlighted in the In This Issue feature, p. 265.
Collapse
Affiliation(s)
- Tiffany Guess
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee.,Department of Pathology, Microbiology, and Immunology, VUMC, Nashville, Tennessee
| | - Chad R. Potts
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee
| | - Pawan Bhat
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Justin A. Cartailler
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee
| | - Austin Brooks
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee
| | - Clinton Holt
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ashwini Yenamandra
- Department of Pathology, Microbiology, and Immunology, VUMC, Nashville, Tennessee
| | - Ferrin C. Wheeler
- Department of Pathology, Microbiology, and Immunology, VUMC, Nashville, Tennessee
| | - Michael R. Savona
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee.,Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee.,Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Jean-Philippe Cartailler
- Creative Data Solutions Shared Resource, Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee
| | - P. Brent Ferrell
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee.,Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee.,Vanderbilt-Ingram Cancer Center, Nashville, Tennessee.,Corresponding Author: P. Brent Ferrell Jr, Vanderbilt University Medical Center, 777 Preston Research Building, 2220 Pierce Avenue, Nashville, TN 37232. Phone: 615-875-8619; E-mail:
| |
Collapse
|
40
|
Dal Bello R, Pasanisi J, Joudinaud R, Duchmann M, Pardieu B, Ayaka P, Di Feo G, Sodaro G, Chauvel C, Kim R, Vasseur L, Chat L, Ling F, Pacchiardi K, Vaganay C, Berrou J, Benaksas C, Boissel N, Braun T, Preudhomme C, Dombret H, Raffoux E, Fenouille N, Clappier E, Adès L, Puissant A, Itzykson R. A multiparametric niche-like drug screening platform in acute myeloid leukemia. Blood Cancer J 2022; 12:95. [PMID: 35750691 PMCID: PMC9232632 DOI: 10.1038/s41408-022-00689-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/13/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Functional precision medicine in AML often relies on short-term in vitro drug sensitivity screening (DSS) of primary patient cells in standard culture conditions. We designed a niche-like DSS assay combining physiologic hypoxia (O2 3%) and mesenchymal stromal cell (MSC) co-culture with multiparameter flow cytometry to enumerate lymphocytes and differentiating (CD11/CD14/CD15+) or leukemic stem cell (LSC)-enriched (GPR56+) cells within the leukemic bulk. After functional validation of GPR56 expression as a surrogate for LSC enrichment, the assay identified three patterns of response, including cytotoxicity on blasts sparing LSCs, induction of differentiation, and selective impairment of LSCs. We refined our niche-like culture by including plasma-like amino-acid and cytokine concentrations identified by targeted metabolomics and proteomics of primary AML bone marrow plasma samples. Systematic interrogation revealed distinct contributions of each niche-like component to leukemic outgrowth and drug response. Short-term niche-like culture preserved clonal architecture and transcriptional states of primary leukemic cells. In a cohort of 45 AML samples enriched for NPM1c AML, the niche-like multiparametric assay could predict morphologically (p = 0.02) and molecular (NPM1c MRD, p = 0.04) response to anthracycline-cytarabine induction chemotherapy. In this cohort, a 23-drug screen nominated ruxolitinib as a sensitizer to anthracycline-cytarabine. This finding was validated in an NPM1c PDX model.
Collapse
Affiliation(s)
- Reinaldo Dal Bello
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France.,Service Hématologie Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Justine Pasanisi
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Romane Joudinaud
- Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Matthieu Duchmann
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Bryann Pardieu
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Paolo Ayaka
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Giuseppe Di Feo
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Gaetano Sodaro
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Clémentine Chauvel
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France.,Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Rathana Kim
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France.,Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Loic Vasseur
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Laureen Chat
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Frank Ling
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Kim Pacchiardi
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France.,Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Camille Vaganay
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Jeannig Berrou
- Université Paris Cité, EA 3518, IRSL, Hôpital Saint-Louis, F-75010, Paris, France
| | - Chaima Benaksas
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Nicolas Boissel
- Service Hématologie Adolescents Jeunes Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Thorsten Braun
- Université Paris Cité, EA 3518, IRSL, Hôpital Saint-Louis, F-75010, Paris, France.,Service d'Hématologie clinique, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Claude Preudhomme
- Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Hervé Dombret
- Service Hématologie Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France.,Université Paris Cité, EA 3518, IRSL, Hôpital Saint-Louis, F-75010, Paris, France
| | - Emmanuel Raffoux
- Service Hématologie Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Nina Fenouille
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Emmanuelle Clappier
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France.,Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Lionel Adès
- Service Hématologie Seniors, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Alexandre Puissant
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Raphael Itzykson
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France. .,Service Hématologie Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France.
| |
Collapse
|
41
|
Zeng AGX, Bansal S, Jin L, Mitchell A, Chen WC, Abbas HA, Chan-Seng-Yue M, Voisin V, van Galen P, Tierens A, Cheok M, Preudhomme C, Dombret H, Daver N, Futreal PA, Minden MD, Kennedy JA, Wang JCY, Dick JE. A cellular hierarchy framework for understanding heterogeneity and predicting drug response in acute myeloid leukemia. Nat Med 2022; 28:1212-1223. [PMID: 35618837 DOI: 10.1038/s41591-022-01819-x] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 04/07/2022] [Indexed: 02/08/2023]
Abstract
The treatment landscape of acute myeloid leukemia (AML) is evolving, with promising therapies entering clinical translation, yet patient responses remain heterogeneous, and biomarkers for tailoring treatment are lacking. To understand how disease heterogeneity links with therapy response, we determined the leukemia cell hierarchy makeup from bulk transcriptomes of more than 1,000 patients through deconvolution using single-cell reference profiles of leukemia stem, progenitor and mature cell types. Leukemia hierarchy composition was associated with functional, genomic and clinical properties and converged into four overall classes, spanning Primitive, Mature, GMP and Intermediate. Critically, variation in hierarchy composition along the Primitive versus GMP or Primitive versus Mature axes were associated with response to chemotherapy or drug sensitivity profiles of targeted therapies, respectively. A seven-gene biomarker derived from the Primitive versus Mature axis was associated with response to 105 investigational drugs. Cellular hierarchy composition constitutes a novel framework for understanding disease biology and advancing precision medicine in AML.
Collapse
Affiliation(s)
- Andy G X Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Suraj Bansal
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Liqing Jin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Amanda Mitchell
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Weihsu Claire Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Biologics Discovery, Amgen British Columbia, Burnaby, BC, Canada
| | - Hussein A Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Peter van Galen
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Anne Tierens
- Laboratory Medicine Program, Hematopathology, University Health Network, Toronto, ON, Canada
| | - Meyling Cheok
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Claude Preudhomme
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Hervé Dombret
- Department of Hematology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Medical Oncology and Hematology, University Health Network, Toronto, ON, Canada
| | - James A Kennedy
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Division of Medical Oncology and Hematology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Jean C Y Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Medical Oncology and Hematology, University Health Network, Toronto, ON, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
42
|
Umeda M, Ma J, Huang BJ, Hagiwara K, Westover T, Abdelhamed S, Barajas JM, Thomas ME, Walsh MP, Song G, Tian L, Liu Y, Chen X, Kolekar P, Tran Q, Foy SG, Maciaszek JL, Kleist AB, Leonti AR, Ju B, Easton J, Wu H, Valentine V, Valentine MB, Liu YC, Ries RE, Smith JL, Parganas E, Iacobucci I, Hiltenbrand R, Miller J, Myers JR, Rampersaud E, Rahbarinia D, Rusch M, Wu G, Inaba H, Wang YC, Alonzo TA, Downing JR, Mullighan CG, Pounds S, Babu MM, Zhang J, Rubnitz JE, Meshinchi S, Ma X, Klco JM. Integrated Genomic Analysis Identifies UBTF Tandem Duplications as a Recurrent Lesion in Pediatric Acute Myeloid Leukemia. Blood Cancer Discov 2022; 3:194-207. [PMID: 35176137 PMCID: PMC9780084 DOI: 10.1158/2643-3230.bcd-21-0160] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 08/27/2021] [Accepted: 01/24/2022] [Indexed: 01/21/2023] Open
Abstract
The genetics of relapsed pediatric acute myeloid leukemia (AML) has yet to be comprehensively defined. Here, we present the spectrum of genomic alterations in 136 relapsed pediatric AMLs. We identified recurrent exon 13 tandem duplications (TD) in upstream binding transcription factor (UBTF) in 9% of relapsed AML cases. UBTF-TD AMLs commonly have normal karyotype or trisomy 8 with cooccurring WT1 mutations or FLT3-ITD but not other known oncogenic fusions. These UBTF-TD events are stable during disease progression and are present in the founding clone. In addition, we observed that UBTF-TD AMLs account for approximately 4% of all de novo pediatric AMLs, are less common in adults, and are associated with poor outcomes and MRD positivity. Expression of UBTF-TD in primary hematopoietic cells is sufficient to enhance serial clonogenic activity and to drive a similar transcriptional program to UBTF-TD AMLs. Collectively, these clinical, genomic, and functional data establish UBTF-TD as a new recurrent mutation in AML. SIGNIFICANCE We defined the spectrum of mutations in relapsed pediatric AML and identified UBTF-TDs as a new recurrent genetic alteration. These duplications are more common in children and define a group of AMLs with intermediate-risk cytogenetic abnormalities, FLT3-ITD and WT1 alterations, and are associated with poor outcomes. See related commentary by Hasserjian and Nardi, p. 173. This article is highlighted in the In This Issue feature, p. 171.
Collapse
Affiliation(s)
- Masayuki Umeda
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Benjamin J. Huang
- Department of Pediatrics, University of California, Benioff Children's Hospital, San Francisco, California
| | - Kohei Hagiwara
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tamara Westover
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sherif Abdelhamed
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Juan M. Barajas
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Melvin E. Thomas
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael P. Walsh
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Liqing Tian
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xiaolong Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Pandurang Kolekar
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Quang Tran
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Scott G. Foy
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jamie L. Maciaszek
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrew B. Kleist
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Amanda R. Leonti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Bengsheng Ju
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Huiyun Wu
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | | | - Yen-Chun Liu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Rhonda E. Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jenny L. Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Evan Parganas
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ryan Hiltenbrand
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jonathan Miller
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jason R. Myers
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Evadnie Rampersaud
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Delaram Rahbarinia
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Todd A. Alonzo
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - James R. Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - M. Madan Babu
- Department of Structural Biology and the Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jeffrey E. Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jeffery M. Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
43
|
Mopin A, Leprêtre F, Sebda S, Villenet C, Ben Khoud M, Figeac M, Quesnel B, Brinster C. Detection of residual and chemoresistant leukemic cells in an immune-competent mouse model of acute myeloid leukemia: Potential for unravelling their interactions with immunity. PLoS One 2022; 17:e0267508. [PMID: 35486629 PMCID: PMC9053800 DOI: 10.1371/journal.pone.0267508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by blocked differentiation and extensive proliferation of hematopoietic progenitors/precursors. Relapse is often observed after chemotherapy due to the presence of residual leukemic cells, which is also called minimal residual disease (MRD). Subclonal heterogeneity at diagnosis was found to be responsible for MRD after treatment. Patient xenograft mouse models are valuable tools for studying MRD after chemotherapy; however, the contribution of the immune system in these models is usually missing. To evaluate its role in leukemic persistence, we generated an immune-competent AML mouse model of persistence after chemotherapy treatment. We used well-characterized (phenotypically and genetically) subclones of the murine C1498 cell line stably expressing the ZsGreen reporter gene and the WT1 protein, a valuable antigen. Accordingly, these subclones were also selected due to their in vitro aracytidine (Ara-c) sensitivity. A combination of 3 subclones (expressing or not expressing WT1) was found to lead to prolonged mouse survival after Ara-c treatment (as long as 150 days). The presence of residual leukemic cells in the blood and BM of surviving mice indicated their persistence. Thus, a new mouse model that may offer insights into immune contributions to leukemic persistence was developed.
Collapse
Affiliation(s)
- Alexia Mopin
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
- Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France
| | - Frédéric Leprêtre
- Univ. Lille, UAR2014 - US 41 - Plateformes Lilloises en Biologie & Santé- Plateau de génomique fonctionnelle, Centre de biologie Pathologie Génétique - CHU Lille, Lille, France
| | - Shéhérazade Sebda
- Univ. Lille, UAR2014 - US 41 - Plateformes Lilloises en Biologie & Santé- Plateau de génomique fonctionnelle, Centre de biologie Pathologie Génétique - CHU Lille, Lille, France
| | - Céline Villenet
- Univ. Lille, UAR2014 - US 41 - Plateformes Lilloises en Biologie & Santé- Plateau de génomique fonctionnelle, Centre de biologie Pathologie Génétique - CHU Lille, Lille, France
| | - Meriem Ben Khoud
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
- Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France
| | - Martin Figeac
- Univ. Lille, UAR2014 - US 41 - Plateformes Lilloises en Biologie & Santé- Plateau de génomique fonctionnelle, Centre de biologie Pathologie Génétique - CHU Lille, Lille, France
| | - Bruno Quesnel
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
- Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France
| | - Carine Brinster
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
- Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France
- * E-mail:
| |
Collapse
|
44
|
Dissecting the Genetic and Non-Genetic Heterogeneity of Acute Myeloid Leukemia Using Next-Generation Sequencing and In Vivo Models. Cancers (Basel) 2022; 14:cancers14092182. [PMID: 35565315 PMCID: PMC9103951 DOI: 10.3390/cancers14092182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is an extremely aggressive form of blood cancer with high rates of treatment failure. AML arises from the stepwise acquisition of genetic aberrations and is a highly heterogeneous disorder. Recent research has shown that individual AML samples often contain several clones that are defined by a distinct combination of genetic lesions, epigenetic patterns and cell surface marker expression profiles. A better understanding of the clonal dynamics of AML is required to develop novel treatment strategies against this disease. In this review, we discuss the recent developments that have further deepened our understanding of clonal evolution and heterogeneity in AML. Abstract Acute myeloid leukemia (AML) is an extremely aggressive and heterogeneous disorder that results from the transformation of hematopoietic stem cells. Although our understanding of the molecular pathology of AML has greatly improved in the last few decades, the overall and relapse free survival rates among AML patients remain quite poor. This is largely due to evolution of the disease and selection of the fittest, treatment-resistant leukemic clones. There is increasing evidence that most AMLs possess a highly complex clonal architecture and individual leukemias are comprised of genetically, phenotypically and epigenetically distinct clones, which are continually evolving. Advances in sequencing technologies as well as studies using murine AML models have provided further insights into the heterogeneity of leukemias. We will review recent advances in the field of genetic and non-genetic heterogeneity in AML.
Collapse
|
45
|
Wang X, Rampal RK, Hu CS, Tripodi J, Farnoud N, Petersen B, Rossi MR, Patel M, McGovern E, Najfeld V, Iancu-Rubin C, Lu M, Davis A, Kremyanskaya M, Weinberg RS, Mascarenhas J, Hoffman R. Characterization of disease-propagating stem cells responsible for myeloproliferative neoplasm-blast phase. JCI Insight 2022; 7:e156534. [PMID: 35259128 PMCID: PMC9089790 DOI: 10.1172/jci.insight.156534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic myeloproliferative neoplasms (MPN) frequently evolve to a blast phase (BP) that is almost uniformly resistant to induction chemotherapy or hypomethylating agents. We explored the functional properties, genomic architecture, and cell of origin of MPN-BP initiating cells (IC) using a serial NSG mouse xenograft transplantation model. Transplantation of peripheral blood mononuclear cells (MNC) from 7 of 18 patients resulted in a high degree of leukemic cell chimerism and recreated clinical characteristics of human MPN-BP. The function of MPN-BP ICs was not dependent on the presence of JAK2V617F, a driver mutation associated with the initial underlying MPN. By contrast, multiple MPN-BP IC subclones coexisted within MPN-BP MNCs characterized by different myeloid malignancy gene mutations and cytogenetic abnormalities. MPN-BP ICs in 4 patients exhibited extensive proliferative and self-renewal capacity, as demonstrated by their ability to recapitulate human MPN-BP in serial recipients. These MPN-BP IC subclones underwent extensive continuous clonal competition within individual xenografts and across multiple generations, and their subclonal dynamics were consistent with functional evolution of MPN-BP IC. Finally, we show that MPN-BP ICs originate from not only phenotypically identified hematopoietic stem cells, but also lymphoid-myeloid progenitor cells, which were each characterized by differences in MPN-BP initiating activity and self-renewal capacity.
Collapse
Affiliation(s)
- Xiaoli Wang
- Division of Hematology/Medical Oncology/Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
| | - Raajit K. Rampal
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Cing Siang Hu
- Division of Hematology/Medical Oncology/Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
| | - Joseph Tripodi
- Division of Hematology/Medical Oncology/Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
| | - Noushin Farnoud
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Bruce Petersen
- Division of Hematology/Medical Oncology/Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
| | - Michael R. Rossi
- Genetics and Genomic Sciences, ISMMS, New York, New York
- Sema4, Stamford, Connecticut, USA
| | - Minal Patel
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Erin McGovern
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Vesna Najfeld
- Division of Hematology/Medical Oncology/Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
| | - Camelia Iancu-Rubin
- Division of Hematology/Medical Oncology/Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
| | - Min Lu
- Division of Hematology/Medical Oncology/Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
| | - Andrew Davis
- Division of Hematology/Medical Oncology/Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
| | - Marina Kremyanskaya
- Division of Hematology/Medical Oncology/Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
| | | | - John Mascarenhas
- Division of Hematology/Medical Oncology/Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
| | - Ronald Hoffman
- Division of Hematology/Medical Oncology/Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
| |
Collapse
|
46
|
Erdem A, Marin S, Pereira-Martins DA, Geugien M, Cunningham A, Pruis MG, Weinhäuser I, Gerding A, Bakker BM, Wierenga ATJ, Rego EM, Huls G, Cascante M, Schuringa JJ. Inhibition of the succinyl dehydrogenase complex in acute myeloid leukemia leads to a lactate-fuelled respiratory metabolic vulnerability. Nat Commun 2022; 13:2013. [PMID: 35440568 PMCID: PMC9018882 DOI: 10.1038/s41467-022-29639-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 03/24/2022] [Indexed: 12/03/2022] Open
Abstract
Metabolic programs can differ substantially across genetically distinct subtypes of acute myeloid leukemia (AML). These programs are not static entities but can change swiftly as a consequence of extracellular changes or in response to pathway-inhibiting drugs. Here, we uncover that AML patients with FLT3 internal tandem duplications (FLT3-ITD+) are characterized by a high expression of succinate-CoA ligases and high activity of mitochondrial electron transport chain (ETC) complex II, thereby driving high mitochondrial respiration activity linked to the Krebs cycle. While inhibition of ETC complex II enhances apoptosis in FLT3-ITD+ AML, cells also quickly adapt by importing lactate from the extracellular microenvironment. 13C3-labelled lactate metabolic flux analyses reveal that AML cells use lactate as a fuel for mitochondrial respiration. Inhibition of lactate transport by blocking Monocarboxylic Acid Transporter 1 (MCT1) strongly enhances sensitivity to ETC complex II inhibition in vitro as well as in vivo. Our study highlights a metabolic adaptability of cancer cells that can be exploited therapeutically. Inhibition of specific metabolic pathways often drives metabolic adaptation. Here, the authors show that FLT3-ITD + acute myeloid leukemia cells are OXPHOS-driven, and inhibition of complex II activity results in increased lactate influx to drive respiration, which creates a targetable vulnerability.
Collapse
Affiliation(s)
- Ayşegül Erdem
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain.,CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III, 28029, Madrid, Spain.,Institute of Biomedicine of University of Barcelona, 08028, Barcelona, Spain
| | - Diego A Pereira-Martins
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.,Hematology Division, LIM31, Faculdade de Medicina, University of São Paulo, São Paulo, SP, Brazil
| | - Marjan Geugien
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Alan Cunningham
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Maurien G Pruis
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Isabel Weinhäuser
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.,Hematology Division, LIM31, Faculdade de Medicina, University of São Paulo, São Paulo, SP, Brazil
| | - Albert Gerding
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.,Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Barbara M Bakker
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Albertus T J Wierenga
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.,Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Eduardo M Rego
- Hematology Division, LIM31, Faculdade de Medicina, University of São Paulo, São Paulo, SP, Brazil
| | - Gerwin Huls
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain.,CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III, 28029, Madrid, Spain.,Institute of Biomedicine of University of Barcelona, 08028, Barcelona, Spain
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
47
|
Houtsma R, van der Meer NK, Meijer K, Morsink LM, Hogeling SM, Woolthuis CM, Ammatuna E, Nijk MT, de Boer B, Huls G, Mulder AB, Schuringa JJ. CombiFlow: combinatorial AML-specific plasma membrane expression profiles allow longitudinal tracking of clones. Blood Adv 2022; 6:2129-2143. [PMID: 34543390 PMCID: PMC9006304 DOI: 10.1182/bloodadvances.2021005018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/09/2021] [Indexed: 11/20/2022] Open
Abstract
Acute myeloid leukemia (AML) often presents as an oligoclonal disease whereby multiple genetically distinct subclones can coexist within patients. Differences in signaling and drug sensitivity of such subclones complicate treatment and warrant tools to identify them and track disease progression. We previously identified >50 AML-specific plasma membrane (PM) proteins, and 7 of these (CD82, CD97, FLT3, IL1RAP, TIM3, CD25, and CD123) were implemented in routine diagnostics in patients with AML (n = 256) and myelodysplastic syndrome (n = 33). We developed a pipeline termed CombiFlow in which expression data of multiple PM markers is merged, allowing a principal component-based analysis to identify distinctive marker expression profiles and to generate single-cell t-distributed stochastic neighbor embedding landscapes to longitudinally track clonal evolution. Positivity for one or more of the markers after 2 courses of intensive chemotherapy predicted a shorter relapse-free survival, supporting a role for these markers in measurable residual disease (MRD) detection. CombiFlow also allowed the tracking of clonal evolution in paired diagnosis and relapse samples. Extending the panel to 36 AML-specific markers further refined the CombiFlow pipeline. In conclusion, CombiFlow provides a valuable tool in the diagnosis, MRD detection, clonal tracking, and understanding of clonal heterogeneity in AML.
Collapse
Affiliation(s)
| | | | - Kees Meijer
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | - Marije T. Nijk
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | - André B. Mulder
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
48
|
Mayer IM, Hoelbl-Kovacic A, Sexl V, Doma E. Isolation, Maintenance and Expansion of Adult Hematopoietic Stem/Progenitor Cells and Leukemic Stem Cells. Cancers (Basel) 2022; 14:1723. [PMID: 35406494 PMCID: PMC8996967 DOI: 10.3390/cancers14071723] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are rare, self-renewing cells that perch on top of the hematopoietic tree. The HSCs ensure the constant supply of mature blood cells in a tightly regulated process producing peripheral blood cells. Intense efforts are ongoing to optimize HSC engraftment as therapeutic strategy to treat patients suffering from hematopoietic diseases. Preclinical research paves the way by developing methods to maintain, manipulate and expand HSCs ex vivo to understand their regulation and molecular make-up. The generation of a sufficient number of transplantable HSCs is the Holy Grail for clinical therapy. Leukemia stem cells (LSCs) are characterized by their acquired stem cell characteristics and are responsible for disease initiation, progression, and relapse. We summarize efforts, that have been undertaken to increase the number of long-term (LT)-HSCs and to prevent differentiation towards committed progenitors in ex vivo culture. We provide an overview and compare methods currently available to isolate, maintain and enrich HSC subsets, progenitors and LSCs and discuss their individual advantages and drawbacks.
Collapse
Affiliation(s)
| | | | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (I.M.M.); (A.H.-K.); (E.D.)
| | | |
Collapse
|
49
|
Comparison of clonal architecture between primary and immunodeficient mouse-engrafted acute myeloid leukemia cells. Nat Commun 2022; 13:1624. [PMID: 35338146 PMCID: PMC8956585 DOI: 10.1038/s41467-022-29304-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 03/02/2022] [Indexed: 01/23/2023] Open
Abstract
Patient-derived xenografts (PDX) are widely used as human cancer models. Previous studies demonstrated clonal discordance between PDX and primary cells. However, in acute myeloid leukemia (AML)-PDX models, the significance of the clonal dynamics occurring in PDX remains unclear. By evaluating changes in the variant allele frequencies (VAF) of somatic mutations in serial samples of paired primary AML and their PDX bone marrow cells, we identify the skewing engraftment of relapsed or refractory (R/R) AML clones in 57% of PDX models generated from multiclonal AML cells at diagnosis, even if R/R clones are minor at <5% of VAF in patients. The event-free survival rate of patients whose AML cells successfully engraft in PDX models is consistently lower than that of patients with engraftment failure. We herein demonstrate that primary AML cells including potentially chemotherapy-resistant clones dominantly engraft in AML-PDX models and they enrich pre-existing treatment-resistant subclones.
Collapse
|
50
|
Branstrom A, Cao L, Furia B, Trotta C, Santaguida M, Graci JD, Colacino JM, Ray B, Li W, Sheedy J, Mollin A, Yeh S, Kong R, Sheridan R, Baird JD, O'Keefe K, Spiegel R, Goodwin E, Keating S, Weetall M. Emvododstat, a Potent Dihydroorotate Dehydrogenase Inhibitor, Is Effective in Preclinical Models of Acute Myeloid Leukemia. Front Oncol 2022; 12:832816. [PMID: 35223511 PMCID: PMC8864546 DOI: 10.3389/fonc.2022.832816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Blocking the pyrimidine nucleotide de novo synthesis pathway by inhibiting dihydroorotate dehydrogenase (DHODH) results in the cell cycle arrest and/or differentiation of rapidly proliferating cells including activated lymphocytes, cancer cells, or virally infected cells. Emvododstat (PTC299) is an orally bioavailable small molecule that inhibits DHODH. We evaluated the potential for emvododstat to inhibit the progression of acute myeloid leukemia (AML) using several in vitro and in vivo models of the disease. Broad potent activity was demonstrated against multiple AML cell lines, AML blasts cultured ex vivo from patient blood samples, and AML tumor models including patient-derived xenograft models. Emvododstat induced differentiation, cytotoxicity, or both in primary AML patient blasts cultured ex vivo with 8 of 10 samples showing sensitivity. AML cells with diverse driver mutations were sensitive, suggesting the potential of emvododstat for broad therapeutic application. AML cell lines that are not sensitive to emvododstat are likely to be more reliant on the salvage pathway than on de novo synthesis of pyrimidine nucleotides. Pharmacokinetic experiments in rhesus monkeys demonstrated that emvododstat levels rose rapidly after oral administration, peaking about 2 hours post-dosing. This was associated with an increase in the levels of dihydroorotate (DHO), the substrate for DHODH, within 2 hours of dosing indicating that DHODH inhibition is rapid. DHO levels declined as drug levels declined, consistent with the reversibility of DHODH inhibition by emvododstat. These preclinical findings provide a rationale for clinical evaluation of emvododstat in an ongoing Phase 1 study of patients with relapsed/refractory acute leukemias.
Collapse
Affiliation(s)
- Arthur Branstrom
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Liangxian Cao
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Bansri Furia
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | | | | | - Jason D Graci
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Joseph M Colacino
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Balmiki Ray
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Wencheng Li
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Josephine Sheedy
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Anna Mollin
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Shirley Yeh
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Ronald Kong
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | | | - John D Baird
- Clinical, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Kylie O'Keefe
- Commercial, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Robert Spiegel
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Elizabeth Goodwin
- Scientific Writing, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Suzanne Keating
- Scientific Writing, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Marla Weetall
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| |
Collapse
|