1
|
Zhang J, Zhang Q, Li X, Wei Y, Qiu M, Yang H, Sun X. Prominent supramolecular systems for cancer Therapy: From structural design to tailored applications. Eur J Med Chem 2025; 294:117754. [PMID: 40378574 DOI: 10.1016/j.ejmech.2025.117754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/19/2025]
Abstract
Supramolecular materials represent a powerful class of platforms in cancer diagnosis and therapy, owing to their dynamic architectures, stimuli responsiveness, and high biocompatibility. This review focused on three representative categories-Pillarene-based systems, virus-mimetic nanoparticles (VMNs), and metal-organic frameworks (MOFs)-each offering unique structural and functional properties. Pillarene-based assemblies enable precise host-guest interactions, by being classified into amphiphilic, ionic, and chiral varieties, the robust drug loading and controlled release capabilities of the Pillarene family were emphasized. At the same time, the VMNs, including virus-like particles and virosomes, show power in cancer cell targeting and membrane penetration by emulating natural viral architectures. By discussing the fabrication and application of single-metallic, multi-metallic, and composite MOFs, their potential in multimodal diagnosis and therapy was revealed. In addition, other supramolecular categories, such as cyclodextrin and dendrimers, were introduced as well. We highlighted representative approaches and emerging methods, and comparative perspectives with traditional nanocarriers were included. A critical evaluation of pharmacokinetic behaviors, biosafety concerns, and translational limitations was also proposed, aiming to guide future research in supramolecular cancer nanomedicine. Through an integrative and forward-looking analysis, this review provided a comprehensive framework for understanding and designing supramolecular systems for precision oncology. These emerging nanotechnologies hold promise to reshape cancer medicine by enabling adaptive, targeted, and multifunctional therapeutic strategies.
Collapse
Affiliation(s)
- Jiawei Zhang
- The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, China; School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, China
| | - Qingya Zhang
- The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, China; School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenyang, China
| | - Xiaojia Li
- Teaching Center for Basic Medical Experiment, China Medical University, No.77, Puhe Road, Shenyang, China
| | - Yixuan Wei
- Teaching Center for Basic Medical Experiment, China Medical University, No.77, Puhe Road, Shenyang, China
| | - Min Qiu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, China.
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenyang, China.
| |
Collapse
|
2
|
Singh D, Thakur A. A Narrative Review on Metal-Organic Frameworks as Dual-Functional Nanocarriers: Advancing Chemo-Photothermal Therapy for Precision Cancer Treatment. Photobiomodul Photomed Laser Surg 2025. [PMID: 40337794 DOI: 10.1089/photob.2025.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
Background: Metal-organic frameworks (MOFs) have emerged as promising multifunctional nanocarriers in cancer therapy due to their high porosity, tunable architecture, and ability to integrate dual treatment modalities. Objective: Among these, MOF-based chemo-photothermal therapy (CPTT) has gained significant attention as it enhances the efficacy of traditional chemotherapy through localized hyperthermia, thereby overcoming drug resistance and improving tumor targeting. Materials and Methods: MOFs can encapsulate chemotherapeutic agents while simultaneously acting as photothermal conversion agents upon near-infrared irradiation. Results: This mini-review explores the recent advancements in MOF-based CPTT, highlighting key developments such as stimuli-responsive drug release, metal-enhanced photothermal effects, and hybrid MOF nanostructures. Furthermore, we discuss their potential for theranostic applications, integrating imaging and therapy, and address the key challenges associated with biocompatibility, stability, and clinical translation. The enhanced therapeutic efficacy, biocompatibility, and remarkable targeting make the system as dual system for theranostics as well as targeting purpose. Conclusions: The future of MOF-based CPTT lies in the development of biodegradable, targeted, and multifunctional MOFs, offering a pathway toward personalized, precision-driven oncological treatments.
Collapse
Affiliation(s)
- Dilpreet Singh
- School of Pharmaceutical Sciences, CT University, Sidhwan Khurd, India
| | - Akshay Thakur
- School of Pharmaceutical Sciences, CT University, Sidhwan Khurd, India
| |
Collapse
|
3
|
Chen XQ, Cui SS, Chen YZ, Wang CY, Liu Q, Qi YK, Du SS. Efficient Delivery of Oncolytic Peptide LTX-315 by ZIF-8: pH-Responsive Release, Improved Stability, and Reduced Hemolysis. Mol Pharm 2025; 22:1449-1461. [PMID: 39913295 DOI: 10.1021/acs.molpharmaceut.4c01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
The first-in-class oncolytic peptide LTX-315 has exhibited positive anticancer responses in multiple phase I/II clinical trials. Nevertheless, the linear peptide LTX-315 suffers from poor proteolytic stability and undesired toxicity, especially hemolysis, which may limit its widespread applications. Except for the direct structural modifications, drug delivery systems (DDSs) are expected to protect LTX-315 from degradation and shield its hemolytic properties. Therefore, the LTX-315 and zeolitic imidazolate framework (ZIF-8)-based nanoparticles (NPs) were constructed with a high LTX-315 encapsulation rate of 59.9%, utilizing the biomineralized "one-pot method" in an aqueous system. The release of LTX-315, in vitro anticancer potency, serum stability, anticancer durability, antimigration activity, hemolysis effect, subcellular localization, and the membrane disruption/permeation effects of LTX-315@ZIF-8 NPs were investigated. LTX-315@ZIF-8 NPs exhibited potent cytotoxicity against cancer cells. The serum stability experiment and time-inhibition curve assay indicated that ZIF-8 NPs could effectively improve the stability of LTX-315, prolong the duration of anticancer action, and enhance the cytostatic potency. Especially, the LTX-315@ZIF-8 NPs not only effectively attenuated the hemolytic toxicity of LTX-315 but also achieved the pH-responsive release of LTX-315. The mechanism investigation indicated that LTX-315@ZIF-8 NPs possessed potent membranolytic activity and reduced the mitochondrial membrane potential to trigger cell death. Collectively, this paper not only established a robust strategy to improve the stability and reduce the hemolytic properties of LTX-315 but also provided a reliable reference for the future delivery of oncolytic peptides.
Collapse
Affiliation(s)
- Xin-Qi Chen
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Su-Su Cui
- Suzhou Jinchang Street Bailian Community Health Service Center, Suzhou 215000, China
| | - Yu-Zhen Chen
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Cai-Yun Wang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qing Liu
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yun-Kun Qi
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Shan-Shan Du
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| |
Collapse
|
4
|
Wang Y, Foulkes RL, Panagiotou N, Markopoulou P, Bistrović Popov A, Eskandari A, Fruk L, Forgan RS. Photoclick surface modification of MOF-808 for galactose-mediated targeted chemotherapy. J Colloid Interface Sci 2025; 681:416-424. [PMID: 39637628 DOI: 10.1016/j.jcis.2024.11.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024]
Abstract
Controllable surface modification of nanoparticulate drug delivery vectors is key to enhancing specific desirable properties such as colloidal stability, targeting, and stimuli-responsive cargo release. Metal-organic frameworks (MOFs) have been proposed as potential delivery devices, with surface modification achieved by various bioconjugate "click" reactions, including copper-catalysed and strain-promoted azide-alkyne cycloaddition. Herein, we show that photo-induced nitrile imine-mediated tetrazole-ene cycloaddition (NITEC) can be used to surface-modify tetrazole-appended Zr MOFs with maleimides, and vice versa, with the extent of this traceless surface functionalisation controlled by the length of photoirradiation. This "photoclick" surface modification protocol is exemplified by the decorating of carboplatin-loaded MOF-808 with galactose units to target asialoglycoprotein receptors of specific cancer cell types. Targeting towards HepG2 cells, which overexpress these receptors, is indicated by enhanced endocytosis and cytotoxicity in both two- and three-dimensional cell cultures compared to other cell lines. The study shows both the power of the NITEC protocol for functionalisation of MOFs, and also the benefits of carbohydrate targeting in drug delivery vectors, with scope for significant additional work diversifying the surface targeting units available for nanoparticle functionalisation under these mild, biocompatible "photoclick" conditions.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | - Andrea Bistrović Popov
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Arvin Eskandari
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Ross S Forgan
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
5
|
Yu Z, Lepoitevin M, Serre C. Iron-MOFs for Biomedical Applications. Adv Healthc Mater 2025; 14:e2402630. [PMID: 39388416 PMCID: PMC11937880 DOI: 10.1002/adhm.202402630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Indexed: 10/12/2024]
Abstract
Over the past two decades, iron-based metal-organic frameworks (Fe-MOFs) have attracted significant research interest in biomedicine due to their low toxicity, tunable degradability, substantial drug loading capacity, versatile structures, and multimodal functionalities. Despite their great potential, the transition of Fe-MOFs-based composites from laboratory research to clinical products remains challenging. This review evaluates the key properties that distinguish Fe-MOFs from other MOFs and highlights recent advances in synthesis routes, surface engineering, and shaping technologies. In particular, it focuses on their applications in biosensing, antimicrobial, and anticancer therapies. In addition, the review emphasizes the need to develop scalable, environmentally friendly, and cost-effective production methods for additional Fe-MOFs to meet the specific requirements of various biomedical applications. Despite the ability of Fe-MOFs-based composites to combine therapies, significant hurdles still remain, including the need for a deeper understanding of their therapeutic mechanisms and potential risks of resistance and overdose. Systematically addressing these challenges could significantly enhance the prospects of Fe-MOFs in biomedicine and potentially facilitate their integration into mainstream clinical practice.
Collapse
Affiliation(s)
- Zhihao Yu
- Institut des Matériaux Poreux de ParisENSESPCI ParisCNRSPSL UniversityParisFrance
| | - Mathilde Lepoitevin
- Institut des Matériaux Poreux de ParisENSESPCI ParisCNRSPSL UniversityParisFrance
| | - Christian Serre
- Institut des Matériaux Poreux de ParisENSESPCI ParisCNRSPSL UniversityParisFrance
| |
Collapse
|
6
|
Fodor B, Álvarez-Miguel I, Biglione C, López GG, González-Fernández Á, Salles F, Hidalgo T, Horcajada P. A Potential 3-in-1 Combined AntiSARS-CoV-2 Therapy Using Pulmonary MIL-100(Fe) Formulation. Adv Healthc Mater 2025:e2403988. [PMID: 39905976 DOI: 10.1002/adhm.202403988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/27/2024] [Indexed: 02/06/2025]
Abstract
The emergence and rapid propagation of infectious diseases, including the COVID-19 pandemic, has evidenced the vulnerabilities in global health surveillance, the ease of transmission, and the imperative need for effective treatments. In this context, nanomedicines based on metal-organic frameworks (MOFs) have garnered great relevance as promising drug delivery platforms in a large range of complex diseases (e.g., cancer, and infections). However, most research has focused on sensing with scarce examples in antiviral therapies. Hence, here a pioneer combined 3-in-1 effect anti-COVID pulmonary multitherapy based on the mesoporous iron(III) carboxylate MIL-100(Fe) nanoparticles is proposed, with the proven intrinsic MOF effect, associated with favipiravir drug into their porosity and heparin on their external surface. A significant antiviral effect against a real scenario of COVID-19 infection is demonstrated (≈70% inhibition), ensuring a suitable cellular viability. Further, a convenient pulmonary formulation is prepared based on mannitol-based microspheres, testing its safety and biodistribution in healthy mice. No significant side effects are observed, reaching successfully the deep lungs, emphasizing a reduced immunological response compared to their controls. Therefore, these promising results open new horizons for future (pre)clinical trials targeting challenging infectious/pulmonary pathologies, enhancing the feasibility of designing customized therapeutic MOF platforms.
Collapse
Affiliation(s)
- Beatrice Fodor
- Advanced Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, Móstoles-Madrid, 28935, Spain
- Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Inés Álvarez-Miguel
- Advanced Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, Móstoles-Madrid, 28935, Spain
| | - Catalina Biglione
- Advanced Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, Móstoles-Madrid, 28935, Spain
| | - Guillermo G López
- Advanced Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, Móstoles-Madrid, 28935, Spain
| | - África González-Fernández
- CINBIO, Immunology Group, Universidade de Vigo, Vigo, 36310, Spain
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Pontevedra, 36312, Spain
| | - Fabrice Salles
- ICGM, Université Montpellier, CNRS ENSCM, Montpellier, 34090, France
| | - Tania Hidalgo
- Advanced Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, Móstoles-Madrid, 28935, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, Móstoles-Madrid, 28935, Spain
| |
Collapse
|
7
|
Yu Q, Zhang Q, Wu Z, Yang Y. Inhalable Metal-Organic Frameworks: A Promising Delivery Platform for Pulmonary Diseases Treatment. ACS NANO 2025; 19:3037-3053. [PMID: 39808505 DOI: 10.1021/acsnano.4c16873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Inhalation delivery, offering a direct pathway for administering drugs to the lungs in the form of dry powders or aerosols, stands out as an optimal approach for the localized treatment of pulmonary diseases. However, the intricate anatomical architecture of the lung often poses challenges in maintaining effective drug concentrations within the lungs over extended periods. This highlights the pressing need to develop rational inhalable drug delivery systems that can improve treatment outcomes for respiratory diseases. Metal-organic frameworks (MOFs) assembled from inorganic metal ions and organic ligands, characterized by customizable porous architecture and chemical composition, modifiable porosity, vast surface area, straightforward surface modification, and adjustable biocompatibility, have garnered extensive attention in the biomedical sphere. The introduction of MOFs into inhalation therapy represents a promising avenue to navigate past the hurdles associated with traditional inhalation methods. Therefore, this review summarizes the characteristics of inhalation delivery together with the latest advances, challenges, and opportunities in utilizing inhalable MOFs for treating lung diseases and discusses prospects in this field alongside the potential pathways for translating this strategy into clinic.
Collapse
Affiliation(s)
- Qifan Yu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Qiang Zhang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Zhiqiang Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| |
Collapse
|
8
|
Zou Y, Wu J, Zhang Q, Chen J, Luo X, Qu Y, Xia R, Wang W, Zheng X. Recent advances in cell membrane-coated porphyrin-based nanoscale MOFs for enhanced photodynamic therapy. Front Pharmacol 2024; 15:1505212. [PMID: 39697550 PMCID: PMC11652162 DOI: 10.3389/fphar.2024.1505212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Porphyrins-based nanoscale metal-organic frameworks (nMOFs) has been widely utilized to kills tumor cells by generating cytotoxic reactive oxygen species (ROS). However, porphyrin based nMOFs (por-nMOFs) still face challenges such as rapid immune clearance and weak tumor targeting. Researchers have discovered that using a top-down biomimetic strategy, where nMOFs are coated with cell membranes, can promote long blood circulation, evade the reticuloendothelial system, and improve cancer cell targeting, thereby significantly enhancing the photodynamic therapy (PDT) effect of nMOFs. This review summarizes the recent work on different cell membranes-coated por-nMOFs for enhanced tumor PDT. This review details the changes in physicochemical properties, enhanced homotypic cancer cell-selective endocytosis, improved tumor tissue targeting, and increased cytotoxicity and effective in vivo tumor suppression after the nMOFs are wrapped with cell membranes. Additionally, this review compares the biological functions of various types of cell membranes, including cancer cell membranes, red blood cell membranes, aptamer-modified red blood cell membranes, and hybrid membranes from the fusion of cancer and immune cells. The review highlights the enhanced immunogenic cell death function when using hybrid membranes derived from the fusion of cancer and immune cell membranes. By summarizing the augmented PDT effects and the combined antitumor outcomes with other therapeutic modalities, this review aims to provide new insights into the biomedical applications of por-nMOFs and offer more references for the preclinical application of porphyrin-based photosensitizers.
Collapse
Affiliation(s)
- Yutao Zou
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu, China
| | - Junjie Wu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Qiuyun Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Jiayi Chen
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xuanxuan Luo
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yijie Qu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Rui Xia
- School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
9
|
Theyagarajan K, Kim YJ. Metal Organic Frameworks Based Wearable and Point-of-Care Electrochemical Sensors for Healthcare Monitoring. BIOSENSORS 2024; 14:492. [PMID: 39451704 PMCID: PMC11506055 DOI: 10.3390/bios14100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
The modern healthcare system strives to provide patients with more comfortable and less invasive experiences, focusing on noninvasive and painless diagnostic and treatment methods. A key priority is the early diagnosis of life-threatening diseases, which can significantly improve patient outcomes by enabling treatment at earlier stages. While most patients must undergo diagnostic procedures before beginning treatment, many existing methods are invasive, time-consuming, and inconvenient. To address these challenges, electrochemical-based wearable and point-of-care (PoC) sensing devices have emerged, playing a crucial role in the noninvasive, continuous, periodic, and remote monitoring of key biomarkers. Due to their numerous advantages, several wearable and PoC devices have been developed. In this focused review, we explore the advancements in metal-organic frameworks (MOFs)-based wearable and PoC devices. MOFs are porous crystalline materials that are cost-effective, biocompatible, and can be synthesized sustainably on a large scale, making them promising candidates for sensor development. However, research on MOF-based wearable and PoC sensors remains limited, and no comprehensive review has yet to synthesize the existing knowledge in this area. This review aims to fill that gap by emphasizing the design of materials, fabrication methodologies, sensing mechanisms, device construction, and real-world applicability of these sensors. Additionally, we underscore the importance and potential of MOF-based wearable and PoC sensors for advancing healthcare technologies. In conclusion, this review sheds light on the current state of the art, the challenges faced, and the opportunities ahead in MOF-based wearable and PoC sensing technologies.
Collapse
Affiliation(s)
- K Theyagarajan
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
10
|
Hefayathullah M, Singh S, Ganesan V, Maduraiveeran G. Metal-organic frameworks for biomedical applications: A review. Adv Colloid Interface Sci 2024; 331:103210. [PMID: 38865745 DOI: 10.1016/j.cis.2024.103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Metal-organic frameworks (MOFs) are emergent materials in diverse prospective biomedical uses, owing to their inherent features such as adjustable pore dimension and volume, well-defined active sites, high surface area, and hybrid structures. The multifunctionality and unique chemical and biological characteristics of MOFs allow them as ideal platforms for sensing numerous emergent biomolecules with real-time monitoring towards the point-of-care applications. This review objects to deliver key insights on the topical developments of MOFs for biomedical applications. The rational design, preparation of stable MOF architectures, chemical and biological properties, biocompatibility, enzyme-mimicking materials, fabrication of biosensor platforms, and the exploration in diagnostic and therapeutic systems are compiled. The state-of-the-art, major challenges, and the imminent perspectives to improve the progressions convoluted outside the proof-of-concept, especially for biosensor platforms, imaging, and photodynamic therapy in biomedical research are also described. The present review may excite the interdisciplinary studies at the juncture of MOFs and biomedicine.
Collapse
Affiliation(s)
- Mohamed Hefayathullah
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India
| | - Smita Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Vellaichamy Ganesan
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
11
|
Cai M, Fu T, Zhu R, Hu P, Kong J, Liao S, Du Y, Zhang Y, Qu C, Dong X, Yin X, Ni J. An iron-based metal-organic framework nanoplatform for enhanced ferroptosis and oridonin delivery as a comprehensive antitumor strategy. Acta Pharm Sin B 2024; 14:4073-4086. [PMID: 39309488 PMCID: PMC11413704 DOI: 10.1016/j.apsb.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 09/25/2024] Open
Abstract
Ferroptosis is a recently discovered pathway for regulated cell death pathway. However, its efficacy is affected by limited iron content and intracellular ion homeostasis. Here, we designed a metal-organic framework (MOF)-based nanoplatform that incorporates calcium peroxide (CaO2) and oridonin (ORI). This platform can improve the tumor microenvironment and disrupt intracellular iron homeostasis, thereby enhancing ferroptosis therapy. Fused cell membranes (FM) were used to modify nanoparticles (ORI@CaO2@Fe-TCPP, NPs) to produce FM@ORI@CaO2@Fe-TCPP (FM@NPs). The encapsulated ORI inhibited the HSPB1/PCBP1/IREB2 and FSP1/COQ10 pathways simultaneously, working in tandem with Fe3+ to induce ferroptosis. Photodynamic therapy (PDT) guided by porphyrin (TCPP) significantly enhanced ferroptosis through excessive accumulation of reactive oxygen species (ROS). This self-amplifying strategy promoted robust ferroptosis, which could work synergistically with FM-mediated immunotherapy. In vivo experiments showed that FM@NPs inhibited 91.57% of melanoma cells within six days, a rate 5.6 times higher than chemotherapy alone. FM@NPs were biodegraded and directly eliminated in the urine or faeces without substantial toxicity. Thus, this study demonstrated that combining immunotherapy with efficient ferroptosis induction through nanotechnology is a feasible and promising strategy for melanoma treatment.
Collapse
Affiliation(s)
- Mengru Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tingting Fu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rongyue Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Panxiang Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiahui Kong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shilang Liao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuji Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongqiang Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Changhai Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoxv Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jian Ni
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
12
|
Pandya T, Patel S, Kulkarni M, Singh YR, Khodakiya A, Bhattacharya S, Prajapati BG. Zeolite-based nanoparticles drug delivery systems in modern pharmaceutical research and environmental remediation. Heliyon 2024; 10:e36417. [PMID: 39262951 PMCID: PMC11388657 DOI: 10.1016/j.heliyon.2024.e36417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
This review explores the potential of zeolite-based nanoparticles in modern pharmaceutical research, focusing on their role in advanced drug delivery systems. Zeolites, integrated into polymeric materials, offer precise drug delivery capabilities due to their unique structural features, biocompatibility, and controllable properties. Additionally, zeolites demonstrate environmental remediation potential through ion exchange processes. Synthetic zeolites, with modified release mechanisms, possess distinctive optical and electronic properties, expanding their applications in various fields. The study details zeolites' significance across industrial and scientific domains, outlining synthesis methods and size control techniques. The review emphasizes successful encapsulation and functionalization strategies for drug delivery, highlighting their role in enhancing drug stability and enabling targeted delivery. Advanced characterization techniques contribute to a comprehensive understanding of zeolite-based drug delivery systems. Addressing potential carcinogenicity, the review discusses environmental impact and risk assessment, stressing the importance of safety considerations in nanoparticle research. In biomedical applications, zeolites play vital roles in antidiarrheal, antitumor, antibacterial, and MRI contrast agents. Clinical trials featuring zeolite-based interventions underscore zeolite's potential in addressing diverse medical challenges. In conclusion, zeolite-based nanoparticles emerge as promising tools for targeted drug delivery, showcasing diverse applications and therapeutic potentials. Despite challenges, their unique advantages position zeolites at the forefront of innovative drug delivery systems.
Collapse
Affiliation(s)
- Tosha Pandya
- L. J. Institute of Pharmacy, L J University, Ahmedabad, Sanand, Sarkhej-Gandhinagar Highway, 382 210, Gujarat, India
| | - Shruti Patel
- Parul Institute of Pharmacy, Parul University, Lambda, Vadodara, 391760, India
| | - Mangesh Kulkarni
- L. J. Institute of Pharmacy, L J University, Ahmedabad, Sanand, Sarkhej-Gandhinagar Highway, 382 210, Gujarat, India
- Gandhinagar Institute of Pharmacy, Gandhinagar University, Khatraj-Kalol Road, Moti Bhoyan, Kalol, Gandhinagar, 382721, Gujarat, India
| | - Yash Raj Singh
- L. J. Institute of Pharmacy, L J University, Ahmedabad, Sanand, Sarkhej-Gandhinagar Highway, 382 210, Gujarat, India
| | - Akruti Khodakiya
- C.U. Shah College of Pharmacy and Research, C.U. Shah University, Surendranagar-Ahmedabad State Highway, 363030, Gujarat, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Bhupendra G Prajapati
- Shree S.K. Patel College of Pharmaceutical Education & Research, Ganpat University, Gujarat, India
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| |
Collapse
|
13
|
Biglione C, Hidalgo T, Horcajada P. Nanoscaled metal-organic frameworks: charting a transformative path for cancer therapeutics and beyond. Drug Deliv Transl Res 2024; 14:2041-2045. [PMID: 38755501 DOI: 10.1007/s13346-024-01622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Through this inspirational note, we would like to highlight the potential of nanoscaled metal-organic frameworks within the biomedical field. The unique properties of these materials that make them promising candidates for new nanomedicines are assessed here as well as the progression reached so far for combinational cancer therapies and theranostic, along with its most recent advances in nanomedicine. Finally, the perspective and challenges of these materials within this field is discussed.
Collapse
Affiliation(s)
- Catalina Biglione
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935, Madrid, Spain
| | - Tania Hidalgo
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935, Madrid, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935, Madrid, Spain
| |
Collapse
|
14
|
Liu W, Li Y, Wang Y, Feng Y. Bioactive Metal-Organic Frameworks as a Distinctive Platform to Diagnosis and Treat Vascular Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310249. [PMID: 38312082 DOI: 10.1002/smll.202310249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/07/2024] [Indexed: 02/06/2024]
Abstract
Vascular diseases (VDs) pose the leading threat worldwide due to high morbidity and mortality. The detection of VDs is commonly dependent on individual signs, which limits the accuracy and timeliness of therapies, especially for asymptomatic patients in clinical management. Therefore, more effective early diagnosis and lesion-targeted treatments remain a pressing clinical need. Metal-organic frameworks (MOFs) are porous crystalline materials formed by the coordination of inorganic metal ions and organic ligands. Due to their unique high specific surface area, structural flexibility, and functional versatility, MOFs are recognized as highly promising candidates for diagnostic and therapeutic applications in the field of VDs. In this review, the potential of MOFs to act as biosensors, contrast agents, artificial nanozymes, and multifunctional therapeutic agents in the diagnosis and treatment of VDs from the clinical perspective, highlighting the integration between clinical methods with MOFs is generalized. At the same time, multidisciplinary cooperation from chemistry, physics, biology, and medicine to promote the substantial commercial transformation of MOFs in tackling VDs is called for.
Collapse
Affiliation(s)
- Wen Liu
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Ying Li
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Yuanchao Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin, 300072, P. R. China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| |
Collapse
|
15
|
Álvarez-Miguel I, Fodor B, López GG, Biglione C, Grape ES, Inge AK, Hidalgo T, Horcajada P. Metal-Organic Frameworks: Unconventional Nanoweapons against COVID. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32118-32127. [PMID: 38862123 PMCID: PMC11212624 DOI: 10.1021/acsami.4c06174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
The SARS-CoV-2 (COVID-19) pandemic outbreak led to enormous social and economic repercussions worldwide, felt even to this date, making the design of new therapies to combat fast-spreading viruses an imperative task. In the face of this, diverse cutting-edge nanotechnologies have risen as promising tools to treat infectious diseases such as COVID-19, as well as challenging illnesses such as cancer and diabetes. Aside from these applications, nanoscale metal-organic frameworks (nanoMOFs) have attracted much attention as novel efficient drug delivery systems for diverse pathologies. However, their potential as anti-COVID-19 therapeutic agents has not been investigated. Herein, we propose a pioneering anti-COVID MOF approach by studying their potential as safe and intrinsically antiviral agents through screening various nanoMOF. The iron(III)-trimesate MIL-100 showed a noteworthy antiviral effect against SARS-CoV-2 at the micromolar range, ensuring a high biocompatibility profile (90% of viability) in a real infected human cellular scenario. This research effectively paves the way toward novel antiviral therapies based on nanoMOFs, not only against SARS-CoV-2 but also against other challenging infectious and/or pulmonary diseases.
Collapse
Affiliation(s)
- Inés Álvarez-Miguel
- Advanced
Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Beatrice Fodor
- Advanced
Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Guillermo G. López
- Advanced
Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Catalina Biglione
- Advanced
Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Erik Svensson Grape
- Wallenberg
Initiative Materials Science for Sustainability, Department of Materials
and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden
| | - A. Ken Inge
- Wallenberg
Initiative Materials Science for Sustainability, Department of Materials
and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden
| | - Tania Hidalgo
- Advanced
Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Patricia Horcajada
- Advanced
Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| |
Collapse
|
16
|
Jodłowski PJ, Dymek K, Kurowski G, Hyjek K, Boguszewska-Czubara A, Budzyńska B, Mrozek W, Skoczylas N, Kuterasiński Ł, Piskorz W, Białoruski M, Jędrzejczyk RJ, Jeleń P, Sitarz M. Crystal Clear: Metal-Organic Frameworks Pioneering the Path to Future Drug Detox. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29657-29671. [PMID: 38815127 PMCID: PMC11181303 DOI: 10.1021/acsami.4c02450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
The growing number of acute drug abuse overdoses demands the development of innovative detoxification strategies for emergency purposes. In this study, an innovative approach for the application of porous Zr-based metal-organic frameworks for the treatment of acute overdoses of popular drugs of abuse including amphetamine, methamphetamine, cocaine, and MDMA is presented. A comprehensive approach determining the efficacy and the kinetics of drug removal, considering dosage, adsorption time, and adsorption mechanisms, was tested and corroborated with density functional theory (DFT) modeling. The experimental results showed high removal efficiency reaching up to 90% in the case of the application of the NU-1000 metal-organic framework. The difference Raman spectroscopy method presented in this study corroborated with DFT-based vibrational analysis allows the detection of drug adsorbed in the MOF framework even with as low a concentration as 5 mg/g. Additionally, the drug adsorption mechanisms were modeled with DFT, showing the π-π stacking in a vast majority of considered cases. The performance and influence on the living organisms were evaluated throughout the in vitro and in vivo experiments, indicating that Zr-based MOFs could serve as efficient, organic, safe drug adsorbents.
Collapse
Affiliation(s)
- Przemysław J. Jodłowski
- Faculty
of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, Kraków 31-155, Poland
| | - Klaudia Dymek
- Faculty
of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, Kraków 31-155, Poland
- Lukasiewicz
Research Network − Krakow Institute of Technology, Zakopiańska 73, Kraków 30-418, Poland
| | - Grzegorz Kurowski
- Faculty
of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, Kraków 31-155, Poland
| | - Kornelia Hyjek
- Faculty
of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, Kraków 31-155, Poland
| | - Anna Boguszewska-Czubara
- Department
of Medical Chemistry, Medical University
of Lublin, Chodzki 4A, Lublin 20-093, Poland
| | - Barbara Budzyńska
- Independent
Laboratory of Behavioral Studies, Medical
University of Lublin, Chodzki 4A, Lublin 20-093, Poland
| | - Weronika Mrozek
- Independent
Laboratory of Behavioral Studies, Medical
University of Lublin, Chodzki 4A, Lublin 20-093, Poland
| | - Norbert Skoczylas
- Faculty
of Geology, Geophysics and Environmental Protection, AGH University of Krakow, Mickiewicza 30, Kraków 30-059, Poland
| | - Łukasz Kuterasiński
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Kraków 30-239, Poland
| | - Witold Piskorz
- Faculty
of
Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, Kraków 30-387, Poland
| | - Marek Białoruski
- Faculty
of
Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, Kraków 30-387, Poland
| | - Roman J. Jędrzejczyk
- Małopolska
Centre of Biotechnology, Jagiellonian University
in Kraków, Gronostajowa
7A, Kraków 30-387, Poland
| | - Piotr Jeleń
- Faculty
of Materials Science and Ceramics, AGH University
of Krakow, Mickiewicza
30, Kraków 30-059, Poland
| | - Maciej Sitarz
- Faculty
of Materials Science and Ceramics, AGH University
of Krakow, Mickiewicza
30, Kraków 30-059, Poland
| |
Collapse
|
17
|
Rincón I, Contreras MC, Sierra-Serrano B, Salles F, Rodríguez-Diéguez A, Rojas S, Horcajada P. Long-lasting insecticidal activity in plants driven by chlorogenic acid-loaded metal-organic frameworks. J Mater Chem B 2024; 12:4717-4723. [PMID: 38655651 DOI: 10.1039/d3tb02493h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metal-organic frameworks (MOFs) possess a variety of interesting features related to their composition and structure that make them excellent candidates to be used in agriculture. However, few studies have reported their use as delivery agents of agrochemicals. In this work, the natural polyphenol chlorogenic acid (CGA) was entrapped via simple impregnation in the titanium aminoterephthalate MOF, MIL-125-NH2. A combination of experimental and computational techniques was used to understand and quantify the encapsulated CGA in MIL-125-NH2. Subsequently, CGA delivery studies were carried out in water at different pHs, showing a fast release of CGA during the first 2 h (17.3 ± 0.3% at pH = 6.5). In vivo studies were also performed against larvae of mealworm (Tenebrio molitor), evidencing the long-lasting insecticidal activity of CGA@MIL-125-NH2. This report demonstrates the potential of MOFs in the efficient release of agrochemicals, and paves the way to their study against in vivo models.
Collapse
Affiliation(s)
- Irene Rincón
- Advanced Porous Materials Unit, IMDEA Energy Institute. Av. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain.
| | - MCarmen Contreras
- Department of Inorganic Chemistry, Faculty of Science, University of Granada. Av. Fuentenueva s/n, 18071 Granada, Spain.
| | - Beatriz Sierra-Serrano
- Department of Inorganic Chemistry, Faculty of Science, University of Granada. Av. Fuentenueva s/n, 18071 Granada, Spain.
| | - Fabrice Salles
- ICGM, Université Montpellier, CNRS ENSCM, Montpellier, France
| | - Antonio Rodríguez-Diéguez
- Department of Inorganic Chemistry, Faculty of Science, University of Granada. Av. Fuentenueva s/n, 18071 Granada, Spain.
| | - Sara Rojas
- Department of Inorganic Chemistry, Faculty of Science, University of Granada. Av. Fuentenueva s/n, 18071 Granada, Spain.
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy Institute. Av. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain.
| |
Collapse
|
18
|
Graván P, Rojas S, Picchi DF, Galisteo-González F, Horcajada P, Marchal JA. Towards a More Efficient Breast Cancer Therapy Using Active Human Cell Membrane-Coated Metal-Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:784. [PMID: 38727378 PMCID: PMC11085653 DOI: 10.3390/nano14090784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024]
Abstract
The recent description of well-defined molecular subtypes of breast cancer has led to the clinical development of a number of successful molecular targets. Particularly, triple-negative breast cancer (TNBC) is an aggressive type of breast cancer with historically poor outcomes, mainly due to the lack of effective targeted therapies. Recent progresses in materials science have demonstrated the impressive properties of metal-organic framework nanoparticles (NPs) as antitumoral drug delivery systems. Here, in a way to achieve efficient bio-interfaces with cancer cells and improve their internalization, benchmarked MIL-100(Fe) NPs were coated with cell membranes (CMs) derived from the human TNBC cell line MDA-MB-468. The prepared CMs-coated metal-organic framework (CMs_MIL-100(Fe)) showed enhanced colloidal stability, cellular uptake, and cytotoxicity in MDA-MB-468 cells compared to non-coated NPs, paving the way for these human CMs-coated MIL-100(Fe) NPs as effective targeted therapies against the challenging TNBC.
Collapse
Affiliation(s)
- Pablo Graván
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain; (P.G.); (F.G.-G.)
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain
- BioFab i3D—Biofabrication and 3D (Bio)Printing Laboratory, University of Granada, 18100 Granada, Spain
| | - Sara Rojas
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain;
| | - Darina Francesca Picchi
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935 Móstoles, Spain;
- Escuela Internacional de Doctorado, Universidad Rey Juan Carlos, c/Tulipan, s/n, Móstoles, 28933 Madrid, Spain
| | - Francisco Galisteo-González
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain; (P.G.); (F.G.-G.)
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935 Móstoles, Spain;
| | - Juan Antonio Marchal
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain
- BioFab i3D—Biofabrication and 3D (Bio)Printing Laboratory, University of Granada, 18100 Granada, Spain
| |
Collapse
|
19
|
Picchi D, Biglione C, Horcajada P. Nanocomposites Based on Magnetic Nanoparticles and Metal-Organic Frameworks for Therapy, Diagnosis, and Theragnostics. ACS NANOSCIENCE AU 2024; 4:85-114. [PMID: 38644966 PMCID: PMC11027209 DOI: 10.1021/acsnanoscienceau.3c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 04/23/2024]
Abstract
In the last two decades, metal-organic frameworks (MOFs) with highly tunable structure and porosity, have emerged as drug nanocarriers in the biomedical field. In particular, nanoscaled MOFs (nanoMOFs) have been widely investigated because of their potential biocompatibility, high drug loadings, and progressive release. To enhance their properties, MOFs have been combined with magnetic nanoparticles (MNPs) to form magnetic nanocomposites (MNP@MOF) with additional functionalities. Due to the magnetic properties of the MNPs, their presence in the nanosystems enables potential combinatorial magnetic targeted therapy and diagnosis. In this Review, we analyze the four main synthetic strategies currently employed for the fabrication of MNP@MOF nanocomposites, namely, mixing, in situ formation of MNPs in presynthesized MOF, in situ formation of MOFs in the presence of MNPs, and layer-by-layer methods. Additionally, we discuss the current progress in bioapplications, focusing on drug delivery systems (DDSs), magnetic resonance imaging (MRI), magnetic hyperthermia (MHT), and theragnostic systems. Overall, we provide a comprehensive overview of the recent advances in the development and bioapplications of MNP@MOF nanocomposites, highlighting their potential for future biomedical applications with a critical analysis of the challenges and limitations of these nanocomposites in terms of their synthesis, characterization, biocompatibility, and applicability.
Collapse
Affiliation(s)
| | - Catalina Biglione
- Advanced Porous Materials
Unit, IMDEA Energy Institute, Móstoles, 28935 Madrid, Spain
| | - Patricia Horcajada
- Advanced Porous Materials
Unit, IMDEA Energy Institute, Móstoles, 28935 Madrid, Spain
| |
Collapse
|
20
|
Jeevananthan V, Senadi GC, Muthu K, Arumugam A, Shanmugan S. Construction of Indium(III)-Organic Framework Based on a Flexible Cyclotriphosphazene-Derived Hexacarboxylate as a Reusable Green Catalyst for the Synthesis of Bioactive Aza-Heterocycles. Inorg Chem 2024; 63:5446-5463. [PMID: 38456408 DOI: 10.1021/acs.inorgchem.3c04117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The constant demand for eco-friendly methods of synthesizing complex organic compounds inspired researchers to design and develop modern, highly efficient heterogeneous catalytic systems. Herein, In-HCPCP metal-organic framework (SRMIST-1), a heterogeneous Lewis acid catalyst containing less toxic indium and eco-friendly robust cyclotriphosphazene and exhibiting notable chemical and thermal stability, durable catalytic activity, and exceptional reusability was produced through the reaction between indium(III) nitrate hydrate and hexakis(4-carboxylatophenoxy)-cyclotriphosphazene. In the SRMIST-1 structure, secondary building units {InO7} are assembled by a connection of η2- and η1-carboxylic oxo atoms from different HCPCP ligands, forming a three-dimensional network. The occurrence of regularly distributed In(III) sites in SRMIST-1 confers superior reactivity on the catalyst toward the synthesis of 2,3-dihydroquinazolin-4(1H)-ones and 3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxides by the cyclization reaction of 2-aminobenzamides and 2-aminobenzenesulphonamides with aldehydes under optimized reaction conditions, respectively. The notable features of this method include broad functional group compatibility, low catalyst loading (1-5 mol %), mild reaction conditions, easy workup procedures, good to excellent reaction yields, ethanol as a green solvent, reusability of the catalyst (five cycles), and economic attractiveness, which is mainly due to sustainability of SRMIST-1 as a reusable green catalyst. Our findings demonstrate that the highly reactive and reusable green catalyst finds widespread applications in medicinal chemistry.
Collapse
Affiliation(s)
- Velusamy Jeevananthan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Gopal Chandru Senadi
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Kesavan Muthu
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ajithkumar Arumugam
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Swaminathan Shanmugan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
21
|
Ren L, Sun Y, Zhang J, Nie L, Shavandi A, Yunusov KE, Aharodnikau UE, Solomevich SO, Jiang G. Red blood cell membrane-coated functionalized Cu-doped metal organic framework nanoformulations as a biomimetic platform for improved chemo-/chemodynamic/photothermal synergistic therapy. Int J Pharm 2024; 652:123811. [PMID: 38237709 DOI: 10.1016/j.ijpharm.2024.123811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
Nanoformulations for combining chemotherapy, chemodynamic therapy, and photothermal therapy have enormous potential in tumor treatment. Coating nanoformulations with cell membranes endows them with homologous cellular mimicry, enabling nanoformulations to acquire new functions and properties, including homologous targeting and long circulation in vivo, and can enhance internalization by homologous cancer cells. Herein, we fused multifunctional biomimetic nanoformulations based on Cu-doped zeolitic imidazolate framework-8 (ZIF-8). Hydroxycamptothecin (HCPT), a clinical anti-tumor drug, was encapsulated into ZIF-8, which was subsequently coated with polydopamine (PDA) and red blood cell membrane. The as-fabricated biomimetic nanoformulations showed an enhanced cell uptake in vitro and the potential to prolong blood circulation in vivo, producing effective synergistic chemotherapy, chemodynamic therapy, and photothermal therapy under the 808 nm laser irradiation. Together, the biomimetic nanoformulations showed a prolonged blood circulation and evasion of immune recognition in vivo to provide a bio-inspired strategy which may have the potential for the multi-synergistic therapy of breast cancer.
Collapse
Affiliation(s)
- Luping Ren
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou 310018, China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou Zhejiang, 310018, China.
| | - Junhao Zhang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou 310018, China
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO10 BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Khaydar E Yunusov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, Tashkent, 100128, Uzbekistan
| | - Uladzislau E Aharodnikau
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, 220030, Belarus
| | - Sergey O Solomevich
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, 220030, Belarus
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou 310018, China.
| |
Collapse
|
22
|
Ghosh A, Ghosh A, Bhattacharyya A, Mitra R, Das BB, Bhaumik A. Mitochondrial topoisomerase 1 targeted anticancer therapy using irinotecan encapsulated mesoporous MIL-101(Fe) synthesized via a vapour assisted method. Dalton Trans 2024; 53:3010-3019. [PMID: 38265230 DOI: 10.1039/d3dt03654e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Mitochondrial topisomerase 1 (Top1mt) is critical for mtDNA replication, transcription, and energy production. Here, we investigate the carrier-mediated targeted delivery of the anticancer drug irinotecan into the mitochondria to selectively trap Top1mt covalent complexes (Top1mtcc) and its role in anticancer therapeutics. We have designed a biocompatible mesoporous metal-organic framework (MOF) material, namely MIL-101(Fe), as the drug delivery carrier that selectively localizes inside mitochondria. In contrast to the traditional way of synthesising MOFs, here we have employed a vapour-assisted solvothermal method for the synthesis of MIL-101(Fe) using terephthalic acid as the organic linker and Fe(III) as the metal source. The advantage of this method is that it recycles the excess solvent (DMF) and reduces the amount of washing solvent. We demonstrate that MIL-101(Fe)-encapsulated irinotecan (MIL-Iri) was selectively targeted towards the mitochondria to poison Top1mtcc in a dose-dependent manner and was achieved at a low nanomolar drug concentration. We provide evidence that Top1mtcc generated by MIL-Iri leads to mtDNA damage in human colon and breast cancer cells and plays a significant role in cellular toxicity. Altogether, this study provides evidence for a new and effective strategy in anticancer chemotherapy.
Collapse
Affiliation(s)
- Anirban Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Arijit Ghosh
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032, India.
| | - Arpan Bhattacharyya
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032, India.
| | - Riddhi Mitra
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Benu Brata Das
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032, India.
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| |
Collapse
|
23
|
Beglau THY, Fetzer MNA, Boldog I, Heinen T, Suta M, Janiak C, Yücesan G. Exceptionally Stable And Super-Efficient Electrocatalysts Derived From Semiconducting Metal Phosphonate Frameworks. Chemistry 2024; 30:e202302765. [PMID: 37713258 DOI: 10.1002/chem.202302765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Two new isostructural semiconducting metal-phosphonate frameworks are reported. Co2 [1,4-NDPA] and Zn2 [1,4-NDPA] (1,4-NDPA4- is 1,4-naphthalenediphosphonate) have optical bandgaps of 1.7 eV and 2.5 eV, respectively. The electrocatalyst derived from Co2 [1,4-NPDA] as a precatalyst generated a low overpotential of 374 mV in the oxygen evolution reaction (OER) with a Tafel slope of 43 mV dec-1 at a current density of 10 mA cm-2 in alkaline electrolyte (1 mol L-1 KOH), which is indicative of remarkably superior reaction kinetics. Benchmarking of the OER of Co2 [1,4-NPDA] material as a precatalyst coupled with nickel foam (NF) showed exceptional long-term stability at a current density of 50 mA cm-2 for water splitting compared to the state-of-the-art Pt/C/RuO2 @NF after 30 h in 1 mol L-1 KOH. In order to further understand the OER mechanism, the transformation of Co2 [1,4-NPDA] into its electrocatalytically active species was investigated.
Collapse
Affiliation(s)
- Thi Hai Yen Beglau
- Institute of Inorganic and Structural Chemistry, Heinrich Heine Universität Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany
| | - Marcus N A Fetzer
- Institute of Inorganic and Structural Chemistry, Heinrich Heine Universität Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany
| | - Istvan Boldog
- Institute of Inorganic and Structural Chemistry, Heinrich Heine Universität Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany
| | - Tobias Heinen
- Institute of Inorganic and Structural Chemistry, Heinrich Heine Universität Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany
| | - Markus Suta
- Inorganic Photoactive Materials, Institute for Inorganic Chemistry and Structural Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Christoph Janiak
- Institute of Inorganic and Structural Chemistry, Heinrich Heine Universität Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany
| | - Gündoğ Yücesan
- Institute of Inorganic and Structural Chemistry, Heinrich Heine Universität Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany
| |
Collapse
|
24
|
Binaeian E, Nabipour H, Ahmadi S, Rohani S. The green synthesis and applications of biological metal-organic frameworks for targeted drug delivery and tumor treatments. J Mater Chem B 2023; 11:11426-11459. [PMID: 38047399 DOI: 10.1039/d3tb01959d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Biological metal-organic frameworks (bio-MOFs) constitute a growing subclass of MOFs composed of metals and bio-ligands derived from biology, such as nucleobases, peptides, saccharides, and amino acids. Bio-ligands are more abundant than other traditional organic ligands, providing multiple coordination sites for MOFs. However, bio-MOFs are typically prepared using hazardous or harmful solvents or reagents, as well as laborious processes that do not conform to environmentally friendly standards. To improve biocompatibility and biosafety, eco-friendly synthesis and functionalization techniques should be employed with mild conditions and safer materials, aiming to reduce or avoid the use of toxic and hazardous chemical agents. Recently, bio-MOF applications have gained importance in some research areas, including imaging, tumor therapy, and targeted drug delivery, owing to their flexibility, low steric hindrances, low toxicity, remarkable biocompatibility, surface property refining, and degradability. This has led to an exponential increase in research on these materials. This paper provides a comprehensive review of updated strategies for the synthesis of environmentally friendly bio-MOFs, as well as an examination of the current progress and accomplishments in green-synthesized bio-MOFs for drug delivery aims and tumor treatments. In conclusion, we consider the challenges of applying bio-MOFs for biomedical applications and clarify the possible research orientation that can lead to highly efficient therapeutic outcomes.
Collapse
Affiliation(s)
- Ehsan Binaeian
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Hafezeh Nabipour
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Soroush Ahmadi
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Sohrab Rohani
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| |
Collapse
|
25
|
Jabbar A, Rehman K, Jabri T, Kanwal T, Perveen S, Rashid MA, Kazi M, Ahmad Khan S, Saifullah S, Shah MR. Improving curcumin bactericidal potential against multi-drug resistant bacteria via its loading in polydopamine coated zinc-based metal-organic frameworks. Drug Deliv 2023; 30:2159587. [PMID: 36718806 PMCID: PMC9891165 DOI: 10.1080/10717544.2022.2159587] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Multi-drug resistant (MDR) bactearial strains have posed serious health issues, thus leading to a significant increase in mortality, morbidity, and the expensive treatment of infections. Metal-organic frameworks (MOFs), comprising metal ions and a variety of organic ligands, have been employed as an effective drug deliveryy vehicle due to their low toxicity, biodegradability, higher structural integrity and diverse surface functionalities. Polydopamine (PDA) is a versatile biocompatible polymer with several interesting properties, including the ability to adhere to biological surfaces. As a result, modifying drug delivery vehicles with PDA has the potential to improve their antimicrobial properties. This work describes the preparation of PDA-coated Zn-MOFs for improving curcumin's antibacterial properties against S. aureus and E. coli. Powder X-ray diffraction (P-XRD), FT-IR, scanning electron microscopy (SEM), and DLS were utilized to characterize PDA-coated Zn-MOFs. The curcumin loading and in vitro release of the prepared MOFs were also examined. Finally, the MOFs were tested for bactericidal ability against E. coli and S. aureus using an anti-bacterial assay and surface morphological analysis. Smaller size MOFs were capable of loading and releasing curcumin. The findings showed that as curcumin was encapsulated into PDA-coated MOFs, its bactericidal potential was significantly enhanced, and the findings were further supported by SEM which indicated the complete morphological distortion of the bacteria after treatment with PDA-Cur-Zn-MOFs. These studies clearly indicate that the PDA-Cur-Zn-MOFs developed in this study are extremely promising for long-term release of drugs to treat a wide range of microbial infections.
Collapse
Affiliation(s)
- Abdul Jabbar
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Khadija Rehman
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Tooba Jabri
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Tasmina Kanwal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Samina Perveen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Md Abdur Rashid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha, Saudi Arabia,Pharmacy Discipline, Faculty of Health, School of Clinical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia,Md Abdur Rashid Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha62529, Saudi Arabia; Pharmacy Discipline, Faculty of Health, School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD4000, Australia
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saeed Ahmad Khan
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan,Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Salim Saifullah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan,Pakistan Forest Institute, Peshawar, Pakistan
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan,CONTACT Muhammad Raza Shah International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, 74200Karachi, Pakistan
| |
Collapse
|
26
|
Lin Z, Liao D, Jiang C, Nezamzadeh-Ejhieh A, Zheng M, Yuan H, Liu J, Song H, Lu C. Current status and prospects of MIL-based MOF materials for biomedicine applications. RSC Med Chem 2023; 14:1914-1933. [PMID: 37859709 PMCID: PMC10583815 DOI: 10.1039/d3md00397c] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/30/2023] [Indexed: 10/21/2023] Open
Abstract
This article mainly reviews the biomedicine applications of two metal-organic frameworks (MOFs), MIL-100(Fe) and MIL-101(Fe). These MOFs have advantages such as high specific surface area, adjustable pore size, and chemical stability, which make them widely used in drug delivery systems. The article first introduces the properties of these two materials and then discusses their applications in drug transport, antibacterial therapy, and cancer treatment. In cancer treatment, drug delivery systems based on MIL-100(Fe) and MIL-101(Fe) have made significant progress in chemotherapy (CT), chemodynamic therapy (CDT), photothermal therapy (PTT), photodynamic therapy (PDT), immunotherapy (IT), nano-enzyme therapy, and related combined therapy. Overall, these MIL-100(Fe) and MIL-101(Fe) materials have tremendous potential and diverse applications in the field of biomedicine.
Collapse
Affiliation(s)
- Zengqin Lin
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Donghui Liao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Chenyi Jiang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | | | - Minbin Zheng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Hui Yuan
- Department of Gastroenterology, Huizhou Municipal Central Hospital Huizhou Guangdong 516001 China
| | - Jianqiang Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Hailiang Song
- Department of General Surgery, Dalang Hospital Dongguan 523770 China
| | - Chengyu Lu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| |
Collapse
|
27
|
Kai M, Wang S, Gao W, Zhang L. Designs of metal-organic framework nanoparticles for protein delivery. J Control Release 2023; 361:178-190. [PMID: 37532146 DOI: 10.1016/j.jconrel.2023.07.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Recently, there has been high interest in developing metal-organic framework (MOF) nanoparticles (NPs) for delivering therapeutic proteins, propelled mainly by the unique hierarchical porous structures of MOFs for protein encapsulation. Novel design strategies have emerged for broad therapeutic applications and clinical translations, leading to multifunctional MOF-NPs with improved biointerfacing capabilities and higher potency. This review summarizes recent MOF-NP designs specifically for protein delivery. The summary focuses on four design categories, including environment-responsive MOF-NPs for on-demand protein delivery, cell membrane-coated MOF-NPs for biomimetic protein delivery, cascade reaction-incorporated MOF-NPs for combinatorial protein delivery, and composite MOF-NPs for intelligent protein delivery. The major challenges and opportunities in using MOF-NPs for protein delivery are also discussed. Overall, this review will promote designs of MOF-NPs with unique properties to address unmet medical needs.
Collapse
Affiliation(s)
- Mingxuan Kai
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Shuyan Wang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
28
|
García-García A, Rojas S, Rodríguez-Diéguez A. Therapy and diagnosis of Alzheimer's disease: from discrete metal complexes to metal-organic frameworks. J Mater Chem B 2023; 11:7024-7040. [PMID: 37435638 DOI: 10.1039/d3tb00427a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder affecting 44 million people worldwide. Although many issues (pathogenesis, genetics, clinical features, and pathological aspects) are still unknown, this disease is characterized by noticeable hallmarks such as the formation of β-amyloid plaques, hyperphosphorylation of tau proteins, the overproduction of reactive oxygen species, and the reduction of acetylcholine levels. There is still no cure for AD and the current treatments are aimed at regulating the cholinesterase levels, attenuating symptoms temporarily rather than preventing the AD progression. In this context, coordination compounds are regarded as a promissing tool in AD treatment and/or diagnosis. Coordination compounds (discrete or polymeric) possess several features that make them an interesting option for developing new drugs for AD (good biocompatibility, porosity, synergetic effects of ligand-metal, fluorescence, particle size, homogeneity, monodispersity, etc.). This review discusses the recent progress in the development of novel discrete metal complexes and metal-organic frameworks (MOFs) for the treatment, diagnosis and theragnosis of AD. These advanced therapies for AD treatment are organized according to the target: Aβ peptides, hyperphosphorylated tau proteins, synaptic dysfunction, and mitochondrial failure with subsequent oxidative stress.
Collapse
Affiliation(s)
- Amalia García-García
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur & Av. San Claudio, Col. San Manuel, 72570 Puebla, Mexico
| | - Sara Rojas
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| | - Antonio Rodríguez-Diéguez
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| |
Collapse
|
29
|
Qin J, Guo N, Yang J, Chen Y. Recent Advances of Metal-Polyphenol Coordination Polymers for Biomedical Applications. BIOSENSORS 2023; 13:776. [PMID: 37622862 PMCID: PMC10452320 DOI: 10.3390/bios13080776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023]
Abstract
Nanomedicine has provided cutting-edge technologies and innovative methods for modern biomedical research, offering unprecedented opportunities to tackle crucial biomedical issues. Nanomaterials with unique structures and properties can integrate multiple functions to achieve more precise diagnosis and treatment, making up for the shortcomings of traditional treatment methods. Among them, metal-polyphenol coordination polymers (MPCPs), composed of metal ions and phenolic ligands, are considered as ideal nanoplatforms for disease diagnosis and treatment. Recently, MPCPs have been extensively investigated in the field of biomedicine due to their facile synthesis, adjustable structures, and excellent biocompatibility, as well as pH-responsiveness. In this review, the classification of various MPCPs and their fabrication strategies are firstly summarized. Then, their significant achievements in the biomedical field such as biosensing, drug delivery, bioimaging, tumor therapy, and antibacterial applications are highlighted. Finally, the main limitations and outlooks regarding MPCPs are discussed.
Collapse
Affiliation(s)
- Jing Qin
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, China; (N.G.); (J.Y.); (Y.C.)
| | | | | | | |
Collapse
|
30
|
Jiang X, Zhao Y, Sun S, Xiang Y, Yan J, Wang J, Pei R. Research development of porphyrin-based metal-organic frameworks: targeting modalities and cancer therapeutic applications. J Mater Chem B 2023. [PMID: 37305964 DOI: 10.1039/d3tb00632h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Porphyrins are naturally occurring organic molecules that have attracted widespread attention for their potential in the field of biomedical research. Porphyrin-based metal-organic frameworks (MOFs) that utilize porphyrin molecules as organic ligands have gained attention from researchers due to their excellent results as photosensitizers in tumor photodynamic therapy (PDT). Additionally, MOFs hold significant promise and potential for other tumor therapeutic approaches due to their tunable size and pore size, excellent porosity, and ultra-high specific surface area. Active delivery of nanomaterials via targeted molecules for tumor therapy has demonstrated greater accumulation, lower drug doses, higher therapeutic efficacy, and reduced side effects relative to passive targeting through the enhanced permeation and retention effect (EPR). This paper presents a comprehensive review of the targeting methods employed by porphyrin-based MOFs in tumor targeting therapy over the past few years. It further discusses the applications of porphyrin-based MOFs for targeted cancer therapy through various therapeutic methods. The objective of this paper is to provide a valuable reference and source of ideas for targeted therapy using porphyrin-based MOF materials and to inspire further exploration of their potential in the field of cancer therapy.
Collapse
Affiliation(s)
- Xiang Jiang
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yuewu Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Shengkai Sun
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Ying Xiang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jincong Yan
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jine Wang
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
- Jiangxi Institute of Nanotechnology, Nanchang, 330200, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
31
|
Duan F, Jia Q, Liang G, Wang M, Zhu L, McHugh KJ, Jing L, Du M, Zhang Z. Schottky Junction Nanozyme Based on Mn-Bridged Co-Phthalocyanines and Ti 3C 2T x Nanosheets Boosts Integrative Type I and II Photosensitization for Multimodal Cancer Therapy. ACS NANO 2023. [PMID: 37276377 DOI: 10.1021/acsnano.2c12270] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cancer phototheranostics have the potential for significantly improving the therapeutic effectiveness, as it can accurately diagnose and treat cancer. However, the current phototheranostic platforms leave much to be desired and are often limited by tumor hypoxia. Herein, a Schottky junction nanozyme has been established between a manganese-bridged cobalt-phthalocyanines complex and Ti3C2Tx MXene nanosheets (CoPc-Mn/Ti3C2Tx), which can serve as an integrative type I and II photosensitizer for enhancing cancer therapeutic efficacy via a photoacoustic imaging-guided multimodal chemodynamic/photothermal/photodynamic therapy strategy under near-infrared (808 nm) light irradiation. The Schottky junction not only possessed a narrow-bandgap, enhanced electron-hole separation ability and exhibited a potent redox potential but also enabled improved H2O2 and O2 supplying performances in vitro. Accordingly, the AS1411 aptamer-immobilized CoPc-Mn/Ti3C2Tx nanozyme illustrated high accuracy and excellent anticancer efficiency through a multimodal therapy strategy in in vitro and in vivo experiments. This work presents a valuable method for designing and constructing a multifunctional nanocatalytic medicine platform for synergistic cancer therapy of solid tumors.
Collapse
Affiliation(s)
- Fenghe Duan
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Qiaojuan Jia
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Gaolei Liang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Mengfei Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Lei Zhu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Kevin J McHugh
- Departments of Bioengineering and Chemistry, Rice University, Houston, Texas 77005, United States
| | - Lihong Jing
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Miao Du
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
32
|
Liang Y, Cai Z, Tang Y, Su C, Xie L, Li Y, Liang X. H 2O 2/O 2 self-supply and Ca 2+ overloading MOF-based nanoplatform for cascade-amplified chemodynamic and photodynamic therapy. Front Bioeng Biotechnol 2023; 11:1196839. [PMID: 37292097 PMCID: PMC10245387 DOI: 10.3389/fbioe.2023.1196839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/05/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction: Reactive oxygen species (ROS)-mediated therapies have typically been considered as noninvasive tumor treatments owing to their high selectivity and efficiency. However, the harsh tumor microenvironment severely impairs their efficiency. Methods: Herein, the biodegradable Cu-doped zeolitic imidazolate framework-8 (ZIF-8) was synthesized for loading photosensitizer Chlorin e6 (Ce6) and CaO2 nanoparticles, followed by surface decoration by hyaluronic acid (HA), obtaining HA/CaO2-Ce6@Cu-ZIF nano platform. Results and Discussion: Once HA/CaO2-Ce6@Cu-ZIF targets tumor sites, the degradation of Ce6 and CaO2 release from the HA/CaO2-Ce6@Cu-ZIF in response to the acid environment, while the Cu2+ active sites on Cu-ZIF are exposed. The released CaO2 decompose to generate hydrogen peroxide (H2O2) and oxygen (O2), which alleviate the insufficiency of intracellular H2O2 and hypoxia in tumor microenvironment (TME), effectively enhancing the production of hydroxyl radical (•OH) and singlet oxygen (1O2) in Cu2+-mediated chemodynamic therapy (CDT) and Ce6-induced photodynamic therapy (PDT), respectively. Importantly, Ca2+ originating from CaO2 could further enhance oxidative stress and result in mitochondrial dysfunction induced by Ca2+ overloading. Conclusion: Thus, the H2O2/O2 self-supplying and Ca2+ overloading ZIF-based nanoplatform for cascade-amplified CDT/PDT synergistic strategy is promising for highly efficient anticancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Li
- *Correspondence: Yan Li, ; Xinqiang Liang,
| | | |
Collapse
|
33
|
Leite JP, Figueira F, Mendes RF, Almeida Paz FA, Gales L. Metal-Organic Frameworks as Sensors for Human Amyloid Diseases. ACS Sens 2023; 8:1033-1053. [PMID: 36892002 PMCID: PMC10043940 DOI: 10.1021/acssensors.2c02741] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Metal-organic frameworks (MOFs) are versatile compounds with emergent applications in the fabrication of biosensors for amyloid diseases. They hold great potential in biospecimen protection and unprecedented probing capabilities for optical and redox receptors. In this Review, we summarize the main methodologies employed in the fabrication of MOF-based sensors for amyloid diseases and collect all available data in the literature related to their performance (detection range, limit of detection, recovery, time of analysis, among other parameters). Nowadays, MOF sensors have evolved to a point where they can, in some cases, outperform technologies employed in the detection of several amyloid biomarkers (amyloid β peptide, α-synuclein, insulin, procalcitonin, and prolactin) present in biological fluids, such as cerebrospinal fluid and blood. A special emphasis has been given by researchers on Alzheimer's disease monitoring to the detriment of other amyloidosis that are underexploited despite their societal relevance (e.g., Parkinson's disease). There are still important obstacles to overcome in order to selectively detect the various peptide isoforms and soluble amyloid species associated with Alzheimer's disease. Furthermore, MOF contrast agents for imaging peptide soluble oligomers in living humans are also scarce (if not nonexistent), and action in this direction is unquestionably required to clarify the contentious link between the amyloidogenic species and the disease, guiding research toward the most promising therapeutic strategies.
Collapse
Affiliation(s)
- José P Leite
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Flávio Figueira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo F Mendes
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipe A Almeida Paz
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luís Gales
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
34
|
Murty R, Bera MK, Walton IM, Whetzel C, Prausnitz MR, Walton KS. Interrogating Encapsulated Protein Structure within Metal-Organic Frameworks at Elevated Temperature. J Am Chem Soc 2023; 145:7323-7330. [PMID: 36961883 PMCID: PMC10080685 DOI: 10.1021/jacs.2c13525] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Encapsulating biomacromolecules within metal-organic frameworks (MOFs) can confer thermostability to entrapped guests. It has been hypothesized that the confinement of guest molecules within a rigid MOF scaffold results in heightened stability of the guests, but no direct evidence of this mechanism has been shown. Here, we present a novel analytical method using small-angle X-ray scattering (SAXS) to solve the structure of bovine serum albumin (BSA) while encapsulated within two zeolitic imidazolate frameworks (ZIF-67 and ZIF-8). Our approach comprises subtracting the scaled SAXS spectrum of the ZIF from that of the biocomposite BSA@ZIF to determine the radius of gyration of encapsulated BSA through Guinier, Kratky, and pair distance distribution function analyses. While native BSA exposed to 70 °C became denatured, in situ SAXS analysis showed that encapsulated BSA retained its size and folded state at 70 °C when encapsulated within a ZIF scaffold, suggesting that entrapment within MOF cavities inhibited protein unfolding and thus denaturation. This method of SAXS analysis not only provides insight into biomolecular stabilization in MOFs but may also offer a new approach to study the structure of other conformationally labile molecules in rigid matrices.
Collapse
Affiliation(s)
- Rohan Murty
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mrinal K Bera
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ian M Walton
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Christina Whetzel
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Krista S Walton
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
35
|
Cedrún-Morales M, Ceballos M, Polo E, Del Pino P, Pelaz B. Nanosized metal-organic frameworks as unique platforms for bioapplications. Chem Commun (Camb) 2023; 59:2869-2887. [PMID: 36757184 PMCID: PMC9990148 DOI: 10.1039/d2cc05851k] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 02/10/2023]
Abstract
Metal-organic frameworks (MOFs) are extremely versatile materials, which serve to create platforms with exceptional porosity and specific reactivities. The production of MOFs at the nanoscale (NMOFs) offers the possibility of creating innovative materials for bioapplications as long as they maintain the properties of their larger counterparts. Due to their inherent chemical versatility, synthetic methods to produce them at the nanoscale can be combined with inorganic nanoparticles (NPs) to create nanocomposites (NCs) with one-of-a-kind features. These systems can be remotely controlled and can catalyze abiotic reactions in living cells, which have the potential to stimulate further research on these nanocomposites as tools for advanced therapies.
Collapse
Affiliation(s)
- Manuela Cedrún-Morales
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Manuel Ceballos
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Ester Polo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Del Pino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Beatriz Pelaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
36
|
Post-synthetic modification of dual-porous UMCM-1-NH2 with palladacycle complex as an effective heterogeneous catalyst in Suzuki and Heck coupling reactions. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
37
|
Antiadherent AgBDC Metal-Organic Framework Coating for Escherichia coli Biofilm Inhibition. Pharmaceutics 2023; 15:pharmaceutics15010301. [PMID: 36678928 PMCID: PMC9866433 DOI: 10.3390/pharmaceutics15010301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Surface microbial colonization and its potential biofilm formation are currently a major unsolved problem, causing almost 75% of human infectious diseases. Pathogenic biofilms are capable of surviving high antibiotic doses, resulting in inefficient treatments and, subsequently, raised infection prevalence rates. Antibacterial coatings have become a promising strategy against the biofilm formation in biomedical devices due to their biocidal activity without compromising the bulk material. Here, we propose for the first time a silver-based metal-organic framework (MOF; here denoted AgBDC) showing original antifouling properties able to suppress not only the initial bacterial adhesion, but also the potential surface contamination. Firstly, the AgBDC stability (colloidal, structural and chemical) was confirmed under bacteria culture conditions by using agar diffusion and colony counting assays, evidencing its biocide effect against the challenging E. coli, one of the main representative indicators of Gram-negative resistance bacteria. Then, this material was shaped as homogeneous spin-coated AgBDC thin film, investigating its antifouling and biocide features using a combination of complementary procedures such as colony counting, optical density or confocal scanning microscopy, which allowed to visualize for the first time the biofilm impact generated by MOFs via a specific fluorochrome, calcofluor.
Collapse
|
38
|
Ge X, Jiang F, Wang M, Chen M, Li Y, Phipps J, Cai J, Xie J, Ong J, Dubovoy V, Masters JG, Pan L, Ma S. Naringin@Metal-Organic Framework as a Multifunctional Bioplatform. ACS APPLIED MATERIALS & INTERFACES 2023; 15:677-683. [PMID: 36562661 DOI: 10.1021/acsami.2c19904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Naringin, a natural product, can be used as a therapeutic agent due to its low systemic toxicity and negligible adverse effect. However, due to its hydrophobic nature and thereby low solubility, high-dose treatment is required when used for human therapy. Herein, we demonstrate the employment of a metal-organic framework (MOF) as a nontoxic loading carrier to encapsulate naringin, and the afforded nairngin@MOF composite can serve as a multifunctional bioplatform capable of treating Gram-positive bacteria and certain cancers by slowly and progressively releasing the encapsulated naringin as well as improving and modulating immune system functions through synergy between naringin and the MOF.
Collapse
Affiliation(s)
- Xueying Ge
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, Texas 76201, United States
| | - Fangchao Jiang
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Minghui Wang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Meng Chen
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Yiming Li
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Joshua Phipps
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, Texas 76201, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Jin Xie
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Jane Ong
- Colgate Palmolive Co, 909 River Road, Piscataway, New Jersey 08855, United States
| | - Viktor Dubovoy
- Colgate Palmolive Co, 909 River Road, Piscataway, New Jersey 08855, United States
| | - James G Masters
- Colgate Palmolive Co, 909 River Road, Piscataway, New Jersey 08855, United States
| | - Long Pan
- Colgate Palmolive Co, 909 River Road, Piscataway, New Jersey 08855, United States
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, Texas 76201, United States
| |
Collapse
|
39
|
Antibacterial and antiviral applications of MOFs. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Darroudi M, Nazari SE, Asgharzadeh F, Khalili-Tanha N, Khalili-Tanha G, Dehghani T, Karimzadeh M, Maftooh M, Fern GA, Avan A, Rezayi M, Khazaei M. Fabrication and application of cisplatin-loaded mesoporous magnetic nanobiocomposite: a novel approach to smart cervical cancer chemotherapy. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AbstractThere are significant challenges in developing drug carriers for therapeutic perspective. We have investigated a novel nanocarrier system, based on combining functionalized magnetic nanocomposite with Metal–Organic Frameworks (MOFs). Magnetic nanoparticles modified using biocompatible copolymers may be suitable for delivering hydrophobic drugs, such as cisplatin. Furthermore, compared to polymeric nanocarriers, nanocomposite constructed from zeolitic imidazolate framework-8 (ZIF-8) have demonstrated better drug loading capacity, as well as excellent pH-triggered drug release. Cisplatin-encapsulated Fe3O4@SiO2-ZIF-8@N-Chit-FA has been evaluated to determine the antitumor effects of free cisplatin enhancement in cervical cancer cells. In order to increase the stability of the proposed nanocarrier in aqueous solutions, in addition to the density of functional groups, a nano-chitosan layer was coated on top of the magnetic nanocomposite. It was then added with cisplatin onto the surface of Fe3O4@SiO2-ZIF-8@N-Chit-FA to deliver anticancer treatment that could be targeted using a magnetic field. A mouse isograft model of TC1 cells was used to evaluate the in vivo tumor growth inhibition. In tumor-bearing mice, Fe3O4@SiO2-ZIF-8@N-Chit-FA-cisplatin was injected intraperitoneally, and the targeted delivery was amplified by an external magnet (10 mm by 10 mm, surface field strength 0.4 T) fixed over the tumor site. Based on in vivo results, cisplatin-Loaded Mesoporous Magnetic Nanobiocomposite inhibited the growth of cervical tumors (P < 0.001) through the induction of tumor necrosis (P < 0.05) when compared to cisplatin alone. With the application of an external magnetic field, the drug was demonstrated to be able to induce its effects on specific target areas. In summary, Fe3O4 @ SiO2-ZIF-8 @ N-Chit-FA nanocomposites have the potential to be implemented in targeted nanomedicine to deliver bio-functional molecules.
Collapse
|
41
|
Cai X, Bao X, Wu Y. Metal-Organic Frameworks as Intelligent Drug Nanocarriers for Cancer Therapy. Pharmaceutics 2022; 14:2641. [PMID: 36559134 PMCID: PMC9781098 DOI: 10.3390/pharmaceutics14122641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Metal-organic frameworks (MOFs) are crystalline porous materials with periodic network structures formed by self-assembly of metal ions and organic ligands. Attributed to their tunable composition and pore size, ultrahigh surface area (1000-7000 m2/g) and pore volume (1.04-4.40 cm3/g), easy surface modification, appropriate physiological stability, etc., MOFs have been widely used in biomedical applications in the last two decades, especially for the delivery of bioactive agents. In the initial stage, MOFs were widely used to load small molecule drugs with ultra-high doses. Whereafter, more recent work has focused on the load of biomacromolecules, such as nucleic acids and proteins. Over the past years, we have devoted extensive effort to investigate the function of MOF materials for bioactive agent delivery. MOFs can be used not only as an intelligent nanocarrier to deliver or protect bioactive agents but also as an activator for their release or activation in response to the different microenvironments. Altogether, this review details the current progress of MOF materials for bioactive agent delivery and looks into their future development.
Collapse
Affiliation(s)
- Xuechao Cai
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaogang Bao
- Department of Orthopedic Surgery, The Spine Surgical Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Yelin Wu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
42
|
Rojas S, García-García A, Hidalgo T, Rosales M, Ruiz-Camino D, Salcedo-Abraira P, Montes-Andrés H, Choquesillo-Lazarte D, Rosal R, Horcajada P, Rodríguez-Diéguez A. Antibacterial Activity of Two Zn-MOFs Containing a Tricarboxylate Linker. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4139. [PMID: 36500760 PMCID: PMC9736432 DOI: 10.3390/nano12234139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) can be used as reservoirs of metal ions with relevant antibacterial effects. Here, two novel Zn-based MOFs with the formulas [Zn4(μ4-O)(μ-FA)L2] (GR-MOF-8) and [Zn4(μ4-O)L2(H2O)] (GR-MOF-9) (H3L: 5-((4-carboxyphenyl)ethynyl) in isophthalic acid and FA (formate anion) were solvothermally synthetized and fully characterized. The antibacterial activity of GR-MOF-8 and 9 was investigated against Staphylococcus aureus (SA) and Escherichia Coli (EC) by the agar diffusion method. Both bacteria are among the most relevant human and animal pathogens, causing a wide variety of infections, and are often related with the development of antimicrobial resistances. While both Zn-based materials exhibited antibacterial activity against both strains, GR-MOF-8 showed the highest inhibitory action, likely due to a more progressive Zn release under the tested experimental conditions. This is particularly evidenced in the inhibition of SA, with an increasing effect of GR-MOF-8 with time, which is of great significance to ensure the disappearance of the microorganism.
Collapse
Affiliation(s)
- Sara Rojas
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
| | - Amalia García-García
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
| | - Tania Hidalgo
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935 Móstoles, Spain
| | - María Rosales
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
| | - Daniel Ruiz-Camino
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935 Móstoles, Spain
| | - Pablo Salcedo-Abraira
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935 Móstoles, Spain
| | - Helena Montes-Andrés
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
| | | | - Roberto Rosal
- Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935 Móstoles, Spain
| | - Antonio Rodríguez-Diéguez
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
43
|
Bunzen H, Jirák D. Recent Advances in Metal-Organic Frameworks for Applications in Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50445-50462. [PMID: 36239348 PMCID: PMC10749454 DOI: 10.1021/acsami.2c10272] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Diagnostics is an important part of medical practice. The information required for diagnosis is typically collected by performing diagnostic tests, some of which include imaging. Magnetic resonance imaging (MRI) is one of the most widely used and effective imaging techniques. To improve the sensitivity and specificity of MRI, contrast agents are used. In this review, the usage of metal-organic frameworks (MOFs) and composite materials based on them as contrast agents for MRI is discussed. MOFs are crystalline porous coordination polymers. Due to their huge design variety and high density of metal ions, they have been studied as a highly promising class of materials for developing MRI contrast agents. This review highlights the most important studies and focuses on the progress of the field over the last five years. The materials are classified based on their design and structural properties into three groups: MRI-active MOFs, composite materials based on MOFs, and MRI-active compounds loaded in MOFs. Moreover, an overview of MOF-based materials for heteronuclear MRI including 129Xe and 19F MRI is given.
Collapse
Affiliation(s)
- Hana Bunzen
- Chair
of Solid State and Materials Chemistry, Institute of Physics, University of Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Daniel Jirák
- Department
of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Vídeňská1958/9, 140 21 Prague 4, Czech Republic
| |
Collapse
|
44
|
Demir Duman F, Monaco A, Foulkes R, Becer CR, Forgan RS. Glycopolymer-Functionalized MOF-808 Nanoparticles as a Cancer-Targeted Dual Drug Delivery System for Carboplatin and Floxuridine. ACS APPLIED NANO MATERIALS 2022; 5:13862-13873. [PMID: 36338327 PMCID: PMC9623548 DOI: 10.1021/acsanm.2c01632] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Codelivery of chemotherapeutics via nanomaterials has attracted much attention over the last decades due to improved drug delivery to tumor tissues, decreased systemic effects, and increased therapeutic efficacies. High porosities, large pore volumes and surface areas, and tunable structures have positioned metal-organic frameworks (MOFs) as promising drug delivery systems (DDSs). In particular, nanoscale Zr-linked MOFs such as MOF-808 offer notable advantages for biomedical applications such as high porosity, good stability, and biocompatibility. In this study, we report efficient dual drug delivery of floxuridine (FUDR) and carboplatin (CARB) loaded in MOF-808 nanoparticles to cancer cells. The nanoparticles were further functionalized by a poly(acrylic acid-mannose acrylamide) (PAAMAM) glycopolymer coating to obtain a highly selective DDS in cancer cells and enhance the therapeutic efficacy of chemotherapy. While MOF-808 was found to enhance the individual therapeutic effects of FUDR and CARB toward cancerous cells, combining FUDR and CARB was seen to cause a synergistic effect, further enhancing the cytotoxicity of the free drugs. Enhancement of CARB loading and therefore cytotoxicity of the CARB-loaded MOFs could be induced through a modified activation protocol, while coating of MOF-808 with the PAAMAM glycopolymer increased the uptake of the nanoparticles in cancer cells used in the study and offered a particularly significant selective drug delivery with high cytotoxicity in HepG2 human hepatocellular carcinoma cells. These results show how the enhancement of cytotoxicity is possible through both nanovector delivery and synergistic treatment, and that MOF-808 is a viable candidate for future drug delivery studies.
Collapse
Affiliation(s)
- Fatma Demir Duman
- WestCHEM,
School of Chemistry, University of Glasgow,
University Avenue, Glasgow G12 8QQ, U.K.
| | - Alessandra Monaco
- Department
of Chemistry, University of Warwick, CV4 7AL Coventry, U.K.
| | - Rachel Foulkes
- WestCHEM,
School of Chemistry, University of Glasgow,
University Avenue, Glasgow G12 8QQ, U.K.
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7AL Coventry, U.K.
| | - Ross S. Forgan
- WestCHEM,
School of Chemistry, University of Glasgow,
University Avenue, Glasgow G12 8QQ, U.K.
- E-mail:
| |
Collapse
|
45
|
Daniel M, Mathew G, Anpo M, Neppolian B. MOF based electrochemical sensors for the detection of physiologically relevant biomolecules: An overview. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214627] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Tan X, Liao D, Rao C, Zhou L, Tan Z, Pan Y, Singh A, Kumar A, Liu J, Li B. Recent advances in nano-architectonics of metal-organic frameworks for chemodynamic therapy. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123352] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Lelouche SNK, Biglione C, Horcajada P. Advances in plasmonic-based MOF composites, their bio-applications and perspectives in this field. Expert Opin Drug Deliv 2022; 19:1417-1434. [PMID: 36176048 DOI: 10.1080/17425247.2022.2130245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Nanomaterials have been used for bio-applications since the late 20st century. In an attempt to tailor and optimize their properties, and by extension their efficiency, composites have attracted considerable attention. In this regard, recent studies on plasmonic nanoparticles and metal-organic framework (NP@MOF) composites suggested these materials show great promise in this field. AREAS COVERED This review focused on the more recent scientific advances in the synthetic strategies to optimize plasmonic MOF nanocomposites currently available, as well as their bio-application, particularly as biosensors and therapy. EXPERT OPINION Plasmonic MOF nanocomposites have shown great potential as they combine the properties of both materials with proven efficiency in bio-application. On the one hand, nanoMOFs have proven their potential particularly as drug nanocarriers, owing to their exceptional porosity and tunability. On the other hand, plasmonic nanoparticles have been an asset for imaging and phototherapy. Different strategies have been reported to develop these nanocomposites, mainly including core-shell, encapsulation, and in situ reduction. In addition, advanced composite structures should be considered, such as mixed metal nanoparticles, hollow structures or the combination of several approaches. Specifically, plasmonic MOF nanocomposites prove to be attractive stimuli responsive drug delivery systems, phototherapeutic agents as well as highly sensitive biosensors.
Collapse
Affiliation(s)
- Sorraya N K Lelouche
- Advanced Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Catalina Biglione
- Advanced Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| |
Collapse
|
48
|
Tai T, Sha F, Wang X, Wang X, Ma K, Kirlikovali KO, Su S, Islamoglu T, Kato S, Farha OK. Leveraging Isothermal Titration Calorimetry to Explore Structure–Property Relationships of Protein Immobilization in Metal–Organic Frameworks. Angew Chem Int Ed Engl 2022; 61:e202209110. [DOI: 10.1002/anie.202209110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Tzu‐Yi Tai
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Fanrui Sha
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Xiaoliang Wang
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Kent O. Kirlikovali
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Shengyi Su
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Satoshi Kato
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
49
|
Tai TY, Sha F, Wang X, Wang X, Ma K, Kirlikovali KO, Su S, Islamoglu T, Kato S, Farha OK. Leveraging Isothermal Titration Calorimetry to Explore Structure‐Property Relationships of Protein Immobilization in Metal‐Organic Frameworks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tzu-Yi Tai
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Fanrui Sha
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Xiaoliang Wang
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Xingjie Wang
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Kaikai Ma
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Kent O. Kirlikovali
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Shengyi Su
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Timur Islamoglu
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Satoshi Kato
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Omar K Farha
- Northwestern University Chemistry 2145 sheridan rd 60208 Evanston UNITED STATES
| |
Collapse
|
50
|
Xia QQ, Wang XH, Yu JL, Xue ZY, Chai J, Wu MX, Liu X. Tunable fluorescence emission based on multi-layered MOF-on-MOF. Dalton Trans 2022; 51:9397-9403. [PMID: 35674199 DOI: 10.1039/d2dt00714b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Luminescent metal-organic frameworks (MOFs) have garnered considerable attention in various fields. Herein, we proposed a hierarchical confinement strategy based on MOF-on-MOF to tune luminescence emission ranging from blue to red including white light in a flexible way. The easily available ZIF-8 MOF was used as a host for the confinement of two kinds of size-matching dyes (perylene and rhodamine B) to obtain a layered ZIF-8@dye@ZIF-8@dye via in situ encapsulation and seed-mediated synthesis. ZIF-8@dye@ZIF-8@dye materials with different fluorescence emission in dispersed and solid states were both obtained by tuning the initial encapsulation concentration of dye and changing the structure of the inner and outer ZIF-8@dye layers. To our delight, ZIF-8@0.125perylene@ZIF-8@25RhB with white light emission in the dispersed state was obtained; meanwhile, ZIF-8@0.125perylene + 25RhB and mechanically mixed ZIF-8@0.125perylene + ZIF-8@25RhB could not realize white light emission under the same conditions, indicating that the proposed hierarchical confinement strategy facilitated white light regulation. Similarly, the emission of ZIF-8@dye@ZIF-8@dye in the solid state has also been investigated; ZIF-8@perylene@ZIF-8@3RhB with white light emission was obtained, while white light emission could not be achieved in ZIF-8@perylene + 3RhB and ZIF-8@perylene + ZIF-8@3RhB, which further indicated the importance of the hierarchical confinement strategy based on MOF-on-MOF. The proposed hierarchical confinement strategy may also inspire the development of other functional optical MOF materials.
Collapse
Affiliation(s)
- Qing-Qing Xia
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China.
| | - Xing-Huo Wang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China.
| | - Jia-Lin Yu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China.
| | - Zhi-Yuan Xue
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China.
| | - Juan Chai
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| | - Ming-Xue Wu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China.
| | - Xiaomin Liu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China.
| |
Collapse
|