1
|
Wang XR, Xie LX, Yang YL, Li ZF, Li G. High proton conduction in a series of three-dimensional lanthanide(III)-organic frameworks constructed by 2,5-dihydroxyterephthalic acid. J Colloid Interface Sci 2025; 694:137743. [PMID: 40315560 DOI: 10.1016/j.jcis.2025.137743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
In designing and preparing new proton-conductive materials, using cheap and easily available raw materials to efficiently prepare metal-organic frameworks (MOFs) with high stability and excellent proton conductivity is still a huge challenge. Herein, six lanthanide(III)-MOFs, {[Ln2(DHBDC)3(DMF)4](DMF)2}n [(Ln III = Pr III (1), Nd III (2), Sm III (3), Eu III (4), Gd III (5), Tb III (6))] with high stability were solvothermally synthesized utilizing 2,5-dihydroxy-1,4-benzenedicarboxylic acid (H4-DHBDC) as a bridging ligand. These isostructural MOFs all possess a three-dimensional framework and a dense H-bond network formed by the carbonyl groups in the framework, the non-coordinated hydroxyl groups, and the coordinated and free DMF molecules, which ensure efficient proton conduction. Their good water and thermal stability were verified using various characterization techniques (powder X-ray diffraction, thermogravimetric analysis, and infrared). Then, their proton conductivity was investigated in detail concerning temperature and relative humidity (RH). At 100 °C and 97 % RH, their optimum proton conductivity can reach up to 0.96 × 10-2, 0.67 × 10-2, 0.85 × 10-2, 1.03 × 10-2, 0.53 × 10-2, and 0.93 × 10-2 S/cm for 1-6, respectively. Finally, their proton-transport processes were thoroughly examined through detailed structural analyses, adsorption-property determinations, and activation energy values. Notably, these MOF materials have the advantages of easy preparation and relatively low cost, which paves the way for their practical applications.
Collapse
Affiliation(s)
- Xiao-Ran Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001 Henan, PR China
| | - Li-Xia Xie
- College of Science, Henan Agricultural University, Zhengzhou 450002 Henan, PR China
| | - Yi-Lin Yang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001 Henan, PR China
| | - Zi-Feng Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001 Henan, PR China.
| | - Gang Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001 Henan, PR China.
| |
Collapse
|
2
|
Zhao B, Wang C, Huang J, Zhang J. Wood-Derived Ionic Conductive Cellulose for Transparent and Flexible Methamphetamine Analog Sensors. ACS OMEGA 2025; 10:17770-17776. [PMID: 40352531 PMCID: PMC12059897 DOI: 10.1021/acsomega.5c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/24/2025] [Accepted: 04/11/2025] [Indexed: 05/14/2025]
Abstract
Developing covert, convenient, rapid, and cost-effective detection methods for trace amounts of addictive drugs poses a challenging task. Herein, wood-derived ionic conductive cellulose (WICC) is presented as a sensitive material, where active metal cations serve as charge carriers and effective adsorption/binding sites for a typical analog of the addictive drug N-methylphenethylamine (MPEA). The addition of Cu2+ ions improves the sensing performance of WICC, and the simple drop-coating process will facilitate the fabrication of the device array and the integration with flexible substrates. Taking advantage of WICC with excellent ion conductivity, high transparency, and mechanical flexibility, transparent and flexible sensors based on WICC are demonstrated, enabling real-time detection of MPEA. Notably, the high transparency makes WICC particularly suitable for covert detection. More significantly, the WICC sensors exhibit outstanding selectivity, facilitating an ultralow theoretical detection limit (∼12 nL). This work provides a promising pathway toward the next-stage construction of invisible chemical sensors for addictive drug detection.
Collapse
Affiliation(s)
- Brian Zhao
- Scarsdale
High School, Scarsdale, New York 10583, United States
| | - Chenghao Wang
- School
of Materials Science and Engineering, Tongji
University, Shanghai 201804, China
| | - Jia Huang
- School
of Materials Science and Engineering, Tongji
University, Shanghai 201804, China
| | - Junyao Zhang
- School
of Materials Science and Engineering, Tongji
University, Shanghai 201804, China
| |
Collapse
|
3
|
Lu Y, Fang YG, Chen Y, Xue H, Mao J, Guan B, Liu J, Li J, Li L, Zhu C, Fang WH, Russell TP, Wang J. Sandwiching of MOF nanoparticles between graphene oxide nanosheets among ice grains. Nat Commun 2025; 16:3397. [PMID: 40210641 PMCID: PMC11986133 DOI: 10.1038/s41467-025-56949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/04/2025] [Indexed: 04/12/2025] Open
Abstract
Current strategies to tailor the formation of nanoparticle clusters require specificity and directionality built into the surface functionalization of the nanoparticles by involved chemistries that can alter their properties. Here, we describe a non-disruptive approach to place nanomaterials of different shapes between nanosheets, i.e., nano-sandwiches, absent any pre-modification of the components. We demonstrate this with metal-organic frameworks (MOFs) and silicon oxide (SiO2) nanoparticles sandwiched between graphene oxide (GO) nanosheets, MOF-GO and SiO2-GO, respectively. For the MOF-GO, the MOF shows significantly enhanced conductivity and retains its original crystallinity, even after one-year exposure to aqueous acid/base solutions, where the GO effectively encapsulates the MOF, shielding it from polar molecules and ions. The MOF-GOs are shown to effectively capture CO2 from a high-humidity flue gas while fully maintaining their crystallinities and porosities. Similar behavior is found for other MOFs, including water-sensitive HKUST-1 and MOF-5, promoting the use of MOFs in practical applications. The nanoparticle sandwich strategy provides opportunities for materials science in the design of nanoparticle clusters consisting of different materials and shapes with predetermined spatial arrangements.
Collapse
Affiliation(s)
- Youhua Lu
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ye-Guang Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, China
| | - Yang Chen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, China
| | - Han Xue
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Junqiang Mao
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Bo Guan
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Liu
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinping Li
- College of Chemistry and Chemical Engineering, State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, China
| | - Libo Li
- College of Chemistry and Chemical Engineering, State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, China.
| | - Chongqin Zhu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, China.
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, China
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, MA, USA.
| | - Jianjun Wang
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
4
|
Liu C, Zhou XC, Li G, Su J, Tang L, Liu Q, Han X, Lv S, Mu Z, Sun Y, Yuan S, Gao F, Zuo JL, Li S, Ding M. Ligand spin immobilization in metal-organic frameworks enables high-performance chemispintronic detection of radical gas molecules. SCIENCE ADVANCES 2025; 11:eadq3554. [PMID: 40173239 PMCID: PMC11964000 DOI: 10.1126/sciadv.adq3554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025]
Abstract
The precise quantification of gaseous radicals in exhaled breath, such as fractional exhaled nitric oxide, serves as an invaluable noninvasive clinical diagnosis particularly in discerning various respiratory disorders. To date, the development of high-performance nitric oxide sensors compatible to modern electronic devices remains fundamentally challenging. We report that metal-organic frameworks (MOFs) with ligand spin immobilization demonstrate superior chemispintronic sensitivity and selectivity toward nitric oxide. Tetrathiafulvalene radical cations (TTF·+) within the MOF lattice considerably enhance the nitric oxide recognition via spin exchange interactions, leading to a five-order of magnitude reduction in the limit of detection (LOD), as compared to volatile organic compounds (VOCs) via carrier-doping mechanism. Record-low LOD of 0.12 parts per billion was achieved in M-TTF-spin (M = cobalt, zinc, and cadmium) MOFs, which also demonstrates exceptional selectivity over typical nitrogen oxides (NOx) and VOCs. This work opens up a distinct sensing platform for radical-like analytes through strategic design of spin-immobilized molecular functional motifs toward the spintronic device configurations.
Collapse
Affiliation(s)
- Cheng Liu
- Key Laboratory of Mesoscopic Chemistry, State Key Laboratory of Coordination Chemistry, State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiao-Cheng Zhou
- Key Laboratory of Mesoscopic Chemistry, State Key Laboratory of Coordination Chemistry, State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Guoao Li
- Key Laboratory of Mesoscopic Chemistry, State Key Laboratory of Coordination Chemistry, State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jian Su
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Lingyu Tang
- Key Laboratory of Mesoscopic Chemistry, State Key Laboratory of Coordination Chemistry, State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Qinglong Liu
- School of Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiao Han
- Key Laboratory of Mesoscopic Chemistry, State Key Laboratory of Coordination Chemistry, State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Sen Lv
- Key Laboratory of Mesoscopic Chemistry, State Key Laboratory of Coordination Chemistry, State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhangyan Mu
- Key Laboratory of Mesoscopic Chemistry, State Key Laboratory of Coordination Chemistry, State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yamei Sun
- Key Laboratory of Mesoscopic Chemistry, State Key Laboratory of Coordination Chemistry, State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shuai Yuan
- Key Laboratory of Mesoscopic Chemistry, State Key Laboratory of Coordination Chemistry, State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Fei Gao
- School of Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jing-Lin Zuo
- Key Laboratory of Mesoscopic Chemistry, State Key Laboratory of Coordination Chemistry, State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry, State Key Laboratory of Coordination Chemistry, State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Mengning Ding
- Key Laboratory of Mesoscopic Chemistry, State Key Laboratory of Coordination Chemistry, State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
5
|
Ambrogi EK, Mirica KA. Electronic Chemical Sensors Based on Conductive Framework Materials. Anal Chem 2025; 97:4253-4274. [PMID: 39960215 DOI: 10.1021/acs.analchem.4c02522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The development of portable electronic chemical sensors is key to solving a number of challenges, including monitoring environmental and industrial hazards, as well as understanding and improving human health. Framework materials possess several desirable characteristics that make them well-suited for electroanalytical applications, including high surface area, atomically precise distribution of active sites, and tunable properties that can be leveraged through modular reticular chemistry. This review highlights the emergence of conductive framework materials as active components in electrically transduced chemical sensors, including the development of new materials for the detection of a wide variety of analytes in both gas and liquid phase. The efforts to gain fundamental understanding of the molecular interactions and sensing mechanisms between framework materials and analytes are described, along with applications of these materials on portable and flexible substrates. The review suggests areas for further study, including the study of material-analyte interactions at the molecular level and the continued development of scalable methods for the integration of framework materials into low-power, portable sensing devices.
Collapse
Affiliation(s)
- Emma K Ambrogi
- Department of Chemistry, Burke Laboratory, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| |
Collapse
|
6
|
Bashiri R, Lawson PS, He S, Nanayakkara S, Kim K, Barnett NS, Stavila V, El Gabaly F, Lee J, Ayars E, So MC. Discovery of Dual Ion-Electron Conductivity of Metal-Organic Frameworks via Machine Learning-Guided Experimentation. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2025; 37:1143-1153. [PMID: 39958389 PMCID: PMC11823006 DOI: 10.1021/acs.chemmater.4c02974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/18/2025]
Abstract
Identifying conductive metal-organic frameworks (MOFs) with a coupled ion-electron behavior from a vast array of existing MOFs offers a cost-effective strategy to tap into their potential in energy storage applications. This study employs classification and regression machine learning (ML) to rapidly screen the CoREMOF database and experimental methodologies to validate ML predictions. This process revealed the structure-property relationships contributing to MOFs' bulk ion-electron conductivity. Among the 60 conductive compounds predicted, only two p-type conductive MOFs, [Cu3(μ3-OH) (μ3-C4H2N2O2)3(H3O)]·2C2H5OH·4H2O (1) and NH4[Cu3(μ3-OH)(μ3-C4H2N2O2)3]·8H2O or (2) (C4H2N2O = 1H-pyrazole-4-carboxylic acid), were validated for their coupled electron-ion behavior. MOFs utilize earth-abundant copper and pyrazoles as ligands, demonstrating significant potential following thorough electrochemical characterization. Further analysis confirmed the critical role of strong σ-donating, π-accepting, and redox-active ligands in promoting electron mobility. In-depth structural investigations revealed that the presence of the O-Cu-N chain significantly influences conductivity, outperforming MOFs with only Cu-N or Cu-O bonds. Additionally, this study highlights how higher ionic conductivity is correlated with the ion mobility through linkers in 1 or the presence of ammonium ions in 2. These structure-property relationships offer valuable insights for future research in using ML coupled with experimentation to design MOFs containing earth-abundant reagents for ion-electron conductivity without employing a host-guest MOF strategy.
Collapse
Affiliation(s)
- Robabeh Bashiri
- Department
of Chemistry and Biochemistry, California
State University, Chico, California 95929-0210, United States
| | - Preston S. Lawson
- Department
of Chemistry and Biochemistry, California
State University, Chico, California 95929-0210, United States
| | - Stewart He
- Lawrence
Livermore National Laboratory, Livermore, California 95064-9234, United States
| | - Sadisha Nanayakkara
- Department
of Chemistry and Biochemistry, California
State University, Chico, California 95929-0210, United States
| | - Kwangnam Kim
- Lawrence
Livermore National Laboratory, Livermore, California 95064-9234, United States
| | - Nicholas S. Barnett
- Department
of Physics, University of Illinois, Chicago, Illinois 60607, United States
| | - Vitalie Stavila
- Sandia
National
Laboratories, Livermore, California 94551, United States
| | - Farid El Gabaly
- Sandia
National
Laboratories, Livermore, California 94551, United States
| | - Jaydie Lee
- College of
Natural Sciences, California State University, Chico, California 95929-0210, United
States
| | - Eric Ayars
- Department
of Physics, California State University, Chico, California 95929-0210, United
States
| | - Monica C. So
- Department
of Chemistry and Biochemistry, California
State University, Chico, California 95929-0210, United States
| |
Collapse
|
7
|
Zhang H, Li L, Wang C, Liu Q, Chen WT, Gao S, Hu G. Recent advances in designable nanomaterial-based electrochemical sensors for environmental heavy-metal detection. NANOSCALE 2025; 17:2386-2407. [PMID: 39844644 DOI: 10.1039/d4nr04108a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The detection of heavy metals serves as a defence measure to safeguard the well-being of the human body and the ecological environment. Electrochemical sensors (ECS) offer significant benefits such as exceptional sensitivity, excellent selectivity, affordability, and portability. This review begins by elucidating the ECS principles and delves into recent advancements in the field of heavy metal detection, including the use of metal nanoparticles, carbon-based nanomaterials, and organic framework materials. Advanced materials enhance the sensitivity and selectivity of ECS, allowing it to efficiently and rapidly identify metallic contaminants in food and the environment. Finally, the future development of ECS and challenges encountered in the development process are discussed, and testing materials for the detection of heavy-metal ions for human health and environmental safety are comprehensively considered. This study is likely to attract the interest of environmentalists and those who prioritise human health.
Collapse
Affiliation(s)
- Hao Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China.
| | - Lijun Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China.
| | - Chunqiong Wang
- Yunnan Tobacco Quality Supervision and Test Station, Kunming 650106, China.
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wen-Tong Chen
- Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an 343009, China
| | - Sanshuang Gao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| |
Collapse
|
8
|
Liu RL, Ren HM, Zhao S, Lin D, Cheng K, Li G, Wang DY. Inherent Ultrahigh Proton Conductivity of Two Highly Stable COOH-Functionalized Hafnium-Based Metal-Organic Frameworks. Inorg Chem 2025; 64:1183-1192. [PMID: 39757465 DOI: 10.1021/acs.inorgchem.4c04935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Although there has been some recent interest in the proton conductivity (σ) of highly stable carboxyl metal-organic frameworks (MOFs) made of tetravalent metal ions, given their potential applications in fuel cells and electrochemical sensing, research on MOFs constructed by hafnium(IV) ions needs to be expanded significantly. Based on this, we used two common and easily prepared phenylpoly(carboxylic acid) ligands, 1,2,4-phenyltricarboxylic acid and 1,2,4,5-phenyltetracarboxylic acid, to react with hafnium tetrachloride, respectively, creating two porous hafnium(IV)-based MOFs, UiO-66-COOH-Hf (1) and UiO-66-(COOH)2-Hf (2), with the same structure as UiO-66-Hf but with different numbers of free carboxylic groups. A series of stability assays revealed that the two MOFs had excellent structural rigidity, including thermal and water stability. More crucially, alternating current impedance experiments demonstrate that the σ of the two MOFs varies positively with humidity and temperature, reaching up to 10-3 S·cm-1 (1: 2.83 × 10-3 S·cm-1 and 2: 4.35 × 10-3 S·cm-1) under the right conditions (98% relative humidity and 100 °C). The latter roughly doubles the proton conductivity of the former, which is due to the difference in the number of free carboxyl groups, as confirmed by the structural analysis and proton conduction mechanism investigation. The high intrinsic σ of the two MOFs lays a solid foundation for their future application and affords new inspiration for developing high-performance proton-conductive materials.
Collapse
Affiliation(s)
- Rui-Lan Liu
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, Henan, P. R. China
| | - Hui-Min Ren
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shuhui Zhao
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, Henan, P. R. China
| | - Debo Lin
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, Henan, P. R. China
| | - Kaipeng Cheng
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, Henan, P. R. China
| | - Gang Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Dan-Yang Wang
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, Henan, P. R. China
| |
Collapse
|
9
|
Jing Z, Su W, Fan Y. Increasing electrochemical carbon dioxide reduction to methane via a novel copper-based conductive metal organic framework. J Colloid Interface Sci 2025; 678:251-260. [PMID: 39298976 DOI: 10.1016/j.jcis.2024.09.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
The development of a new system for the electrochemical carbon dioxide reduction reaction (ECO2RR) to methane (CH4) is challenging, and novel conductive metal organic frameworks (c-MOFs) for efficient ECO2RR to CH4 are critical to this system. Here, we report a novel c-MOF, copper-pyromellitic dianhydride-2-methylbenzimidazole (Cu-PD-2-MBI), in which the introduction of electron-withdrawing 2-methylbenzimidazole (2-MBI) into the copper-pyromellitic dianhydride (Cu-PD) interlayer elevated the valence of copper (Cu) ions, which improved the ECO2RR performance of Cu-PD-2-MBI. Cu-PD-2-MBI was tested in a flow cell, and the Faradaic efficiency of CH4 reached 73.7 %, with a corresponding partial current density of -428.3 mA·cm-2 at -1.3 V, which was higher than those of most reported Cu-based catalysts. Further exploration via theoretical calculations indicated that the intercalated 2-MBI in Cu-PD-2-MBI induced a shift in the d-band center in the Cu sites from -2.63 to -1.86 eV and reduced the formation energy of the *COOH and *CHO intermediates in the process of generating CH4 compared with those of the reference Cu-PD catalyst.
Collapse
Affiliation(s)
- Zhongyu Jing
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China
| | - Wenli Su
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China
| | - Yu Fan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China.
| |
Collapse
|
10
|
Wang XZ, Chen Y, Cao XM, Li RY, Chen WY, Li Y, Guo DS. Ligand-Insertion Strategy for Constructing 2D Conjugated Metal-Organic Framework with Large Pore Size for Electrochemical Analytics. Angew Chem Int Ed Engl 2025; 64:e202413115. [PMID: 39317992 DOI: 10.1002/anie.202413115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have shown great promise in various electrochemical applications due to their intrinsic electrical conductivity. A large pore aperture is a favorable feature of this type of material because it facilitates the mass transport of chemical species and electrolytes. In this work, we propose a ligand insertion strategy in which a linear ligand is inserted into the linkage between multitopic ligands, extending the metal ion into a linear unit of -M-ligand-M-, for the construction of 2D c-MOFs with large pore apertures, utilizing only small ligands. As a proof-of-concept trial of this strategy, a 2D c-MOF with mesopores of 3.2 nm was synthesized using commercially available ligands hexahydrotriphenylene and 2,5-dihydroxybenzoquinone. The facilitation of the diffusion of redox species by the large pore size of this MOF was demonstrated through a series of probes. With this feature, it showed superior performance in the electrochemical analysis of a variety of biological species.
Collapse
Affiliation(s)
- Xiu-Zhen Wang
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yue Chen
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xiao-Min Cao
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Ru-Yi Li
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Wei-Yan Chen
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yue Li
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Dong-Sheng Guo
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
11
|
Hao X, Song W, Wang Y, Qin J, Jiang Z. Recent Advancements in Electrochemical Sensors Based on MOFs and Their Derivatives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408624. [PMID: 39676419 DOI: 10.1002/smll.202408624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Metal-organic frameworks (MOFs) are composed of metal nodes and organic linkers that can self-assemble into an infinite network. The high porosity and large surface area of MOFs facilitate the effective enrichment and mass transfer of analytes, which can enhance the signal response and improve the sensitivity of electrochemical sensors. Additionally, MOFs and their derivatives possess the properties of unsaturated metal sites and tunable structures, collectively demonstrating their potential for electrochemical sensing. This paper summarizes the preparation methods, structural properties, and applications of MOFs and their derivatives in electrochemical sensing, emphasizing sensors' selectivity and sensitivity from the perspectives of direct and indirect detection. Additionally, it also explores future directions and prospects for MOFs in electrochemical sensing, with the aim of overcoming current limitations through innovative approaches.
Collapse
Affiliation(s)
- Xi Hao
- School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Weihua Song
- Xuanwu Hospital Capital Medical University, Beijing, 100037, China
| | - Yinghui Wang
- The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462005, China
| | - Jieling Qin
- School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhenqi Jiang
- School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
12
|
Wu X, Tian X, Zhang W, Peng X, Zhou S, Buenconsejo PJS, Li Y, Xiao S, Tao J, Zhang M, Yuan H. Solution-Processable MOF-on-MOF System Constructed via Template-Assisted Growth for Ultratrace H 2S Detection. Angew Chem Int Ed Engl 2024; 63:e202410411. [PMID: 39187431 DOI: 10.1002/anie.202410411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
Conductive metal-organic frameworks (c-MOFs) hold promise for highly sensitive sensing systems due to their conductivity and porosity. However, the fabrication of c-MOF thin films with controllable morphology, thickness, and preferential orientation remains a formidable yet ubiquitous challenge. Herein, we propose an innovative template-assisted strategy for constructing MOF-on-MOF (Ni3(HITP)2/NUS-8 (HITP: 2,3,6,7,10,11-hexamino-tri (p-phenylene))) systems with good electrical conductivity, porosity, and solution processability. Leveraging the 2D nature and solution processability of NUS-8, we achieve the controllable self-assembly of Ni3(HITP)2 on NUS-8 nanosheets, producing solution-processable Ni3(HITP)2/NUS-8 nanosheets with a film conductivity of 1.55×10-3 S ⋅ cm-1 at room temperature. Notably, the excellent solution processability facilitates the fabrication of large-area thin films and printing of intricate patterns with good uniformity, and the Ni3(HITP)2/NUS-8-based system can monitor finger bending. Gas sensors based on Ni3(HITP)2/NUS-8 exhibit high sensitivity (LOD~6 ppb) and selectivity towards ultratrace H2S at room temperature, attributed to the coupling between Ni3(HITP)2 and NUS-8 and the redox reaction with H2S. This approach not only unlocks the potential of stacking different MOF layers in a sequence to generate functionalities that cannot be achieved by a single MOF, but also provides novel avenues for the scalable integration of MOFs in miniaturized devices with salient sensing performance.
Collapse
Affiliation(s)
- Xuanhao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xin Tian
- School of Information Science and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Wanglin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Siyuan Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Pio John S Buenconsejo
- Facility for Analysis Characterization Testing Simulation (FACTS), Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yi Li
- State Key Laboratory of Power Grid Environmental Protection (School of Electrical Engineering and Automation), Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Song Xiao
- State Key Laboratory of Power Grid Environmental Protection (School of Electrical Engineering and Automation), Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Jifang Tao
- School of Information Science and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
13
|
Manna F, Oggianu M, Auban-Senzier P, Novitchi G, Canadell E, Mercuri ML, Avarvari N. A highly conducting tetrathiafulvalene-tetracarboxylate based dysprosium(iii) 2D metal-organic framework with single molecule magnet behaviour. Chem Sci 2024; 15:19247-19263. [PMID: 39574533 PMCID: PMC11576575 DOI: 10.1039/d4sc05763e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024] Open
Abstract
The synthesis and whole characterization by a multitechnique approach of an unprecedented dysprosium(iii) 2D metal organic framework (MOF), involving the redox-active tetrathiafulvalene (TTF)-based linker TTF-tetracarboxylate (TTF-TC), are herein reported. The single-crystal X-ray structure, formulated as [Dy6(TTF-TC)5(H2O)22]·21H2O (1), reveals a complex 2D topology, with hexanuclear Dy6 clusters as secondary building units (SBUs) interconnected by five linkers, stacked almost parallel in each layer and eclipsed along the [111] direction, leading to the formation of 1D channels filled by water molecules. The mixed valence of the TTF units is confirmed by both bond distance analysis, Raman microscopy and diffuse reflectance spectroscopy, and further supported by band structure calculations, which also predict activated conductivity for this material. Thanks to efficient TTF stacking and partial oxidation, 1 shows semiconducting behavior, with, however, a record conductivity value of 1 mS cm-1 at room temperature, when compared to the previously reported TTF-based MOFs. Furthermore, temperature and magnetic field dependent ac (alternative current) magnetic susceptibility measurements demonstrate field induced slow relaxation of magnetization, accounting for two independent relaxation processes, with an energy barrier (U eff/K) of around 12 K, typical for dysprosium carboxylate complexes. The herein reported 2D Dy-MOF provides a valuable master plan for coexistence of conducting π-TTF stacks and highly anisotropic DyIII SMM properties.
Collapse
Affiliation(s)
- Fabio Manna
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari Monserrato I-09042 Italy
- University of Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX Angers F-49000 France
- INSTM Via Giuseppe Giusti, 9 Firenze 50121 Italy
| | - Mariangela Oggianu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari Monserrato I-09042 Italy
- INSTM Via Giuseppe Giusti, 9 Firenze 50121 Italy
| | - Pascale Auban-Senzier
- Université Paris-Saclay, CNRS, UMR 8502, Laboratoire de Physique des Solides Orsay 91405 France
| | - Ghenadie Novitchi
- Laboratoire National des Champs Magnétiques Intenses, UPR CNRS 3228, Université Grenoble-Alpes B.P. 166 Grenoble Cedex 9 38042 France
| | - Enric Canadell
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB Bellaterra 08193 Spain
- Royal Academy of Sciences and Arts of Barcelona, Chemistry Section La Rambla 115 Barcelona 08002 Spain
| | - Maria Laura Mercuri
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari Monserrato I-09042 Italy
- INSTM Via Giuseppe Giusti, 9 Firenze 50121 Italy
| | - Narcis Avarvari
- University of Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX Angers F-49000 France
| |
Collapse
|
14
|
Wei H, Liu J, Ni Y, Hu X, Lv X, Yang L, He G, Xu Z, Gong J, Jiang C, Feng D, Xu W. Two-Dimensional Electrically Conductive Metal-Organic Framework Boosts Synaptic Plasticity for Dynamic Image Refresh, Classification, and Efferent Neuromuscular Systems. NANO LETTERS 2024. [PMID: 39570189 DOI: 10.1021/acs.nanolett.4c04650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
We present a two-dimensional (2D) electrically conductive metal-organic framework (EC-MOF)-based artificial synapse. The intrinsic electronic conductivity and subnanometer channels of the EC-MOF facilitate efficient ion diffusion, enable a high density of active redox centers, and significantly enhance capacitance within the artificial synapse. As a result, the synapse operates at an ultralow voltage of 10 mV and exhibits a remarkably low power consumption of approximately 1 fW, along with the longest retention time recorded for two-terminal electrolyte-type artificial synapses to date. The alignment of the quantum size of the subnanometer pores in the EC-MOF with various cations allows for versatile synaptic plasticity. This capability is applied to image refresh, classification, and efferent signal transmission for controlling artificial muscles, thereby offering a methodology for achieving tunable neuromorphic properties. These findings suggest the potential application of metal-organic frameworks in artificial nervous systems for future brain-inspired computation, peripheral interfaces, and neurorobotics.
Collapse
Affiliation(s)
- Huanhuan Wei
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, PR China
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, PR China
| | - Jiaqi Liu
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, PR China
| | - Yao Ni
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, PR China
| | - Xuanxin Hu
- Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xiuliang Lv
- Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lu Yang
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, PR China
| | - Gang He
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, PR China
| | - Zhipeng Xu
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, PR China
| | - Jiangdong Gong
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, PR China
| | - Chengpeng Jiang
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, PR China
| | - Dawei Feng
- Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Wentao Xu
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, PR China
| |
Collapse
|
15
|
Luo Y, Qian Z, Cui J, Bi R, Zhang L. Highly Conductive Two-Dimensional FeTHBQ/Graphene Nanocomposite as the Cathode Material for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59056-59065. [PMID: 39432832 DOI: 10.1021/acsami.4c12719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Constructing high-performance coordination polymer (CP) cathodes for lithium-ion batteries based on the redox reactions of both high-potential transition metal ions and high-capacity organic ligands has attracted extensive attention. However, CP cathodes suffer from structural degradation, low electrical conductivity, and sluggish diffusion kinetics, resulting in poor cycling stability and inferior rate capability. Herein, the ultrafine FeTHBQ (THBQ = tetrahydroxy-1,4-benzoquinone) CP nanoparticles in situ grew on both sides of graphene nanosheets to form the uniform two-dimensional (2D) FeTHBQ/Graphene nanocomposite with a sandwich structure via a one-pot solvothermal method. The highly conductive graphene skeleton promotes the electronic conduction and structural stability for the 2D FeTHBQ/Graphene nanocomposite. Besides, compared with bulk FeTHBQ, the primary FeTHBQ nanoparticles in the FeTHBQ/Graphene nanocomposite have smaller particle sizes with larger specific surface areas. This not only shortens the Li+ diffusion distance in the FeTHBQ crystal but also benefits Li+ transfer between the electrolyte and the electrode. In the FeTHBQ/Graphene nanocomposite, the active material of FeTHBQ manifested multiple redox centers of transition metal ions (Fe3+/Fe2+) and carbonyls (C═O/C-O-) in THBQ ligands. Owing to the enhancements of structural stability, electronic conduction, and Li+ diffusion kinetics, the 2D FeTHBQ/Graphene nanocomposite presented a high lithium-ion storage capacity of 217.2 mA h g-1 at 50 mA g-1, a fast rate capability of 79.1 mA h g-1 at 5000 mA g-1, and a stable cycling performance of 87.2 mA h g-1 at 500 mA g-1 after 100 cycles. This work sheds light on the great opportunity for optimizing the electrochemical performances of CP-based functional electrode materials by combining with conductive substrates.
Collapse
Affiliation(s)
- Yuwen Luo
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhiping Qian
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jie Cui
- Analytical and Testing Centre, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Ran Bi
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
16
|
Saha R, Gómez García CJ. Extrinsically conducting MOFs: guest-promoted enhancement of electrical conductivity, thin film fabrication and applications. Chem Soc Rev 2024; 53:9490-9559. [PMID: 39171560 DOI: 10.1039/d4cs00141a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Conductive metal-organic frameworks are of current interest in chemical science because of their applications in chemiresistive sensing, electrochemical energy storage, electrocatalysis, etc. Different strategies have been employed to design conductive frameworks. In this review, we discuss the influence of different types of guest species incorporated within the pores or channels of metal-organic frameworks (MOFs) and porous coordination polymers (PCPs) to generate charge transfer pathways and modulate their electrical conductivity. We have classified dopants or guest species into three different categories: (i) metal-based dopants, (ii) molecule and molecular entities and (iii) organic conducting polymers. Different types of metal ions, metal nano-clusters and metal oxides have been used to enhance electrical conductivity in MOFs. Metal ions and metal nano-clusters depend on the hopping process for efficient charge transfer whereas metal-oxides show charge transport through the metal-oxygen pathway. Several types of molecules or molecular entities ranging from neutral TCNQ, I2, and fullerene to ionic methyl viologen, organometallic like nickelcarborane, etc. have been used. In these cases, the charge transfer process varies with the guest species. When organic conducting polymers are the guest, the charge transport occurs through the polymer chains, mostly based on extended π-conjugation. Here we provide a comprehensive and critical review of these strategies to add electrical conductivity to the, in most cases, otherwise insulating MOFs and PCPs. We point out the guest encapsulation process, the geometry and structure of the resulting host-guest complex, the host-guest interactions and the charge transport mechanism for each case. We also present the methods for thin film fabrication of conducting MOFs (both, liquid-phase and gas-phase based methods) and their most relevant applications like electrocatalysis, sensing, charge storage, photoconductivity, photocatalysis,… We end this review with the main obstacles and challenges to be faced and the appealing perspectives of these 21st century materials.
Collapse
Affiliation(s)
- Rajat Saha
- Departamento de Química Inorgánica, Universidad de Valencia, Dr Moliner 50, 46100 Burjasot (Valencia), Spain.
| | - Carlos J Gómez García
- Departamento de Química Inorgánica, Universidad de Valencia, Dr Moliner 50, 46100 Burjasot (Valencia), Spain.
| |
Collapse
|
17
|
Sumrra SH, Hassan AU, Zafar W, Chohan ZH, Alrashidi KA. Molecular Engineering for UV-Vis to NIR Absorption/Emission Bands of Pyrazine-based A-π-D- π-A Switches to Design TiO 2 Tuned Dyes: DFT Insights. J Fluoresc 2024:10.1007/s10895-024-03891-7. [PMID: 39276306 DOI: 10.1007/s10895-024-03891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/02/2024] [Indexed: 09/16/2024]
Abstract
This study investigates the tuning of the UV-Vis/NIR absorption bands of pyrazine-based A-D-A switches for designing efficient UV retardancy over TiO2 surfaces. The electronic properties and optical characteristics of seven dyes (DP1-DP7) were analyzed using computational methods. The results indicate that the dyes possessed distinct UV-Vis/NIR absorption properties. Their absorption wavelengths ranged from 389 to 477 nm, with corresponding energies ranging from 2.59 to 3.19 eV. The major contributions to the absorption were found to be the HOMO-LUMO transitions, varying from 86 to 96%. The dyes exhibited different donor (D) and acceptor (A) groups, influencing their electronic properties and absorption characteristics. The tunable electronic and optical properties of these dyes make them promising candidates for applications requiring UV protection for TiO2-based materials. The results contribute to understand the structure-property relationships in the design of UV-Vis/NIR absorbers and provide a foundation for further experimental investigations in the field of UV retardancy.
Collapse
Affiliation(s)
| | - Abrar Ul Hassan
- Department of Chemistry, Lunaan Institute of Research Technology, Tangzou, 277509, China.
| | - Wardha Zafar
- Department of Chemistry, University of Gujrat, Gujrat, Punjab, 50700, Pakistan
| | | | - Khalid Abdullah Alrashidi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
18
|
Qi T, Yuan Z, Meng F. Highly sensitive and highly selective lead ion electrochemical sensor based on zn/cu-btc-nh 2 bimetallic MOFs with nano-reticulated reinforcing microstructure. Anal Chim Acta 2024; 1318:342896. [PMID: 39067908 DOI: 10.1016/j.aca.2024.342896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/03/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Identifying ultra-trace amounts of divalent lead ions (Pb2+) with high response and selectivity, continues to be a pressing issue in identifying environmental pollutants and preventing health complications. This paper details how the in-situ electrodeposited Zn/Cu-BTC-NH2 metal-organic frameworks (MOFs) boosts Pb2+ concentration for amino adsorption and facilitates ion transfer between Cu element and Pb2+. The modified coating of the glassy carbon electrode (GCE) exhibits a unique nano-reticulated structure loaded with octahedron particles, the nano-reticulated structure ensures the structural strength of the modified electrode layer, while the loaded octahedral particles enhancing electrocatalytic activity. The ultra-trace detection of Pb2+ at concentrations below μg·L-1 is accomplished by using the square wave anodic stripping voltammetry (SWASV) method, the fabricated Zn/Cu-BTC-NH2 modified electrode signifies a detection threshold of 0.021 μg L-1 and a clearly ascending linear interval prior to the rise in Pb2+ concentration to 120 μg L-1. The reported electrochemical method for the precise identification of Pb2+ in water-based solutions offers a practical approach for modifying MOFs materials and detecting heavy metal ions.
Collapse
Affiliation(s)
- Tianyao Qi
- College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China
| | - Zhenyu Yuan
- College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Fanli Meng
- College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China; Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China; Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, China.
| |
Collapse
|
19
|
Zhang T, Xia Y, Xie YD, Du HJ, Shi ZQ, Hu HL, Zhang H, Guo ZC, Li G. Superprotonic conductivity of ketoenamine covalent-organic frameworks grafted by imidazole-based units. J Colloid Interface Sci 2024; 665:554-563. [PMID: 38552572 DOI: 10.1016/j.jcis.2024.03.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024]
Abstract
The achievement of covalent organic frameworks (COFs) with high stability and exceptional proton conductivity is of tremendous practical importance and challenge. Given this, we hope to prepare the highly stable COFs carrying CN connectors and enhance their proton conductivity via a post-modification approach. Herein, one COF, TpTta, was successfully synthesized by employing 1,3,5-triformylphloroglucinol (Tp) and 4,4',4″-(1,3,5-triazine-2,4,6-triyl)-trianiline (Tta) as starting materials, which has a β-ketoenamine structure bearing a large amount of -NH groups and intramolecular H-bonds. TpTta was then post-modified by inserting imidazole (Im) and histamine (His) molecules, yielding the corresponding COFs, Im@TpTta and His@TpTta, respectively. As a result, their proton conductivities were surveyed under changeable temperatures (30-100 °C) and relative humidities (68-98 %), revealing a degree of temperature and humidity dependence. Impressively, under identical conditions, the optimum proton conductivities of the two post-modified COFs are 1.14 × 10-2 (Im@TpTta) and 3.45 × 10-3 S/cm (His@TpTta), which are significantly greater than that of the pristine COF, TpTta (2.57 × 10-5 S/cm). Finally, their proton conduction mechanisms were hypothesized based on the computed activation energy values, water vapor adsorption values, and structural properties of these COFs. Additionally, the excellent electrochemical stability of the produced COFs was expressed, as well as the prospective application value.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China; Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Yu Xia
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Ya-Dian Xie
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Hai-Jun Du
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Zhi-Qiang Shi
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, PR China.
| | - Hai-Liang Hu
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China.
| | - Hong Zhang
- Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Zhong-Cheng Guo
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, PR China
| | - Gang Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
20
|
Yang M, Zhang Y, Zhu R, Tan J, Liu J, Zhang W, Zhou M, Meng Z. Two-Dimensional Conjugated Metal-Organic Frameworks with a Ring-in-Ring Topology and High Electrical Conductance. Angew Chem Int Ed Engl 2024; 63:e202405333. [PMID: 38623864 DOI: 10.1002/anie.202405333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Electrically conducting two-dimensional (2D) metal-organic frameworks (MOFs) have garnered significant interest due to their remarkable structural tunability and outstanding electrical properties. However, the design and synthesis of high-performance materials face challenges due to the limited availability of specific ligands and pore structures. In this study, we have employed a novel highly branched D3h symmetrical planar conjugated ligand, dodechydroxylhexabenzotrinaphthylene (DHHBTN) to fabricate a series of 2D conductive MOFs, named M-DHHBTN (M=Co, Ni, and Cu). This new family of MOFs offers two distinct types of pores, elevating the structural complexity of 2D conductive MOFs to a more advanced level. The intricate tessellation patterns of the M-DHHBTN are elucidated through comprehensive analyses involving powder X-ray diffraction, theoretical simulations, and high-resolution transmission electron microscope. Optical-pump terahertz-probe spectroscopic measurements unveiled carrier mobility in DHHBTN-based 2D MOFs spanning from 0.69 to 3.10 cm2 V-1 s-1. Among M-DHHBTN famility, Cu-DHHBTN displayed high electrical conductivity reaching 0.21 S cm-1 at 298 K with thermal activation behavior. This work leverages the "branched conjugation" of the ligand to encode heteroporosity into highly conductive 2D MOFs, underscoring the significant potential of heterogeneous double-pore structures for future applications.
Collapse
Affiliation(s)
- Mingyu Yang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Yi Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Renlong Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, P.R. China
| | - Jinxin Liu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Wei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Zheng Meng
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| |
Collapse
|
21
|
Aoki K, Matsuzawa T, Suetsugu K, Hara M, Nagano S, Nagao Y. Influence of Humidity on Layer-by-Layer Growth and Structure in Coordination Networks. Inorg Chem 2024; 63:6674-6682. [PMID: 38560782 DOI: 10.1021/acs.inorgchem.3c04526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Metal-organic frameworks (MOFs) are promising materials because of their high designability of pores and functionalities. Especially, MOF thin films and their properties have been investigated toward applications in nanodevices. Typically, MOF thin films are fabricated by using a bottom-up method such as layer-by-layer (LbL) growth in air. Because the water molecules can coordinate and be replaced with organic linkers during synthesis, humidity conditions will be expected to influence the LbL growth processes. In this study, we fabricated MOF thin films composed of Zn2+, tetrakis-(4-carboxyphenyl)-porphyrin (TCPP), and 4,4'-bipyridyl (bpy) at 10 and 40% relative humidity (RH) conditions. Then, we investigated the humidity effects on chemical compositions of TCPP and bpy, periodic structure, orientation, and surface morphology. At high RH, coordination replacement of water with the organic linkers becomes more competitive than that at low RH, resulting in a different TCPP/bpy composition ratio between the two RH conditions. Also, more frequent coordination replacements of water with the organic linkers at high RH led to the formation of phases other than that observed at low RH, loss of growth orientation, and rough surface. The findings clarified the importance of controlling the RH condition during LbL growth to obtain the desired coordination networks.
Collapse
Affiliation(s)
- Kentaro Aoki
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Toshitaka Matsuzawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Kota Suetsugu
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Mitsuo Hara
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Shusaku Nagano
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Yuki Nagao
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
22
|
Cui Y, Li D, Shao Z, Zhao Y, Geng K, Huang J, Zhang Y, Hou H. Construction of Hydration Layer for Proton Transport by Implanting the Hydrophilic Center Ag 0 in Nickel Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307964. [PMID: 38009486 DOI: 10.1002/smll.202307964] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Indexed: 11/29/2023]
Abstract
The directional arrangement of H2O molecules can effectively regulate the ordered protons transfer to improve transport efficiency, which can be controlled by the interaction between materials and H2O. Herein, a strategy to build a stable hydration layer in metal-organic framework (MOF) platforms, in which hydrophilic centers that can manipulate H2O molecules are implanted into MOF cavities is presented. The rigid grid-Ni-MOF is selected as the supporting material due to the uniformly distributed cavities and rigid structures. The Ag0 possesses potential combination ability with the hydrophilic substances, so it is introduced into the MOF as hydration layer centers. Relying on the strong interaction between Ag0 and H2O, the H2O molecules can rearrange around Ag0 in the cavity, which is intuitively verified by DFT calculation and molecular dynamics simulation. The establishment of a hydration layer in Ag@Ni-MOF regulates the chemical properties of the material and gives the material excellent proton conduction performance, with a proton conductivity of 4.86 × 10-2 S cm-1.
Collapse
Affiliation(s)
- Yang Cui
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Dongyang Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Zhichao Shao
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, Henan, 450002, China
| | - Yujie Zhao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Kangshuai Geng
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Jing Huang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Hongwei Hou
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450002, China
| |
Collapse
|
23
|
Saha R, Gupta K, Gómez García CJ. Strategies to Improve Electrical Conductivity in Metal-Organic Frameworks: A Comparative Study. CRYSTAL GROWTH & DESIGN 2024; 24:2235-2265. [PMID: 38463618 PMCID: PMC10921413 DOI: 10.1021/acs.cgd.3c01162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Metal-organic frameworks (MOFs), formed by the combination of both inorganic and organic components, have attracted special attention for their tunable porous structures, chemical and functional diversities, and enormous applications in gas storage, catalysis, sensing, etc. Recently, electronic applications of MOFs like electrocatalysis, supercapacitors, batteries, electrochemical sensing, etc., have become a major research topic in MOF chemistry. However, the low electrical conductivity of most MOFs represents a major handicap in the development of these emerging applications. To overcome these limitations, different strategies have been developed to enhance electrical conductivity of MOFs for their implementation in electronic devices. In this review, we outline all these strategies employed to increase the electronic conduction in both intrinsically (framework-modulated) and extrinsically (guests-modulated) conducting MOFs.
Collapse
Affiliation(s)
- Rajat Saha
- Departamento
de Química Inorgánica, Universidad
de Valencia, C/Dr. Moliner
50, 46100 Burjasot, Valencia, Spain
| | - Kajal Gupta
- Department
of Chemistry, Nistarini College, Purulia, 723101, WB India
| | - Carlos J. Gómez García
- Departamento
de Química Inorgánica, Universidad
de Valencia, C/Dr. Moliner
50, 46100 Burjasot, Valencia, Spain
| |
Collapse
|
24
|
Song YJ, Sang YL, Xu KY, Hu HL, Zhu QQ, Li G. Ligand-Functionalized MIL-68-type Indium(III) Metal-Organic Frameworks with Prominent Intrinsic Proton Conductivity. Inorg Chem 2024; 63:4233-4248. [PMID: 38377313 DOI: 10.1021/acs.inorgchem.3c04370] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Indium-based metal-organic frameworks (In-MOFs) have now become an attractive class of porous solids in materials science and electrochemistry due to their diverse structures and promising applications. In the field of proton conduction, to find more crystalline MOFs with splendid proton-conductive properties, herein, five three-dimensional isostructural In-MOFs, MIL-68-In or MIL-68-In-X (X = NH2, OH, Br, or NO2) using terephthalic acid (H2BDC) or functionalized terephthalic acids (H2BDC-X) as multifunctional linkages were efficiently fabricated. First, the outstanding structural stability of the five MOFs, including thermal and water stability, was verified by thermal analysis and powder X-ray diffraction. Subsequently, the H2O-mediated proton conductivities (σ) were fully assessed and compared. Notably, their σ evinced a significant positive correlation between the temperature or relative humidity (RH) and varied with the functional groups on the organic ligands. Impressively, their highest σ values are up to 10-3-10-4 S/cm (100 °C/98% RH) and change in this order: MIL-68-In-OH (1.72 × 10-3 S/cm) > MIL-68-In-NH2 (1.70 × 10-3 S/cm) > MIL-68-In-NO2 (4.47 × 10-4 S/cm) > MIL-68-In-Br (4.11 × 10-4 S/cm) > MIL-68-In (2.37 × 10-4 S/cm). Finally, the computed activation energy values under 98 or 68% RHs are assessed, and the related proton conduction mechanisms are speculated. Moreover, after electrochemical testing, these MOFs illustrate remarkable structural rigidity, laying a meritorious material foundation for future applications.
Collapse
Affiliation(s)
- Yong-Jie Song
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Ya-Li Sang
- College of Chemistry and Life Science, Chifeng University, Chifeng 024000, P. R. China
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng 024000, P. R. China
| | - Kai-Yin Xu
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Hai-Liang Hu
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, P. R. China
| | - Qian-Qian Zhu
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Gang Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
25
|
Zhuang Q, Kang LL, Zhang BY, Li ZF, Li G. Remarkable water-mediated proton conductivity of two porous zirconium(IV)/hafnium(IV) metal-organic frameworks bearing porphyrinlcarboxylate ligands. J Colloid Interface Sci 2024; 657:482-490. [PMID: 38070334 DOI: 10.1016/j.jcis.2023.12.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 01/02/2024]
Abstract
Obtaining crystalline materials with high structural stability as well as super proton conductivity is a challenging task in the field of energy and material chemistry. Therefore, two highly stable metal-organic frameworks (MOFs) with macro-ring structures and carboxylate groups, Zr-TCPP (1) and Hf-TCPP (2) assembled from low-toxicity as well as highly coordination-capable Zr(IV)/Hf(IV) cations and the multifunctional linkage, meso-tetra(4-carboxyphenyl)porphine (TCPP) have attracted our strong interest. Note that TCPP as a large-size rigid ligand with high symmetry and multiple coordination sites contributes to the formation of the two stable MOFs. Moreover, the pores with large sizes in the two MOFs favor the entry of more guest water molecules and thus result in high H2O-assisted proton conductivity. First, their distinguished structural stabilities covering water, thermal and chemical stabilities were verified by various determination approaches. Second, the dependence of the proton conductivity of the two MOFs on temperature and relative humidity (RH) is explored in depth. Impressively, MOFs 1 and 2 demonstrated the optimal proton conductivities of 4.5 × 10-4 and 0.78 × 10-3 S·cm-1 at 100 °C/98 % RH, respectively. Logically, based on the structural information, gas adsorption/desorption features, and activation energy values, their proton conduction mechanism was deduced and highlighted.
Collapse
Affiliation(s)
- Qi Zhuang
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Lu-Lu Kang
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Bao-Yue Zhang
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Zi-Feng Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, PR China.
| | - Gang Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, PR China.
| |
Collapse
|
26
|
Xing F, Xu J, Zhou Y, Yu P, Zhe M, Xiang Z, Duan X, Ritz U. Recent advances in metal-organic frameworks for stimuli-responsive drug delivery. NANOSCALE 2024; 16:4434-4483. [PMID: 38305732 DOI: 10.1039/d3nr05776c] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
After entering the human body, drugs for treating diseases, which are prone to delivery and release in an uncontrolled manner, are affected by various factors. Based on this, many researchers utilize various microenvironmental changes encountered during drug delivery to trigger drug release and have proposed stimuli-responsive drug delivery systems. In recent years, metal-organic frameworks (MOFs) have become promising stimuli-responsive agents to release the loaded therapeutic agents at the target site to achieve more precise drug delivery due to their high drug loading, excellent biocompatibility, and high stimuli-responsiveness. The MOF-based stimuli-responsive systems can respond to various stimuli under pathological conditions at the site of the lesion, releasing the loaded therapeutic agent in a controlled manner, and improving the accuracy and safety of drug delivery. Due to the changes in different physical and chemical factors in the pathological process of diseases, the construction of stimuli-responsive systems based on MOFs has become a new direction in drug delivery and controlled release. Based on the background of the rapidly increasing attention to MOFs applied in drug delivery, we aim to review various MOF-based stimuli-responsive drug delivery systems and their response mechanisms to various stimuli. In addition, the current challenges and future perspectives of MOF-based stimuli-responsive drug delivery systems are also discussed in this review.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Jiawei Xu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Germany
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhou Xiang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Xin Duan
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Department of Orthopedic Surgery, The Fifth People's Hospital of Sichuan Province, Chengdu, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
27
|
Pan TY, Wen WY, Ma W, Zheng ST, Feng ML, Huang XY. New group IIIA metal phosphate-oxalates containing dimethylammonium cations with proton conductivity. Dalton Trans 2024; 53:2318-2323. [PMID: 38205611 DOI: 10.1039/d3dt03368f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Three new group IIIA metal phosphate-oxalate (MPO) compounds, namely [(CH3)2NH2]2[M2(HPO4)2(H2PO4)2(C2O4)] (M = Al (1), Ga (2)) and [(CH3)2NH2]2[In2(HPO4)2(H2PO4)2(C2O4)]·H2O (3), have been synthesized. Their crystal structures feature an anionic layer with the sql topology net. In particular, 1 displays a proton conductivity (σ) of 9.09 × 10-3 S cm-1 at 85 °C and under 98% relative humidity, which is the highest among MPOs. This study not only endows the main group metal-based MPO family with new members, but also contributes to further understanding of the structure-directing roles of amines and provides a feasible idea for improving the proton conductivity of MPOs.
Collapse
Affiliation(s)
- Tian-Yu Pan
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Wei-Yang Wen
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Wen Ma
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, China.
| | - Shou-Tian Zheng
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Mei-Ling Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| |
Collapse
|
28
|
Shahzad U, Marwani HM, Saeed M, Asiri AM, Repon MR, Althomali RH, Rahman MM. Progress and Perspectives on Promising Covalent-Organic Frameworks (COFs) Materials for Energy Storage Capacity. CHEM REC 2024; 24:e202300285. [PMID: 37986206 DOI: 10.1002/tcr.202300285] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Indexed: 11/22/2023]
Abstract
In recent years, a new class of highly crystalline advanced permeable materials covalent-organic frameworks (COFs) have garnered a great deal of attention thanks to their remarkable properties, such as their large surface area, highly ordered pores and channels, and controllable crystalline structures. The lower physical stability and electrical conductivity, however, prevent them from being widely used in applications like photocatalytic activities and innovative energy storage and conversion devices. For this reason, many studies have focused on finding ways to improve upon these interesting materials while also minimizing their drawbacks. This review article begins with a brief introduction to the history and major milestones of COFs development before moving on to a comprehensive exploration of the various synthesis methods and recent successes and signposts of their potential applications in carbon dioxide (CO2 ) sequestration, supercapacitors (SCs), lithium-ion batteries (LIBs), and hydrogen production (H2 -energy). In conclusion, the difficulties and potential of future developing with highly efficient COFs ideas for photocatalytic as well as electrochemical energy storage applications are highlighted.
Collapse
Affiliation(s)
- Umer Shahzad
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hadi M Marwani
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohsin Saeed
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Md Reazuddin Repon
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų 56, LT-51424, Kaunas, Lithuania
- Laboratory of Plant Physiology, Nature Research Centre, Akademijos g. 2, 08412, Vilnius, Lithuania
- Department of Textile Engineering, Daffodil International University, Dhaka, 1216, Bangladesh
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir, 11991, Saudi Arabia
| | - Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
29
|
Bilal M, Singh AK, Iqbal HMN, Kim TH, Boczkaj G, Athmaneh K, Ashraf SS. Bio-mitigation of organic pollutants using horseradish peroxidase as a promising biocatalytic platform for environmental sustainability. ENVIRONMENTAL RESEARCH 2023; 239:117192. [PMID: 37748672 DOI: 10.1016/j.envres.2023.117192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
A wide array of environmental pollutants is often generated and released into the ecosystem from industrial and human activities. Antibiotics, phenolic compounds, hydroquinone, industrial dyes, and Endocrine-Disrupting Chemicals (EDCs) are prevalent pollutants in water matrices. To promote environmental sustainability and minimize the impact of these pollutants, it is essential to eliminate such contaminants. Although there are multiple methods for pollutants removal, many of them are inefficient and environmentally unfriendly. Horseradish peroxidase (HRP) has been widely explored for its ability to oxidize the aforementioned pollutants, both alone and in combination with other peroxidases, and in an immobilized way. Numerous positive attributes make HRP an excellent biocatalyst in the biodegradation of diverse environmentally hazardous pollutants. In the present review, we underlined the major advancements in the HRP for environmental research. Numerous immobilization and combinational studies have been reviewed and summarized to comprehend the degradability, fate, and biotransformation of pollutants. In addition, a possible deployment of emerging computational methodologies for improved catalysis has been highlighted, along with future outlook and concluding remarks.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233, Gdansk, Poland; Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza St., 80-233, Gdansk, Poland.
| | - Anil Kumar Singh
- Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma aGandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Tak H Kim
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233, Gdansk, Poland; Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza St., 80-233, Gdansk, Poland
| | - Khawlah Athmaneh
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Syed Salman Ashraf
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Biotechnology (BTC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Advanced Materials Chemistry Center (AMCC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
30
|
Zhang Q, Jiang S, Lv T, Peng Y, Pang H. Application of Conductive MOF in Zinc-Based Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305532. [PMID: 37382197 DOI: 10.1002/adma.202305532] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/26/2023] [Indexed: 06/30/2023]
Abstract
The use of conductive MOFs (c-MOFs) in zinc-based batteries has been a popular research direction. Zinc-based batteries are widely used with the advantages of high specific capacity and safety and stability, but they also face many problems. c-MOFs have excellent conductivity compared with other primitive MOFs, and therefore have better applications in zinc-based batteries. In this paper, the transfer mechanisms of the unique charges of c-MOFs: hop transport and band transport, respectively, are discussed and the way of electron transport is further addressed. Then, the various ways to prepare c-MOFs are introduced, among which solvothermal, interfacial synthesis, and postprocessing methods are widely used. In addition, the applications of c-MOFs are discussed in terms of their role and performance in different types of zinc-based batteries. Finally, the current problems of c-MOFs and the prospects for their future development are presented.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shu Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Tingting Lv
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu, 610106, P. R. China
| | - Yi Peng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| |
Collapse
|
31
|
Wang K, Li ZY, Peng Y, Zheng TF, Chen JL, Liu SJ, Wen HR. Highly Stable Rare Earth Metal-Organic Frameworks for Fluorescence Recognition of Folic Acid, Proton Conduction, and Magnetic Refrigeration. Inorg Chem 2023; 62:17993-18001. [PMID: 37844614 DOI: 10.1021/acs.inorgchem.3c03034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Four new isostructural rare earth metal-organic frameworks (RE-MOFs) were synthesized and full characterized, namely, {[(CH)2NH2]3[RE2(BTDBA)2(HCOO)]·5H2O·2DMF}n (H4BTDBA = (4',4'''-(benzo[c][1,2,5]thiadiazole-4,7-diyl)bis([1,1'-biphenyl]-3,5-dicarboxylic acid); RE = Eu (JXUST-34), Gd (JXUST-35), Tb (JXUST-36), and Dy (JXUST-37)). The single-crystal structures analysis shows that JXUST-34-37 are chain-based three-dimensional structures. Importantly, JXUST-34 exhibits excellent water, organic solvents, and acid-base stability, which can be used as a fluorescence sensor for folic acid and Al3+ with detection limits of 0.02 mM and 0.05 μM, respectively. The presence of free [(CH)2NH2]+ cations in the channels can engage the proton carrier during proton conduction. JXUST-34-37 display good proton conductivity, and the conductivities vary with relative humidity and temperatures, among which JXUST-37 has the highest conductivity of 9.66 × 10-3 S·cm-1 at 60 °C and 98% RH. The magnetic studies show that the -ΔSm of JXUST-35 reaches 16.13 J kg-1 K-1 at 2 K and ΔH = 7 T. JXUST-34-37 show multifunctional properties of fluorescence sensing, high proton conductivity, and magnetic refrigeration, which provides a new clue for the development of fluorescent-responsive, magnetic-refrigerant, and proton-conductive RE-MOF materials.
Collapse
Affiliation(s)
- Ke Wang
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Zhi-Yuan Li
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Yan Peng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Teng-Fei Zheng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Jing-Lin Chen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| |
Collapse
|
32
|
Yu YH, Lin XY, Teng KL, Lai WF, Hu CC, Tsai CH, Liu CP, Lee HL, Su CH, Liu YH, Lu KL, Chien SY. Synthesis of Two-Dimensional (Cu-S) n Metal-Organic Framework Nanosheets Applied as Peroxidase Mimics for Detection of Glutathione. Inorg Chem 2023; 62:17126-17135. [PMID: 37819788 PMCID: PMC10598880 DOI: 10.1021/acs.inorgchem.3c02023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Indexed: 10/13/2023]
Abstract
Facilely synthesized peroxidase-like nanozymes with high catalytic activity and stability may serve as effective biocatalysts. The present study synthesizes peroxidase-like nanozymes with multinuclear active sites using two-dimensional (2D) metal-organic framework (MOF) nanosheets and evaluates them for their practical applications. A simple method involving a one-pot bottom-up reflux reaction is developed for the mass synthesis of (Cu-S)n MOF 2D nanosheets, significantly increasing production quantity and reducing reaction time compared to traditional autoclave methods. The (Cu-S)n MOF 2D nanosheets with the unique coordination of Cu(I) stabilized in Cu-based MOFs demonstrate impressive activity in mimicking natural peroxidase. The active sites of the peroxidase-like activity of (Cu-S)n MOF 2D nanosheets were predominantly verified as Cu(I) rather than Cu(II) of other Cu-based MOFs. The cost-effective and long-term stability of (Cu-S)n MOF 2D nanosheets make them suitable for practical applications. Furthermore, the inhibition of the peroxidase-like activity of (Cu-S)n MOF nanosheets by glutathione (GSH) could provide a simple strategy for colorimetric detection of GSH against other amino acids. This work remarkably extends the utilization of (Cu-S)n MOF 2D nanosheets in biosensing, revealing the potential for 2D (Cu-S)n MOFs.
Collapse
Affiliation(s)
- Yuan-Hsiang Yu
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Xiao-Yuan Lin
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Kun-Ling Teng
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Wei-Fan Lai
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Chia-Chi Hu
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Chia-Hsuan Tsai
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Ching-Ping Liu
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Hui-Ling Lee
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Cing-Huei Su
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yen-Hsiang Liu
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Kuang-Lieh Lu
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Su-Ying Chien
- Instrumentation
Center, National Taiwan University, Taipei City 10617, Taiwan
| |
Collapse
|
33
|
Khan MS, Leong ZY, Li DS, Qiu J, Xu X, Yang HY. A mini review on metal-organic framework-based electrode materials for capacitive deionization. NANOSCALE 2023; 15:15929-15949. [PMID: 37772477 DOI: 10.1039/d3nr03993e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Capacitive deionization (CDI) is an electrochemical method of extracting ions from solution at potentials below electrolysis. It has various applications ranging from water remediation and desalination to heavy metal removal and selective resource recovery. A CDI device applies an electrical charge across two porous electrodes to attract and remove ions without producing waste products. It is generally considered environmentally friendly and promising for sustainability, yet ion removal efficiency still falls short of more established filtration methods. Commercially available activated carbon is typically used for CDI, and its ion adsorption capacity is low at approximately 20-30 mg g-1. Recently, much interest has been in the highly porous and well-structured family of materials known as metal-organic frameworks (MOFs). Most MOFs are poor conductors of electricity and cannot be directly used to make electrodes. A common workaround is to pyrolyze the MOF to convert its organic components to carbon while maintaining its underlying microstructure. However, most MOF-derived materials only retain partial microstructure after pyrolysis and cannot inherit the robust porosity of the parent MOFs. This review provides a systematic breakdown of structure-performance relationships between a MOF-derived material and its CDI performance based on recent works. This review also serves as a starting point for researchers interested in developing MOF-derived materials for CDI applications.
Collapse
Affiliation(s)
- M Shahnawaz Khan
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| | - Zhi Yi Leong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Jianbei Qiu
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Xuhui Xu
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| |
Collapse
|
34
|
Chen P, Su X, Wang C, Zhang G, Zhang T, Xu G, Chen L. Two-Dimensional Conjugated Metal-Organic Frameworks with Large Pore Apertures and High Surface Areas for NO 2 Selective Chemiresistive Sensing. Angew Chem Int Ed Engl 2023; 62:e202306224. [PMID: 37280160 DOI: 10.1002/anie.202306224] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/08/2023]
Abstract
The emergence of two-dimensional conjugated metal-organic frameworks (2D c-MOFs) with pronounced electrical properties (e.g., high conductivity) has provided a novel platform for efficient energy storage, sensing, and electrocatalysis. Nevertheless, the limited availability of suitable ligands restricts the number of available types of 2D c-MOFs, especially those with large pore apertures and high surface areas are rare. Herein, we develop two new 2D c-MOFs (HIOTP-M, M=Ni, Cu) employing a large p-π conjugated ligand of hexaamino-triphenyleno[2,3-b:6,7-b':10,11-b'']tris[1,4]benzodioxin (HAOTP). Among the reported 2D c-MOFs, HIOTP-Ni exhibits the largest pore size of 3.3 nm and one of the highest surface areas (up to 1300 m2 g-1 ). As an exemplary application, HIOTP-Ni has been used as a chemiresistive sensing material and displays high selective response (405 %) and a rapid response (1.69 min) towards 10 ppm NO2 gas. This work demonstrates significant correlation linking the pore aperture of 2D c-MOFs to their sensing performance.
Collapse
Affiliation(s)
- Pei Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, China
| | - Xi Su
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, China
| | - Chuanzhe Wang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou, Fujian, 350108, China
| | - Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, China
| | - Ting Zhang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Gang Xu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou, Fujian, 350108, China
| | - Long Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
35
|
Li BY, Xie MJ, Lu J, Wang WF, Li R, Mi JR, Wang SH, Zheng FK, Guo GC. Highly Sensitive Direct X-Ray Detector Based on Copper(II) Coordination Polymer Single Crystal with Anisotropic Charge Transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302492. [PMID: 37154205 DOI: 10.1002/smll.202302492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Anisotropic charge transport plays a pivotal role in clarifying the conductivity mechanism in direct X-ray detection to improve the detection sensitivity. However, the anisotropic photoelectric effect of semiconductive single crystal responsive to X-ray is still lacking of theoretical and experimental proof. The semiconductive coordination polymers (CPs) with designable structures, adjustable functions, and high crystallinity provide a suitable platform for exploring the anisotropic conductive mechanism. Here,the study first reveals a 1D conductive transmission path for direct X-ray detection from the perspective of structural chemistry. The semiconductive copper(II)-based CP 1 single crystal detector exhibits unique anisotropic X-ray detection performance. Along the 1D π-π stacking direction, the single crystal device (1-SC-a) shows a superior sensitivity of 2697.15 µCGyair -1 cm-2 and a low detection limit of 1.02 µGyair s-1 among CPs-based X-ray detectors. This study provides beneficial guidance and deep insight for designing high-performance CP-based X-ray detectors.
Collapse
Affiliation(s)
- Bao-Yi Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Mei-Juan Xie
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Jian Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Wen-Fei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Rong Li
- School of Materials Science & Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Jia-Rong Mi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Shuai-Hua Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Fa-Kun Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| |
Collapse
|
36
|
Zhao T, Zou M, Xiao P, Luo M, Nie S. Template-Free Synthesis and Multifunctional Application of Foam HKUST-1. Inorg Chem 2023; 62:14659-14667. [PMID: 37624582 DOI: 10.1021/acs.inorgchem.3c01923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Hierarchically porous metal-organic frameworks (HP-MOFs) have attracted a lot of attention in recent years because their hierarchical pores have critical importance in strengthening their performance, including guest diffusion kinetics, catalytic activity, and selectivity, especially with reference to large molecules. However, the preparation method for simple, controllable, and stable HP-MOFs at a micro-/meso-/macroscopic scale is still lacking. Herein, we showed several forms of HKUST-1 (HKUST = Hong Kong University of Science and Technology) by simply changing the copper source and solvent type, including original micron HKUST-1 (O-HKUST-1), half-foam HKUST-1 (HF-HKUST-1), and fully foam HKUST-1 (F-HKUST-1). Compared to O-HKUST-1, HF-HKUST-1 and F-HKUST-1 possessed an apparent hierarchically porous structure due to the high fusion of HKUST-1 nanocrystals. Especially in F-HKUST-1, all of the HKUST-1 nanocrystals were tightly integrated into each other, which formed a holistic hollow foam structure. Hence, F-HKUST-1 exhibited the highest adsorption capacity toward large molecules, including proteases, phosphotungstic acid, and organic dyes. Meanwhile, F-HKUST-1 presented the highest photocatalytic degradation capability for rhodamine B. Furthermore, F-HKUST-1, loaded with phosphotungstic acid (F-HKUST-1@PTA), which was used as a catalyst, indicated a catalytic capacity comparable to that of a homogeneous catalyst (pure phosphotungstic acid).
Collapse
Affiliation(s)
- Tian Zhao
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Minmin Zou
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Pengcheng Xiao
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Mingliang Luo
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Saiqun Nie
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
37
|
Guo Y, Wei J, Ying Y, Liu Y, Zhou W, Yu Q. Recent Progress of Crystalline Porous Frameworks for Intermediate-Temperature Proton Conduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11166-11187. [PMID: 37533296 DOI: 10.1021/acs.langmuir.3c01205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Proton exchange membranes (PEMs), especially for work under intermediate temperatures (100-200 °C), have attracted great interest because of the high CO toleration and facial water management of the corresponding proton exchange membrane fuel cells (PEMFCs). Traditional polymer PEMs faced challenges of low stability and proton carrier leaking. Crystalline porous materials, such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), are promising to overcome these issues contributed by nanometer-sized channels. Herein we summarized the recent development of MOF/COF-based intermediate-temperature proton conductors. The strategies of framework engineering and pore impregnation were introduced in detail for raising proton conductivity. The proton-conducting mechanism was described as well. This spotlight will provide new insight into the fabrication of MOF/COF proton conductors under intermediate-temperature and anhydrous conditions.
Collapse
Affiliation(s)
- Yi Guo
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Junsheng Wei
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Yu Liu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Weiqiang Zhou
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Qing Yu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
38
|
Jiang S, Lv T, Peng Y, Pang H. MOFs Containing Solid-State Electrolytes for Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206887. [PMID: 36683175 PMCID: PMC10074139 DOI: 10.1002/advs.202206887] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The use of metal-organic frameworks (MOFs) in solid-state electrolytes (SSEs) has been a very attractive research area that has received widespread attention in the modern world. SSEs can be divided into different types, some of which can be combined with MOFs to improve the electrochemical performance of the batteries by taking advantage of the high surface area and high porosity of MOFs. However, it also faces many serious problems and challenges. In this review, different types of SSEs are classified and the changes in these electrolytes after the addition of MOFs are described. Afterward, these SSEs with MOFs attached are introduced for different types of battery applications and the effects of these SSEs combined with MOFs on the electrochemical performance of the cells are described. Finally, some challenges faced by MOFs materials in batteries applications are presented, then some solutions to the problems and development expectations of MOFs are given.
Collapse
Affiliation(s)
- Shu Jiang
- Interdisciplinary Materials Research Center, Institute for Advanced StudyChengdu UniversityChengdu610106P. R. China
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Tingting Lv
- Interdisciplinary Materials Research Center, Institute for Advanced StudyChengdu UniversityChengdu610106P. R. China
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Yi Peng
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| |
Collapse
|
39
|
Wang CP, Lin YX, Cui L, Zhu J, Bu XH. 2D Metal-Organic Frameworks as Competent Electrocatalysts for Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207342. [PMID: 36605002 DOI: 10.1002/smll.202207342] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen, a clean and flexible energy carrier, can be efficiently produced by electrocatalytic water splitting. To accelerate the sluggish hydrogen evolution reaction and oxygen evolution reaction kinetics in the splitting process, highly active electrocatalysts are essential for lowering the energy barriers, thereby improving the efficiency of overall water splitting. Combining the distinctive advantages of metal-organic frameworks (MOFs) with the physicochemical properties of 2D materials such as large surface area, tunable structure, accessible active sites, and enhanced conductivity, 2D MOFs have attracted intensive attention in the field of electrocatalysis. Different strategies, such as improving the conductivities of MOFs, reducing the thicknesses of MOF nanosheets, and integrating MOFs with conductive particles or substrates, are developed to promote the catalytic performances of pristine MOFs. This review summarizes the recent advances of pristine 2D MOF-based electrocatalysts for water electrolysis. In particular, their intrinsic electrocatalytic properties are detailly analyzed to reveal important roles of inherent MOF active centers, or other in situ generated active phases from MOFs responsible for the catalytic reactions. Finally, the challenges and development prospects of pristine 2D MOFs for the future applications in overall water splitting are discussed.
Collapse
Affiliation(s)
- Chao-Peng Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yu-Xuan Lin
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Lei Cui
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Jian Zhu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Smart Sensing Interdisciplinary Science Center, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Smart Sensing Interdisciplinary Science Center, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
40
|
Liu J, He L, Zhao S, Li S, Hu L, Tian J, Ding J, Zhang Z, Du M. Plasma-Assisted Defect Engineering on p-n Heterojunction for High-Efficiency Electrochemical Ammonia Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205786. [PMID: 36683249 PMCID: PMC10015844 DOI: 10.1002/advs.202205786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
A defect-rich 2D p-n heterojunction, Cox Ni3- x (HITP)2 /BNSs-P (HITP: 2,3,6,7,10,11-hexaiminotriphenylene), is constructed using a semiconductive metal-organic framework (MOF) and boron nanosheets (BNSs) by in situ solution plasma modification. The heterojunction is an effective catalyst for the electrocatalytic nitrogen reduction reaction (eNRR) under ambient conditions. Interface engineering and plasma-assisted defects on the p-n Cox Ni3-x (HITP)2 /BNSs-P heterojunction led to the formation of both Co-N3 and B…O dual-active sites. As a result, Cox Ni3-x (HITP)2 /BNSs-P has a high NH3 yield of 128.26 ± 2.27 µg h-1 mgcat. -1 and a Faradaic efficiency of 52.92 ± 1.83% in 0.1 m HCl solution. The catalytic mechanism for the eNRR is also studied by in situ FTIR spectra and DFT calculations. A Cox Ni3- x (HITP)2 /BNSs-P-based Zn-N2 battery achieved an unprecedented power output with a peak power density of 5.40 mW cm-2 and an energy density of 240 mA h gzn -1 in 0.1 m HCl. This study establishes an efficient strategy for the rational design, using defect and interfacial engineering, of advanced eNRR catalysts for ammonia synthesis under ambient conditions.
Collapse
Affiliation(s)
- Jiameng Liu
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Linghao He
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Shuangrun Zhao
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Sizhuan Li
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Lijun Hu
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Jia‐Yue Tian
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Junwei Ding
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Zhihong Zhang
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Miao Du
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| |
Collapse
|
41
|
Shah R, Ali S, Raziq F, Ali S, Ismail PM, Shah S, Iqbal R, Wu X, He W, Zu X, Zada A, Adnan, Mabood F, Vinu A, Jhung SH, Yi J, Qiao L. Exploration of metal organic frameworks and covalent organic frameworks for energy-related applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Abdel Aziz YS, Sanad MMS, Abdelhameed RM, Zaki AH. In-situ construction of Zr-based metal-organic framework core-shell heterostructure for photocatalytic degradation of organic pollutants. Front Chem 2023; 10:1102920. [PMID: 36688034 PMCID: PMC9845943 DOI: 10.3389/fchem.2022.1102920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Photocatalysis is an eco-friendly promising approach to the degradation of textile dyes. The majority of reported studies involved remediation of dyes with an initial concentration ≤50 mg/L, which was away from the existing values in textile wastewater. Herein, a simple solvothermal route was utilized to synthesize CoFe2O4@UiO-66 core-shell heterojunction photocatalyst for the first time. The photocatalytic performance of the as-synthesized catalysts was assessed through the photodegradation of methylene blue (MB) and methyl orange (MO) dyes at an initial concentration (100 mg/L). Under simulated solar irradiation, improved photocatalytic performance was accomplished by as-obtained CoFe2O4@UiO-66 heterojunction compared to bare UiO-66 and CoFe2O4. The overall removal efficiency of dyes (100 mg/L) over CoFe2O4@UiO-66 (50 mg/L) reached >60% within 180 min. The optical and photoelectrochemical measurements showed an enhanced visible light absorption capacity as well as effective interfacial charge separation and transfer over CoFe2O4@UiO-66, emphasizing the successful construction of heterojunction. The degradation mechanism was further explored, which revealed the contribution of holes (h+), superoxide (•O2 -), and hydroxyl (•OH) radicals in the degradation process, however, h+ were the predominant reactive species. This work might open up new insights for designing MOF-based core-shell heterostructured photocatalysts for the remediation of industrial organic pollutants.
Collapse
Affiliation(s)
| | | | - Reda M. Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Giza, Egypt
| | - Ayman H. Zaki
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef, Egypt
- International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Japan
| |
Collapse
|
43
|
Tao CA, Li Y, Wang J. The progress of electrochromic materials based on metal–organic frameworks. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Zhang T, Si C, Guo K, Liu X, Liu Q, Fu J, Han Q. Constructing a Redox-Active Cu(I)-Pyridyltriazine Framework for Catalytic Photoreduction of Nitrobenzenes and Carboxylic Cyclization of Alkynol with CO 2. Inorg Chem 2022; 61:20657-20665. [DOI: 10.1021/acs.inorgchem.2c03627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ting Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Chen Si
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Kaixin Guo
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xueling Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Qingchao Liu
- Institute of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jiya Fu
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Qiuxia Han
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
45
|
Adegoke KA, Adegoke OR, Adigun RA, Maxakato NW, Bello OS. Two-dimensional metal-organic frameworks: From synthesis to biomedical, environmental, and energy conversion applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Li K, Qin Y, Li ZG, Guo TM, An LC, Li W, Li N, Bu XH. Elastic properties related energy conversions of coordination polymers and metal–organic frameworks. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
47
|
Zhang Q, Yang H, Zhou T, Chen X, Li W, Pang H. Metal-Organic Frameworks and Their Composites for Environmental Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204141. [PMID: 36106360 PMCID: PMC9661848 DOI: 10.1002/advs.202204141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Indexed: 06/04/2023]
Abstract
From the point of view of the ecological environment, contaminants such as heavy metal ions or toxic gases have caused harmful impacts on the environment and human health, and overcoming these adverse effects remains a serious and important task. Very recent, highly crystalline porous metal-organic frameworks (MOFs), with tailorable chemistry and excellent chemical stability, have shown promising properties in the field of removing various hazardous pollutants. This review concentrates on the recent progress of MOFs and MOF-based materials and their exploit in environmental applications, mainly including water treatment and gas storage and separation. Finally, challenges and trends of MOFs and MOF-based materials for future developments are discussed and explored.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Hui Yang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Ting Zhou
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Xudong Chen
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Wenting Li
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| |
Collapse
|
48
|
Lin X, Ng SF, Ong WJ. Coordinating single-atom catalysts on two-dimensional nanomaterials: A paradigm towards bolstered photocatalytic energy conversion. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
49
|
Zhan F, Wang H, He Q, Xu W, Chen J, Ren X, Wang H, Liu S, Han M, Yamauchi Y, Chen L. Metal-organic frameworks and their derivatives for metal-ion (Li, Na, K and Zn) hybrid capacitors. Chem Sci 2022; 13:11981-12015. [PMID: 36349101 PMCID: PMC9600411 DOI: 10.1039/d2sc04012c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2023] Open
Abstract
Metal-ion hybrid capacitors (MIHCs) hold particular promise for next-generation energy storage technologies, which bridge the gap between the high energy density of conventional batteries and the high power density and long lifespan of supercapacitors (SCs). However, the achieved electrochemical performance of available MIHCs is still far from practical requirements. This is primarily attributed to the mismatch in capacity and reaction kinetics between the cathode and anode. In this regard, metal-organic frameworks (MOFs) and their derivatives offer great opportunities for high-performance MIHCs due to their high specific surface area, high porosity, topological diversity, and designable functional sites. In this review, instead of simply enumerating, we critically summarize the recent progress of MOFs and their derivatives in MIHCs (Li, Na, K, and Zn), while emphasizing the relationship between the structure/composition and electrochemical performance. In addition, existing issues and some representative design strategies are highlighted to inspire breaking through existing limitations. Finally, a brief conclusion and outlook are presented, along with current challenges and future opportunities for MOFs and their derivatives in MIHCs.
Collapse
Affiliation(s)
- Feiyang Zhan
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Weili Xu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Jun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Xuehua Ren
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Haoyu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Shude Liu
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics, National Institute for Materials Science Tsukuba Ibaraki 305-0044 Japan
| | - Minsu Han
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland Brisbane QLD 4072 Australia
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics, National Institute for Materials Science Tsukuba Ibaraki 305-0044 Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland Brisbane QLD 4072 Australia
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| |
Collapse
|
50
|
Li D, Li J, Yi L, Wang R, Wei Y, Fang C, Sun W, Li Y, Hu W. Ultrathin metal–organic framework hybrid nanosheets enabled active oxygen evolution electrocatalysis in alkaline media. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|