1
|
Rachamalla AK, Jana PK, Nagarajan S. Recent Advances in Self-Assembled Naphthalimides: From Molecular Design to Applications. Chemistry 2025:e202500001. [PMID: 40192614 DOI: 10.1002/chem.202500001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/27/2025]
Abstract
Naphthalimide-based self-assembled materials have gained significant attention in recent years because of their exceptional versatility and wide range of applications, from sensors and electronics to biomedical. Naphthalimides derivatives, with ease of functionalization and robust photophysical properties, became an ideal platform for creating highly ordered self-assembled architectures with tailored functionalities. This review provides an overall understanding of the recent developments in the synthesis and self-assembly of naphthalimide-based materials, focusing on how self-assembly enhances their performance in various applications. The review examines the role of self-assembly in improving these materials' optical, mechanical, and electronic properties, highlighting their use in sensors for detecting gases, volatile organic compounds (VOCs), and amines. Furthermore, the integration of self-assembled naphthalimides in light-emitting devices, energy-harvesting systems, and fluorescence-based imaging demonstrates their potential in both electronic and biological applications. By analyzing recent developments in molecular design, self-assembly strategies, and applications, this review aims to offer insights into how these materials can be optimized for future technological advancements.
Collapse
Affiliation(s)
- Arun Kumar Rachamalla
- Assembled Organic and Hybrid Materials Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda, Telangana, 506004, India
- Department of Chemistry and Biochemistry, Center for Discovery and Innovation, The City College of New York, CUNY, New York, New York, 10031, USA
| | - Pralay Kumar Jana
- Assembled Organic and Hybrid Materials Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda, Telangana, 506004, India
| | - Subbiah Nagarajan
- Assembled Organic and Hybrid Materials Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda, Telangana, 506004, India
| |
Collapse
|
2
|
Munthasir ATM, Rani P, Dhanalakshmi P, Geremia S, Hickey N, Thilagar P. Naphthalimide and Carbazole Based Mechanochromic Molecular Dyads and Triads for Selective Lysosome Imaging. Chem Asian J 2025; 20:e202401386. [PMID: 39817362 DOI: 10.1002/asia.202401386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
In this study, we report the design and development of a stable fluorescent probe that is selectively localized in the cytosol of Hela cells. We designed two probes, 1 and 2, with D-π-A (carbazole (Cbz)-vinyl-naphthalimide (NPI)) and A-π-D-π-A (NPI-vinyl-Cbz-vinyl-NPI) architecture, respectively. Probes 1 and 2 exhibit broad photoluminescence (PL) spectra ranging from green (550 nm) to far-red (800 nm) in solutions and aggregated states. In the solid-state, the PL of these probes shows a bathochromic shift, which can be attributed to intermolecular interactions. In a water-rich medium, Probe 1, with a single NPI moiety, shows aggregation-caused quenching (ACQ) but retains a moderate quantum yield of 13.7 % (Φsoln=61.4 %). On the other hand, probe 2, with two NPI units, showed aggregation-induced enhanced emission AIEE, where the PLQY is increased nearly 4 times (Φsoln=3.5 %, Φagg=12.8 %). In-vitro cell studies revealed that these probes are non-toxic and effectively stain cells in green and red channels. Notably, Probe 1 demonstrated excellent cellular uptake and selectivity for lysosome, with a Pearson overlap coefficient of 0.91.
Collapse
Affiliation(s)
| | - Poonam Rani
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India -, 560012
| | - Pandi Dhanalakshmi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India -, 560012
| | - Silvano Geremia
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127, Trieste, Italy
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127, Trieste, Italy
| | - Pakkirisamy Thilagar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India -, 560012
| |
Collapse
|
3
|
An JM, Lim YJ, Yeo SG, Kim YH, Kim D. Recent Advances of Nitrobenzoselenadiazole for Imaging and Therapy. ACS Sens 2025; 10:1709-1721. [PMID: 40063118 PMCID: PMC11959591 DOI: 10.1021/acssensors.4c03596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/26/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
The development and practical applications of multifunctional organic fluorophores have garnered significant attention in translational research in recent years. Among the fluorophores, nitrobenzodioxazole (NBD) has been widely used in various fields due to its small size and neutral character, both of which are advantageous for biorelated applications. However, NBD presents some limitations, including (1) suboptimal photophysical properties for in vivo applications and (2) its monofunctional nature, which restricts its use in fluorescence-based bioimaging and sensing. To overcome these challenges, recent research has focused on the development of nitrobenzoselenadiazole (NBSD) derivatives, a selenium analog of NBD. In this review article, we systematically summarize recent advancements in the development of NBSD and highlight examples of its application in translational research as a multifunctional organic fluorophore. We also explore the potential applications of NBSD and present representative case studies, providing valuable context for the ongoing development of new NBSD derivatives in the field of fluorophore-related material science.
Collapse
Affiliation(s)
- Jong Min An
- Department
of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic
of Korea
| | - Yeon Jin Lim
- Department
of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic
of Korea
| | - Seung Geun Yeo
- Department
of Otorhinolaryngology, Head & Neck Surgery, Kyung Hee University, Seoul 02447, Republic
of Korea
| | - Yun Hak Kim
- Department
of Anatomy, School of Medicine, Pusan National
University, Yangsan 50612, Republic
of Korea
| | - Dokyoung Kim
- Department
of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic
of Korea
- Department
of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic
of Korea
- Department
of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic
of Korea
- KHU-KIST
Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic
of Korea
- Medical Research
Center for Bioreaction to Reactive Oxygen Species and Biomedical Science
Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic
of Korea
| |
Collapse
|
4
|
Choi MG, Han JM, Lim H, Ahn S, Chang SK. Colorimetric pH-sensing of artificial gastric fluid using naphthalimide-based CH acids. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125166. [PMID: 39342719 DOI: 10.1016/j.saa.2024.125166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
In this study, we introduce novel colorimetric pH-sensing probes based on naphthalimide malonate derivatives. These probes were synthesized by reacting 4-bromo-1,8-naphthalimide with various malonates, including malononitrile, ethyl cyanoacetate, and diethyl malonate. Each derivative exhibited distinct pH-sensing characteristics due to their differing CH acidities. The malononitrile-based probe, NPI-N2, demonstrated pronounced chromogenic pH-signaling behavior, transitioning from colorless to red-violet, accompanied by a decrease in fluorescence intensity. Notably, NPI-N2 retained its pH-sensing capability in the presence of common metal ions, anions, and pepsin, a key component of gastric fluid. The pKa of NPI-N2 was determined to be 3.08 through pH-dependent absorbance curve fitting. To modulate the pH-sensing range, ester-nitrile (NPI-EN) and diethyl ester (NPI-E2) subunits were incorporated into the naphthalimide framework, resulting in increased pKa values of 6.73 and 10.76, respectively. The pH-signaling mechanism of NPI-N2 was elucidated by 1H and 13C NMR spectroscopy, revealing deprotonation of the malononitrile moiety and subsequent resonance extension through the naphthalimide structure. To facilitate practical pH determination, NPI-N2 was integrated into a paper-based test strip, enabling convenient and reliable pH measurement of artificial gastric fluid.
Collapse
Affiliation(s)
- Myung Gil Choi
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jeong Min Han
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyeona Lim
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sangdoo Ahn
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Suk-Kyu Chang
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
5
|
Bevilaqua VR, Pelentir GF, Hausen MA, Duek EAR, Viviani VR. Selection and Engineering of Novel Brighter Bioluminescent Reporter Gene and Color- Tuning Luciferase for pH-Sensing in Mammalian Cells. BIOSENSORS 2025; 15:18. [PMID: 39852069 PMCID: PMC11763533 DOI: 10.3390/bios15010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025]
Abstract
Firefly luciferases have been extensively used for bioanalytical applications, including their use as bioluminescent reporters, biosensors, and for bioimaging biological and pathological processes. Due to their intrinsic pH- sensitivity, in recent years we have demonstrated that firefly luciferases can also be harnessed as color- tuning sensors of intracellular pH. However, it is known that mammalian cells require temperatures higher than 36 °C, which red-shift the bioluminescence spectra of most firefly luciferases, decreasing their activities and the resolution of ratiometric pH analysis. Therefore, we prospected and engineered novel pH-sensitive firefly luciferases for mammalian cells. We humanized the luciferases of Amydetes vivianii (Amy-Luc) and Cratomorphus distinctus (Crt-Luc) fireflies, inserted them into the pCDNA3 vector, and compared their bioluminescence and pH-sensing properties with those of Macrolampis firefly luciferase (Mac-Luc) inside fibroblasts. The transfected COS-1 with Mac-Luc and Crt-Luc displayed lower bioluminescence activity and considerably red-shifted spectra (611 and 564 nm, respectively) at 37 °C, whereas Amy-Luc displayed the highest bioluminescence activity and spectral stability at 37 °C inside cells, displaying the most blue-shifted spectrum at such temperatures (548 nm) and the best spectral resolution at different pH values, making it possible to ratiometrically estimate the pH from 6.0 to 8.0. These results show that Amy-Luc is a novel brighter reporter gene and suitable pH- indicator for mammalian cells. Furthermore, whereas at pH 8.0 the spectrum was thermally stable, at pH 6.0 Amy-Luc showed higher temperature sensitivity, raising the possibility of using this luciferase as an intracellular temperature sensor. Thus, the improved bioluminescence properties as compared to existing luciferases could offer advantages for in vivo imaging and pH- sensing for the study of mammalian cellular physiology.
Collapse
Affiliation(s)
- Vanessa R. Bevilaqua
- Biomaterials Laboratory, Medical and Health Sciences Faculty, Pontifical University Catholic of São Paulo (PUC-SP), Sorocaba 18060-030, SP, Brazil; (M.A.H.); (E.A.R.D.)
- Laboratory of Biochemistry, Molecular Biology and Bioluminescent Systems Technology, Department of Physics, Chemistry and Mathematics, Federal University of Sao Carlos (UFSCAR), Rodovia João Leme dos Santos, km 110, Sorocaba 18052-780, SP, Brazil; (G.F.P.); (V.R.V.)
| | - Gabriel F. Pelentir
- Laboratory of Biochemistry, Molecular Biology and Bioluminescent Systems Technology, Department of Physics, Chemistry and Mathematics, Federal University of Sao Carlos (UFSCAR), Rodovia João Leme dos Santos, km 110, Sorocaba 18052-780, SP, Brazil; (G.F.P.); (V.R.V.)
| | - Moema A. Hausen
- Biomaterials Laboratory, Medical and Health Sciences Faculty, Pontifical University Catholic of São Paulo (PUC-SP), Sorocaba 18060-030, SP, Brazil; (M.A.H.); (E.A.R.D.)
| | - Eliana A. R. Duek
- Biomaterials Laboratory, Medical and Health Sciences Faculty, Pontifical University Catholic of São Paulo (PUC-SP), Sorocaba 18060-030, SP, Brazil; (M.A.H.); (E.A.R.D.)
| | - Vadim R. Viviani
- Laboratory of Biochemistry, Molecular Biology and Bioluminescent Systems Technology, Department of Physics, Chemistry and Mathematics, Federal University of Sao Carlos (UFSCAR), Rodovia João Leme dos Santos, km 110, Sorocaba 18052-780, SP, Brazil; (G.F.P.); (V.R.V.)
| |
Collapse
|
6
|
Kumar A, George JM, Sharma S, Koyyadi S, Sharma SK, Verwilst P, Bhatia A, Patro SK, Aggarwal A, Gupta S, Sharma S, Sharma A. pH-Activatable Molecular Probe for COX-2 Imaging in Human Oral Squamous Carcinoma Cells and Patient-Derived Tissues. ACS APPLIED BIO MATERIALS 2024; 7:8517-8527. [PMID: 39561328 DOI: 10.1021/acsabm.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
For developing a successful cancer therapeutic modality, the early precise detection of cancer cells in patient biopsies in oral squamous cell carcinoma (OSCC) is crucial. This could help researchers create new diagnostic and therapeutic tools and assist clinicians in recommending more effective treatment plans and improving patient survival. We have developed an SMPD, cyclooxygenase-2 (COX-2) targeting pH-activable fluorophore named CNP, combining a potent COX-2 inhibitor, celecoxib, linked to a naphthalimide fluorophore with an acidic microenvironment-responsive piperazine moiety for specific optical imaging of OSCC in cells and patient tissues. Compared to reference probe RNP lacking celecoxib, CNP selectively enters the COX-2 overexpressing oral cancer cells. Its acidity-responsive imaging response enhances selectivity over cancers with lower COX-2 expression levels and normal cells. Further, CNP is demonstrated in imaging OSCC cells in patient-derived biopsies. Thus, multifunctional CNP shows potential in exploring more reagents for fluorescence-based detection of OSCC cells in patient tissues with translational applications.
Collapse
Affiliation(s)
- Akhil Kumar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
- Oral Health Sciences Centre, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Jiya Mary George
- Amity School of Chemical Sciences, Amity University Punjab, Sector 82, Mohali, Punjab 140306, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- CSIR-Central Scientific Instruments Organisation, Sector 30C, Chandigarh 160030, India
| | - Sushank Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Sundar Koyyadi
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Suchinder K Sharma
- Amity School of Physical Sciences, Amity University Punjab, Sector 82, Mohali, Punjab 140306, India
| | - Peter Verwilst
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1041, Leuven 3000, Belgium
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Sourabha Kumar Patro
- Department of Otolaryngology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Anjali Aggarwal
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Shipra Gupta
- Oral Health Sciences Centre, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Sheetal Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Amit Sharma
- Amity School of Chemical Sciences, Amity University Punjab, Sector 82, Mohali, Punjab 140306, India
| |
Collapse
|
7
|
Hu G, Xu HD, Fang J. Sulfur-based fluorescent probes for biological analysis: A review. Talanta 2024; 279:126515. [PMID: 39024854 DOI: 10.1016/j.talanta.2024.126515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
The widespread adoption of small-molecule fluorescence detection methodologies in scientific research and industrial contexts can be ascribed to their inherent merits, including elevated sensitivity, exceptional selectivity, real-time detection capabilities, and non-destructive characteristics. In recent years, there has been a growing focus on small-molecule fluorescent probes engineered with sulfur elements, aiming to detect a diverse array of biologically active species. This review presents a comprehensive survey of sulfur-based fluorescent probes published from 2017 to 2023. The diverse repertoire of recognition sites, including but not limited to N, N-dimethylthiocarbamyl, disulfides, thioether, sulfonyls and sulfoxides, thiourea, thioester, thioacetal and thioketal, sulfhydryl, phenothiazine, thioamide, and others, inherent in these sulfur-based probes markedly amplifies their capacity for detecting a broad spectrum of analytes, such as metal ions, reactive oxygen species, reactive sulfur species, reactive nitrogen species, proteins, and beyond. Owing to the individual disparities in the molecular structures of the probes, analogous recognition units may be employed to discern diverse substrates. Subsequent to this classification, the review provides a concise summary and introduction to the design and biological applications of these probe molecules. Lastly, drawing upon a synthesis of published works, the review engages in a discussion regarding the merits and drawbacks of these fluorescent probes, offering guidance for future endeavors.
Collapse
Affiliation(s)
- Guodong Hu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China.
| | - Hua-Dong Xu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, China.
| |
Collapse
|
8
|
Yang Z, Kang X, Li J, Li L, Ye X, Liu X, Chen K, Deng Y, Peng C, Ren B, Cao Z, Fang Y. A novel LD-targeting cysteine-activated fluorescent probe for diagnosis of APAP-induced liver injury and its application in food analysis. Food Chem 2024; 456:140064. [PMID: 38878548 DOI: 10.1016/j.foodchem.2024.140064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 07/24/2024]
Abstract
Cysteine (Cys) not only plays an indispensable role in maintaining the redox balance in organisms, but is also an important nutrient in the food industry. Fluorescence-based detection systems have emerged as an effective method to track the locations and concentrations of different species. To achieve efficient monitoring of Cys in both food samples and biological systems, a novel lipid droplet (LD) targeted fluorescent probe (namely NIT-Cys) was constructed for the turn-on detection of Cys, characterized by a large Stokes shift (142 nm), a short response time (<8 min), and a low Cys detection limit (39 nM). Furthermore, the NIT-Cys probe has been successfully used not only to quantify the amounts of Cys in selected food samples, but also to enable the visualization of endogenous Cys in acetaminophen (APAP)-induced drug-induced liver injury cells, zebrafish larvae and mice models. Consequently, the work presented here provides an efficient tool for monitoring Cys.
Collapse
Affiliation(s)
- Zhiqiang Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Kang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Longxuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaoping Ye
- Department of Oncology and Ultrasound, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaoya Liu
- Department of Oncology and Ultrasound, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Kun Chen
- Department of Urology, Traditional Chinese Medicine Hospital of Pidu District, Chengdu 611730, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bo Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yuyu Fang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Sichuan New Green Pharmaceutical Technology Development Co. Ltd., Chengdu 611930, China.
| |
Collapse
|
9
|
Sendh J, Baruah JB. Sequential effects of two cations on the fluorescence emission of a coordination polymer with Zn 4O core in node. RSC Adv 2024; 14:31598-31606. [PMID: 39376515 PMCID: PMC11457270 DOI: 10.1039/d4ra06309k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
Distinct changes in the fluorescence emissions of free ligand 5-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)isophthalic acid (H2NAPHISO) than a 2D-zinc-coordination polymer of it, caused by sequential interactions with different sets of binary cations were observed. The coordination polymer having unsymmetrical Zn4O core of tetranuclear zinc-node could be dispersed in dimethylformamide without its degradation. The coordination polymer had an emission peak at 435 nm (quantum yield = 0.082) which was selectively quenched by adding Fe2+ ions. Based on this quenching, the Fe2+ ions in aqueous solution could be detected with a detection limit 42.57 nM. The metal ions such as Li+, Na+, Cd2+, Hg2+, Al3+ did not interfere in the detection; but each of these ions together with Fe2+ ions showed characteristic shift of the emission spectra. The H2NAPHISO in dimethyl formamide was non-fluorescent, but showed emission at 452 nm upon addition of Cd2+ or Zn2+ ions. This new emission of H2NAPHISO caused by zinc or cadmium ions was not quenched by Fe2+ ions. Various cations had affected the emission of the H2NAPHISO with Zn2+ which was much different from the corresponding changes caused by the same ion on the emission of the coordination polymer. For example, the Mn2+ and Zn2+ ions together in a solution of the ligand showed a broad emission spectrum spreading over 380-450 nm, but ions Sn2+ and Zn2+ together had showed emission at a shorter wavelength (380 nm). These allowed to modulate the emission of the ligand by binary combination of metal ions.
Collapse
Affiliation(s)
- Jagajiban Sendh
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati-781 039 Assam India +91-361-2582311
| | - Jubaraj B Baruah
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati-781 039 Assam India +91-361-2582311
| |
Collapse
|
10
|
Zareen W, Ahmed N, Raza S, Ali Khan M, Shafiq Z. Recent development in dual function fluorescence probes for HOCl and interaction with different bioactive molecules. Talanta 2024; 277:126374. [PMID: 38878514 DOI: 10.1016/j.talanta.2024.126374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 07/19/2024]
Abstract
Reactive oxygen species (ROS), reactive sulfur species (RSS), metal ions, and nitrogen species (RNS) play important roles in a variety of biological processes, such as a signal transduction, inflammation, and neurodegenerative damage. These species, while essential for certain functions, can also induce stress-related diseases. The interrelation between ROS, RSS, Metal ions and RNS underscores the importance of quantifying their concentrations in live cells, tissues, and organisms. The review emphasizes the use of small-molecule-based fluorescent/chemodosimeter probes to effectively measure and map the species' distribution with high temporal and spatial precision, paying particular attention to in vitro and in vivo environments. These probes are recognized as valuable tools contributing to breakthroughs in modern redox biology. The review specifically addresses the relationship of HOCl/ClO‾ (hypochlorous acid/Hypochlorite) with other reactive species. (Dual sensing probes).
Collapse
Affiliation(s)
- Wajeeha Zareen
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Nadeem Ahmed
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Shahid Raza
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Muhammad Ali Khan
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800, Multan, Pakistan.
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800, Multan, Pakistan.
| |
Collapse
|
11
|
Jiang Z, Dai X, Zhou L, Yang Z, Yu F, Kong X. Development of a polarity-sensitive ratiometric fluorescent probe based on the intramolecular reaction of spiro-oxazolidine and its applications for in situ visualizing the fluctuations of polarity during ER stress. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124337. [PMID: 38676988 DOI: 10.1016/j.saa.2024.124337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/11/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Polarity is a vital element in endoplasmic reticulum (ER) microenvironment, and its variation is closely related to many physiological and pathological activities of ER, so it is necessary to trace fluctuations of polarity in ER. However, most of fluorescent probes for detecting polarity dependent on the changes of single emission, which could be affected by many factors and cause false signals. Ratiometric fluorescent probe with "built-in calibration" can effectively avoid detection errors. Here, we have designed a ratiometric fluorescent probe HM for monitoring the ER polarity based on the intramolecular reaction of spiro-oxazolidine. It forms ring open/closed isomers driven by polarity to afford ratiometric sensing. Probe HM have manifested its ratiometric responses to polarity in spectroscopic results, which could offer much more precise information for the changes of polarity in living cells with the internal built-in correction. It also showed large emission shift ( 133 nm), high selectivity and photo-stability. In biological imaging, HM could selectively accumulate in ER with high photo-stability. Importantly, HM has ability for in situ tracing the changes of ER polarity with ratiometric behavior during the ER stress process with the stimulation of tunicamycin, dithiothreitol and hypoxia, suggesting that HM is an effective molecule tool for monitoring the variations of ER polarity.
Collapse
Affiliation(s)
- Zekun Jiang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Xiaoyu Dai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Lina Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Zheng Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Faqi Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China.
| | - Xiuqi Kong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China.
| |
Collapse
|
12
|
Chen M, Li Y, Tian H, Xie D, Zhu Y, Wu Y, Zhang X, Zhu M. A multi-stimuli-responsive fluorescence material based on 1,8-naphthalimide. LUMINESCENCE 2024; 39:e4868. [PMID: 39143679 DOI: 10.1002/bio.4868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
A pair of 1,8-naphthalimides (NPIs) were designed and successfully synthesized through embellishing amino-containing NPI with 4-diethylaminosalicyladehyde and 4-diethylaminobenzaldehyde, respectively. Their structures were fully confirmed by 1H/13C NMR, HR-MS and FT-IR spectroscopic studies. Their photophysical properties were systematically investigated in different solvents of varied polarity, in THF/water mixtures with varying water fractions (fw), and in THF solvent with varying concentrations of NPIs. It inferred that the distinct differences in emission between two NPIs during self-assembled process could be ascribed that the hydroxyl-containing NPI allowed the excited-state intramolecular proton transfer process between -OH and CH=N units in the aggregation state. Interestingly, the solid of 4-diethylaminosalicyladehyde-functionalized NPI exhibited multi-stimuli-responsive fluorescence changes involving mechanofluorochromism and HCl/NH3 vapor stimulus-induced conversion. However, no remarkable change was observed in the photoluminescence (PL) spectra for the solid of 4-diethylaminobenzaldehyde-functionalized NPI under the stimuli of mechanical force and organic solvent.
Collapse
Affiliation(s)
- Meihui Chen
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, China
| | - Yi Li
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, China
| | - Haixia Tian
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, China
| | - Donghong Xie
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, China
| | - Yuping Zhu
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, China
| | - Yuanbin Wu
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, China
| | - Xiazhong Zhang
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, China
| | - Mingguang Zhu
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, China
| |
Collapse
|
13
|
Xu S, Yan KC, Xu ZH, Wang Y, James TD. Fluorescent probes for targeting the Golgi apparatus: design strategies and applications. Chem Soc Rev 2024; 53:7590-7631. [PMID: 38904177 DOI: 10.1039/d3cs00171g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The Golgi apparatus is an essential organelle constructed by the stacking of flattened vesicles, that is widely distributed in eukaryotic cells and is dynamically regulated during cell cycles. It is a central station which is responsible for collecting, processing, sorting, transporting, and secreting some important proteins/enzymes from the endoplasmic reticulum to intra- and extra-cellular destinations. Golgi-specific fluorescent probes provide powerful non-invasive tools for the real-time and in situ visualization of the temporal and spatial fluctuations of bioactive species. Over recent years, more and more Golgi-targeting probes have been developed, which are essential for the evaluation of diseases including cancer. However, when compared with systems that target other important organelles (e.g. lysosomes and mitochondria), Golgi-targeting strategies are still in their infancy, therefore it is important to develop more Golgi-targeting probes. This review systematically summarizes the currently reported Golgi-specific fluorescent probes, and highlights the design strategies, mechanisms, and biological uses of these probes, we have structured the review based on the different targeting groups. In addition, we highlight the future challenges and opportunities in the development of Golgi-specific imaging agents and therapeutic systems.
Collapse
Affiliation(s)
- Silin Xu
- Key Laboratory of Chemo/Biosensing and Detection, Xuchang University, 461000, P. R. China.
| | - Kai-Cheng Yan
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Zhi-Hong Xu
- Key Laboratory of Chemo/Biosensing and Detection, Xuchang University, 461000, P. R. China.
- College of Chemical and Materials Engineering, Xuchang University, Xuchang, 461000, P. R. China
| | - Yuan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, P. R. China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| |
Collapse
|
14
|
Wang X, Shi G, Xu S, Sun Y, Qiu H, Wang Q, Han X, Zhang Q, Zhang T, Hu HY. Unravelling Immune-Inflammatory Responses and Lysosomal Adaptation: Insights from Two-Photon Excited Delayed Fluorescence Imaging. Adv Healthc Mater 2024; 13:e2304223. [PMID: 38407490 DOI: 10.1002/adhm.202304223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Two-photon excitation (TPE) microscopy with near-infrared (NIR) emission has emerged as a promising technique for deep-tissue optical imaging. Recent developments in fluorescence lifetime imaging with long-lived emission probes have further enhanced the spatial resolution and precision of fluorescence imaging, especially in complex systems with short-lived background signals. In this study, two innovative lysosome-targeting probes, Cz-NA and tCz-NA, are introduced. These probes offer a combination of advantages, including TPE (λex = 880 nm), NIR emission (λem = 650 nm), and thermally activated delayed fluorescence (TADF) with long-lived lifetimes (1.05 and 1.71 µs, respectively). These characteristics significantly improve the resolution and signal-to-noise ratio in deep-tissue imaging. By integrating an acousto-optic modulator (AOM) device with TPE microscopy, the authors successfully applied Cz-NA in two-photon excited delayed fluorescence (TPEDF) imaging to track lysosomal adaptation and immune responses to inflammation in mice. This study sheds light on the relationship between lysosome tubulation, innate immune responses, and inflammation in vivo, providing valuable insights for the development of autofluorescence-free molecular probes in the future.
Collapse
Affiliation(s)
- Xiang Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Gaona Shi
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Shengnan Xu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuansheng Sun
- Flourescence Products, ISS, Inc., 1602 Newton Drive, Champaign, IL 61822, USA
| | - Hailin Qiu
- Department of Fluorescence Test Technology, Orient KOJI Ltd., Tianjin, 300122, China
| | - Qinghua Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiaowan Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qingyang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
15
|
Zhang W, Ma Y, Song H, Miao R, Kong J, Zhou M. Deciphering the photophysical properties of naphthalimide derivatives using ultrafast spectroscopy. Phys Chem Chem Phys 2024; 26:4607-4613. [PMID: 38251277 DOI: 10.1039/d3cp05654f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Naphthalimide derivatives composed of donor-acceptor type structures hold significant promise across a wide range of applications. Here, the solvent polarity and viscosity controlled excited-state dynamics of a naphthalimide derivative with a donor-acceptor structure were studied using multiple spectroscopic techniques. From the stationary spectroscopic investigations, large Stokes shift and low fluorescence quantum yield were observed with increasing the solvent polarity, suggesting a more polar excited state relative to the ground state, which is evidenced by the Lippert-Mataga relationship. We also observe an enhanced fluorescence with a prolonged lifetime in a more viscous solution due to the restriction of excited-state molecular rearrangement. These observations result from the emerged twisted intramolecular charge transfer (TICT) state. The ultrafast spectroscopy studies further unravel a solvent polarity dependent excited state evolution from the intramolecular charge transfer state to the TICT state, revealing that the TICT state can be populated only in strong polar solvents. Control experiments by tuning the solvent viscosity in ultrafast experiments were employed to verify the excited state molecular rearrangement subsequently. These observations collectively emphasize how fine-tuning the photophysical properties of naphthalimide derivatives can be achieved through strategic manipulation of solvent polarity and viscosity.
Collapse
Affiliation(s)
- Wei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui 230026, China.
| | - Yalei Ma
- Laboratory of Applied Surface and Colloids Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Hongwei Song
- Department of Chemistry-Angstrom Laboratory, Uppsala University, Box 523, Uppsala 75120, Sweden
| | - Rong Miao
- Laboratory of Applied Surface and Colloids Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Jie Kong
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui 230026, China.
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui 230026, China.
| |
Collapse
|
16
|
Rode JE, Łyczko K, Kaczorek D, Kawęcki R, Dobrowolski JC. VCD spectra of chiral naphthalene-1-carboxamides in the solid-state. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123939. [PMID: 38301569 DOI: 10.1016/j.saa.2024.123939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
The VCD spectra of chiral 2,3-dihydro-1H-benzo[de]isoquinolin-1-one (8-substituted naphthalene-1-carboxamide, BIQ) were studied in KBr pellets. The X-ray diffractometry revealed that the Me, Ph, and pClPh BIQs crystalize in the monoclinic P21, while nBu, pMePh, and oMeOPh BIQs in the orthorhombic P212121 space group. Only the Me-BIQ crystal exhibits the presence of cyclic amide dimers, while the others contain chains of the amid group hydrogen bonds. For all BIQs, except pMePh, the most intense IR band in the 1750-1550 cm-1 region is located at ca. 1680 cm-1 and is accompanied by two weak ones at ca. 1618 and 1590 cm-1. For the pMePh derivative, four almost equally intense IR bands at 1662, 1639, 1614, and 1588 cm-1 are observed. This region of the IR spectra of BIQs, but pMePh, is well reproduced by calculations based on BIQ monomers. On the other hand, the complex IR pattern of pMePh is computationally reproduced when larger crystal fragments, like octamers, are considered. Registration of the VCD spectra enabled recognizing the complexity of IR contours at ca. 1680 cm-1 by the corresponding VCD motives. For (i) Me, Ph and pClPh (R)-enantiomers, two (+)(-) bands were distinguished and for (ii) nBu and pMePh ones, one VCD band with right-side asymmetry was found. For (iii) oMeOPh the VCD pattern cannot be unambiguously assigned. Thus, the VCD spectra in the ν(C=O) range diverse the studied compounds. Among the set of molecules, pMePh has exceptional crystal geometry. Therefore, its most intense ν(C=O) band position and shape can be connected with the geometry of the hydrogen bonds, interactions, and crystal packing. Interpretation of the VCD spectra is based on linear and packed BIQ octamers. This cluster model can reproduce the main features of the solid-state VCD of BIQs.
Collapse
Affiliation(s)
- Joanna E Rode
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street 03-195, Warsaw, Poland.
| | - Krzysztof Łyczko
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street 03-195, Warsaw, Poland
| | - Dorota Kaczorek
- University of Siedlce, Faculty of Science, 3 Maja Street No 54 08-110, Siedlce, Poland
| | - Robert Kawęcki
- University of Siedlce, Faculty of Science, 3 Maja Street No 54 08-110, Siedlce, Poland
| | - Jan Cz Dobrowolski
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street 03-195, Warsaw, Poland
| |
Collapse
|
17
|
Wang L, He M, Liu X, Jiang BP, Chen H, Shen XC. Dual-Labeled Single Fluorescent Probes for the Simultaneous Two-Color Visualization of Dual Organelles and for Monitoring Cell Autophagy. Anal Chem 2024; 96:876-886. [PMID: 38165226 DOI: 10.1021/acs.analchem.3c04520] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Dual-labeled single fluorescent probes are powerful tools for studying autophagy on the molecular scale, yet their development has been hampered by design complexity and a lack of valid strategies. Herein, for the first time, we introduce a combinatorial regulation strategy to fabricate dual-labeled probes for studying autophagy by integrating the specific organelle-targeting group and the functional fluorescence switch into a pentacyclic pyrylium scaffold (latent dual-target scaffold). For proof of concept, we prepared a range of dual-labeled probes (TMOs) that display different emission colors in duple organelles. In these probes, TMO1 and TMO2 enabled the simultaneous two-color visualization of the lysosomes and mitochondria. The other probes (TMO3 and TMO4) discriminatively targeted lysosomes/nucleolus and lysosomes/lipid droplets (LDs) with dual-color emission characteristics, respectively. Intriguingly, by simply connecting the endoplasmic reticulum (ER) targeting group to the pentacyclic pyrylium scaffold, we created the first dual-labeled probe TMO5 for simultaneously labeling lysosomes/ER in distinctive fluorescent colors. Subsequently, using the dual-labeled probe TMO2, drug-induced mitophagy was successfully recorded by evaluating the alterations of multiple mitophagy-related parameters, and the mitophagy defects in a cellular model of Parkinson's disease (PD) were also revealed by simultaneous dual-color/dual-organelle imaging. Further, the probe TMO4 can track the movement of lysosomes and LDs in real time and monitor the dynamic process of lipophagy. Therefore, this work not only presents attractive dual-labeled probes to promote the study of organelle interactions during autophagy but also provides a promising combinatorial regulation strategy that may be generalized for designing other dual-labeled probes with multiple organelle combinations.
Collapse
Affiliation(s)
- Liping Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Mengye He
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xingyue Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hua Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
18
|
Haque A, Alenezi KM, Al-Otaibi A, Alsukaibi AKD, Rahman A, Hsieh MF, Tseng MW, Wong WY. Synthesis, Characterization, Cytotoxicity, Cellular Imaging, Molecular Docking, and ADMET Studies of Piperazine-Linked 1,8-Naphthalimide-Arylsulfonyl Derivatives. Int J Mol Sci 2024; 25:1069. [PMID: 38256142 PMCID: PMC10816875 DOI: 10.3390/ijms25021069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
To reduce the mortality and morbidity associated with cancer, new cancer theranostics are in high demand and are an emerging area of research. To achieve this goal, we report the synthesis and characterization of piperazine-linked 1,8-naphthalimide-arylsulfonyl derivatives (SA1-SA7). These compounds were synthesized in good yields following a two-step protocol and characterized using multiple analytical techniques. In vitro cytotoxicity and fluorescent cellular imaging of the compounds were assessed against non-cancerous fibroblast (3T3) and breast cancer (4T1) cell lines. Although the former study indicated the safe nature of the compounds (viability = 82-95% at 1 μg/mL), imaging studies revealed that the designed probes had good membrane permeability and could disperse in the whole cell cytoplasm. In silico studies, including molecular docking, molecular dynamics (MD) simulation, and ADME/Tox results, indicated that the compounds had the ability to target CAIX-expressing cancers. These findings suggest that piperazine-linked 1,8-naphthalimide-arylsulfonyl derivatives are potential candidates for cancer theranostics and a valuable backbone for future research.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (A.H.); (K.M.A.); (A.A.-O.); (A.K.D.A.)
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Khalaf M. Alenezi
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (A.H.); (K.M.A.); (A.A.-O.); (A.K.D.A.)
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Ahmed Al-Otaibi
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (A.H.); (K.M.A.); (A.A.-O.); (A.K.D.A.)
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Abdulmohsen Khalaf Dhahi Alsukaibi
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (A.H.); (K.M.A.); (A.A.-O.); (A.K.D.A.)
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Ataur Rahman
- Jamia Senior Secondary School, Jamia Millia Islamia, New Delhi 110025, India;
| | - Ming-Fa Hsieh
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan City 32023, Taiwan;
| | - Mei-Wen Tseng
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan City 32023, Taiwan;
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
19
|
Feng J, Wang X, Wang L, Kfoury J, Oláh J, Zhang S, Zou L, Guo Y, Xue S. Naphthalimide-Tagged Iron(II) Spin Crossover Complex with Synergy of Ratiometric Fluorescence for Thermosensing. Inorg Chem 2024; 63:108-116. [PMID: 38113189 DOI: 10.1021/acs.inorgchem.3c01789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Spin crossover (SCO) materials that possess switchable and cooperative fluorescence have long focused interest in photonic sensor devices to monitor the variations in the physicochemical parameters of the external environment. However, the lack of quantified cooperativity for the SCO transition operating in isolated molecules is detrimental to short-term technological applications. In this study, a pretwisted energy D-A system combining the deep-blue naphthalimide fluorophore (donor) and the FeN6 SCO chromophore (switchable acceptor) has been developed with the formula of Fe(naph-abpt)2(NCS)2·2DMF (1), where naph-abpt is N-[3,5-di(pyridin-2-yl)-4H-1,2,4-triazol-4-yl]-1,8-naphthalimide. Dual emission from the naphthalimide function based on its vibronic structure exhibits a different synergy effect with SCO, providing a new platform for ratiometric fluorescence thermosensing. Theoretical calculations and optical experimental results demonstrate an excellent correlation between luminescence intensity ratio signals and magnetic data of spin transition, promising a high sensitivity of the optical activity of the ligand to the spin state of the active iron(II) ions, with the maximum relative sensitivity as 0.7% K-1 around T1/2.
Collapse
Affiliation(s)
- Junchuang Feng
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoqin Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liang Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Joseph Kfoury
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111, Hungary
| | - Julianna Oláh
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111, Hungary
| | - Shishen Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lifei Zou
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Life Science, Chifeng University, Chifeng 024000, China
| | - Yunnan Guo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shufang Xue
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
20
|
Du X, Zhang Y, Xu D. A 1,8-naphthimide-based Fluorescent Probe for Analyzing DMF/H 2O Composition. J Fluoresc 2024; 34:169-178. [PMID: 37166613 DOI: 10.1007/s10895-023-03251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023]
Abstract
A novel 1,8-naphthalimide fluorescent probe (BNAS) containing 2-thiopheneethylamine moiety was designed and synthesized for analyzing the composition of N,N-dimethylformamide (DMF)/deionized water (H2O) mixtures. With the increase of DMF content, the fluorescence of the system was enhanced from dark to bright yellow-green. Taking 15% (volume) DMF content as the dividing point, the fluorescence intensity of the system at 535 nm showed two good linear relationships with the DMF content 1-15% and 15-99%, based on which the composition of the DMF/H2O mixtures with a volume ratio of 1/99-99/1 could be quickly and efficiently analyzed with high selectivity and sensitivity. BNAS can be applied in real sample assay and further be loaded onto filter paper to make a portable sensor. The mechanism of BNAS response to DMF/H2O composition was also explored.
Collapse
Affiliation(s)
- Xinhao Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yupin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Dongmei Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
21
|
Zhou W, Pan Y, Liu Y, Liang Q, Zhou D, Wu A, Shu W, Yu W. A novel turn-on fluorescent probe for detection of pH in extremely acidic environment and its application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123203. [PMID: 37523848 DOI: 10.1016/j.saa.2023.123203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
A water-soluble turn-on fluorescent probe PNAP for pH has been designed and synthesized. PNAP was consist of pyrene as fluorophore and morpholine as receptor. Owing to the photoinduced electron transfer (PET) effect, the fluorescence of PNAP was quenched, while PNAP exhibited a remarkable "turn-on" fluorescence with the increase of acidity. Notably for its pKa of 2.15, PNAP was one of the pH fluorescent probes used in extremely acidic environments. Furthermore, PNAP also displayed good repeatability, strong anti-ion interference ability, high sensitivity and selectivity toward pH. In addition, PNAP has been successfully applied to the test strips and monitor the pH of environment water samples and realistic samples, showing its good promising prospect.
Collapse
Affiliation(s)
- Wu Zhou
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China
| | - Yuanjiang Pan
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China
| | - Yuxuan Liu
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China
| | - Qingxiang Liang
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China
| | - Dongkui Zhou
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China
| | - Aibin Wu
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China; Unconventional Oil and Gas Collaborative Innovation Center, Yangtze University, Hubei, Jingzhou 434023, PR China; Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Yangtze University, Hubei, Jingzhou 434023, PR China.
| | - Wenming Shu
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China
| | - Weichu Yu
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China; Unconventional Oil and Gas Collaborative Innovation Center, Yangtze University, Hubei, Jingzhou 434023, PR China; Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Yangtze University, Hubei, Jingzhou 434023, PR China.
| |
Collapse
|
22
|
Debnath I, Roy T, Borah D, Mahata K. Stable peri-Naphthoisatogens without C2 Protection: Synthesis via Aldrone Condensation, Optical Properties and 1,3-Dipolar Cycloaddition Reaction. Chem Asian J 2023:e202300827. [PMID: 37929899 DOI: 10.1002/asia.202300827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/07/2023]
Abstract
peri-Annulation of naphthalane, an important tool for realization of wide range of functional materials, is presently accomplished with limited few functional groups like imide, amide and diamine-derivative (perimidine). To increase the diversity, we have incorporated α-keto aldonitrone as a new functional group, and herein report about five peri-naphthoisatogens (PNTIs) dyes. The synthesis were accomplished using an unusual reaction of aromatic nitro group, which is nucleophilic attack of a C-nucleophile (enol) to the N-atom of nitro group. In five different 5-alkylamino-8-nitro-1-acetylnaphthalenes, intramolecular acid-catalyzed nucleophilic attack of enol moiety to the N-atom of nitro group produced α-keto aldonitrone via addition-elimination mechanism. The PNTIs showed characteristics of 1,3-dipole and reacted with ethyl acrylate to produce isoxazolidine ring, which subsequently converted into aza phenalenone derivative via ring cleavage. Both the PNTI and the corresponding derivative strongly absorb in the visible region, displaying absorption maximum at 551 and 561 nm (in CHCl3 ) respectively. Compared to the popular analogous dye naphthalene monoimides, PNTIs showed bathochromic shift of absorption maximum by more than 100 nm. The emission maximum for the PNTI and its derivative in chloroform were observed at 594 and 635 nm respectively.
Collapse
Affiliation(s)
- Indraneel Debnath
- Department of Chemistry, Indian Institute of Technology, Guwahati, Guwahati, Assam, 781039, India
| | - Tirupati Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati, Guwahati, Assam, 781039, India
| | - Dharismita Borah
- Department of Chemistry, Indian Institute of Technology, Guwahati, Guwahati, Assam, 781039, India
| | - Kingsuk Mahata
- Department of Chemistry, Indian Institute of Technology, Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
23
|
Lin B, Li Z, Lin Y, Shu Y, Wang J. Evaluation of intracellular lipid droplets viscosity by a probe with high fluorescence quantum yield. Anal Chim Acta 2023; 1279:341776. [PMID: 37827674 DOI: 10.1016/j.aca.2023.341776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Lipid droplets (LDs) are an important organelle as the main energy storage site in cells. LDs viscosity controls the material and energy exchange between it and other organelles. Furthermore, the LDs metabolic abnormalities, cell dysfunction, some diseases may be attributed to the singular LDs viscosity. Currently, the fluorescent probes for sensing the variations of LDs viscosity are still scarce and expose some drawbacks of low fluorescence quantum yield, low sensitivity and LDs polarity interference. Thus, the development of high performance probes is significant to detect LDs viscosity. RESULTS We hereby provide a lipophilic fluorescent probe (TPE-BET) with high fluorescence quantum yield (Φf, 0.91 in glycerol) for imaging LDs viscosity in living cells. With the increase of viscosity from 0.54 cp to 934 cp, the fluorescence at λex/λem = 405/520 nm and the fluorescence quantum yield of TPE-BET linearly increased by 64.9 and 128.5 folds, respectively. Meanwhile, the outstanding LDs staining capability of TPE-BET may provide a high spatial resolution for LDs imaging. The cell imaging of TPE-BET not only successfully observed the viscosity variations of LDs in cell stress models, e.g., ferroptosis, inflammation and mitophagy, but also revealed the increased viscosity and extracellular delivery of LDs in heavy metal cell injury models (Hg/As) for the first time, which may supply concrete evidence for understanding the structure and function of LDs. SIGNIFICANCE This represents a new fluorescent probe TPE-BET with high fluorescence quantum yield for imaging LDs viscosity, which may decrease the dose of probe and excitation light intensity along with the improvement on signal noise ratio (S/N). The imaging results of TPE-BET clarified that LDs viscosity may be an appraisal index on cell differentiation, state evaluation and drug screening.
Collapse
Affiliation(s)
- Bo Lin
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Zhenru Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yanna Lin
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
24
|
Chevalier A. The how and why of naphthalimide/heterocycle-fused hybrid dyes: an overview of the latest developments in the quest for dyes with innovative optical properties. Org Biomol Chem 2023; 21:7498-7510. [PMID: 37671498 DOI: 10.1039/d3ob01035j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
In this review, a variety of hybrid structures fusing aromatic heterocycles of different natures to a naphthalimide backbone are discussed. This strategy constitutes an efficient approach to generate original structures displaying singular photophysical properties and thus offering new perspectives in the fields of fluorogenic detection, optoelectronics, and photodynamic therapy. In this review, different synthetic approaches and structures reported in the literature are discussed. A critical look at the design and the applications of these new fused hybrids allows us to evaluate the benefits and drawbacks of a fused hybrid strategy applied to naphthalimides.
Collapse
Affiliation(s)
- Arnaud Chevalier
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
25
|
Tosolini M, Alberoni C, Outis M, Parola AJ, Milani B, Tecilla P, Avó J. Naphthalimide-Dyes Bearing Phosphine and Phosphorylamide Moieties: Synthesis and Optical Properties. Chemistry 2023; 29:e202301597. [PMID: 37377174 DOI: 10.1002/chem.202301597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 06/29/2023]
Abstract
1,8-Naphthalimides (NIs) represent a class of organic dyes with interesting optical properties that has been extensively explored in the last decades in lighting devices, chemosensors, optical probes or medicinal chemistry. However, despite their remarkable potential, reports on organometallic dyes bearing NIs are scarce and virtually inexistent regarding palladium(II) complexes. Herein, we report the synthesis of NIs bearing phosphine and amine chelating moieties and the characterization of their optical properties both as single molecules and when complexed on Pd(II) ions. It is shown that the introduction of phosphine moieties in the naphthalimide core results in a marked increase in non-radiative processes, leading to a significant reduction of the emission efficiency and lifetime of these dyes, compared to amine-bearing counterparts. The complexation to Pd(II) sequesters the electronic contribution of chelating moieties, with complexes assuming an optical behavior similar to that of unsubstituted 1,8-naphthalimide. The complexation significantly increases the acidity of chelating secondary amines, giving rise to an unexpected intramolecular reaction that results in the formation of a novel 1,8-naphthalimide dye bearing a cyclic phosphorylamide moiety. The new dye exhibits good emission quantum yield, long fluorescence lifetime and sensitivity to basic media, evidencing potential for application in optical imaging and sensing scenarios.
Collapse
Affiliation(s)
- Massimo Tosolini
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Giorgieri 1, 34127, Trieste, Italy
| | - Chiara Alberoni
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Giorgieri 1, 34127, Trieste, Italy
| | - Mani Outis
- LAQV-REQUIMTE, Department of Chemistry NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
| | - António Jorge Parola
- LAQV-REQUIMTE, Department of Chemistry NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
| | - Barbara Milani
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Giorgieri 1, 34127, Trieste, Italy
| | - Paolo Tecilla
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Giorgieri 1, 34127, Trieste, Italy
| | - João Avó
- LAQV-REQUIMTE, Department of Chemistry NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
- IBB-Institute for Bioengineering and Biosciences Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| |
Collapse
|
26
|
Munan S, Yadav R, Pareek N, Samanta A. Ratiometric fluorescent probes for pH mapping in cellular organelles. Analyst 2023; 148:4242-4262. [PMID: 37581493 DOI: 10.1039/d3an00960b] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The intracellular pH (pHi) in organelles, including mitochondria, endoplasmic reticulum, lysosomes, and nuclei, differs from the cytoplasmic pH, and thus maintaining the pH of these organelles is crucial for cellular homeostasis. Alterations in the intracellular pH (ΔpHi) in organelles lead to the disruption of cell proliferation, ion transportation, cellular homeostasis, and even cell death. Hence, accurately mapping the pH of organelles is crucial. Accordingly, the development of fluorescence imaging probes for targeting specific organelles and monitoring their dynamics at the molecular level has become the forefront of research in the last three decades. Among them, ratiometric fluorescent probes minimize the interference from the excitation wavelength of light, auto-fluorescence from probe concentration, environmental fluctuations, and instrument sensitivity through self-correction compared to monochromatic fluorescent probes, which are known as turn-on/off fluorescent probes. Small-molecular ratiometric fluorescent probes for detecting ΔpHi are challenging yet demanding. To date, sixty-two ratiometric pH probes have been reported for monitoring internal pH alterations in cellular organelles. However, a critical review on organelle-specific ratiometric probes for pH mapping is still lacking. Thus, in the present review, we report the most recent advances in ratiometric pH probes and the previous data on the role of mapping the ΔpHi of cellular organelles. The development strategy, including ratiometric fluorescence with one reference signal (RFRS) and ratiometric fluorescence with two reversible signals (RFRvS), is systematically illustrated. Finally, we emphasize the major challenges in developing ratiometric probes that merit further research in the future.
Collapse
Affiliation(s)
- Subrata Munan
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, NH 91, Tehsil Dadri, Uttar Pradesh, India 201314.
| | - Rashmi Yadav
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, NH 91, Tehsil Dadri, Uttar Pradesh, India 201314.
| | - Niharika Pareek
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, NH 91, Tehsil Dadri, Uttar Pradesh, India 201314.
| | - Animesh Samanta
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, NH 91, Tehsil Dadri, Uttar Pradesh, India 201314.
| |
Collapse
|
27
|
Korzec M, Kotowicz S, Malarz K, Mrozek-Wilczkiewicz A. Spectroscopic and Biological Properties of the 3-Imino-1,8-naphthalimide Derivatives as Fluorophores for Cellular Imaging. Molecules 2023; 28:6255. [PMID: 37687082 PMCID: PMC10488415 DOI: 10.3390/molecules28176255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
This paper presents the photophysical and biological properties of eight 3-imino-1,8-naphthalimides. The optical properties of the compounds were investigated in the solvents that differed in their polarity (dichloromethane, acetonitrile, and methanol), including three methods of sample preparation using different pre-dissolving solvents such as dimethyl sulfoxide or chloroform. In the course of the research, it was found that there are strong interactions between the tested compounds and DMSO, which was visible as a change in the maximum emission band (λem) of the neat 3-imino-1,8-naphthalimides (λem = 470-480 nm) and between the compounds and DMSO (λem = 504-514 nm). The shift of the emission maximum that was associated with the presence of a small amount of DMSO in the sample was as much as 41 nm. In addition, the susceptibility of imines to hydrolysis in the methanol/water mixture with increasing water content and in the methanol/water mixture (v/v; 1:1) in the pH range from 1 to 12 was discussed. The studies showed that the compounds are hydrolysed in the CH3OH/H2O system in an acidic environment (pH in the range of 1 to 4). In addition, it was found that partial hydrolysis occurs in systems with an increased amount of water, and its degree may depend on the type of substituent on the imine bond. The compounds tended to quench the emission (ACQ) in the aggregated state and increase the emission related to the protonation of the imine bond. Moreover, it was found that the substituent in the imine bonds influenced a compound's individual photophysical properties. Biological tests, including cytotoxicity studies and cellular localisation, were also performed for all of the molecules. All of the tested compounds exhibited green fluorescence in the MCF-7 cells and showed co-localisation in the mitochondria, endoplasmic reticulum, and lysosome. The obtained photophysical and biological results indicate the promising potential use of the tested compounds as cellular dyes.
Collapse
Affiliation(s)
- Mateusz Korzec
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland;
| | - Sonia Kotowicz
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland;
| | - Katarzyna Malarz
- August Chelkowski Institute of Physics, University of Silesia in Katowice, 1A 75 Pułku Piechoty Str., 41-500 Chorzow, Poland; (K.M.); (A.M.-W.)
| | - Anna Mrozek-Wilczkiewicz
- August Chelkowski Institute of Physics, University of Silesia in Katowice, 1A 75 Pułku Piechoty Str., 41-500 Chorzow, Poland; (K.M.); (A.M.-W.)
| |
Collapse
|
28
|
Xu X, Wang X, Cui X, Jia B, Xu B, Sun J. Dispersion Performances of Naphthalimides Doped in Dual Temperature- and pH-Sensitive Poly (N-Isopropylacrylamide-co-acrylic Acid) Shell Assembled with Vinyl-Modified Mesoporous SiO 2 Core for Fluorescence Cell Imaging. Polymers (Basel) 2023; 15:polym15102339. [PMID: 37242914 DOI: 10.3390/polym15102339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023] Open
Abstract
Developing effective intelligent nanocarriers is highly desirable for fluorescence imaging and therapeutic applications but remains challenging. Using a vinyl-grafted BMMs (bimodal mesoporous SiO2 materials) as a core and PAN ((2-aminoethyl)-6-(dimethylamino)-1H-benzo[de]isoquinoline-1,3(2H)-dione))-dispersed dual pH/thermal-sensitive poly(N-isopropylacrylamide-co-acrylic acid) as a shell, PAN@BMMs with strong fluorescence and good dispersibility were prepared. Their mesoporous features and physicochemical properties were extensively characterized via XRD patterns, N2 adsorption-desorption analysis, SEM/TEM images, TGA profiles, and FT-IR spectra. In particular, their mass fractal dimension (dm) features based on SAXS patterns combined with fluorescence spectra were successfully obtained to evaluate the uniformity of the fluorescence dispersions, showing that the dm values increased from 2.49 to 2.70 with an increase of the AN-additive amount from 0.05 to 1%, along with the red shifting of their fluorescent emission wavelength from 471 to 488 nm. The composite (PAN@BMMs-I-0.1) presented a densification trend and a slight decrease in peak (490 nm) intensity during the shrinking process. Its fluorescent decay profiles confirmed two fluorescence lifetimes of 3.59 and 10.62 ns. The low cytotoxicity obtained via in vitro cell survival assay and the efficient green imaging performed via HeLa cell internalization suggested that the smart PAN@BMM composites are potential carriers for in vivo imaging and therapy.
Collapse
Affiliation(s)
- Xiaohuan Xu
- Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China
| | - Xueqing Cui
- Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China
| | - Bingying Jia
- Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China
| | - Bang Xu
- Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China
| | - Jihong Sun
- Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
29
|
Tzeliou CE, Tzeli D. Metallocene-Naphthalimide Derivatives: The Effect of Geometry, DFT Methodology, and Transition Metals on Absorption Spectra. Molecules 2023; 28:molecules28083565. [PMID: 37110799 PMCID: PMC10146125 DOI: 10.3390/molecules28083565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
In the present paper, the photophysical properties of metallocene-4-amino-1,8-naphthalimide-piperazine molecules (1-M2+), as well as their oxidized and protonated derivatives (1-M3+, 1-M2+-H+, and 1-M3+-H+), where M = Fe, Co, and Ni, were studied via DFT and TD-DFT, employing three functionals, i.e., PBE0, TPSSh, and wB97XD. The effect of the substitution of the transition metal M on their oxidation state, and/or the protonation of the molecules, was investigated. The present calculated systems have not been investigated before and, except for the data regarding their photophysical properties, the present study provides important information regarding the effect of geometry and of DFT methodology on absorption spectra. It was found that small differences in geometry, specifically in the geometry of N atoms, reflect significant differences in absorption spectra. The common differences in spectra due to the use of different functionals can be significantly increased when the functionals predict minima even with small geometry differences. For most of the calculated molecules, the main absorption peaks in visible and near-UV areas correspond mainly to charge transfer excitations. The Fe complexes present larger oxidation energies at 5.4 eV, whereas Co and Ni complexes have smaller ones, at about 3.5 eV. There are many intense UV absorption peaks with excitation energies similar to their oxidation energies, showing that the emission from these excited states can be antagonistic to their oxidation. Regarding the use of functionals, the inclusion of dispersion corrections does not affect the geometry, and consequently the absorption spectra, of the present calculated molecular systems. For certain applications, where there is a need for a redox molecular system including metallocene, the oxidation energies could be lowered significantly, to about 40%, with the replacement of the iron with cobalt or nickel. Finally, the present molecular system, using cobalt as the transition metal, has the potential to be used as a sensor.
Collapse
Affiliation(s)
- Christina Eleftheria Tzeliou
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| | - Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| |
Collapse
|
30
|
Zhang S, Zheng H, Yang L, Li Z, Yu M. NIR Mitochondrial Fluorescent Probe for Visualizing SO 2/Polarity in Drug Induced Inflammatory Mice. Anal Chem 2023; 95:5377-5383. [PMID: 36913654 DOI: 10.1021/acs.analchem.2c05737] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
SO2 and polarity are important microenvironmental parameters in cells, which are closely related to physiological activities in organisms. The intracellular levels of SO2 and polarity are abnormal in inflammatory models. To this end, a novel near-infrared fluorescent probe BTHP that can simultaneously detect SO2 and polarity was studied. BTHP can sensitively detect polarity change with emission peak change from 677 to 818 nm. BTHP can also detect SO2 with fluorescence change from red to green. After addition of SO2, the fluorescence emission intensity ratio I517/I768 of the probe increased by about 33.6 times. BTHP can determine bisulfite in single crystal rock sugar with high recovery rate (99.2%-101.7%). Fluorescence imaging of cells showed that BTHP could better target mitochondria and monitor exogenous SO2 in A549 cells. More importantly, BTHP has been successfully used for dual channel monitoring SO2 and polarity in drug-induced inflammatory cells and mice. In particular, the probe showed increased green fluorescence with the generation of SO2 and increased red fluorescence with the decrease of polarity in inflammatory cells and mice.
Collapse
Affiliation(s)
- Shen Zhang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongyong Zheng
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Lei Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Zhanxian Li
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingming Yu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
31
|
Zhang C, Wang Y, Li X, Nie S, Liu C, Zhang Y, Guo J. A fluorescent probe based on phenothiazine for detection of ClO− with naked-eye color change properties. Anal Biochem 2023; 670:115131. [PMID: 37001597 DOI: 10.1016/j.ab.2023.115131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Hypochlorite (ClO-) plays a key role in life systems and it is necessary to develop an effective detection method. In view of the significant advantages of the fluorescent probe, we have synthesized a naked-eye recognition fluorescent probe NNCF for the detection of ClO- based on phenothiazine and naphthalimide. The probe NNCF is sensitive (LOD = 9.5 nM) and fast for ClO- (within 30 s), and its Stokes shift is as large as 161 nm. In addition, the probe NNCF has been successfully used for imaging detection of exogenous ClO- in MCF-7 cells with low toxicity.
Collapse
Affiliation(s)
- Chenglu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China.
| | - Yiming Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| | - Xiangling Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| | - Shiru Nie
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| | - Chang Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| | - Jinghao Guo
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| |
Collapse
|
32
|
Liu SZ, Xu JH, Ma QJ, Wang BY, Li LK, Zhu NN, Liu SY, Wang GG. A naphthalimide-based and Golgi-targetable fluorescence probe for quantifying hypochlorous acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121986. [PMID: 36265303 DOI: 10.1016/j.saa.2022.121986] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
The Golgi apparatus (GA) is a vital organelle in biological systems and excess reactive oxygen species (ROS) is produced during stress in the Golgi apparatus. Hypochlorous acid (HOCl) is a significant reactive oxygen species and has strong oxidative and antibacterial activity, but excessive secretion of hypochlorous acid can affect Golgi structure or function abnormally, it will lead to a series of diseases including Alzheimer's disease, neurodegenerative diseases, autoimmune diseases, and Parkinson's disease. In present work, a novel fluorescent probe for Golgi localization utilizing naphthalimide derivatives was constructed to detect hypochlorous acid. The fluorescent probe used a derivatived 1,8-naphthalimide as the emitting fluorescence group, phenylsulfonamide as the localization group and dimethylthiocarbamate as the sensing unit. When HOCl was absent, the intramolecular charge transfer (ICT) process of the developed probe was hindered and the probe exhibited a weak fluorescence. When HOCl was present, the ICT process occurred and the probe showed strong green fluorescence. When the HOCl concentration was altered from 5.0 × 10-7 to 1.0 × 10-5 mol·L-1, the fluorescence intensity of the probe well linearly correlated with the HOCl concentration. The detection limit of 5.7 × 10-8 mol·L-1 was obtained for HOCl. The HOCl fluorescent probe possessed a rapid reaction time, a high selectivity and a broad working pH scope. In addition, the probe possessed good biocompatibility and had been magnificently employed to image Golgi HOCl in Hela cells. These characteristics of the probe demonstrated its ability to be used for sensing endogenous and exogenous hypochlorous acids within the Golgi apparatus of living cells.
Collapse
Affiliation(s)
- Shu-Zhen Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Jun-Hong Xu
- Department of Dynamical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China
| | - Qiu-Juan Ma
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Bai-Yan Wang
- Key Discipline Laboratory of Basic Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Lin-Ke Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Nan-Nan Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Shuang-Yu Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Ge-Ge Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| |
Collapse
|
33
|
Jovaišaitė J, Baronas P, Jonusauskas G, Gudeika D, Gruodis A, Gražulevičius JV, Juršėnas S. TICT compounds by design: comparison of two naphthalimide-π-dimethylaniline conjugates of different lengths and ground state geometries. Phys Chem Chem Phys 2023; 25:2411-2419. [PMID: 36598166 DOI: 10.1039/d2cp04250a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two new twisted intramolecular charge transfer (TICT) donor-π-acceptor compounds were designed by combining a well-known electron acceptor naphthalimide unit with a classic electron donor dimethylaniline through two types of different rigid linkers. The combined steady-state and time-resolved spectroscopy of molecules in solvents of different polarities in comparison to solid-state solvation experiments of doped polymer matrixes of different polarities allowed distinguishing between solvation and conformation determined processes. The photophysical measurements revealed that non-polar solutions possess high fluorescence quantum yields of up to 70% which is a property of pre-twisted/planar molecules in the excited charge transfer (CT) states. The increase of polarity allows tuning the Stokes shift through all the visible wavelength range up to 8601 cm-1 which is accompanied by a three orders of magnitude drop of fluorescence quantum yields. This is a result of the emerged TICT states as dimethylaniline twists to a perpendicular position against the naphthalimide core. The TICT reaction of molecules enables an additional non-radiative excitation decay channel, which is not present if the twisting is forbidden in a rigid polymer matrix. Transient absorption spectroscopy was employed to visualize the excited state dynamics and to obtain the excited state reaction constants, revealing that TICT may occur from both the Franck-Condon region and the solvated pre-twisted/planar CT states. Both molecules undergo the same photophysical processes, however, a longer linker and thus a higher excited state dipole moment determines the faster excited state reactions.
Collapse
Affiliation(s)
- Justina Jovaišaitė
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
| | - Paulius Baronas
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
| | - Gediminas Jonusauskas
- Laboratoire Ondes et Matiére d'Aquitaine, Bordeaux University, UMR CNRS 5798, 351 cours de la Libération, 33405 Talence, France
| | - Dalius Gudeika
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilėnų rd. 19, LT-50254 Kaunas, Lithuania
| | - Alytis Gruodis
- Institute of Chemical Physics, Vilnius University, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Juozas V Gražulevičius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilėnų rd. 19, LT-50254 Kaunas, Lithuania
| | - Saulius Juršėnas
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
34
|
Sharma P, Kumar S, Walia A, Marok SS, Vanita V, Singh P. A naphthalimide-tyrosine-based dicationic amphiphile for intracellular ' turn-on' simultaneous detection of ATP and CTP. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:203-211. [PMID: 36520082 DOI: 10.1039/d2ay01550a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We have developed a new naphthalimide-based amphiphile (YN-1) for the simultaneous detection of ATP and CTP. In YN-1, the cationic tyrosine-linked polyamine (+2 charge, hydrophilic unit) is appended at the -peri position of naphthalimide (hydrophobic unit). YN-1 and its Boc-protected compound 4 were characterized using state-of-the-art spectroscopic and optical techniques such as NMR, IR, UV-vis and fluorescence. The fluorescence data revealed that YN-1 showed a 'turn-on' (λem = 440 nm) fluorescence response for nanomolar detection of nucleoside triphosphates such as ATP and CTP in 20% HEPES buffer-DMSO solution. YN-1 also showed a concentration-based discrimination between ATP and CTP. YN-1 has been successfully applied for bioimaging of nucleoside triphosphates in MCF-7 live cancer cells with good compatibility. Therefore, the important findings from the present work will provide insight for future development of fluorescent probes to detect various kinds of essential nucleoside triphosphates.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Pb, India.
| | - Sugandha Kumar
- Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Pb, India.
- School of Physical Sciences, Starex University, Gurugram, India
| | - Amandeep Walia
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Pb, India.
| | | | - Vanita Vanita
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Pb, India.
| | - Prabhpreet Singh
- Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Pb, India.
| |
Collapse
|
35
|
Kumar S, Singh P. Visualization and dermatoglyphics of latent fingerprints (sweat pores): Security ink for anticounterfeiting labels and case studies. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
AIEgen-Peptide Bioprobes for the Imaging of Organelles. BIOSENSORS 2022; 12:bios12080667. [PMID: 36005064 PMCID: PMC9406086 DOI: 10.3390/bios12080667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 01/03/2023]
Abstract
Organelles are important subsystems of cells. The damage and inactivation of organelles are closely related to the occurrence of diseases. Organelles’ functional activity can be observed by fluorescence molecular tools. Nowadays, a series of aggregation-induced emission (AIE) bioprobes with organelles-targeting ability have emerged, showing great potential in visualizing the interactions between probes and different organelles. Among them, AIE luminogen (AIEgen)-based peptide bioprobes have attracted more and more attention from researchers due to their good biocompatibility and photostability and abundant diversity. In this review, we summarize the progress of AIEgen-peptide bioprobes in targeting organelles, including the cell membrane, nucleus, mitochondria, lysosomes and endoplasmic reticulum, in recent years. The structural characteristics and biological applications of these bioprobes are discussed, and the development prospect of this field is forecasted. It is hoped that this review will provide guidance for the development of AIEgen-peptide bioprobes at the organelles level and provide a reference for related biomedical research.
Collapse
|
37
|
Yu K, Ding Y, Yu H, Zhu W, Yu H, Luo Y, Zheng X, Huang Y, Lu Z, Wang X. Visualizing Lysosomal Positioning with a Fluorescent Probe Reveals a New Synergistic Anticancer Effect. ACS Sens 2022; 7:1867-1873. [PMID: 35766996 DOI: 10.1021/acssensors.2c00375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The observation and discovery of lysosome dynamic alterations will greatly contribute to the in-depth understanding of lysosome biology and the development of new cancer therapeutics. To visualize lysosomal dynamics, here we have developed a lysosome-targetable fluorescent probe of NIM-3 showing integrated high selectivity, high photostability, and low cytotoxicity. With the aid of the excellent spatial and temporal imaging capability of NIM-3, three different types of motion of lysosomes were defined, and perinuclear accumulation of lysosomes in response to the pro-inflammatory cytokine stimulus was observed in various cells. More importantly, through lysosomal positioning studies, a new and potential anticancer therapy, i.e., the combination treatment of TNFα (tumor necrosis factor alpha) and chloroquine (CQ, a lysosomal pH elevator), was disclosed. The efficacy of the "CQ + TNFα" treatment was verified by different types of human cancer cells, and the anticancer mechanism may be partially attributed to lysosomal dilation.
Collapse
Affiliation(s)
- Kaixin Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yufeng Ding
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Hua Yu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Wencheng Zhu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haitao Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yanju Luo
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Xujun Zheng
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Yan Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhiyun Lu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiongjun Wang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
38
|
Krzeszewski M, Modrzycka S, Bousquet MHE, Jacquemin D, Drąg M, Gryko DT. Green-Emitting 4,5-Diaminonaphthalimides in Activity-Based Probes for the Detection of Thrombin. Org Lett 2022; 24:5602-5607. [PMID: 35863755 PMCID: PMC9361357 DOI: 10.1021/acs.orglett.2c02320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The natures of electron-donating groups as well as the bridge between them determine the fate of substituted 1,8-naphthalimide molecules in the excited state. An activity-based probe constructed from a selective peptide sequence, a reactive warhead, and the brightest green-emitting fluorophore displays impressive performance for thrombin protease detection in a newly constructed series of 1,8-naphthalimides.
Collapse
Affiliation(s)
- Maciej Krzeszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Sylwia Modrzycka
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wybrezeże Wyspiańskiego 27, Wrocław 50-370, Poland
| | | | - Denis Jacquemin
- CEISAM UMR CNRS 6230, Nantes University, Nantes 44000, France
| | - Marcin Drąg
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wybrezeże Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| |
Collapse
|
39
|
Xia M, Li C, Liu L, He Y, Li Y, Jiang G, Wang J. A Fast-Response AIE-Active Ratiometric Fluorescent Probe for the Detection of Carboxylesterase. BIOSENSORS 2022; 12:bios12070484. [PMID: 35884287 PMCID: PMC9313056 DOI: 10.3390/bios12070484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 12/03/2022]
Abstract
Hepatocellular carcinoma (HCC) is associated with a high mortality rate worldwide. The therapeutic outcomes can be significantly improved if diagnosis and treatment are initiated earlier in the disease process. Recently, the carboxylesterase (CaE) activity/level in human plasma was reported to be a novel serological biomarker candidate for HCC. In this article, we fabricated a new fluorescent probe with AIE characteristics for the rapid detection of CaE with a more reliable ratiometric response mode. The TCFISE probe showed high sensitivity (LOD: 93.0 μU/mL) and selectivity toward CaE. Furthermore, the good pH stability, superior resistance against photobleaching, and low cytotoxicity highlight the high potential of the TCFISE probe for application in the monitoring of CaE activity in complex biological samples and in live cells, tissues, and animals.
Collapse
Affiliation(s)
- Mengting Xia
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, China; (M.X.); (Y.L.)
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; (C.L.); (L.L.); (Y.H.); (G.J.)
| | - Chunbin Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; (C.L.); (L.L.); (Y.H.); (G.J.)
| | - Lingxiu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; (C.L.); (L.L.); (Y.H.); (G.J.)
| | - Yumao He
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; (C.L.); (L.L.); (Y.H.); (G.J.)
| | - Yongdong Li
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, China; (M.X.); (Y.L.)
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; (C.L.); (L.L.); (Y.H.); (G.J.)
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; (C.L.); (L.L.); (Y.H.); (G.J.)
- Correspondence:
| |
Collapse
|
40
|
Liu C, Zhu H, Zhang Y, Su M, Liu M, Zhang X, Wang X, Rong X, Wang K, Li X, Zhu B. Recent advances in Golgi-targeted small-molecule fluorescent probes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Jain N, Kaur N. A comprehensive compendium of literature of 1,8-Naphthalimide based chemosensors from 2017 to 2021. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Kumar S, Sharma N, Kaur S, Singh P. Pseudo-crown ether III: Naphthalimide-Pd(II) based fluorogenic ensemble for solution, vapour and Intracellular detection of amine and anti-counterfeiting applications. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Li X, Bian J, Fu M, Zhang Y, Liu H, Gao B. Photostable fluorescent probes based on multifunctional group substituted naphthalimide dyes for imaging of lipid droplets in live cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1279-1284. [PMID: 35274115 DOI: 10.1039/d2ay00104g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We designed and synthesized multifunctional group substituted naphthalimide (MFGNI) dyes by introducing glycine ethyl ester and azetidine on 1,8-naphthalimide. With different azetidine substituents, the emission of the MFGNI dyes was shifted from blue to green. These MFGNI dyes exhibited high photoluminescence quantum yields (61% to 85%) and large Stokes shifts (67 nm). The amides and hydroxyl groups improved the photostability of the MFGNI dyes. Due to the small molecular weight and lipophilic properties, these MFGNI dyes specifically stained lipid droplets in living cells.
Collapse
Affiliation(s)
- Xinwei Li
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
| | - Jiqing Bian
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
| | - Mingyang Fu
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
| | - Yan Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
| | - Hongmei Liu
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, Hebei, China
| | - Baoxiang Gao
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
- Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding 071002, Hebei, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, Hebei, China
| |
Collapse
|
44
|
Recent advances in chromophore-assembled upconversion nanoprobes for chemo/biosensing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Kusano S, Nakamura S, Izumi M, Hagihara S. Development of 1,8-naphthalimide dyes for rapid imaging of subcellular compartments in plants. Chem Commun (Camb) 2022; 58:1685-1688. [PMID: 34909805 DOI: 10.1039/d1cc05798g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here, we report the installation of 1,8-naphthalimide dyes in live cell imaging of plants. We developed a series of 1,8-naphthalimide-based probes that illuminate different subcellular compartments by altering their spectral characteristics. Simple infiltration of the probes into leaves rapidly visualized the structure of chloroplasts or the vacuole. We further demonstrated that these probes are applicable to monitor the organelle behaviors in an autophagy pathway.
Collapse
Affiliation(s)
- Shuhei Kusano
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Sakuya Nakamura
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Masanori Izumi
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Shinya Hagihara
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
46
|
Lazarus L, Dederich CT, Anderson SN, Benninghoff AD, Berreau LM. Flavonol-Based Carbon Monoxide Delivery Molecule with Endoplasmic Reticulum, Mitochondria, And Lysosome Localization. ACS Med Chem Lett 2022; 13:236-242. [PMID: 35178180 PMCID: PMC8842101 DOI: 10.1021/acsmedchemlett.1c00595] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/26/2022] [Indexed: 12/14/2022] Open
Abstract
Light-triggered carbon monoxide (CO) delivery molecules are of significant current interest for evaluating the role of CO in biology and as potential therapeutics. Herein we report the first example of a metal free CO delivery molecule that can be tracked via confocal microscopy at low micromolar concentrations in cells prior to CO release. The NEt2-appended extended flavonol (4) localizes to the endoplasmic reticulum, mitochondria, and lysosomes. Subcellular localization of 4 results in CO-induced toxicity effects that are distinct as compared to a nonlocalized analog. Anti-inflammatory effects of 4, as measured by TNF-α suppression, occur at the nanomolar level in the absence of CO release, and are enhanced with visible-light-induced CO release. Overall, the highly trackable nature of 4 enables studies of the biological effects of both a localized flavonol and CO release at low micromolar to nanomolar concentrations.
Collapse
Affiliation(s)
- Livia
S. Lazarus
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322-0300, United States
| | - C. Taylor Dederich
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322-0300, United States
| | - Stephen N. Anderson
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322-0300, United States
| | - Abby D. Benninghoff
- Department
of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah 84322-4815, United States
| | - Lisa M. Berreau
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322-0300, United States,
| |
Collapse
|
47
|
Huang B, Liang B, Zhang R, Xing D. Molecule fluorescent probes for adenosine triphosphate imaging in cancer cells and in vivo. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Lai Y, Chen X, Chen F, Ni L, Wang T, Zhu Z, Man J, Jiang C, Xie Z. A Lysosome-Targeted Far-Red to Near-Infrared Fluorescent Probe for Monitoring Viscosity Change During the Ferroptosis Process. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Singh D, Shewale D, Sengupta A, Soppina V, Kanvah S. Lutidine Derivatives for Live-Cell Imaging of Mitochondria and Endoplasmic Reticulum. Org Biomol Chem 2022; 20:7047-7055. [DOI: 10.1039/d2ob00995a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitochondria and endoplasmic reticulum (ER) are highly dynamic subcellular structures essential for several biological functions. The development of non-toxic, wash-free fluorophores to visualize these structures inside cells aid in understanding...
Collapse
|
50
|
Zhu H, Liu C, Su M, Rong X, Zhang Y, Wang X, Wang K, Li X, Yu Y, Zhang X, Zhu B. Recent advances in 4-hydroxy-1,8-naphthalimide-based small-molecule fluorescent probes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214153] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|