1
|
Qiao X, Guo S, Meng Z, Gan H, Wu Z, Sun Y, Liu S, Dou G, Gu R. Advances in the study of death receptor 5. Front Pharmacol 2025; 16:1549808. [PMID: 40144653 PMCID: PMC11936945 DOI: 10.3389/fphar.2025.1549808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
DR5, a receptor with the highest affinity for TRAIL under physiological conditions, selectively induces apoptosis in specific target cells such as tumor and aberrant immune cells, while minimally affecting normal cells. The TRAIL-DR5 signaling pathway is a crucial regulatory mechanism when the body responds to various exogenous interference factors, including viruses, chemicals, and radiation. This pathway plays a vital role in maintaining physiological homeostasis and in the pathological development of various diseases. Different modulations of DR5, such as upregulation, activation, and antagonism, hold significant potential for therapeutic applications in tumors, cardiovascular diseases, autoimmune diseases, viral infections, and radiation injuries. This article provides an overview of the current research progress on DR5, including the status and prospects of its clinical applications.
Collapse
Affiliation(s)
- Xuan Qiao
- Graduate Collaborative Training Base of Academy of Military Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuang Guo
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhiyun Meng
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Hui Gan
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhuona Wu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yunbo Sun
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuchen Liu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Guifang Dou
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Ruolan Gu
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
2
|
Shrestha P, Ghanwatkar Y, Mahto S, Pramanik N, Mahato RI. Gemcitabine-Lipid Conjugate and ONC201 Combination Therapy Effectively Treats Orthotopic Pancreatic Tumor-Bearing Mice. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29686-29698. [PMID: 38813771 PMCID: PMC11600442 DOI: 10.1021/acsami.4c02626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Gemcitabine (GEM) is a nucleoside analogue approved as a first line of therapy for pancreatic ductal adenocarcinoma (PDAC). However, rapid metabolism by plasma cytidine deaminase leading to the short half-life, intricate intracellular metabolism, ineffective cell uptake, and swift development of chemoresistance downgrades the clinical efficacy of GEM. ONC201 is a small molecule that inhibits the Akt and ERK pathways and upregulates the TNF-related apoptosis-inducing ligand (TRAIL), which leads to the reversal of both intrinsic and acquired GEM resistance in PDAC treatment. Moreover, the pancreatic cancer cells that were able to bypass apoptosis after treatment of ONC201 get arrested in the G1-phase, which makes them highly sensitive to GEM. To enhance the in vivo stability of GEM, we first synthesized a disulfide bond containing stearate conjugated GEM (lipid-GEM), which makes it sensitive to the redox tumor microenvironment (TME) comprising high glutathione levels. In addition, with the help of colipids 1,2-dioleoyl-glycero-3-phosphocholine (DOPC), cholesterol, and 1,2-distearoyl-glycero-3-phosphoethanolamine-poly(ethylene glycol)-2000 (DSPE-PEG 2000), we were able to synthesize the lipid-GEM conjugate and ONC201 releasing liposomes. A cumulative drug release study confirmed that both ONC201 and GEM showed sustained release from the formulation. Since MUC1 is highly expressed in 70-90% PDAC, we conjugated a MUC1 binding peptide in the liposomes which showed higher cytotoxicity, apoptosis, and cellular internalization by MIA PaCa-2 cells. A biodistribution study further confirmed that the systemic delivery of the liposomes through the tail vein resulted in a higher accumulation of drugs in orthotopic PDAC tumors in NSG mice. The IHC of the excised tumor grafts further confirmed the higher apoptosis and lower metastasis and cell proliferation. Thus, our MUC1 targeting binary drug-releasing liposomal formulation showed higher drug payload, enhanced plasma stability, and accumulation of drugs in the pancreatic orthotopic tumor and thus is a promising therapeutic alternative for the treatment of PDAC.
Collapse
Affiliation(s)
- Prakash Shrestha
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Yashwardhan Ghanwatkar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Sohan Mahto
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Nilkamal Pramanik
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
3
|
Dash CP, Sonowal D, Dhaka P, Yadav R, Chettri D, Satapathy BP, Sheoran P, Uttam V, Jain M, Jain A. Antitumor activity of genetically engineered NK-cells in non-hematological solid tumor: a comprehensive review. Front Immunol 2024; 15:1390498. [PMID: 38694508 PMCID: PMC11061440 DOI: 10.3389/fimmu.2024.1390498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/18/2024] [Indexed: 05/04/2024] Open
Abstract
Recent advancements in genetic engineering have made it possible to modify Natural Killer (NK) cells to enhance their ability to fight against various cancers, including solid tumors. This comprehensive overview discusses the current status of genetically engineered chimeric antigen receptor NK-cell therapies and their potential for treating solid tumors. We explore the inherent characteristics of NK cells and their role in immune regulation and tumor surveillance. Moreover, we examine the strategies used to genetically engineer NK cells in terms of efficacy, safety profile, and potential clinical applications. Our investigation suggests CAR-NK cells can effectively target and regress non-hematological malignancies, demonstrating enhanced antitumor efficacy. This implies excellent promise for treating tumors using genetically modified NK cells. Notably, NK cells exhibit low graft versus host disease (GvHD) potential and rarely induce significant toxicities, making them an ideal platform for CAR engineering. The adoptive transfer of allogeneic NK cells into patients further emphasizes the versatility of NK cells for various applications. We also address challenges and limitations associated with the clinical translation of genetically engineered NK-cell therapies, such as off-target effects, immune escape mechanisms, and manufacturing scalability. We provide strategies to overcome these obstacles through combination therapies and delivery optimization. Overall, we believe this review contributes to advancing NK-cell-based immunotherapy as a promising approach for cancer treatment by elucidating the underlying mechanisms, evaluating preclinical and clinical evidence, and addressing remaining challenges.
Collapse
Affiliation(s)
- Chinmayee Priyadarsini Dash
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Dhruba Sonowal
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Prachi Dhaka
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Rohit Yadav
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Dewan Chettri
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Bibhu Prasad Satapathy
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Pooja Sheoran
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Vivek Uttam
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Manju Jain
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Aklank Jain
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
4
|
Zhao W, Yu D, Zhai Y, Sun SY. ALK inhibitors downregulate the expression of death receptor 4 in ALK-mutant lung cancer cells via facilitating Fra-1 and c-Jun degradation and subsequent AP-1 suppression. Neoplasia 2023; 42:100908. [PMID: 37192591 DOI: 10.1016/j.neo.2023.100908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
The successful treatment of patients with advanced non-small cell lung cancer (NSCLC) harboring chromosomal rearrangements of anaplastic lymphoma kinase (ALK) with ALK tyrosine kinase inhibitors (ALK-TKIs) represents a promising targeted therapy. As a result, various ALK-TKIs have been rapidly developed, some of which are approved while some are being tested in clinical trials. Death receptor 4 (DR4; also called TNFRSF10A or TRAIL-R1) is a cell surface protein, which functions as a pro-apoptotic protein that transduces TRAIL death signaling to trigger apoptosis. DR4 expression is positively regulated by MEK/ERK signaling and thus can be downregulated by MEK/ERK inhibition. This study thus focused on determining the effects of AKL-TKIs on DR4 expression and the underlying mechanisms. Three tested ALK-TKIs including APG-2449, brigatinib and alectinib effectively and preferentially inhibited Akt/mTOR as well as MEK/ERK signaling and decreased cell survival in ALK-mutant (ALKm) NSCLC cells with induction of apoptosis. This was also true for DR4 downregulation, which occurred even at 2 h post treatment. These ALK-TKIs did not affect DR4 protein stability, rather decreased DR4 mRNA expression. In parallel, they promoted degradation and reduced the levels of Fra-1 and c-Jun, two critical components of AP-1, and suppressed AP-1 (Fra-1/c-Jun)-dependent transcription/expression of DR4. Hence, it appears that ALK-TKIs downregulate DR4 expression in ALKm NSCLC cells via facilitating Fra-1 and c-Jun degradation and subsequent AP-1 suppression. Our findings thus warrant further investigation of the biological significance of DR4 downregulation in ALK-targeted cancer therapy.
Collapse
Affiliation(s)
- Wen Zhao
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Danlei Yu
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Yifan Zhai
- Ascentage Pharma (Suzhou) Co., Ltd, Suzhou, Jiangsu, China
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA.
| |
Collapse
|
5
|
Zare A, Izanloo S, Khaledi S, Maratovich MN, Kaliyev AA, Abenova NA, Rahmanifar F, Mahdipour M, Bakhshalizadeh S, Shirazi R, Tanideh N, Tamadon A. A Bibliometric and In Silico-Based Analysis of Anti-Lung Cancer Compounds from Sea Cucumber. Mar Drugs 2023; 21:md21050283. [PMID: 37233477 DOI: 10.3390/md21050283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Lung cancer is one of the most lethal malignancies in the world. However, current curative approaches for treating this type of cancer have some weaknesses. Therefore, scientists are attempting to discover new anti-lung cancer agents. Sea cucumber is a marine-derived source for discovering biologically active compounds with anti-lung cancer properties. To explore the anti-lung cancer properties of sea cucumber, we analyzed surveys using VOSviewer software and identified the most frequently used keywords. We then searched the Google Scholar database for compounds with anti-lung cancer properties within that keyword family. Finally, we used AutoDock 4 to identify the compounds with the highest affinity for apoptotic receptors in lung cancer cells. The results showed that triterpene glucosides were the most frequently identified compounds in studies examining the anti-cancer properties of sea cucumbers. Intercedenside C, Scabraside A, and Scabraside B were the three triterpene glycosides with the highest affinity for apoptotic receptors in lung cancer cells. To the best of our knowledge, this is the first time that anti-lung cancer properties of sea cucumber-derived compounds have been examined in in silico conditions. Ultimately, these three components displayed anti-lung cancer properties in in silico conditions and may be used for the manufacture of anti-lung cancer agents in the near future.
Collapse
Affiliation(s)
- Afshin Zare
- The PerciaVista Biotechnology Company, Shiraz 71676-83745, Iran
| | - Safoura Izanloo
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- School of Nursing, North Khorasan University of Medical Sciences, Bojnurd 94149-74877, Iran
| | - Sajed Khaledi
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | | | | | - Nurgul Abdullayevna Abenova
- Department of Internal Diseases, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan
| | - Farhad Rahmanifar
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz 71348-14336, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666-53431, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51666-53431, Iran
| | - Shabnam Bakhshalizadeh
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Reza Shirazi
- Department of Anatomy, School of Medical Sciences, Biomedical & Health, UNSW Sydney, Sydney, NSW 1466, Australia
| | - Nader Tanideh
- The PerciaVista Biotechnology Company, Shiraz 71676-83745, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Department of Pharmacology, Medical School, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Amin Tamadon
- The PerciaVista Biotechnology Company, Shiraz 71676-83745, Iran
- Department for Scientific Work, West Kazakhstan Marat Ospanov Medical University, Aktobe 030010, Kazakhstan
| |
Collapse
|
6
|
Green DS, Ning F, Duemler A, Myers TG, Trewhitt K, Ekwede I, McCoy A, Houston N, Lee JM, Lipkowitz S, Zimmer A, Pavelova M, Villanueva EN, Smith L, Blakely A, Casablanca Y, Highfill SL, Stroncek DF, Collins-Johnson N, Panch S, Procter J, Pham C, Holland SM, Rosen LB, Nunes AT, Zoon KC, Cole CB, Annunziata CM, Annunziata CM. Intraperitoneal Monocytes plus IFNs as a Novel Cellular Immunotherapy for Ovarian Cancer: Mechanistic Characterization and Results from a Phase I Clinical Trial. Clin Cancer Res 2023; 29:349-363. [PMID: 36099324 PMCID: PMC9851980 DOI: 10.1158/1078-0432.ccr-22-1893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 01/22/2023]
Abstract
PURPOSE Ovarian cancer is the most lethal gynecologic cancer and intrinsically resistant to checkpoint immunotherapies. We sought to augment innate immunity, building on previous work with IFNs and monocytes. PATIENTS AND METHODS Preclinical experiments were designed to define the mechanisms of cancer cell death mediated by the combination of IFNs α and γ with monocytes. We translated these preclinical findings into a phase I trial of autologous IFN-activated monocytes administered intraperitoneally to platinum-resistant or -refractory ovarian cancer patients. RESULTS IFN-treated monocytes induced caspase 8-dependent apoptosis by the proapoptotic TRAIL and mediated by the death receptors 4 and 5 (DR4 and DR5, respectively) on cancer cells. Therapy was well tolerated with evidence of clinical activity, as 2 of 9 evaluable patients had a partial response by RECIST criteria, and 1 additional patient had a CA-125 response. Upregulation of monocyte-produced TRAIL and cytokines was confirmed in peripheral blood. Long-term responders had alterations in innate and adaptive immune compartments. CONCLUSIONS Given the mechanism of cancer cell death, and the acceptable tolerability of the clinical regimen, this platform presents a possibility for future combination therapies to augment anticancer immunity. See related commentary by Chow and Dorigo, p. 299.
Collapse
Affiliation(s)
- Daniel S. Green
- Women’s Malignancies Branch, Center for Cancer Research (CCR), NCI, Bethesda, Maryland, USA,Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA,These authors contributed equally
| | - Franklin Ning
- Women’s Malignancies Branch, Center for Cancer Research (CCR), NCI, Bethesda, Maryland, USA,These authors contributed equally
| | - Anna Duemler
- Women’s Malignancies Branch, Center for Cancer Research (CCR), NCI, Bethesda, Maryland, USA
| | - Timothy G Myers
- Genomic Technologies Section, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathryn Trewhitt
- Women’s Malignancies Branch, Center for Cancer Research (CCR), NCI, Bethesda, Maryland, USA
| | - Irene Ekwede
- Women’s Malignancies Branch, Center for Cancer Research (CCR), NCI, Bethesda, Maryland, USA
| | - Ann McCoy
- Women’s Malignancies Branch, Center for Cancer Research (CCR), NCI, Bethesda, Maryland, USA
| | - Nicole Houston
- Women’s Malignancies Branch, Center for Cancer Research (CCR), NCI, Bethesda, Maryland, USA
| | - Jung-min Lee
- Women’s Malignancies Branch, Center for Cancer Research (CCR), NCI, Bethesda, Maryland, USA
| | - Stanley Lipkowitz
- Women’s Malignancies Branch, Center for Cancer Research (CCR), NCI, Bethesda, Maryland, USA
| | - Alexandra Zimmer
- Women’s Malignancies Branch, Center for Cancer Research (CCR), NCI, Bethesda, Maryland, USA
| | - Miroslava Pavelova
- Women’s Malignancies Branch, Center for Cancer Research (CCR), NCI, Bethesda, Maryland, USA
| | - Erin N. Villanueva
- Women’s Malignancies Branch, Center for Cancer Research (CCR), NCI, Bethesda, Maryland, USA
| | - Leslie Smith
- Women’s Malignancies Branch, Center for Cancer Research (CCR), NCI, Bethesda, Maryland, USA
| | - Andrew Blakely
- Surgical Oncology Program, Center for Cancer Research (CCR), NCI, Bethesda, Maryland, USA
| | - Yovanni Casablanca
- Gynecologic Oncology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Steven L. Highfill
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - David F. Stroncek
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Naoza Collins-Johnson
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Sandhya Panch
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - JoLynn Procter
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Chauha Pham
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Lindsey B. Rosen
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Ana T. Nunes
- Women’s Malignancies Branch, Center for Cancer Research (CCR), NCI, Bethesda, Maryland, USA
| | - Kathryn C. Zoon
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christopher B. Cole
- Women’s Malignancies Branch, Center for Cancer Research (CCR), NCI, Bethesda, Maryland, USA,These authors contributed equally
| | - Christina M. Annunziata
- Women’s Malignancies Branch, Center for Cancer Research (CCR), NCI, Bethesda, Maryland, USA,These authors contributed equally
| | | |
Collapse
|
7
|
Nishihara S, Yamaoka T, Ishikawa F, Higuchi K, Hasebe Y, Manabe R, Kishino Y, Kusumoto S, Ando K, Kuroda Y, Ohmori T, Sagara H, Yoshida H, Tsurutani J. Mechanisms of EGFR-TKI-Induced Apoptosis and Strategies Targeting Apoptosis in EGFR-Mutated Non-Small Cell Lung Cancer. Genes (Basel) 2022; 13:genes13122183. [PMID: 36553449 PMCID: PMC9778480 DOI: 10.3390/genes13122183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Homeostasis is achieved by balancing cell survival and death. In cancer cells, especially those carrying driver mutations, the processes and signals that promote apoptosis are inhibited, facilitating the survival and proliferation of these dysregulated cells. Apoptosis induction is an important mechanism underlying the therapeutic efficacy of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) for EGFR-mutated non-small cell lung cancer (NSCLC). However, the mechanisms by which EGFR-TKIs induce apoptosis have not been fully elucidated. A deeper understanding of the apoptotic pathways induced by EGFR-TKIs is essential for the developing novel strategies to overcome resistance to EGFR-TKIs or to enhance the initial efficacy through therapeutic synergistic combinations. Recently, therapeutic strategies targeting apoptosis have been developed for cancer. Here, we review the state of knowledge on EGFR-TKI-induced apoptotic pathways and discuss the therapeutic strategies for enhancing EGFR-TKI efficiency. We highlight the great progress achieved with third-generation EGFR-TKIs. In particular, combination therapies of EGFR-TKIs with anti-vascular endothelial growth factor/receptor inhibitors or chemotherapy have emerged as promising therapeutic strategies for patients with EGFR-mutated NSCLC. Nevertheless, further breakthroughs are needed to yield an appropriate standard care for patients with EGFR-mutated NSCLC, which requires gaining a deeper understanding of cancer cell dynamics in response to EGFR-TKIs.
Collapse
Affiliation(s)
- Shigetoshi Nishihara
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Toshimitsu Yamaoka
- Advanced Cancer Translational Research Institute, Showa University, Tokyo 142-8555, Japan
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
- Correspondence: ; Tel.: +81-3-3784-8146
| | | | - Kensuke Higuchi
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Yuki Hasebe
- Advanced Cancer Translational Research Institute, Showa University, Tokyo 142-8555, Japan
| | - Ryo Manabe
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Yasunari Kishino
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
- Tokyo Metropolitan Ebara Hospital, Tokyo 145-0065, Japan
| | - Sojiro Kusumoto
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Koichi Ando
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Yusuke Kuroda
- Tokyo Metropolitan Ebara Hospital, Tokyo 145-0065, Japan
| | - Tohru Ohmori
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
- Tokyo Metropolitan Ebara Hospital, Tokyo 145-0065, Japan
| | - Hironori Sagara
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Hitoshi Yoshida
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Junji Tsurutani
- Advanced Cancer Translational Research Institute, Showa University, Tokyo 142-8555, Japan
| |
Collapse
|
8
|
Induction of DR5-Dependent Apoptosis by PGA 2 through ATF4-CHOP Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123804. [PMID: 35744931 PMCID: PMC9230093 DOI: 10.3390/molecules27123804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 01/01/2023]
Abstract
Prostaglandin (PG) A2, a cyclopentenone PG, induced apoptosis in both HCT116 and HCT116 p53 -/- cells. Although PGA2-induced apoptosis in HCT116 cells was dependent on the p53-DR5 pathway, the mechanism underlying PGA2-induced apoptosis in HCT116 p53 -/- cells remains unknown. In this study, we observed that PGA2 caused an increase of mRNA expression of DR5 and protein expression even in HCT116 p53 -/- cells, accompanied by caspase-dependent apoptosis. Knockdown of DR5 expression by RNA interference inhibited PGA2-induced apoptosis in HCT116 p53 -/- cells. Parallel to the induction of apoptosis, PGA2 treatment upregulated expression of genes upstream of DR5 such as ATF4 and CHOP. Knockdown of CHOP prevented DR5-dependent cell death as well as the expression of DR5 protein. Furthermore, knockdown of ATF4 by RNA interference decreased both mRNA and protein levels of CHOP and DR5, thereby suppressing PGA2-induced cell death. Consistently, the DR5 promoter activity increased by PGA2 was not stimulated when the CHOP binding site in the DR5 promoter was mutated. These results collectively suggest that PGA2 may induce DR5-dependent apoptosis via the ATF4-CHOP pathway in HCT116 p53 null cells.
Collapse
|
9
|
Frank DA. Cyclin-Dependent Kinase 4/6 Inhibitors: Is a Noncanonical Substrate the Key Target? Cancer Res 2022; 82:1170-1171. [PMID: 35373292 DOI: 10.1158/0008-5472.can-22-0573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022]
Abstract
Cyclin-dependent kinases (CDK), such as CDK4 and CDK6, phosphorylate RB1 to release the transcription factor E2F and drive the transition from G1 to S-phase of the cell cycle. Inhibitors of these kinases thereby block cell-cycle progression and presumably exert their therapeutic effect. While this mechanism is straight forward, several aspects have seemed problematic, not the least of which is that these drugs seem to have therapeutic effects on a relatively small number of human cancers. Tong and colleagues took an open-ended approach to this mechanistic question, and their results raise the possibility that inhibition of phosphorylation of the transcription factor p73 is a key mechanism of action of these drugs. They show that p73 inhibition and the resultant upregulation of the cell surface receptor DR5 are necessary for the anticancer effects of CDK4/6 inhibitors, including enhancement of immune-mediated cell killing, and that therapeutic benefit relies largely on their use in conjunction with other agents. While many questions remain to be answered, these findings demonstrate the importance of keeping an open mind to mechanistic aspects of therapeutic agents already in clinical use and highlight how rigorous mechanistic studies can answer both basic and translational questions. See related article by Tong et al., p. 1340.
Collapse
|
10
|
Zhong ZH, Yi ZL, Zhao YD, Wang J, Jiang ZB, Xu C, Xie YJ, He QD, Tong ZY, Yao XJ, Leung ELH, Coghi PS, Fan XX, Chen M. Pyronaridine induces apoptosis in non-small cell lung cancer cells by upregulating death receptor 5 expression and inhibiting epidermal growth factor receptor. Chem Biol Drug Des 2021; 99:83-91. [PMID: 34288496 DOI: 10.1111/cbdd.13926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/09/2021] [Accepted: 07/11/2021] [Indexed: 12/24/2022]
Abstract
Lung cancer is the leading cause of cancer death. Pyronaridine, a synthetic drug of artemisinin, has been used in China for over 30 years for the treatment of malaria, but its effect on non-small cell lung cancer (NSCLC) cells is rarely reported. In this study, we determined the efficacy of pyronaridine in four different NSCLC cell lines and explored its mechanism in H1975. The data showed that pyronaridine could upregulate the expression of TNF-related apoptosis-inducing ligand (TRAIL)-mediated death receptor 5 to promote cellular apoptosis. Meanwhile, the JNK (c-Jun N-terminal kinase) level was detected to be significantly increased after treating with pyronaridine. We used JNK inhibitor and found that it could partially inhibit cell apoptosis. The results showed that epidermal growth factor receptor (EGFR), PI3K, and AKT were downregulated after the treatment of pyronaridine. In summary, pyronaridine can selectively kill NSCLC by regulating TRAIL-mediated apoptosis and downregulating the protein level of EGFR. It is a promising anticancer drug for NSCLC.
Collapse
Affiliation(s)
- Zheng-Hong Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.,Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Ze-Lin Yi
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Yi-Dan Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Jue Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Ze-Bo Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Cong Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Ya-Jia Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Qi-Da He
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Zi-Yan Tong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Paolo Saul Coghi
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Min Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.,Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
11
|
Deng L, Vallega KA, Zhang S, Shi P, Sun SY. MET inhibition downregulates DR4 expression in MET-amplified lung cancer cells with acquired resistance to EGFR inhibitors through suppressing AP-1-mediated transcription. Neoplasia 2021; 23:766-774. [PMID: 34233230 PMCID: PMC8260959 DOI: 10.1016/j.neo.2021.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/08/2021] [Indexed: 11/02/2022] Open
Abstract
Death receptor 4 (DR4) is a cell surface protein that is generally thought to mediate apoptosis upon binding to its ligand named TRAIL. However, its contribution to apoptosis resistance has also been reported. MET (or c-MET) gene amplification represents an important mechanism for acquired resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs) against EGFR mutant non-small cell lung cancer (NSCLC). This study focuses on demonstrating the impact of MET inhibition on DR4 modulation in MET-amplified EGFR mutant NSCLC cell lines and the underlying mechanisms. Several MET inhibitors decreased DR4 levels in MET-amplified HCC827 cell lines resistant to EGFR-TKIs with no or limited effects on modulating DR5 levels, while increasing DR4 levels in HCC827 parental cells and other NSCLC cell lines. MET inhibitors did not affect DR4 stability, but decreased DR4 mRNA levels with suppression of AP-1-dependent DR4 promoter transactivation. Moreover, these inhibitors suppressed ERK and c-Jun phosphorylation accompanied with decreasing c-Jun levels. Hence, it is likely that MET inhibition downregulates DR4 expression in MET-amplified EGFR mutant NSCLC cells through suppressing AP-1-mediated DR4 transcription. Osimertinib combined with MET inhibition synergistically induces apoptosis in the MET-amplified EGFR mutant NSCLC cells accompanied with augmented DR4 reduction both in vitro and in vivo. Furthermore, MET inhibition combined with TRAIL enhanced killing of MET-amplified EGFR mutant HCC827/AR cells, but not HCC827 parental cells. These data collectively suggest that DR4 may possess an unrecognized anti-apoptotic function, contributing to apoptosis resistance under given conditions.
Collapse
Affiliation(s)
- Liang Deng
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Karin A Vallega
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Shuo Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Puyu Shi
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA.
| |
Collapse
|
12
|
Zhang H, Qin G, Zhang C, Yang H, Liu J, Hu H, Wu P, Liu S, Yang L, Chen X, Zhao X, Wang L, Zhang Y. TRAIL promotes epithelial-to-mesenchymal transition by inducing PD-L1 expression in esophageal squamous cell carcinomas. J Exp Clin Cancer Res 2021; 40:209. [PMID: 34167551 PMCID: PMC8223376 DOI: 10.1186/s13046-021-01972-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Tumor necrosis factor-associated apoptosis-inducing ligand (TRAIL) was initially considered an immunity guard; however, its function remains controversial. Besides immune cells, lung and colon cancer cells have also been reported to express TRAIL, which can promote tumor invasion and metastasis. However, the biological function and underlying mechanism of action of TRAIL in esophageal squamous cell carcinoma (ESCC) remain poorly elucidated. METHODS The ESCC cells stemness, migration, and proliferation ability was assessed by sphere formation, Transwell, and CCK8 assay. The stemness- and epithelial-mesenchymal transition (EMT)- related genes expression levels were analyzed by Western blot and RT-qPCR. The signal activation was conducted by Western blot. The xenograft mouse experiments and lung metastasis model were performed to confirm our findings in vitro. RESULTS Herein, we found that TRAIL is a negative predictor in patients with ESCC. To further investigate the biological function of TRAIL, we established TRAIL knockdown and overexpression ESCC cell lines and found that TRAIL induced EMT and promoted tumor aggressiveness. Furthermore, we demonstrated that TRAIL- overexpressing cells upregulated PD-L1 expression, which was dependent on the p-ERK/STAT3 signaling pathway. We obtained similar results when using recombinant human TRAIL. Finally, we validated the biological role and mechanism of action of TRAIL in vivo. CONCLUSIONS These findings demonstrate that TRAIL promotes ESCC progression by enhancing PD-L1 expression, which induces EMT. This may explain the failure of TRAIL preclinical trials.
Collapse
Affiliation(s)
- Huanyu Zhang
- Biotherapy Center & Cancer Center, the First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Henan, 450052, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan, 450052, Zhengzhou, China
| | - Guohui Qin
- Biotherapy Center & Cancer Center, the First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Henan, 450052, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan, 450052, Zhengzhou, China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Huiyun Yang
- School of Life Sciences, Zhengzhou University, 450052, Zhengzhou, China
| | - Jinyan Liu
- Biotherapy Center & Cancer Center, the First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Henan, 450052, Zhengzhou, China
| | - Hongwei Hu
- Biotherapy Center & Cancer Center, the First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Henan, 450052, Zhengzhou, China
| | - Peng Wu
- Biotherapy Center & Cancer Center, the First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Henan, 450052, Zhengzhou, China
| | - Shasha Liu
- Biotherapy Center & Cancer Center, the First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Henan, 450052, Zhengzhou, China
| | - Li Yang
- Biotherapy Center & Cancer Center, the First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Henan, 450052, Zhengzhou, China
| | - Xinfeng Chen
- Biotherapy Center & Cancer Center, the First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Henan, 450052, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan, 450052, Zhengzhou, China
| | - Xueke Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan, 450052, Zhengzhou, China
| | - Lidong Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan, 450052, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center & Cancer Center, the First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Henan, 450052, Zhengzhou, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan, 450052, Zhengzhou, China.
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, 450052, Zhengzhou, China.
| |
Collapse
|
13
|
Zhang S, Chen Z, Shi P, Fan S, He Y, Wang Q, Li Y, Ramalingam SS, Owonikoko TK, Sun SY. Downregulation of death receptor 4 is tightly associated with positive response of EGFR mutant lung cancer to EGFR-targeted therapy and improved prognosis. Am J Cancer Res 2021; 11:3964-3980. [PMID: 33664875 PMCID: PMC7914351 DOI: 10.7150/thno.54824] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/19/2021] [Indexed: 02/03/2023] Open
Abstract
Death receptor 4 (DR4), a cell surface receptor, mediates apoptosis or induces inflammatory cytokine secretion upon binding to its ligand depending on cell contexts. Its prognostic impact in lung cancer and connection between EGFR-targeted therapy and DR4 modulation has not been reported and thus was the focus of this study. Methods: Intracellular protein alterations were measured by Western blotting. Cell surface protein was detected with antibody staining and flow cytometry. mRNA expression was monitored with qRT-PCR. Gene transactivation was analyzed with promoter reporter assay. Drug dynamic effects in vivo were evaluated using xenografts. Gene modulations were achieved with gene overexpression and knockdown. Proteins in human archived tissues were stained with immunohistochemistry. Results: EGFR inhibitors (e.g., osimertinib) decreased DR4 levels only in EGFR mutant NSCLC cells and tumors, being tightly associated with induction of apoptosis. This modulation was lost once cells became resistant to these inhibitors. Increased levels of DR4 were detected in cell lines with acquired osimertinib resistance and in NSCLC tissues relapsed from EGFR-targeted therapy. DR4 knockdown induced apoptosis and augmented apoptosis when combined with osimertinib in both sensitive and resistant cell lines, whereas enforced DR4 expression significantly attenuated osimertinib-induced apoptosis. Mechanistically, osimertinib induced MARCH8-mediated DR4 proteasomal degradation and suppressed MEK/ERK/AP-1-dependent DR4 transcription, resulting in DR4 downregulation. Moreover, we found that DR4 positive expression in human lung adenocarcinoma was significantly associated with poor patient survival. Conclusions: Collectively, we suggest that DR4 downregulation is coupled to therapeutic efficacy of EGFR-targeted therapy and predicts improved prognosis, revealing a previously undiscovered connection between EGFR-targeted therapy and DR4 modulation.
Collapse
|
14
|
Tao Z, Liu Y, Yang H, Feng Y, Li H, Shi Q, Li S, Cheng J, Lu X. Customizing a Tridomain TRAIL Variant to Achieve Active Tumor Homing and Endogenous Albumin-Controlled Release of the Molecular Machine In Vivo. Biomacromolecules 2020; 21:4017-4029. [PMID: 32804484 DOI: 10.1021/acs.biomac.0c00785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an attractive antitumor drug candidate for precision cancer therapy due to its superior selective cytotoxicity in a variety of tumor cells. However, the clinical application of TRAIL in cancer therapy has been limited by its poor tumor-homing capacities and short half-life. Herein, we designed a tridomain TRAIL variant, Z-ABD-TRAIL, by sequentially fusing the platelet-derived growth factor receptor beta (PDGFRβ)-specific affibody ZPDGFRβ and an albumin-binding domain (ABD) to the N-terminus of TRAIL. The fusion protein Z-ABD-TRAIL was produced as a soluble protein with high yield in Escherichia coli (E. coli). The ZPDGFRβ domain provided Z-ABD-TRAIL with PDGFRβ-binding properties and thus promoted its tumor homing via the engagement of PDGFRβ-expressing pericytes on tumor microvessels. ABD-mediated binding of Z-ABD-TRAIL to albumin in the blood endowed TRAIL with long-lasting (>72 h for Z-ABD-TRAIL vs <0.5 h for TRAIL) abilities to kill tumor cells. Although the in vitro cytotoxicity of Z-ABD-TRAIL in tumor cells was similar to that of the parent TRAIL, the in vivo tumor uptake, apoptosis-inducing ability, and antitumor effect of Z-ABD-TRAIL were much greater than those of TRAIL, indicating that ZPDGFRβ-mediated tumor homing and ABD-introduced albumin binding significantly improved the pharmacodynamics of TRAIL. In addition, repeated injection of high-dose Z-ABD-TRAIL showed no obvious acute toxicity in mice. These results demonstrate that the newly designed tridomain Z-ABD-TRAIL is a promising agent for precision cancer therapy.
Collapse
Affiliation(s)
- Ze Tao
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuehua Liu
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanru Feng
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Heng Li
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiuxiao Shi
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shengfu Li
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaofeng Lu
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Chandrasekaran AP, Poondla N, Ko NR, Oh SJ, Ramakrishna S. YM155 sensitizes HeLa cells to TRAIL-mediated apoptosis via cFLIP and survivin downregulation. Oncol Lett 2020; 20:72. [PMID: 32863905 PMCID: PMC7436932 DOI: 10.3892/ol.2020.11933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/16/2020] [Indexed: 12/27/2022] Open
Abstract
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-mediated apoptosis is a safe method for the treatment of various types of cancer. However, TRAIL therapy is less effective in certain types of cancer, including cervical cancer. To address this problem, a combinatorial approach was employed to sensitize cervical cancer at low dosages. YM155, a survivin inhibitor, was used at low dosages along with TRAIL to induce apoptosis in HeLa cells. The effects of the individual treatment with TRAIL and YM155 on apoptosis were assessed by propidium iodide assay. In addition, to validate the DNA damage exhibited by the combination treatment, the phosphorylation status of γH2A histone family member X was investigated by immunofluorescence and western blot analysis. TRAIL or YM155 alone had no significant effect on DNA damage and apoptosis. However, the TRAIL/YM155 combination triggered a synergistic pro-apoptotic stimulus in HeLa cells. The mRNA and protein levels of CASP8- and FADD-like apoptosis regulator (cFLIP), death receptor 5 (DR5) and survivin were monitored using RT-PCR and western blot analysis, respectively. This combinatorial approach downregulated both mRNA and protein expression levels of cFLIP and survivin. Further experimental results suggested that the combination treatment significantly reduced cell viability, invasion and migration of HeLa cells. Overall, the present findings indicated that the low dosage of YM155 sensitized HeLa cells to TRAIL-induced apoptosis via a mechanism involving downregulation of cFLIP and survivin. The results indicated the importance of combination drug treatment and reveal an effective therapeutic alternative for TRAIL therapy in human cervical cancer.
Collapse
Affiliation(s)
- Arun Pandian Chandrasekaran
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Naresh Poondla
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Na Re Ko
- Biomedical Research Center, Asan Institute for Life Sciences, Seoul 05505, Republic of Korea.,Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul 04763, Republic of Korea.,College of Medicine, Department of Genetics, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
16
|
Lee YE, Ju A, Choi HW, Kim JC, Kim EE, Kim TS, Kang HJ, Kim SY, Jang JY, Ku JL, Kim SC, Jun E, Jang M. Rationally designed redirection of natural killer cells anchoring a cytotoxic ligand for pancreatic cancer treatment. J Control Release 2020; 326:310-323. [PMID: 32682905 DOI: 10.1016/j.jconrel.2020.07.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/23/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
The emergence of T-cell engineering with chimeric antigen receptors (CARs) has led to attractive therapeutics; however, autologous CAR-T cells are associated with poor clinical outcomes in solid tumors because of low safety and efficacy. Therefore, the aim of our study was to develop a CAR therapy with enhanced cytotoxicity against solid cancer using allogeneic NK cells. In this study, we engineered "off-the-shelf" NK cells to redirect them towards pancreatic ductal adenocarcinoma (PDAC) by improving their target-specific cytotoxic potential. By integrated bioinformatic and clinicopathological analyses, folate receptor alpha (FRα) and death receptor 4 (DR4) were significantly highly expressed in patient-derived tumor cells. The combined expression of FRα and DR4/5 was associated with inferior clinical outcomes, therefore indicating their use as potential targets for biomolecular treatment. Thus, FRα and DR4 expression pattern can be a strong prognostic factor as promising therapeutic targets for the treatment of PDAC. For effective PDAC treatment, allogeneic CAR-NK cells were reprogrammed to carry an apoptosis-inducing ligand and to redirect them towards FRα and initiate DR4/5-mediated cancer-selective cell death in FRα- and DR4/5-positive tumors. As a result, the redirected cytotoxic ligand-loaded NK cells led to a significantly enhanced tumor-selective apoptosis. Accordingly, use of allogeneic CAR-NK cells that respond to FRα and DR4/5 double-positive cancers might improve clinical outcomes based on personal genome profiles. Thus, therapeutic modalities based on allogeneic NK cells can potentially be used to treat large numbers of patients with optimally selective cytotoxicity.
Collapse
Affiliation(s)
- Young Eun Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul 02792, South Korea; Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Anna Ju
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul 02792, South Korea
| | - Hwi Wan Choi
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, South Korea
| | - Jin-Chul Kim
- Natural Constituents of Research Center, Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, South Korea
| | - Eunice EunKyeong Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul 02792, South Korea
| | - Tae Sung Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Hyo Jeong Kang
- Department of Pathology, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, South Korea
| | - Sang-Yeob Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, South Korea
| | - Jin-Young Jang
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Ja-Lok Ku
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Song Cheol Kim
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Eunsung Jun
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, South Korea; Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea.
| | - Mihue Jang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul 02792, South Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
17
|
Strasser A, Vaux DL. Cell Death in the Origin and Treatment of Cancer. Mol Cell 2020; 78:1045-1054. [PMID: 32516599 DOI: 10.1016/j.molcel.2020.05.014] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
Cell death, or, more specifically, cell suicide, is a process of fundamental importance to human health. Throughout our lives, over a million cells are produced every second. When organismal growth has stopped, to balance cell division, a similar number of cells must be removed. This is achieved by activation of molecular mechanisms that have evolved so that cells can destroy themselves. The first clues regarding the nature of one of these mechanisms came from studying genes associated with cancer, in particular the gene for BCL-2. Subsequent studies revealed that mutations or other defects that inhibit cell death allow cells to accumulate, prevent removal of cells with damaged DNA, and increase the resistance of malignant cells to chemotherapy. Knowledge of this mechanism has allowed development of drugs that kill cancer cells by directly activating the cell death machinery and by synergizing with conventional chemotherapy as well as targeted agents to achieve improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia.
| | - David L Vaux
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia.
| |
Collapse
|
18
|
PARP goes the weasel! Emerging role of PARP inhibitors in acute leukemias. Blood Rev 2020; 45:100696. [PMID: 32482307 DOI: 10.1016/j.blre.2020.100696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/23/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors, which induce synthetic lethality of BRCA mutant breast and ovarian cancers, are now under active exploration for treatment of acute leukemias, specifically acute myeloid leukemia (AML). Experimental data has revealed that DNA repair deficiencies similar to those found in BRCA mutant solid tumors function in malignant hematopoietic cells to enhance cell survival and promote therapy resistance. Preclinical studies have demonstrated that inhibition of PARP with a variety of agents can dramatically enhance the efficacy of other therapeutic approaches including cytotoxic and epigenetic chemotherapy, small molecule inhibitors (IDH and FLT3 inhibitors) and antibody drug conjugates. This has led to early stage clinical trials of multiple PARP inhibitors (PARPi) for AML patients. Despite small patient numbers, evidence of modest clinical efficacy and tolerability in combinatorial regimens support the further development of PARP inhibition as a novel therapeutic strategy for AML, particularly in select molecular subsets (MLL rearranged, FLT3 and IDH1 mutant disease.
Collapse
|
19
|
Wang Y, Guo S, Li D, Tang Y, Li L, Su L, Liu X. YIPF2 promotes chemotherapeutic agent-mediated apoptosis via enhancing TNFRSF10B recycling to plasma membrane in non-small cell lung cancer cells. Cell Death Dis 2020; 11:242. [PMID: 32303681 PMCID: PMC7165181 DOI: 10.1038/s41419-020-2436-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the most common histological type of lung cancer, and the identification of the apoptotic process of NSCLC is vital for its treatment. Usually, both the expression level and the cell surface level of TNFRSF10B (TNF Receptor superfamily member 10B) will increase after treatment with some chemotherapeutic agents, which plays a critical role in the apoptosis induction. However, the exact molecular mechanism underlying TNFRSF10B regulation remains largely elusive. Here, we found that TNFRSF10B, along with a vesicular trafficking regulator protein, YIPF2, were upregulated after treatment with pemetrexed (PEM) in NSCLC cells. Besides, YIPF2 increased the surface level of TNFRF10B, while YIPF2 knockdown inhibited the upregulation of TNFRSF10B and its recycling to plasma membrane. In addition, RAB8 decreased the cell surface TNFRSF10B by promoting its removing from plasma membrane to cytoplasm. Furthermore, we found that YIPF2, RAB8 and TNFRSF10B proteins interacted physically with each other. YIPF2 could further inhibit the physical interaction between TNFRSF10B and RAB8, thereby suppressing the removing of TNFRSF10B from plasma membrane to cytoplasm mediated by RAB8 and maintaining its high level on cell surface. Finally, using bioinformatics database, the YIPF2-TNFRSF10B axis was confirmed to be associated with the malignant progression of lung cancer. Taken together, we show that YIPF2 promotes chemotherapeutic agent-mediated apoptosis via enhancing TNFRSF10B recycling to plasma membrane in NSCLC cells. These findings may be beneficial for the development of potential prognostic markers of NSCLC and may provide effective treatment strategy.
Collapse
Affiliation(s)
- Yingying Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Sen Guo
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Dongmei Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yongkang Tang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Lei Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ling Su
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.
| | - Xiangguo Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.
| |
Collapse
|
20
|
Kojima Y, Nishina T, Nakano H, Okumura K, Takeda K. Inhibition of Importin β1 Augments the Anticancer Effect of Agonistic Anti-Death Receptor 5 Antibody in TRAIL-resistant Tumor Cells. Mol Cancer Ther 2020; 19:1123-1133. [PMID: 32156787 DOI: 10.1158/1535-7163.mct-19-0597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 11/16/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) and an agonistic antibody against the death-inducing TRAIL receptor 5, DR5, are thought to selectively induce tumor cell death and therefore, have gained attention as potential therapeutics currently under investigation in several clinical trials. However, some tumor cells are resistant to TRAIL/DR5-induced cell death, even though they express DR5. Previously, we reported that DR5 is transported into the nucleus by importin β1, and knockdown of importin β1 upregulates cell surface expression of DR5 resulting in increased TRAIL sensitivity in vitro Here, we examined the impact of importin β1 knockdown on agonistic anti-human DR5 (hDR5) antibody therapy. Drug-inducible importin β1 knockdown sensitizes HeLa cells to TRAIL-induced cell death in vitro, and exerts an antitumor effect when combined with agonistic anti-hDR5 antibody administration in vivo Therapeutic importin β1 knockdown, administered via the atelocollagen delivery system, as well as treatment with the importin β inhibitor, importazole, induced regression and/or eradication of two human TRAIL-resistant tumor cells when combined with agonistic anti-hDR5 antibody treatment. Thus, these findings suggest that the inhibition of importin β1 would be useful to improve the therapeutic effects of agonistic anti-hDR5 antibody against TRAIL-resistant cancers.
Collapse
Affiliation(s)
- Yuko Kojima
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Takashi Nishina
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Biofunctional Microbiota, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuyoshi Takeda
- Department of Biofunctional Microbiota, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Laboratory of Cell Biology, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Potu H, Kandarpa M, Peterson LF, Donato NJ, Talpaz M. Tumor necrosis factor related apoptosis inducing ligand (TRAIL) regulates deubiquitinase USP5 in tumor cells. Oncotarget 2019; 10:5745-5754. [PMID: 31645897 PMCID: PMC6791380 DOI: 10.18632/oncotarget.27196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/22/2019] [Indexed: 01/08/2023] Open
Abstract
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway has emerged as a cancer therapeutic target. However, clinical trials have proven that most human cancers are resistant to TRAIL. We show that exposure to recombinant TRAIL resulted in the accumulation of ubiquitinated proteins and free ubiquitin polymers, suggesting a link between TRAIL and the ubiquitin (Ub)-proteasome pathway. TRAIL treatment in cancer cells reduced the activity and cleavage of USP5, a deubiquitinase (DUB) previously shown to target unanchored Ub polymers and regulate p53-mediated transcription. TRAIL was effective in suppressing USP5 activity and cleavage in TRAIL-sensitive cells but not resistant cells. Knockdown of USP5 in TRAIL-resistant cells demonstrated that USP5 controls apoptotic responsiveness to TRAIL. USP5 cleavage and ubiquitination were blocked by caspase-8 specific inhibitors. A small-molecule USP5/9× inhibitor (G9) combined with TRAIL enhanced apoptosis and blocked colony growth in highly TRAIL-resistant cell lines. Finally, USP5 protein levels and activity were found to be frequently deregulated in TRAIL-resistant cells. Together, we conclude that activated TRAIL enhances USP5 activity and induces apoptosis in TRAIL-sensitive and -resistant cells. We also suggest that USP5 inhibition may be effective in inducing apoptotic thresholds to enhance responsiveness to TRAIL.
Collapse
Affiliation(s)
- Harish Potu
- Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Malathi Kandarpa
- Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Luke F Peterson
- Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Nicholas J Donato
- Center for Scientific Review, National Institutes of Health, Bethesda, MD 20892, USA
| | - Moshe Talpaz
- Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
Safa AR, Kamocki K, Saadatzadeh MR, Bijangi-Vishehsaraei K. c-FLIP, a Novel Biomarker for Cancer Prognosis, Immunosuppression, Alzheimer's Disease, Chronic Obstructive Pulmonary Disease (COPD), and a Rationale Therapeutic Target. BIOMARKERS JOURNAL 2019; 5:4. [PMID: 32352084 PMCID: PMC7189798 DOI: 10.36648/2472-1646.5.1.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dysregulation of c-FLIP (cellular FADD-like IL-1β-converting enzyme inhibitory protein) has been shown in several diseases including cancer, Alzheimer's disease, and chronic obstructive pulmonary disease (COPD). c-FLIP is a critical anti-cell death protein often overexpressed in tumors and hematological malignancies and its increased expression is often associated with a poor prognosis. c-FLIP frequently exists as long (c-FLIPL) and short (c-FLIPS) isoforms, regulates its anti-cell death functions through binding to FADD (FAS associated death domain protein), an adaptor protein known to activate caspases-8 and -10 and links c-FLIP to several cell death regulating complexes including the death-inducing signaling complex (DISC) formed by various death receptors. c-FLIP also plays a critical role in necroptosis and autophagy. Furthermore, c-FLIP is able to activate several pathways involved in cytoprotection, proliferation, and survival of cancer cells through various critical signaling proteins. Additionally, c-FLIP can inhibit cell death induced by several chemotherapeutics, anti-cancer small molecule inhibitors, and ionizing radiation. Moreover, c-FLIP plays major roles in aiding the survival of immunosuppressive tumor-promoting immune cells and functions in inflammation, Alzheimer's disease (AD), and chronic obstructive pulmonary disease (COPD). Therefore, c-FLIP can serve as a versatile biomarker for cancer prognosis, a diagnostic marker for several diseases, and an effective therapeutic target. In this article, we review the functions of c-FLIP as an anti-apoptotic protein and negative prognostic factor in human cancers, and its roles in resistance to anticancer drugs, necroptosis and autophagy, immunosuppression, Alzheimer's disease, and COPD.
Collapse
Affiliation(s)
- Ahmad R Safa
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, USA
| | - Krzysztof Kamocki
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, USA
| | - M Reza Saadatzadeh
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, USA
| | | |
Collapse
|
23
|
Zayed SA, Zahran NM, Khorshied MM, Abdel-Aziz AO, Mahmoud O, Morsy SA, Shousha HI, Elbaz TM, Nabeel MM, Harb ARK. Genetic variations in death receptor domain 4 gene and the susceptibility to hepatitis C related hepatocellular carcinoma. J Med Virol 2019; 91:1537-1544. [PMID: 30945308 DOI: 10.1002/jmv.25476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality worldwide, particularly in Egypt. The role of apoptosis in tumorigenesis has been well-documented and resistance to apoptosis is a hallmark of cancer. Several studies discussed the association between death receptor 4 (DR4) genetic variants and HCC risk. AIM To study the possible link between DR4 gene polymorphisms and the susceptibility to HCC. METHODS Genotyping of DR4-C626G, -A683C, and DR4-A1322G single nucleotide polymorphisms (SNP) was determined by polymerase chain reaction assay for 100 de novo HCV-related HCC patients, 100 chronic hepatitis C-related liver cirrhosis patients, and 150 healthy controls. RESULTS DR4-A1322G polymorphic genotypes (AG and GG) were significantly higher in HCC and cirrhotic patients than controls. The AG genotype conferred two-fold increased risk of HCC (odds ratio [OR], 2.34; 95% confidence interval [CI], 1.56-3.51) and the risk increased to three-fold for the GG genotype (OR, 3.51; 95%CI, 2.33-5.28). The frequency of DR4-C626G and -A683C SNPs in HCC and cirrhotic patients were not significantly different from the controls. Combined genotype analysis showed that coinheritance of the polymorphic genotypes of DR4-C626G and -A1322G conferred nine-fold increased risk of HCC (OR, 9.34; 95%CI, 3.76-23.12). The risk increased to be 12-fold when DR4-A683C and -A1322G variants were coinherited (OR, 11.9; 95%CI, 4.82-29.39). Coexistence of the variant genotypes of the three SNPs conferred almost 10-fold increased risk of HCC (OR, 9.75; 95%CI, 1.86-51.19). CONCLUSIONS The G allele of DR4 -A1322G could be considered as a novel independent molecular predictor for HCV-related HCC in the Egyptian population.
Collapse
Affiliation(s)
- Shahira Amin Zayed
- Department of Clinical & Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nariman M Zahran
- Department of Clinical & Chemical Pathology, Hematology Laboratory, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Mervat Mamdooh Khorshied
- Department of Clinical & Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ashraf Omar Abdel-Aziz
- Department of Endemic medicine and Hepato-gastroenterology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ola Mahmoud
- Department of Clinical & Chemical Pathology, Hematology Laboratory, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Shereif Ahmed Morsy
- Department Tropical and Internal Medicine, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Hend Ibrahim Shousha
- Department of Endemic Medicine and Hepato-gastroenterology, Faculty of medicine, Cairo University, Cairo, Egypt
| | - Tamer Mahmoud Elbaz
- Department of Endemic Medicine and Hepato-gastroenterology, Cairo University, Cairo, Egypt
| | | | | |
Collapse
|
24
|
Spetz J, Langen B, Rudqvist NP, Parris TZ, Shubbar E, Dalmo J, Wängberg B, Nilsson O, Helou K, Forssell-Aronsson E. Transcriptional effects of 177Lu-octreotate therapy using a priming treatment schedule on GOT1 tumor in nude mice. EJNMMI Res 2019; 9:28. [PMID: 30895393 PMCID: PMC6426909 DOI: 10.1186/s13550-019-0500-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/11/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND 177Lu-octreotate is used for therapy of somatostatin receptor expressing neuroendocrine tumors with promising results, although complete tumor remission is rarely seen. Previous studies on nude mice bearing the human small intestine neuroendocrine tumor, GOT1, have shown that a priming injection of 177Lu-octreotate 24 h before the main injection of 177Lu-octreotate resulted in higher 177Lu concentration in tumor, resulting in increased absorbed dose, volume reduction, and time to regrowth. To our knowledge, the cellular effects of a priming treatment schedule have not yet been studied. The aim of this study was to identify transcriptional changes contributing to the enhanced therapeutic response of GOT1 tumors in nude mice to 177Lu-octreotate therapy with priming, compared with non-curative monotherapy. RESULTS RNA microarray analysis was performed on tumor samples from GOT1-bearing BALB/c nude mice treated with a 5 MBq priming injection of 177Lu-octreotate followed by a second injection of 10 MBq of 177Lu-octreotate after 24 h and killed after 1, 3, 7, and 41 days after the last injection. Administered activity amounts were chosen to be non-curative, in order to facilitate the study of tumor regression and regrowth. Differentially regulated transcripts (RNA samples from treated vs. untreated animals) were identified (change ≥ 1.5-fold; adjusted p value < 0.01) using Nexus Expression 3.0. Analysis of the biological effects of transcriptional regulation was performed using the Gene Ontology database and Ingenuity Pathway Analysis. Transcriptional analysis of the tumors revealed two stages of pathway regulation for the priming schedule (up to 1 week and around 1 month) which differed distinctly from cellular responses observed after monotherapy. Induction of cell cycle arrest and apoptotic pathways (intrinsic and extrinsic) was found at early time points after treatment start, while downregulation of pro-proliferative genes were found at a late time point. CONCLUSIONS The present study indicates increased cellular stress responses in the tumors treated with a priming treatment schedule compared with those seen after conventional 177Lu-octreotate monotherapy, resulting in a more profound initiation of cell cycle arrest followed by apoptosis, as well as effects on PI3K/AKT-signaling and unfolded protein response.
Collapse
Affiliation(s)
- Johan Spetz
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gula Stråket 2B, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden.
| | - Britta Langen
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gula Stråket 2B, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden.,Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Nils-Petter Rudqvist
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gula Stråket 2B, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Emman Shubbar
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gula Stråket 2B, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden
| | - Johanna Dalmo
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gula Stråket 2B, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden.,Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bo Wängberg
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ola Nilsson
- Department of Pathology, Institute of Biomedicine, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gula Stråket 2B, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden.,Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
25
|
Poondla N, Chandrasekaran AP, Heese K, Kim KS, Ramakrishna S. CRISPR-mediated upregulation of DR5 and downregulation of cFLIP synergistically sensitize HeLa cells to TRAIL-mediated apoptosis. Biochem Biophys Res Commun 2019; 512:60-65. [PMID: 30862357 DOI: 10.1016/j.bbrc.2019.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/03/2019] [Indexed: 12/17/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has received attention as an anticancer therapy because it mediates apoptosis of several cancer cell types but not normal human cell types. In this study, we implemented genome editing techniques to upregulate DR5 and downregulate cFLIP in HeLa cells to stimulate TRAIL-induced apoptosis. We designed and validated sgRNAs to enrich the endogenous level of DR5 by dead Cas9 (dCas9). Similarly, we designed two sgRNAs to disrupt the cFLIP gene by CRISPR/Cas9. We analyzed the effect of TRAIL on tumor cells by co-transfecting HeLa cells with the best combinations of sgRNAs regulating DR5 and cFLIP genes. TRAIL-induced apoptosis in HeLa cells was evaluated by the γH2AX foci formation assay to check for double-strand break and propidium iodide and Annexin V staining to quantify apoptotic cells. Viable cells were identified by CCK-8 assay, and cleaved-PARP level was evaluated by Western blot. This is the first study to demonstrate that genome editing techniques can be used as an effective combinatorial treatment strategy to induce apoptosis of cancer cells. In particular, enhancement of DR5 expression and inhibition of cFLIP expression by genome editing had a synergistic effect of inhibiting proliferation and inducing apoptosis in TRAIL-resistant HeLa cells. These results suggest that combinatorial treatment strategies mediated by the CRISPR/Cas9 system may be effective for design of other human TRAIL-resistant cell types.
Collapse
Affiliation(s)
- Naresh Poondla
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | | | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| |
Collapse
|
26
|
Le DHT, Commandeur U, Steinmetz NF. Presentation and Delivery of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand via Elongated Plant Viral Nanoparticle Enhances Antitumor Efficacy. ACS NANO 2019; 13:2501-2510. [PMID: 30668110 DOI: 10.1021/acsnano.8b09462] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Potato virus X (PVX) is a flexuous plant virus-based nanotechnology with promise in cancer therapy. As a high aspect ratio biologic (13 × 515 nm), PVX has excellent spatial control in structures and functions, offering high-precision nanoengineering for multivalent display of functional moieties. Herein, we demonstrate the preparation of the PVX-based nanocarrier for delivery of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a promising protein drug that induces apoptosis in cancer cells but not healthy cells. TRAIL bound to PVX by coordination bonds between nickel-coordinated nitrilotriacetic acid on PVX and His-tag on the protein could mimic the bioactive "membrane-bound" state in native TRAIL, resulting in an elongated nanoparticle displaying up 490 therapeutic protein molecules. Our data show that PVX-delivered TRAIL activates caspase-mediated apoptosis more efficiently compared to soluble TRAIL; also in vivo the therapeutic nanoparticle outperforms in delaying tumor growth in an athymic nude mouse model bearing human triple-negative breast cancer xenografts. This proof-of-concept work highlights the potential of filamentous plant virus nanotechnologies, particularly for targeting protein drug delivery for cancer therapy.
Collapse
Affiliation(s)
- Duc H T Le
- Department of Biomedical Engineering , Case Western Reserve University School of Medicine , Cleveland , Ohio 44106 , United States
| | - Ulrich Commandeur
- Department of Molecular Biology , RWTH-Aachen University , Aachen 52064 , Germany
| | - Nicole F Steinmetz
- Department of NanoEngineering, Moores Cancer Center, Department of Radiology, Department of Bioengineering , University of California, San Diego , La Jolla , California 92093 , United States
- Department of Biomedical Engineering , Case Western Reserve University School of Medicine , Cleveland , Ohio 44106 , United States
| |
Collapse
|
27
|
Targeting KPNB1 overcomes TRAIL resistance by regulating DR5, Mcl-1 and FLIP in glioblastoma cells. Cell Death Dis 2019; 10:118. [PMID: 30742128 PMCID: PMC6370806 DOI: 10.1038/s41419-019-1383-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/16/2018] [Accepted: 01/09/2019] [Indexed: 01/08/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine with potential anticancer effect, but innate and adaptive TRAIL resistance in majority of cancers limit its clinical application. Karyopherin β1 (KPNB1) inhibition in cancer cells has been reported to abrogate the nuclear import of TRAIL receptor DR5 and facilitate its localization on the cell surface ready for TRAIL stimulation. However, our study reveals a more complicated mechanism. Genetic or pharmacological inhibition of KPNB1 potentiated TRAIL-induced apoptosis selectively in glioblastoma cells mainly by unfolded protein response (UPR). First, it augmented ATF4-mediated DR5 expression and promoted the assembly of death-inducing signaling complex (DISC). Second, it freed Bax and Bak from Mcl-1. Third, it downregulated FLIPL and FLIPS, inhibitors of caspase-8 cleavage, partly through upregulating ATF4–induced 4E-BP1 expression and disrupting the cap-dependent translation initiation. Meanwhile, KPNB1 inhibition-induced undesirable autophagy and accelerated cleaved caspase-8 clearance. Inhibition of autophagic flux maintained cleaved caspase-8 and aggravated apoptosis induced by KPNB1 inhibitor plus TRAIL, which were abolished by caspase-8 inhibitor. These results unveil new molecular mechanism for optimizing TRAIL-directed therapeutic efficacy against cancer.
Collapse
|
28
|
Yano S, Wu S, Sakao K, Hou DX. Involvement of ERK1/2-mediated ELK1/CHOP/DR5 pathway in 6-(methylsulfinyl)hexyl isothiocyanate-induced apoptosis of colorectal cancer cells. Biosci Biotechnol Biochem 2019; 83:960-969. [PMID: 30730256 DOI: 10.1080/09168451.2019.1574206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major bioactive compound in Wasabi. Although 6-MSITC is reported to have cancer chemopreventive activities in rat model, the molecular mechanism is unclear. In this study, we investigated the anticancer mechanisms using two types of human colorectal cancer cells (HCT116 p53+/+ and p53-/-). 6-MSITC caused cell cycle arrest in G2/M phase and induced apoptosis in both types of cells in the same fashion. Signaling data revealed that the activation of ERK1/2, rather than p53, is recruited for 6-MSITC-induced apoptosis. 6-MSITC stimulated ERK1/2 phosphorylation, and then activated ERK1/2 signaling including ELK1 phosphorylation, and upregulation of C/EBP homologous protein (CHOP) and death receptor 5 (DR5). The MEK1/2 inhibitor U0126 blocked all of these molecular events induced by 6-MSITC, and enhanced the cell viability in both types of cells in the same manner. These results indicated that ERK1/2-mediated ELK1/CHOP/DR5 pathway is involved in 6-MSITC-induced apoptosis in colorectal cancer cells. Abbreviations: CHOP: C/EBP homologous protein; DR5: death receptor 5; ELK1: ETS transcription factor; ERK1/2: extracellular signal-regulated kinase 1/2; JNK: Jun-N-terminal kinase; MAPK: mitogen-activated protein kinase; MEK1/2: MAP/ERK kinase 1/2; 6-MSITC: 6-(methylsulfinyl)hexyl isothiocyanate; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PARP: poly(ADP-ribose) polymerase.
Collapse
Affiliation(s)
- Satoshi Yano
- a Course of Biological Science and Technology, United Graduate School of Agricultural Sciences , Kagoshima University , Kagoshima , Japan
| | - Shusong Wu
- b Department of Animal Nutrition and Feed Science, College of Animal Science and Technology , Hunan Agricultural University , Changsha , China
| | - Kozue Sakao
- a Course of Biological Science and Technology, United Graduate School of Agricultural Sciences , Kagoshima University , Kagoshima , Japan.,c Department of Food Science and Biotechnology, Faculty of Agriculture , Kagoshima University , Kagoshima , Japan
| | - De-Xing Hou
- a Course of Biological Science and Technology, United Graduate School of Agricultural Sciences , Kagoshima University , Kagoshima , Japan.,c Department of Food Science and Biotechnology, Faculty of Agriculture , Kagoshima University , Kagoshima , Japan
| |
Collapse
|
29
|
El Zawily AM, Toosi BM, Freywald T, Indukuri VV, Vizeacoumar FJ, Leary SC, Freywald A. The intrinsically kinase-inactive EPHB6 receptor predisposes cancer cells to DR5-induced apoptosis by promoting mitochondrial fragmentation. Oncotarget 2018; 7:77865-77877. [PMID: 27788485 PMCID: PMC5363627 DOI: 10.18632/oncotarget.12838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/12/2016] [Indexed: 01/21/2023] Open
Abstract
Death Receptor 5 (DR5) is a promising target for cancer therapy due to its ability to selectively induce apoptosis in cancer cells. However, the therapeutic usefulness of DR5 agonists is currently limited by the frequent resistance of malignant tumours to its activation. The identification of molecular mechanisms that determine outcomes of DR5 action is therefore crucial for improving the efficiency of DR5-activating reagents in cancer treatment. Here, we provide evidence that an intrinsically kinase-inactive member of the Eph group of receptor tyrosine kinases, EPHB6, induces marked fragmentation of the mitochondrial network in breast cancer cells of triple-negative origin, lacking expression of the estrogen, progesterone and HER2 receptors. Remarkably, this response renders cancer cells more susceptible to DR5-mediated apoptosis. EPHB6 action in mitochondrial fragmentation proved to depend on its ability to activate the ERK-DRP1 pathway, which increases the frequency of organelle fission. Moreover, DRP1 activity is also essential to the EPHB6-mediated pro-apoptotic response that we observe in the context of DR5 activation. These findings provide the first description of a member of the receptor tyrosine kinase family capable of producing a pro-apoptotic effect through the activation of ERK-DRP1 signaling and subsequent mitochondrial fragmentation. Our observations are of potential practical importance, as they imply that DR5-activating therapeutic approaches should be applied in a more personalized manner to primarily treat EPHB6-expressing tumours. Finally, our findings also suggest that the EPHB6 receptor itself may represent a promising target for cancer therapy, since EPHB6 and DR5 co-activation should support more efficient elimination of cancer cells.
Collapse
Affiliation(s)
- Amr M El Zawily
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Saskatoon, SK, S7N 0W8, Canada.,Faculty of Science, Damanhour University, Damanhour, 22516, Egypt
| | - Behzad M Toosi
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Saskatoon, SK, S7N 0W8, Canada
| | - Tanya Freywald
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, SK, S7N 5E5, Canada
| | - Vijaya V Indukuri
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Franco J Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Saskatoon, SK, S7N 0W8, Canada.,Cancer Research, Saskatchewan Cancer Agency, Saskatoon, SK, S7N 5E5, Canada
| | - Scot C Leary
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Saskatoon, SK, S7N 0W8, Canada
| |
Collapse
|
30
|
Oh YT, Qian G, Deng J, Sun SY. Monocyte chemotactic protein-induced protein-1 enhances DR5 degradation and negatively regulates DR5 activation-induced apoptosis through its deubiquitinase function. Oncogene 2018; 37:3415-3425. [PMID: 29551769 DOI: 10.1038/s41388-018-0200-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/20/2017] [Accepted: 02/09/2018] [Indexed: 11/10/2022]
Abstract
Monocyte chemotactic protein-induced protein-1 (MCPIP1; also called Regnase-1) encoded by the ZC3H12A gene critically regulates inflammatory responses and immune homeostasis primarily by RNase-dependent and -independent mechanisms. However, the relationship of MCPIP1 with apoptosis and cancer and the underlying mechanisms are largely unclear. The current study has demonstrated a previously uncovered connection between MCPIP1 and the negative regulation of death receptor 5 (DR5; also known as TRAIL-R2 or killer/DR5), a cell surface receptor for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), which is produced endogenously by various immune cells such as T cells. Our findings have revealed that MCPIP1 decreases both total cellular and cell surface DR5, primarily through modulating DUB-mediated protein autophagic/lysosomal degradation. Suppression of MCPIP1 by gene knockdown induces the formation of death-induced signaling complex (DISC) and enhances TRAIL or DR5 activation-induced apoptosis in cancer cells. Moreover, we demonstrated an inverse correlation between MCPIP1 expression and DR5 expression/cell sensitivity to DR5 activation-induced apoptosis in cancer cells. Our findings warrant future investigation of the roles of negative regulation of DR5 by MCPIP1 in cancer and in T-cell immunity.
Collapse
Affiliation(s)
- You-Take Oh
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Guoqing Qian
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Jiusheng Deng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
31
|
Chekkat N, Lombardo CM, Seguin C, Lechner MC, Dufour F, Nominé Y, De Giorgi M, Frisch B, Micheau O, Guichard G, Altschuh D, Fournel S. Relationship between the agonist activity of synthetic ligands of TRAIL-R2 and their cell surface binding modes. Oncotarget 2018; 9:15566-15578. [PMID: 29643993 PMCID: PMC5884648 DOI: 10.18632/oncotarget.24526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/12/2018] [Indexed: 12/27/2022] Open
Abstract
Tumor Necrosis Factor Receptor Apoptosis Inducing Ligand (TRAIL) appears as an interesting candidate for targeted cancer therapy as it induces apoptosis in cancer cells without toxicity to normal cells. TRAIL elicits apoptosis through agonist death receptor TRAIL-R1 and TRAIL-R2 engagement. Nevertheless, recombinant soluble TRAIL and monoclonal antibodies against these receptors demonstrated insufficient efficacy in clinical trials. This may be explained by the cell-type dependency of the apoptotic response, itself influenced by the effect on ligand binding mode of factors such as the level of receptor oligomerization or glycosylation. To investigate the relation between binding mode and signaling, we used previously described synthetic divalent and monovalent peptides specific for TRAIL-R2. We measured their pro-apoptotic activity on three cancer cell lines sensitive to rhTRAIL induced-apoptosis and monitored their cell-surface binding kinetics. The two divalent peptides bound with strong affinity to TRAIL-R2 expressed on B lymphoma BJAB cells and induced a high degree of apoptosis. By contrast, the same peptides bound weakly to TRAIL-R2 expressed at the surface of the human colon cancer HCT116 or T lymphoma Jurkat cell lines and did not induce their apoptosis. Cross-linking experiments suggest that these differences could be afforded by variations in the TRAIL-R2 oligomerization state at cell surface before ligand addition. Moreover divalent peptides showed a different efficiency in BJAB apoptosis induction, and kinetic distribution analysis of the BJAB binding curves suggested subtle differences in binding mechanisms. Thus our data support a relation between the cell-surface binding mode of the peptides and their pro-apoptotic activity. In this case the precise characterization of ligand binding to the surface of living cells would be predictive of the therapeutic potential of TRAIL-R2 synthetic ligands prior to clinical trials.
Collapse
Affiliation(s)
- Neila Chekkat
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS, Université de Strasbourg, 67401 Illkirch, France
| | - Caterina M Lombardo
- Université de Bordeaux, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 33607 Pessac, France.,CNRS, CBMN, UMR 5248, 33600 Pessac, France
| | - Cendrine Seguin
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS, Université de Strasbourg, 67401 Illkirch, France
| | - Marie-Charlotte Lechner
- Université de Bordeaux, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 33607 Pessac, France.,CNRS, CBMN, UMR 5248, 33600 Pessac, France
| | - Florent Dufour
- Centre de Recherche Lipide, Nutrition et Cancer, UMR1231 Inserm, Université de Bourgogne Franche-Comté, UFR des Sciences de Santé, F21000 Dijon, France
| | - Yves Nominé
- Equipe labellisée Ligue 2015, UMR 7242, Université de Strasbourg, CNRS, ESBS, 67412 Illkirch, France.,Present address : Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Marcella De Giorgi
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS, Université de Strasbourg, 67401 Illkirch, France
| | - Benoit Frisch
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS, Université de Strasbourg, 67401 Illkirch, France.,International Center of Frontier Research in Chemistry, F67083 Strasbourg, France
| | - Olivier Micheau
- Centre de Recherche Lipide, Nutrition et Cancer, UMR1231 Inserm, Université de Bourgogne Franche-Comté, UFR des Sciences de Santé, F21000 Dijon, France
| | - Gilles Guichard
- Université de Bordeaux, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 33607 Pessac, France.,CNRS, CBMN, UMR 5248, 33600 Pessac, France
| | - Danièle Altschuh
- Equipe labellisée Ligue 2015, UMR 7242, Université de Strasbourg, CNRS, ESBS, 67412 Illkirch, France.,Present address : Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Sylvie Fournel
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS, Université de Strasbourg, 67401 Illkirch, France
| |
Collapse
|
32
|
Cell death-based treatment of glioblastoma. Cell Death Dis 2018; 9:121. [PMID: 29371590 PMCID: PMC5833770 DOI: 10.1038/s41419-017-0021-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 12/26/2022]
Abstract
Cancer cells including glioblastoma have typically evolved multiple mechanisms to escape programmed cell death in order to maintain their survival. Defects in cell death mechanisms not only facilitate tumorigenesis but also ensure resistance to current anticancer therapies. This emphasizes that targeting cell death pathways may provide a means to tackle one of the Achilles' heels of cancer. Over the last decades several approaches have been developed to selectively target cell death pathways for therapeutic purposes. Some of these concepts have already been transferred into clinical application in oncology and may open new perspectives for the treatment of cancer.
Collapse
|
33
|
Du J, Wu J, Fu X, Tse AKW, Li T, Su T, Yu ZL. Icariside II overcomes TRAIL resistance of melanoma cells through ROS-mediated downregulation of STAT3/cFLIP signaling. Oncotarget 2018; 7:52218-52229. [PMID: 27418138 PMCID: PMC5239546 DOI: 10.18632/oncotarget.10582] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/30/2016] [Indexed: 12/16/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising antitumor agent. However, many melanoma cells show weak responses to TRAIL. Here, we investigated whether Icariside II (IS), an active component of Herba Epimedii, could potentiate antitumor effects of TRAIL in melanoma cells. Melanoma cells were treated with IS and/or TRAIL and cell death, apoptosis and signal transduction were analyzed. We showed that IS promoted TRAIL-induced cell death and apoptosis in A375 melanoma cells. Mechanistically, IS reduced the expression levels of cFLIP in a phospho-STAT3 (pSTAT3)-dependent manner. Ectopic expression of STAT3 abolished IS-induced cFLIP down-regulation and the associated potentiation of TRAIL-mediated cell death. Moreover, IS-induced reactive oxygen species (ROS) production preceded down-regulation of pSTAT3/cFLIP via activating AKT, and the consequent sensitization of cells to TRAIL. We also found that IS treatment down-regulated cFLIP via ROS-mediated NF-κB pathway. In addition, IS converted TRAIL-resistant melanoma MeWo and SK-MEL-28 cells into TRAIL-sensitive cells. Taken together, our results indicated that IS potentiated TRAIL-induced apoptosis through ROS-mediated down-regulation of STAT3/cFLIP signaling.
Collapse
Affiliation(s)
- Juan Du
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Department of Chinese Medicine, Changhai Hospital, The Second Military Medicine University, Shanghai, China
| | - Jinfeng Wu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiuqiong Fu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Anfernee Kai-Wing Tse
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ting Li
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Tao Su
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Zhi-Ling Yu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| |
Collapse
|
34
|
Kuppusamy P, Nagalingam A, Muniraj N, Saxena NK, Sharma D. Concomitant activation of ETS-like transcription factor-1 and Death Receptor-5 via extracellular signal-regulated kinase in withaferin A-mediated inhibition of hepatocarcinogenesis in mice. Sci Rep 2017; 7:17943. [PMID: 29263422 PMCID: PMC5738353 DOI: 10.1038/s41598-017-18190-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has the second lowest 5-year survival rate (~16%) of all tumor types partly owing to the lack of effective therapeutic agents. Withaferin A (WA) is a bioactive molecule derived from Withania somnifera and the present study is designed to systemically investigate the anti-HCC efficacy of WA. WA inhibited growth, migration and invasion of HCC cells. Using a phospho-kinase screening array, we discovered that WA increased phosphorylation of ERK and p38 in HCC. Further analyses revealed a key role of ERK leading to increased phosphorylation of p90-ribosomal S6 kinase (RSK) and a concomitant activation of ETS-like transcription factor-1(ELK1) and Death Receptor protein-5 (DR5) in HCC. Importantly, oral administration of WA effectively inhibited HepG2-xenografts and DEN-induced-HCC in C57BL/6 mice. Analyses of WA-treated HepG2-xenografts and DEN-induced-HCC tumors showed elevated levels of ERK, RSK, ELK1 and DR5 along with decreased expression of Ki67. In silico analyses of HCC, utilizing published profiling studies showed an inverse correlation between DR5 and Ki67. These data showed the efficacy of WA as an effective agent for HCC inhibition and provided first in vitro and in vivo evidence supporting the key role of a novel crosstalk between WA, ERK/RSK, ELK1, and DR5 in HCC inhibition.
Collapse
Affiliation(s)
- Panjamurthy Kuppusamy
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Arumugam Nagalingam
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, 21231, USA
| | - Nethaji Muniraj
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, 21231, USA
| | - Neeraj K Saxena
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Early Detection Research Group, National Cancer Institute, Rockville, MD, USA.
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, 21231, USA.
| |
Collapse
|
35
|
Alsalawy NF, Darwish RK, Kamal MM, ElTaweel AE, Shousha HI, Elbaz TM. Evaluation of trail receptor 1 (DR4) polymorphisms C626G and A683C as risk factors of hepatocellular carcinoma. J Med Virol 2017; 90:490-496. [PMID: 28975649 DOI: 10.1002/jmv.24964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/06/2017] [Indexed: 01/05/2023]
Abstract
Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) plays an important role in many cancers including hepatocellular carcinoma (HCC). The aim of this study is to investigate the association of the DR4 polymorphisms C626G (Thr209Arg, rs20575) and A683C (Glu228Ala, rs20576) with the occurrence of HCC in Egyptian patients chronically infected with HCV. The study included 80 patients with HCV-related HCC (group 1) and 80 patients with HCV-related liver cirrhosis (group 2) who are naïve to treatment. Clinical and laboratory data were recorded. Genotyping of TRAIL receptor DR4 polymorphism C626G rs20575 and A683C rs20576 SNP was done by Real-Time PCR using taqman probes technology. The mean age of HCC patients was 57.6 ± 8.4 years with 62 patients (77.5%) were males. While group 2 mean age was 49.5 ± 10.29 years with 50% were males. The frequency distribution of rs20575 genotypes showed a statistically significant difference between the two studied groups (P = 0.02), the carriers of the C allele were 2.01 times more likely to develop HCC than the carriers of the G allele (P = 0.003), while no significant difference in rs20576 genotypes distribution was found between the studied groups (P = 0.680). On combining the carriers of C allele of rs20575 and the carriers of A allele of rs20576, a significant difference was detected (P > 0.001) with 2.85 higher risk of HCC development in patients who carried both genetic risk alleles simultaneously. The significant difference in DR4 polymorphisms among HCC and cirrhotic patients suggests their role as potential risk factors of HCC development.
Collapse
Affiliation(s)
- Naglaa F Alsalawy
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rania K Darwish
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Manal M Kamal
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed E ElTaweel
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hend I Shousha
- Department of Endemic Hepatogastroenterolog, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Tamer M Elbaz
- Department of Endemic Hepatogastroenterolog, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
36
|
A systems biology approach to overcome TRAIL resistance in cancer treatment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 128:142-154. [DOI: 10.1016/j.pbiomolbio.2017.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 11/20/2022]
|
37
|
Oh YT, Deng L, Deng J, Sun SY. The proteasome deubiquitinase inhibitor b-AP15 enhances DR5 activation-induced apoptosis through stabilizing DR5. Sci Rep 2017; 7:8027. [PMID: 28808321 PMCID: PMC5556018 DOI: 10.1038/s41598-017-08424-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/07/2017] [Indexed: 01/25/2023] Open
Abstract
b-AP15 and its derivatives block proteasome deubiquitinase (DUB) activity and have been developed and tested in the clinic as potential cancer therapeutic agents. b-AP15 induces apoptosis in cancer cells, but the underlying mechanisms are largely undefined. The current study focuses on studying the modulatory effects of b-AP15 on death receptor 5 (DR5) levels and DR5 activation-induced apoptosis as well as on understanding the underlying mechanisms. Treatment with b-AP15 potently increased DR5 levels including cell surface DR5 in different cancer cell lines with limited or no effects on the levels of other related proteins including DR4, c-FLIP, FADD, and caspase-8. b-AP15 substantially slowed the degradation of DR5, suggesting that it stabilizes DR5. Moreover, b-AP15 effectively augmented apoptosis when combined with TRAIL or the DR5 agonistic antibody AMG655; these effects are DR5-dependent because DR5 deficiency abolished the ability of b-AP15 to enhance TRAIL- or AMG655-induced apoptosis. Therefore, it is clear that b-AP15, and possibly its derivatives, can stabilize DR5 and increase functional cell surface DR5 levels, resulting in enhancement of DR5 activation-induced apoptosis. Our findings suggest that b-AP15 and its derivatives may have potential in sensitizing cancer cells to DR5 activation-based cancer therapy.
Collapse
Affiliation(s)
- You-Take Oh
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Liang Deng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jiusheng Deng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
38
|
Oh YT, Yue P, Sun SY. DR5 suppression induces sphingosine-1-phosphate-dependent TRAF2 polyubiquitination, leading to activation of JNK/AP-1 and promotion of cancer cell invasion. Cell Commun Signal 2017; 15:18. [PMID: 28482915 PMCID: PMC5422905 DOI: 10.1186/s12964-017-0174-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/02/2017] [Indexed: 11/10/2022] Open
Abstract
Background Death receptor (DR5), a well-characterized death domain-containing cell surface pro-apoptotic protein, has been suggested to suppress cancer cell invasion and metastasis. However, the underlying mechanisms have not been fully elucidated. Our recent work demonstrates that DR5 suppression promotes cancer cell invasion and metastasis through caspase-8/TRAF2-mediated activation of ERK and JNK signaling and MMP1 elevation. The current study aimed at addressing the mechanism through which TRAF2 is activated in a caspase-8 dependent manner. Results DR5 knockdown increased TRAF2 polyubiquitination, a critical event for TRAF2-mediated JNK/AP-1 activation. Suppression of sphingosine-1-phosphate (S1P) generation or depletion of casapse-8 inhibited not only enhancement of cell invasion, but also elevation and polyubiquitination of TRAF2, activation of JNK/AP-1 activation and increased expression of MMP1 induced by DR5 knockdown. Conclusions Both S1P and caspase-8 are critical for TRAF2 stabilization, polyubiquitination, subsequent activation of JNK/AP1 signaling and MMP1 expression and final promotion of cell invasion.
Collapse
Affiliation(s)
- You-Take Oh
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, 1365-C Clifton Road, Clinical Building C3088, Atlanta, GA, 30322, USA
| | - Ping Yue
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, 1365-C Clifton Road, Clinical Building C3088, Atlanta, GA, 30322, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, 1365-C Clifton Road, Clinical Building C3088, Atlanta, GA, 30322, USA.
| |
Collapse
|
39
|
Gillissen B, Richter A, Richter A, Preissner R, Schulze-Osthoff K, Essmann F, Daniel PT. Bax/Bak-independent mitochondrial depolarization and reactive oxygen species induction by sorafenib overcome resistance to apoptosis in renal cell carcinoma. J Biol Chem 2017; 292:6478-6492. [PMID: 28154184 DOI: 10.1074/jbc.m116.754184] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/26/2017] [Indexed: 12/23/2022] Open
Abstract
Renal cell carcinoma (RCC) is polyresistant to chemo- and radiotherapy and biologicals, including TNF-related apoptosis-inducing ligand (TRAIL). Sorafenib, a multikinase inhibitor approved for the treatment of RCC, has been shown to sensitize cancer cells to TRAIL-induced apoptosis, in particular by down-regulation of the Bak-inhibitory Bcl-2 family protein Mcl-1. Here we demonstrate that sorafenib overcomes TRAIL resistance in RCC by a mechanism that does not rely on Mcl-1 down-regulation. Instead, sorafenib induces rapid dissipation of the mitochondrial membrane potential (ΔΨm) that is accompanied by the accumulation of reactive oxygen species (ROS). Loss of ΔΨm and ROS production induced by sorafenib are independent of caspase activities and do not depend on the presence of the proapoptotic Bcl-2 family proteins Bax or Bak, indicating that both events are functionally upstream of the mitochondrial apoptosis signaling cascade. More intriguingly, we find that it is sorafenib-induced ROS accumulation that enables TRAIL to activate caspase-8 in RCC. This leads to apoptosis that involves activation of an amplification loop via the mitochondrial apoptosis pathway. Thus, our mechanistic data indicate that sorafenib bypasses central resistance mechanisms through a direct induction of ΔΨm breakdown and ROS production. Activation of this pathway might represent a useful strategy to overcome the cell-inherent resistance to cancer therapeutics, including TRAIL, in multiresistant cancers such as RCC.
Collapse
Affiliation(s)
- Bernhard Gillissen
- From the Department of Hematology, Oncology, and Tumor Immunology, University Medical Center Charité, Campus Berlin-Buch, Humboldt University, Berlin, Germany.,the German Cancer Consortium and German Cancer Research Center, Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Anja Richter
- From the Department of Hematology, Oncology, and Tumor Immunology, University Medical Center Charité, Campus Berlin-Buch, Humboldt University, Berlin, Germany.,the German Cancer Consortium and German Cancer Research Center, Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Antje Richter
- From the Department of Hematology, Oncology, and Tumor Immunology, University Medical Center Charité, Campus Berlin-Buch, Humboldt University, Berlin, Germany
| | - Robert Preissner
- the Institute of Physiology and Experimental Clinical Research Center, University Medical Center Charité, 13125 Berlin, Germany
| | - Klaus Schulze-Osthoff
- the German Cancer Consortium and German Cancer Research Center, Im Neuenheimer Feld, 69120 Heidelberg, Germany.,the Interfaculty Institute for Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany, and
| | - Frank Essmann
- the German Cancer Consortium and German Cancer Research Center, Im Neuenheimer Feld, 69120 Heidelberg, Germany.,the Interfaculty Institute for Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany, and
| | - Peter T Daniel
- From the Department of Hematology, Oncology, and Tumor Immunology, University Medical Center Charité, Campus Berlin-Buch, Humboldt University, Berlin, Germany, .,the German Cancer Consortium and German Cancer Research Center, Im Neuenheimer Feld, 69120 Heidelberg, Germany.,Clinical and Molecular Oncology, Max Delbrück Center for Molecular Medicine, 13125 Berlin-Buch, Germany
| |
Collapse
|
40
|
Yang L, Wang Y, Zheng H, Zhang D, Wu X, Sun G, Yang T. Low-dose 5-fluorouracil sensitizes HepG2 cells to TRAIL through TRAIL receptor DR5 and survivin-dependent mechanisms. J Chemother 2017; 29:179-188. [DOI: 10.1080/1120009x.2016.1277048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Lijun Yang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Yutao Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Haifeng Zheng
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Dong Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Xiangwei Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gongqin Sun
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Tao Yang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
41
|
Inactivation of BRCA2 in human cancer cells identifies a subset of tumors with enhanced sensitivity towards death receptor-mediated apoptosis. Oncotarget 2017; 7:9477-90. [PMID: 26843614 PMCID: PMC4891053 DOI: 10.18632/oncotarget.7053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 01/01/2016] [Indexed: 12/20/2022] Open
Abstract
Purpose DNA repair defects due to detrimental BRCA2-mutations confer increased susceptibility towards DNA interstrand-crosslinking (ICL) agents and define patient subpopulations for individualized genotype-based cancer therapy. However, due to the side effects of these drugs, there is a need to identify additional agents, which could be used alone or in combination with ICL-agents. Therefore, we investigated whether BRCA2-mutations might also increase the sensitivity towards TRAIL-receptors (TRAIL-R)-targeting compounds. Experimental design Two independent model systems were applied: a BRCA2 gene knockout and a BRCA2 gene complementation model. The effects of TRAIL-R-targeting compounds and ICL-agents on cell viability, apoptosis and cell cycle distribution were compared in BRCA2-proficient versus-deficient cancer cells in vitro. In addition, the effects of the TRAIL-R2-targeting antibody LBY135 were assessed in vivo using a murine tumor xenograft model. Results BRCA2-deficient cancer cells displayed an increased sensitivity towards TRAIL-R-targeting agents. These effects exceeded and were mechanistically distinguishable from the well-established effects of ICL-agents. In vitro, ICL-agents expectedly induced an early cell cycle arrest followed by delayed apoptosis, whereas TRAIL-R-targeting compounds caused early apoptosis without prior cell cycle arrest. In vivo, treatment with LBY135 significantly reduced the tumor growth of BRCA2-deficient cancer cells in a xenograft model. Conclusions BRCA2 mutations strongly increase the in vitro- and in vivo-sensitivity of cancer cells towards TRAIL-R-mediated apoptosis. This effect is mechanistically distinguishable from the well-established ICL-hypersensitivity of BRCA2-deficient cells. Our study thus defines a new genetic subpopulation of cancers susceptible towards TRAIL-R-targeting compounds, which could facilitate novel therapeutic approaches for patients with BRCA2-deficient tumors.
Collapse
|
42
|
Lin JC, Tsao MF, Lin YJ. Differential Impacts of Alternative Splicing Networks on Apoptosis. Int J Mol Sci 2016; 17:ijms17122097. [PMID: 27983653 PMCID: PMC5187897 DOI: 10.3390/ijms17122097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/26/2016] [Accepted: 12/02/2016] [Indexed: 12/16/2022] Open
Abstract
Apoptosis functions as a common mechanism to eliminate unnecessary or damaged cells during cell renewal and tissue development in multicellular organisms. More than 200 proteins constitute complex networks involved in apoptotic regulation. Imbalanced expressions of apoptosis-related factors frequently lead to malignant diseases. The biological functions of several apoptotic factors are manipulated through alternative splicing mechanisms which expand gene diversity by generating discrete variants from one messenger RNA precursor. It is widely observed that alternatively-spliced variants encoded from apoptosis-related genes exhibit differential effects on apoptotic regulation. Alternative splicing events are meticulously regulated by the interplay between trans-splicing factors and cis-responsive elements surrounding the regulated exons. The major focus of this review is to highlight recent studies that illustrate the influences of alternative splicing networks on apoptotic regulation which participates in diverse cellular processes and diseases.
Collapse
Affiliation(s)
- Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Mei-Fen Tsao
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
43
|
Lewis AK, Valley CC, Peery SL, Brummel B, Braun AR, Karim CB, Sachs JN. Death Receptor 5 Networks Require Membrane Cholesterol for Proper Structure and Function. J Mol Biol 2016; 428:4843-4855. [PMID: 27720987 DOI: 10.1016/j.jmb.2016.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 09/16/2016] [Accepted: 10/02/2016] [Indexed: 12/13/2022]
Abstract
Death receptor 5 (DR5) is an apoptosis-inducing member of the tumor necrosis factor receptor superfamily, whose activity has been linked to membrane cholesterol content. Upon ligand binding, DR5 forms large clusters within the plasma membrane that have often been assumed to be manifestations of receptor co-localization in cholesterol-rich membrane domains. However, we have recently shown that DR5 clusters are more than just randomly aggregated receptors. Instead, these are highly structured networks held together by receptor dimers. These dimers are stabilized by specific transmembrane helix-helix interactions, including a disulfide bond in the long isoform of the receptor. The complex relationships among DR5 network formation, transmembrane helix dimerization, membrane cholesterol, and receptor activity has not been established. It is unknown whether the membrane itself plays an active role in driving DR5 transmembrane helix interactions or in the formation of the networks. We show that cholesterol depletion in cells does not inhibit the formation of DR5 networks. However, the networks that form in cholesterol-depleted cells fail to induce caspase cleavage. These results suggest a potential structural difference between active and inactive networks. As evidence, we show that cholesterol is necessary for the covalent dimerization of DR5 transmembrane domains. Molecular simulations and experiments in synthetic vesicles on the DR5 transmembrane dimer suggest that dimerization is facilitated by increased helicity in a thicker bilayer.
Collapse
Affiliation(s)
- Andrew K Lewis
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Christopher C Valley
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Stephen L Peery
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Benjamin Brummel
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Anthony R Braun
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Christine B Karim
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Jonathan N Sachs
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|
44
|
Oh YT, Yue P, Wang D, Tong JS, Chen ZG, Khuri FR, Sun SY. Suppression of death receptor 5 enhances cancer cell invasion and metastasis through activation of caspase-8/TRAF2-mediated signaling. Oncotarget 2016; 6:41324-38. [PMID: 26510914 PMCID: PMC4747408 DOI: 10.18632/oncotarget.5847] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 01/03/2023] Open
Abstract
The role of death receptor 5 (DR5), a well-known cell surface pro-apoptotic protein, in the negative regulation of invasion and metastasis of human cancer cells and the underlying mechanisms are largely unknown and were hence the focus of this study. In this report, we have demonstrated that DR5 functions to suppress invasion and metastasis of human cancer cells, as evidenced by enhanced cancer cell invasion and metastasis upon genetic suppression of DR5 either by gene knockdown or knockout. When DR5 is suppressed, FADD and caspase-8 may recruit and stabilize TRAF2 to form a metastasis and invasion signaling complex, resulting in activation of ERK and JNK/AP-1 signaling that mediate the elevation and activation of matrix metalloproteinase-1 (MMP1) and eventual promotion of cancer invasion and metastasis. Our findings thus highlight a novel non-apoptotic function of DR5 as a suppressor of human cancer cell invasion and metastasis and suggest a basic working model elucidating the underlying biology.
Collapse
Affiliation(s)
- You-Take Oh
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Ping Yue
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Dongsheng Wang
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Jing-Shan Tong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute and School of Medicine, Pittsburgh, PA, USA
| | - Zhuo G Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
45
|
Yao W, Oh YT, Deng J, Yue P, Deng L, Huang H, Zhou W, Sun SY. Expression of Death Receptor 4 Is Positively Regulated by MEK/ERK/AP-1 Signaling and Suppressed upon MEK Inhibition. J Biol Chem 2016; 291:21694-21702. [PMID: 27576686 DOI: 10.1074/jbc.m116.738302] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 08/30/2016] [Indexed: 12/13/2022] Open
Abstract
Death receptor 4 (DR4) is a cell surface receptor for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and triggers apoptosis upon ligation with TRAIL or aggregation. MEK/ERK signaling is a well known and the best-studied effector pathway downstream of Ras and Raf. This study focuses on determining the impact of pharmacological MEK inhibition on DR4 expression and elucidating the underlying mechanism. We found that several MEK inhibitors including MEK162, AZD6244, and PD0325901 effectively decreased DR4 protein levels including cell surface DR4 in different cancer cell lines. Accordingly, pre-treatment of TRAIL-sensitive cancer cell lines with a MEK inhibitor desensitized them to TRAIL-induced apoptosis. These results indicate that MEK inhibition negatively regulates DR4 expression and cell response to TRAIL-induced apoptosis. MEK inhibitors did not alter DR4 protein stability, rather decreased its mRNA levels, suggesting a transcriptional regulation. In contrast, enforced activation of MEK/ERK signaling by expressing ectopic B-Raf (V600E) or constitutively activated MEK1 (MEK1-CA) or MEK2 (MEK2-CA) activated ERK and increased DR4 expression; these effects were inhibited when a MEK inhibitor was present. Promoter analysis through deletion and mutation identified the AP-1 binding site as an essential response element for enhancing DR4 transactivation by MEK1-CA. Furthermore, inhibition of AP-1 by c-Jun knockdown abrogated the ability of MEK1-CA to increase DR4 promoter activity and DR4 expression. These results suggest an essential role of AP-1 in mediating MEK/ERK activation-induced DR4 expression. Our findings together highlight a previously undiscovered mechanism that positively regulates DR4 expression through activation of the MEK/ERK/AP-1 signaling pathway.
Collapse
Affiliation(s)
- Weilong Yao
- From the Xiangya School of Medicine, Central South University, Changsha, Hunan, China 410008 and.,the Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - You-Take Oh
- the Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jiusheng Deng
- the Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Ping Yue
- the Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Liang Deng
- From the Xiangya School of Medicine, Central South University, Changsha, Hunan, China 410008 and.,the Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Henry Huang
- the Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Wei Zhou
- the Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Shi-Yong Sun
- the Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
46
|
Antitherapeutic antibody-mediated hepatotoxicity of recombinant human Apo2L/TRAIL in the cynomolgus monkey. Cell Death Dis 2016; 7:e2338. [PMID: 27512959 PMCID: PMC5108326 DOI: 10.1038/cddis.2016.241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/20/2016] [Accepted: 07/01/2016] [Indexed: 12/15/2022]
Abstract
Apo2L/TRAIL is a member of the tumor necrosis factor superfamily and an important inducer of apoptosis. Recombinant human (rhu) Apo2L/TRAIL has been attractive as a potential cancer therapeutic because many types of tumor cells are sensitive to its apoptosis-inducing effects. Nonclinical toxicology studies were conducted to evaluate the safety of rhuApo2L/TRAIL for possible use in humans. The cynomolgus monkey was chosen for this safety assessment based on high protein sequence homology between human and cynomolgus Apo2L/TRAIL and comparable expression of their receptors. Although hepatotoxicity was observed in repeat-dose monkey studies with rhuApo2L/TRAIL, all animals that displayed hepatotoxicity had developed antitherapeutic antibodies (ATAs). The cynomolgus ATAs augmented the cytotoxicity of rhuApo2L/TRAIL but not of its cynomolgus counterpart. Of note, human and cynomolgus Apo2L/TRAIL differ by four amino acids, three of which are surface-exposed. In vivo studies comparing human and cynomolgus Apo2L/TRAIL supported the conclusion that these distinct amino acids served as epitopes for cross-species ATAs, capable of crosslinking rhuApo2L/TRAIL and thus triggering hepatocyte apoptosis. We describe a hapten-independent mechanism of immune-mediated, drug-related hepatotoxicity – in this case – associated with the administration of a human recombinant protein in monkeys. The elucidation of this mechanism enabled successful transition of rhuApo2L/TRAIL into human clinical trials.
Collapse
|
47
|
Paradoxical activation of MEK/ERK signaling induced by B-Raf inhibition enhances DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells. Sci Rep 2016; 6:26803. [PMID: 27222248 PMCID: PMC4879700 DOI: 10.1038/srep26803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/10/2016] [Indexed: 12/19/2022] Open
Abstract
B-Raf inhibitors have been used for the treatment of some B-Raf–mutated cancers. They effectively inhibit B-Raf/MEK/ERK signaling in cancers harboring mutant B-Raf, but paradoxically activates MEK/ERK in Ras-mutated cancers. Death receptor 5 (DR5), a cell surface pro-apoptotic protein, triggers apoptosis upon ligation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or aggregation. This study focused on determining the effects of B-Raf inhibition on DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells. Using chemical and genetic approaches, we have demonstrated that the B-Raf inhibitor PLX4032 induces DR5 upregulation exclusively in Ras-mutant cancer cells; this effect is dependent on Ras/c-Raf/MEK/ERK signaling activation. PLX4032 induces DR5 expression at transcriptional levels, largely due to enhancing CHOP/Elk1-mediated DR5 transcription. Pre-exposure of Ras-mutated cancer cells to PLX4032 sensitizes them to TRAIL-induced apoptosis; this is also a c-Raf/MEK/ERK-dependent event. Collectively, our findings highlight a previously undiscovered effect of B-Raf inhibition on the induction of DR5 expression and the enhancement of DR5 activation-induced apoptosis in Ras-mutant cancer cells and hence may suggest a novel therapeutic strategy against Ras-mutated cancer cells by driving their death due to DR5-dependent apoptosis through B-Raf inhibition.
Collapse
|
48
|
Brünker P, Wartha K, Friess T, Grau-Richards S, Waldhauer I, Koller CF, Weiser B, Majety M, Runza V, Niu H, Packman K, Feng N, Daouti S, Hosse RJ, Mössner E, Weber TG, Herting F, Scheuer W, Sade H, Shao C, Liu B, Wang P, Xu G, Vega-Harring S, Klein C, Bosslet K, Umaña P. RG7386, a Novel Tetravalent FAP-DR5 Antibody, Effectively Triggers FAP-Dependent, Avidity-Driven DR5 Hyperclustering and Tumor Cell Apoptosis. Mol Cancer Ther 2016; 15:946-57. [PMID: 27037412 DOI: 10.1158/1535-7163.mct-15-0647] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/18/2016] [Indexed: 11/16/2022]
Abstract
Dysregulated cellular apoptosis and resistance to cell death are hallmarks of neoplastic initiation and disease progression. Therefore, the development of agents that overcome apoptosis dysregulation in tumor cells is an attractive therapeutic approach. Activation of the extrinsic apoptotic pathway is strongly dependent on death receptor (DR) hyperclustering on the cell surface. However, strategies to activate DR5 or DR4 through agonistic antibodies have had only limited clinical success. To pursue an alternative approach for tumor-targeted induction of apoptosis, we engineered a bispecific antibody (BsAb), which simultaneously targets fibroblast-activation protein (FAP) on cancer-associated fibroblasts in tumor stroma and DR5 on tumor cells. We hypothesized that bivalent binding to both FAP and DR5 leads to avidity-driven hyperclustering of DR5 and subsequently strong induction of apoptosis in tumor cells but not in normal cells. Here, we show that RG7386, an optimized FAP-DR5 BsAb, triggers potent tumor cell apoptosis in vitro and in vivo in preclinical tumor models with FAP-positive stroma. RG7386 antitumor efficacy was strictly FAP dependent, was independent of FcR cross-linking, and was superior to conventional DR5 antibodies. In combination with irinotecan or doxorubicin, FAP-DR5 treatment resulted in substantial tumor regression in patient-derived xenograft models. FAP-DR5 also demonstrated single-agent activity against FAP-expressing malignant cells, due to cross-binding of FAP and DR5 across tumor cells. Taken together, these data demonstrate that RG7386, a novel and potent antitumor agent in both mono- and combination therapies, overcomes limitations of previous DR5 antibodies and represents a promising approach to conquer tumor-associated resistance to apoptosis. Mol Cancer Ther; 15(5); 946-57. ©2016 AACR.
Collapse
Affiliation(s)
- Peter Brünker
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Katharina Wartha
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Thomas Friess
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Sandra Grau-Richards
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Inja Waldhauer
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Claudia Ferrara Koller
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Barbara Weiser
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Meher Majety
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Valeria Runza
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Huifeng Niu
- Roche Pharma Research and Early Development, Roche Innovation Center New York, New York, New York
| | - Kathryn Packman
- Roche Pharma Research and Early Development, Roche Innovation Center New York, New York, New York
| | - Ningping Feng
- Roche Pharma Research and Early Development, Roche Innovation Center New York, New York, New York
| | - Sherif Daouti
- Roche Pharma Research and Early Development, Roche Innovation Center New York, New York, New York
| | - Ralf J Hosse
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Ekkehard Mössner
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Thomas G Weber
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Frank Herting
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Werner Scheuer
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Hadassah Sade
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Cuiying Shao
- Roche Pharma Research and Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | - Bin Liu
- Roche Pharma Research and Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | - Peng Wang
- Roche Pharma Research and Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | - Gary Xu
- Roche Pharma Research and Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | - Suzana Vega-Harring
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Christian Klein
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Klaus Bosslet
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Pablo Umaña
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland.
| |
Collapse
|
49
|
Goldar S, Khaniani MS, Derakhshan SM, Baradaran B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev 2016; 125:487-9. [PMID: 25824729 DOI: 10.1172/jci80420] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Programmed cell death (PCD) or apoptosis is a mechanism which is crucial for all multicellular organisms to control cell proliferation and maintain tissue homeostasis as well as eliminate harmful or unnecessary cells from an organism. Defects in the physiological mechanisms of apoptosis may contribute to different human diseases like cancer. Identification of the mechanisms of apoptosis and its effector proteins as well as the genes responsible for apoptosis has provided a new opportunity to discover and develop novel agents that can increase the sensitivity of cancer cells to undergo apoptosis or reset their apoptotic threshold. These novel targeted therapies include those targeting anti-apoptotic Bcl-2 family members, p53, the extrinsic pathway, FLICE-inhibitory protein (c-FLIP), inhibitor of apoptosis (IAP) proteins, and the caspases. In recent years a number of these novel agents have been assessed in preclinical and clinical trials. In this review, we introduce some of the key regulatory molecules that control the apoptotic pathways, extrinsic and intrinsic death receptors, discuss how defects in apoptotic pathways contribute to cancer, and list several agents being developed to target apoptosis.
Collapse
Affiliation(s)
- Samira Goldar
- Department of Biochemistry and Clinical Labratorary, Division of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran E-mail :
| | | | | | | |
Collapse
|
50
|
Reddy A, Growney JD, Wilson NS, Emery CM, Johnson JA, Ward R, Monaco KA, Korn J, Monahan JE, Stump MD, Mapa FA, Wilson CJ, Steiger J, Ledell J, Rickles RJ, Myer VE, Ettenberg SA, Schlegel R, Sellers WR, Huet HA, Lehár J. Gene Expression Ratios Lead to Accurate and Translatable Predictors of DR5 Agonism across Multiple Tumor Lineages. PLoS One 2015; 10:e0138486. [PMID: 26378449 PMCID: PMC4574744 DOI: 10.1371/journal.pone.0138486] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 08/30/2015] [Indexed: 12/16/2022] Open
Abstract
Death Receptor 5 (DR5) agonists demonstrate anti-tumor activity in preclinical models but have yet to demonstrate robust clinical responses. A key limitation may be the lack of patient selection strategies to identify those most likely to respond to treatment. To overcome this limitation, we screened a DR5 agonist Nanobody across >600 cell lines representing 21 tumor lineages and assessed molecular features associated with response. High expression of DR5 and Casp8 were significantly associated with sensitivity, but their expression thresholds were difficult to translate due to low dynamic ranges. To address the translational challenge of establishing thresholds of gene expression, we developed a classifier based on ratios of genes that predicted response across lineages. The ratio classifier outperformed the DR5+Casp8 classifier, as well as standard approaches for feature selection and classification using genes, instead of ratios. This classifier was independently validated using 11 primary patient-derived pancreatic xenograft models showing perfect predictions as well as a striking linearity between prediction probability and anti-tumor response. A network analysis of the genes in the ratio classifier captured important biological relationships mediating drug response, specifically identifying key positive and negative regulators of DR5 mediated apoptosis, including DR5, CASP8, BID, cFLIP, XIAP and PEA15. Importantly, the ratio classifier shows translatability across gene expression platforms (from Affymetrix microarrays to RNA-seq) and across model systems (in vitro to in vivo). Our approach of using gene expression ratios presents a robust and novel method for constructing translatable biomarkers of compound response, which can also probe the underlying biology of treatment response.
Collapse
Affiliation(s)
- Anupama Reddy
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
- * E-mail:
| | - Joseph D. Growney
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Nick S. Wilson
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Caroline M. Emery
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Jennifer A. Johnson
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Rebecca Ward
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Kelli A. Monaco
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Joshua Korn
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - John E. Monahan
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Mark D. Stump
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Felipa A. Mapa
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Christopher J. Wilson
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Janine Steiger
- Horizon CombinatoRx, Cambridge, MA, United States of America
| | - Jebediah Ledell
- Horizon CombinatoRx, Cambridge, MA, United States of America
| | | | - Vic E. Myer
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Seth A. Ettenberg
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Robert Schlegel
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - William R. Sellers
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Heather A. Huet
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Joseph Lehár
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| |
Collapse
|