1
|
Khalili-Tanha G, Radisky ES, Radisky DC, Shoari A. Matrix metalloproteinase-driven epithelial-mesenchymal transition: implications in health and disease. J Transl Med 2025; 23:436. [PMID: 40217300 PMCID: PMC11992850 DOI: 10.1186/s12967-025-06447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells, defined by apical-basal polarity and tight intercellular junctions, acquire migratory and invasive properties characteristic of mesenchymal cells. Under normal conditions, EMT directs essential morphogenetic events in embryogenesis and supports tissue repair. When dysregulated, EMT contributes to pathological processes such as organ fibrosis, chronic inflammation, and cancer progression and metastasis. Matrix metalloproteinases (MMPs)-a family of zinc-dependent proteases that degrade structural components of the extracellular matrix-sit at the nexus of this transition by dismantling basement membranes, activating pro-EMT signaling pathways, and cleaving adhesion molecules. When normally regulated, MMPs promote balanced ECM turnover and support the cyclical remodeling necessary for proper development, wound healing, and tissue homeostasis. When abnormally regulated, MMPs drive excessive ECM turnover, thereby promoting EMT-related pathologies, including tumor progression and fibrotic disease. This review provides an integrated overview of the molecular mechanisms by which MMPs both initiate and sustain EMT under physiological and disease conditions. It discusses how MMPs can potentiate EMT through TGF-β and Wnt/β-catenin signaling, disrupt cell-cell junction proteins, and potentiate the action of hypoxia-inducible factors in the tumor microenvironment. It discusses how these pathologic processes remodel tissues during fibrosis, and fuel cancer cell invasion, metastasis, and resistance to therapy. Finally, the review explores emerging therapeutic strategies that selectively target MMPs and EMT, ranging from CRISPR/Cas-mediated interventions to engineered tissue inhibitors of metalloproteinases (TIMPs), and demonstrates how such approaches may suppress pathological EMT without compromising its indispensable roles in normal biology.
Collapse
Affiliation(s)
- Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
2
|
Srinivasan D, Subbarayan R, Krishnan M, Balakrishna R, Adtani P, Shrestha R, Chauhan A, Babu S, Radhakrishnan A. Radiation therapy-induced normal tissue damage: involvement of EMT pathways and role of FLASH-RT in reducing toxicities. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2025; 64:1-16. [PMID: 39760753 DOI: 10.1007/s00411-024-01102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
Radiation therapy (RT) is fundamental to the fight against cancer because of its exceptional ability to target and destroy cancer cells. However, conventional radiation therapy can significantly affect the adjacent normal tissues, leading to fibrosis, inflammation, and decreased organ function. This tissue damage not only reduces the quality of life but also prevents the total elimination of cancer. The transformation of epithelial cells into mesenchymal-like cells, termed epithelial-mesenchymal transition (EMT), is essential for processes such as fibrosis, embryogenesis, and wound healing. Conventional radiation therapy increases the asymmetric activation of fibrotic and inflammatory pathways, and the resulting chronic fibrotic changes and organ dysfunction are linked to radiation-induced epithelial-mesenchymal transition. Recent advances in radiation therapy, namely flash radiation therapy (FLASH-RT), have the potential to widen the therapeutic index. Radiation delivered by FLASH-RT at very high dose rates (exceeding 40 Gy/s) can protect normal tissue from radiation-induced damage, a phenomenon referred to as the "FLASH effect". Preclinical studies have demonstrated that FLASH-RT successfully inhibits processes associated with fibrosis and epithelial-mesenchymal transition, mitigates damage to normal tissue, and enhances regeneration. Three distinct types of EMT have been identified: type-1, associated with embryogenesis; Type-2, associated with injury potential; and type-3, related with cancer spread. The regulation of EMT via pathways, including TGF-β/SMAD, WNT/β-catenin, and NF-κB, is essential for radiation-induced tissue remodelling. This study examined radiation-induced EMT, TGF-β activity, multiple signalling pathways in fibrosis, and the potential of FLASH-RT to reduce tissue damage. FLASH-RT is a novel approach to treat chronic tissue injury and fibrosis post-irradiation by maintaining epithelial properties and regulating mesenchymal markers including vimentin and N-cadherin. Understanding these pathways will facilitate the development of future therapies that can alleviate fibrosis, improve the efficacy of cancer therapy, and improve the quality of life of patients.
Collapse
Affiliation(s)
- Dhasarathdev Srinivasan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Rajasekaran Subbarayan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Madhan Krishnan
- Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Ranjith Balakrishna
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Pooja Adtani
- Department of Basic Medical and Dental Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Rupendra Shrestha
- Department of Natural and Applied Sciences, Nexus Institute of Research and Innovation (NIRI), Lalitpur, Nepal.
| | - Ankush Chauhan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Shyamaladevi Babu
- Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Arunkumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| |
Collapse
|
3
|
Zhuang X, Wang C, Ge Z, Wu M, Chen M, Chen Z, Hu J. MICAL1 Mediates TGF-β1-Induced Epithelial-to-Mesenchymal Transition and Metastasis of Hepatocellular Carcinoma by Activating Smad2/3. Cell Biochem Biophys 2025:10.1007/s12013-025-01668-8. [PMID: 39954154 DOI: 10.1007/s12013-025-01668-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 02/17/2025]
Abstract
Epithelial-mesenchymal transition (EMT) induced by transforming growth factor-β (TGF-β) is involved in hepatocellular carcinoma (HCC) growth and metastasis. Our study aimed to investigate the role of molecules interacting with CasL 1 (MICAL1) in regulating TGF-β-triggered EMT in HCC and the related mechanisms. After detecting MICAL1 expression and prognostic value in HCC, in vitro assays including CCK-8 assay, EdU staining, flow cytometry assay, Transwell assay, western blotting, and RT-qPCR and in vivo metastasis assay was conducted to evaluate the influence of MICAL1 knockdown on the proliferation and apoptosis as well as TGF-β-induced EMT and metastasis of Huh7 and MHCC97H cells. MICAL1 was highly expressed in HCC, and its high expression was related to histological grade, TNM stage, and shorter overall survival of HCC patients. MICAL1 silencing suppressed proliferation, promoted apoptosis, and curbed TGF-β1-triggered cytoskeletal remodeling, EMT, and metastasis of HCC cells. MICAL1 knockdown impeded TGF-β1-induced upregulation in phosphorylated-Smad2/3 protein levels and reduced Smad2/3 mRNA levels in HCC cells. MICAL1 downregulation enhanced the polyubiquitination and proteasomal degradation of TβRI. Additionally, MICAL1 silencing suppressed tumor growth and lung metastasis in Huh7-derived xenograft mouse models. Collectively, MICAL1 knockdown impairs TGF-β1-stimulated EMT and metastasis of HCC cells by restraining Smad2/3 phosphorylation and activation.
Collapse
Affiliation(s)
- Xun Zhuang
- Department of Gastroenterology, The People's Hospital of Dan Yang, Zhenjiang, Jiangsu, PR China
| | - Chunrong Wang
- Department of Gastroenterology, The People's Hospital of Dan Yang, Zhenjiang, Jiangsu, PR China
| | - Zhenghui Ge
- Department of Gastroenterology, The People's Hospital of Dan Yang, Zhenjiang, Jiangsu, PR China
| | - Mengjie Wu
- Department of Gastroenterology, The People's Hospital of Dan Yang, Zhenjiang, Jiangsu, PR China
| | - Mengjiao Chen
- Department of Gastroenterology, The People's Hospital of Dan Yang, Zhenjiang, Jiangsu, PR China
| | - Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Jianghong Hu
- Department of Gastroenterology, The People's Hospital of Dan Yang, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|
4
|
Barbeau MC, Brown BA, Adair SJ, Bauer TW, Lazzara MJ. ERK plays a conserved dominant role in pancreas cancer cell EMT heterogeneity driven by diverse growth factors and chemotherapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.08.637251. [PMID: 39975093 PMCID: PMC11839075 DOI: 10.1101/2025.02.08.637251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Epithelial-mesenchymal transition (EMT) occurs heterogeneously among malignant carcinoma cells to promote chemoresistance. Identifying the signaling pathways involved will nominate drug combinations to promote chemoresponse, but cell population-level studies are inherently fraught, and single-cell transcriptomics are limited to indirect ontology-based inferences. To understand EMT heterogeneity at a signaling protein level, we combined iterative indirect immunofluorescence imaging of pancreas cancer cells and tumors and mutual information (MI) modeling. Focusing first on MAP kinase pathways, MI predicted that cell-to-cell variation in ERK activity surprisingly dominated control of EMT heterogeneity in response to diverse growth factors and chemotherapeutics, but that JNK compensated when MEK was inhibited. Population-level models could not capture these experimentally validated MI predictions. The dominant role of ERK was predicted by MI even when analyzing seven potential EMT-regulating signaling nodes. More generally, this work provides an approach for studying highly multivariate signaling/phenotype relationships based on protein measurements in any setting.
Collapse
|
5
|
Hong Q, Kim H, Cai GY, Chen XM, He JC, Lee K. Modulation of TGF-β signaling new approaches toward kidney disease and fibrosis therapy. Int J Biol Sci 2025; 21:1649-1665. [PMID: 39990662 PMCID: PMC11844295 DOI: 10.7150/ijbs.101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/16/2024] [Indexed: 02/25/2025] Open
Abstract
The prevalence of chronic kidney disease (CKD) is increasing worldwide, posing a significant healthcare challenge. Despite the immense burden of CKD, optimal therapies remain limited in impact. Kidney fibrosis is a common mediator of all CKD progression, characterized by excessive extracellular matrix deposition and scarring of kidney parenchyma. Transforming growth factor-β (TGF-β) is a potent pro-fibrotic cytokine that signals through canonical and non-canonical pathways to promote kidney cell damage and fibrosis progression, thus garnering much interest as an optimal therapeutic target for CKD. However, the clinical translation of TGF-β inhibition in CKD and other disease settings has faced substantial challenges, particularly due to the highly pleiotropic effects of TGF-β in organ homeostasis and disease. Here, we review the kidney cell-specific biological effects of TGF-β signaling, discuss the current challenges in therapeutic targeting TGF-β in CKD, and provide the rationale for alternative targeting strategies of TGF-β signaling as potential approaches in CKD therapy. Selective inhibition of TGF-β signaling modulators to fine-tune TGF-β inhibition without a broad blockade may lead to new and safer treatments for CKD.
Collapse
Affiliation(s)
- Quan Hong
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, NY, USA
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, China
| | - Hyoungnae Kim
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Guang-Yan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, China
| | - Xiang-Mei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, China
| | - John Cijiang He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, NY, USA
- James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
| | - Kyung Lee
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, NY, USA
| |
Collapse
|
6
|
Harju N, Kauppinen A, Loukovaara S. Fibrotic Changes in Rhegmatogenous Retinal Detachment. Int J Mol Sci 2025; 26:1025. [PMID: 39940795 PMCID: PMC11817287 DOI: 10.3390/ijms26031025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Rhegmatogenous retinal detachment (RRD) is a sight-threatening condition involving retinal detachment and the accumulation of fluid in the subretinal space. Proliferative vitreoretinopathy (PVR) is a pathologic complication that develops after RRD surgery, and approximately 5-10% of RRD cases develop post-operative PVR. Prolonged inflammation in the wound healing process, epithelial-mesenchymal transition (EMT), retinal pigment epithelial (RPE) cell migration and proliferation, and epiretinal, intraretinal, and subretinal fibrosis are typical in the formation of PVR. RPE cells undergo EMT and become fibroblast-like cells that migrate to the retina and vitreous, promoting PVR formation. Fibroblasts transform into myofibroblasts, which promote fibrosis by overproducing the extracellular matrix (ECM). RPE cells, fibroblasts, glial cells, macrophages, T lymphocytes, and increased ECM production form contractile epiretinal membranes. Cytokine release, complement activation, RPE cells, glial cells, and endothelial cells are all involved in retinal immune responses. Normally, wounds heal within 4 to 6 weeks, including hemostasis, inflammation, proliferation, and remodeling phases. Properly initiated inflammation, complement activation, and the function of neutrophils and glial cells heal the wound in the first stage. In a retinal wound, glial cells proliferate and fill the injured area. Gliosis tries to protect the neurons and prevent damage, but it becomes harmful when it causes scarring. If healing is complicated, prolonged inflammation leads to pathological fibrosis. Currently, there is no preventive treatment for the formation of PVR, and it is worth studying in the future.
Collapse
Affiliation(s)
- Niina Harju
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Sirpa Loukovaara
- Unit of Vitreoretinal Surgery, Department of Ophthalmology, Helsinki University Central Hospital, 00029 Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
7
|
Mallick S, Duttaroy AK, Bose B. A Snapshot of Cytokine Dynamics: A Fine Balance Between Health and Disease. J Cell Biochem 2025; 126:e30680. [PMID: 39668456 DOI: 10.1002/jcb.30680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024]
Abstract
Health and disease are intricately intertwined and often determined by the delicate balance of biological processes. Cytokines, a family of small signalling molecules, are pivotal in maintaining this balance, ensuring the body's immune system functions optimally. In a healthy condition, cytokines act as potent mediators of immune responses. They orchestrate the activities of immune cells, coordinating their proliferation, differentiation, and migration. This intricate role of cytokine signalling enables the body to effectively combat infections, repair damaged tissues, and regulate inflammation. However, the delicate equilibrium of cytokine production is susceptible to disruption. Excessive or abnormal cytokine levels can lead to a cascade of pathological conditions, including autoimmune diseases, chronic inflammation, infections, allergies, and even cancer. Interestingly, from the bunch of cytokines, few cytokines play an essential role in maintaining the balance between normal physiological status and diseases. In this review, we have appraised key cytokines' potential role and feedback loops in augmenting the imbalances in the body's biological functions, presenting a critical link between inflammation and disease pathology. Moreover, we have also highlighted the significance of cytokines and their molecular interplay, particularly in the recent viral pandemic COVID-19 disease. Hence, understandings regarding the interplay between viral infection and cytokine responses are essential and fascinating for developing effective therapeutic strategies.
Collapse
Affiliation(s)
- Sumit Mallick
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, India
| |
Collapse
|
8
|
Masciale V, Banchelli F, Grisendi G, Samarelli AV, Raineri G, Rossi T, Zanoni M, Cortesi M, Bandini S, Ulivi P, Martinelli G, Stella F, Dominici M, Aramini B. The molecular features of lung cancer stem cells in dedifferentiation process-driven epigenetic alterations. J Biol Chem 2024; 300:107994. [PMID: 39547513 PMCID: PMC11714729 DOI: 10.1016/j.jbc.2024.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Cancer stem cells (CSCs) may be dedifferentiated somatic cells following oncogenic processes, representing a subpopulation of cells able to promote tumor growth with their capacities for proliferation and self-renewal, inducing lineage heterogeneity, which may be a main cause of resistance to therapies. It has been shown that the "less differentiated process" may have an impact on tumor plasticity, particularly when non-CSCs may dedifferentiate and become CSC-like. Bidirectional interconversion between CSCs and non-CSCs has been reported in other solid tumors, where the inflammatory stroma promotes cell reprogramming by enhancing Wnt signaling through nuclear factor kappa B activation in association with intracellular signaling, which may induce cells' pluripotency, the oncogenic transformation can be considered another important aspect in the acquisition of "new" development programs with oncogenic features. During cell reprogramming, mutations represent an initial step toward dedifferentiation, in which tumor cells switch from a partially or terminally differentiated stage to a less differentiated stage that is mainly manifested by re-entry into the cell cycle, acquisition of a stem cell-like phenotype, and expression of stem cell markers. This phenomenon typically shows up as a change in the form, function, and pattern of gene and protein expression, and more specifically, in CSCs. This review would highlight the main epigenetic alterations, major signaling pathways and driver mutations in which CSCs, in tumors and specifically, in lung cancer, could be involved, acting as key elements in the differentiation/dedifferentiation process. This would highlight the main molecular mechanisms which need to be considered for more tailored therapies.
Collapse
Affiliation(s)
- Valentina Masciale
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Federico Banchelli
- Department of Statistical Sciences "Paolo Fortunati", Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Giulia Raineri
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Franco Stella
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy; Division of Oncology, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy.
| |
Collapse
|
9
|
Wang X, Li S, Shen Y, Cao L, Lu Y, Cao J, Liu Y, Deng A, Yang J, Wang T. Construction of molecular subtype and prognostic model for gastric cancer based on nucleus-encoded mitochondrial genes. Sci Rep 2024; 14:28491. [PMID: 39557952 PMCID: PMC11574080 DOI: 10.1038/s41598-024-78729-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
Gastric cancer (GC) is a common digestive system cancer, characterized by a significant mortality rate. Mitochondria is an indispensable organelle in eukaryotic cells. It was previously revealed that a series of nucleus-encoded mitochondrial genes (NMG) mutations and dysfunctions potentially contribute to the initiation and progression of GC. However, the correlation between NMG mutations and survival outcomes for GC patients is still unclear. In this study, NMG expression profile and clinical information in GC samples were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Through consistent clustering and functional enrichment analysis, we have identified three NMG clusters and three gene clusters that are associated with patterns of immune cell infiltration. Prognostic genes were identified through Univariate Cox regression analysis. The principal component analysis was conducted to set up a scoring system. Subsequently, the Single‑cell RNA sequencing (scRNA-seq) data of GC patients and cancer cell drug sensitivity data were retrieved from the GEO database. Patients with high NMG scores exhibited increased microsatellite instability status and a heightened tumor mutation rate compared to those with low NMG scores. Survival analysis revealed that GC samples with high NMG scores could achieve a better prognosis. Additionally, These patients were observed to be more responsive to immunotherapy. Moreover, we delved into prognostic genes at the level of single cells, revealing that MRPL4 and MRPL37 exhibit high expression in epithelial cells, while TPM1 demonstrates high expression in tissue stem cells. Utilizing cancer cell drug sensitivity data from the Drug Sensitivity in Cancer (GDSC) database, we noted a heightened sensitivity to chemotherapy in the high NMG group. Furthermore, we discovered a significant enrichment of cuproptosis-related genes in clusters with high NMG scores. Consequently, employing the scoring system could facilitate the prediction of GC patients' sensitivity to cuproptosis-induced therapy. Our study confirmed the potency of this scoring system as a therapeutic response biomarker for gastric cancer, potentially informing clinical treatment strategies.
Collapse
Affiliation(s)
- Xu Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center of Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Sainan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Yuhuan Shen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Li Cao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center of Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yajuan Lu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Jinghao Cao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Yingchao Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Aoli Deng
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Jiyun Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center of Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Tongtong Wang
- Department of Intensive Care Unit, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xian, China.
| |
Collapse
|
10
|
Lailler C, Didelot A, Garinet S, Berthou H, Sroussi M, de Reyniès A, Dedhar S, Martin-Lannerée S, Fabre E, Le Pimpec-Barthes F, Perrier A, Poindessous V, Mansuet-Lupo A, Djouadi F, Launay JM, Laurent-Puig P, Blons H, Mouillet-Richard S. PrP C controls epithelial-to-mesenchymal transition in EGFR-mutated NSCLC: implications for TKI resistance and patient follow-up. Oncogene 2024; 43:2781-2794. [PMID: 39147880 PMCID: PMC11379626 DOI: 10.1038/s41388-024-03130-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
Patients with EGFR-mutated non-small cell lung cancer (NSCLC) benefit from treatment with tyrosine kinase inhibitors (TKI) targeting EGFR. Despite improvements in patient care, especially with the 3rd generation TKI osimertinib, disease relapse is observed in all patients. Among the various processes involved in TKI resistance, epithelial-to-mesenchymal transition (EMT) is far from being fully characterized. We hypothesized that the cellular prion protein PrPC could be involved in EMT and EGFR-TKI resistance in NSCLC. Using 5 independent lung adenocarcinoma datasets, including our own cohort, we document that the expression of the PRNP gene encoding PrPC is associated with EMT. By manipulating the levels of PrPC in different EGFR-mutated NSCLC cell lines, we firmly establish that the expression of PrPC is mandatory for cells to maintain or acquire a mesenchymal phenotype. Mechanistically, we show that PrPC operates through an ILK-RBPJ cascade, which also controls the expression of EGFR. Our data further demonstrate that PrPC levels are elevated in EGFR-mutated versus wild-type tumours or upon EGFR activation in vitro. In addition, we provide evidence that PRNP levels increase with TKI resistance and that reducing PRNP expression sensitizes cells to osimertinib. Finally, we found that plasma PrPC levels are increased in EGFR-mutated NSCLC patients from 2 independent cohorts and that their longitudinal evolution mirrors that of disease. Altogether, these findings define PrPC as a candidate driver of EMT-dependent resistance to EGFR-TKI in NSCLC. They further suggest that monitoring plasma PrPC levels may represent a valuable non-invasive strategy for patient follow-up and warrant considering PrPC-targeted therapies for EGFR-mutated NSCLC patients with TKI failure.
Collapse
Affiliation(s)
- Claire Lailler
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Audrey Didelot
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Simon Garinet
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Hugo Berthou
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Marine Sroussi
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
- Institut du Cancer Paris CARPEM, AP-HP, Department of Genetics and Molecular Medicine, Hôpital Européen Georges Pompidou, Paris, France
| | - Aurélien de Reyniès
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Shoukat Dedhar
- Genetics Unit, Integrative Oncology, BC Cancer, Vancouver, BC, Canada
| | - Séverine Martin-Lannerée
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Elizabeth Fabre
- AP-HP Department of Thoracic Oncology, Hôpital Européen Georges Pompidou, Paris, France
| | | | - Alexandre Perrier
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Virginie Poindessous
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Audrey Mansuet-Lupo
- AP-HP Department of Pathology, Hôpital Cochin, Université Paris Cité, Paris, France
| | - Fatima Djouadi
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Jean-Marie Launay
- INSERM U942 Lariboisière Hospital, Paris, France
- Pharma Research Department, F. Hoffmann-La-Roche Ltd., Basel, Switzerland
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
- Institut du Cancer Paris CARPEM, AP-HP, Department of Genetics and Molecular Medicine, Hôpital Européen Georges Pompidou, Paris, France
| | - Hélène Blons
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France.
- Institut du Cancer Paris CARPEM, AP-HP, Department of Biochemistry, Pharmacogenetics and Molecular Oncology, Hôpital Européen Georges Pompidou, Paris, France.
| | - Sophie Mouillet-Richard
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France.
| |
Collapse
|
11
|
Ni H, Chen M, Dong D, Zhou Y, Cao Y, Ge R, Luo X, Wang Y, Dong X, Zhou J, Li D, Xie S, Liu M. CYLD/HDAC6 signaling regulates the interplay between epithelial-mesenchymal transition and ciliary homeostasis during pulmonary fibrosis. Cell Death Dis 2024; 15:581. [PMID: 39122680 PMCID: PMC11316090 DOI: 10.1038/s41419-024-06972-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
The primary cilium behaves as a platform for sensing and integrating extracellular cues to control a plethora of cellular activities. However, the functional interaction of this sensory organelle with epithelial-mesenchymal transition (EMT) during pulmonary fibrosis remains unclear. Here, we reveal a critical role for cylindromatosis (CYLD) in reciprocally linking the EMT program and ciliary homeostasis during pulmonary fibrosis. A close correlation between the EMT program and primary cilia is observed in bleomycin-induced pulmonary fibrosis as well as TGF-β-induced EMT model. Mechanistic study reveals that downregulation of CYLD underlies the crosstalk between EMT and ciliary homeostasis by inactivating histone deacetylase 6 (HDAC6) during pulmonary fibrosis. Moreover, manipulation of primary cilia is an effective means to modulate the EMT program. Collectively, these results identify a pivotal role for the CYLD/HDAC6 signaling in regulating the reciprocal interplay between the EMT program and ciliary homeostasis during pulmonary fibrosis.
Collapse
Affiliation(s)
- Hua Ni
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi, China
| | - Miao Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Dan Dong
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Yunqiang Zhou
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Yu Cao
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Ruixin Ge
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiangrui Luo
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yutao Wang
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi, China
| | - Xifeng Dong
- Department of Hematology, Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin Institute of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China.
| | - Songbo Xie
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University, Tianjin, 300052, China.
| | - Min Liu
- Laboratory of Tissue Homeostasis, Haihe Laboratory of Cell Ecosystem, Tianjin, China.
| |
Collapse
|
12
|
Przybyszewski O, Mik M, Nowicki M, Kusiński M, Mikołajczyk-Solińska M, Śliwińska A. Using microRNAs Networks to Understand Pancreatic Cancer-A Literature Review. Biomedicines 2024; 12:1713. [PMID: 39200178 PMCID: PMC11351910 DOI: 10.3390/biomedicines12081713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/02/2024] Open
Abstract
Pancreatic cancer is a severe disease, challenging to diagnose and treat, and thereby characterized by a poor prognosis and a high mortality rate. Pancreatic ductal adenocarcinoma (PDAC) represents approximately 90% of pancreatic cancer cases, while other cases include neuroendocrine carcinoma. Despite the growing knowledge of the pathophysiology of this cancer, the mortality rate caused by it has not been effectively reduced. Recently, microRNAs have aroused great interest among scientists and clinicians, as they are negative regulators of gene expression, which participate in many processes, including those related to the development of pancreatic cancer. The aim of this review is to show how microRNAs (miRNAs) affect key signaling pathways and related cellular processes in pancreatic cancer development, progression, diagnosis and treatment. We included the results of in vitro studies, animal model of pancreatic cancer and those performed on blood, saliva and tumor tissue isolated from patients suffering from PDAC. Our investigation identified numerous dysregulated miRNAs involved in KRAS, JAK/STAT, PI3/AKT, Wnt/β-catenin and TGF-β signaling pathways participating in cell cycle control, proliferation, differentiation, apoptosis and metastasis. Moreover, some miRNAs (miRNA-23a, miRNA-24, miRNA-29c, miRNA-216a) seem to be engaged in a crosstalk between signaling pathways. Evidence concerning the utility of microRNAs in the diagnosis and therapy of this cancer is poor. Therefore, despite growing knowledge of the involvement of miRNAs in several processes associated with pancreatic cancer, we are beginning to recognize and understand their role and usefulness in clinical practice.
Collapse
Affiliation(s)
- Oskar Przybyszewski
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| | - Michał Mik
- Department of General and Colorectal Surgery, Medical University of Lodz, 113 Stefana Żeromskiego St., 90-549 Lodz, Poland; (M.M.); (M.N.)
| | - Michał Nowicki
- Department of General and Colorectal Surgery, Medical University of Lodz, 113 Stefana Żeromskiego St., 90-549 Lodz, Poland; (M.M.); (M.N.)
| | - Michał Kusiński
- Department of Endocrinological, General and Oncological Surgery, Medical University of Lodz, 62 Pabianicka St., 93-513 Lodz, Poland;
| | - Melania Mikołajczyk-Solińska
- Department of Internal Medicine, Diabetology and Clinical Pharmacology, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| |
Collapse
|
13
|
Fasano M, Pirozzi M, Miceli CC, Cocule M, Caraglia M, Boccellino M, Vitale P, De Falco V, Farese S, Zotta A, Ciardiello F, Addeo R. TGF-β Modulated Pathways in Colorectal Cancer: New Potential Therapeutic Opportunities. Int J Mol Sci 2024; 25:7400. [PMID: 39000507 PMCID: PMC11242595 DOI: 10.3390/ijms25137400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide, with 20% of patients presenting with metastatic disease at diagnosis. TGF-β signaling plays a crucial role in various cellular processes, including growth, differentiation, apoptosis, epithelial-mesenchymal transition (EMT), regulation of the extracellular matrix, angiogenesis, and immune responses. TGF-β signals through SMAD proteins, which are intracellular molecules that transmit TGF-β signals from the cell membrane to the nucleus. Alterations in the TGF-β pathway and mutations in SMAD proteins are common in metastatic CRC (mCRC), making them critical factors in CRC tumorigenesis. This review first analyzes normal TGF-β signaling and then investigates its role in CRC pathogenesis, highlighting the mechanisms through which TGF-β influences metastasis development. TGF-β promotes neoangiogenesis via VEGF overexpression, pericyte differentiation, and other mechanisms. Additionally, TGF-β affects various elements of the tumor microenvironment, including T cells, fibroblasts, and macrophages, promoting immunosuppression and metastasis. Given its strategic role in multiple processes, we explored different strategies to target TGF-β in mCRC patients, aiming to identify new therapeutic options.
Collapse
Affiliation(s)
- Morena Fasano
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Mario Pirozzi
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Chiara Carmen Miceli
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Mariateresa Cocule
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Contrada Camporeale, 83031 Ariano Irpino, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
| | - Pasquale Vitale
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| | - Vincenzo De Falco
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| | - Stefano Farese
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Alessia Zotta
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Fortunato Ciardiello
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Raffaele Addeo
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| |
Collapse
|
14
|
Gui S, Yu W, Xie J, Peng L, Xiong Y, Song Z, Luo H, Xiao J, Yuan S, Cheng Z. SLC7A11 promotes EMT and metastasis in invasive pituitary neuroendocrine tumors by activating the PI3K/AKT signaling pathway. Endocr Connect 2024; 13:e240097. [PMID: 38722255 PMCID: PMC11227052 DOI: 10.1530/ec-24-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024]
Abstract
Invasive pituitary neuroendocrine tumors (PitNETs) are the most prevalent types of intracranial and neuroendocrine tumors. Their aggressive growth and difficulty in complete resection result in a high recurrence rate. Cystine transporter solute carrier family 7 member 11 (SLC7A11) is overexpressed in various cancers, which contributes to tumor growth, progression, and metastasis by promoting cystine uptake and glutathione biosynthesis. We identified SLC7A11 as an invasive biomarker based on three Gene Expression Omnibus cohorts. This study aimed to investigate the role of SLC7A11 in invasive PitNETs. Cell proliferation was assessed using CCK-8 and colony formation assays, while cell apoptosis was estimated with flow cytometry. Wound healing assays and transwell assays were utilized to evaluate migration and invasion ability. Our findings demonstrated that SLC7A11 was markedly upregulated in invasive PitNETs, and was associated with the invasiveness of PitNETs. Knockdown of SLC7A11 could largely suppress tumor cell proliferation, migration, and invasion, while inducing apoptosis. Furthermore, SLC7A11 depletion was implicated in regulating epithelial-mesenchymal transition and inactivating the PI3K/AKT signaling pathway. These insights suggest SLC7A11 as a potential therapeutic target for invasive PitNETs.
Collapse
Affiliation(s)
- Shikai Gui
- Department of Neurosurgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Nanchang University, Nanchang, Jiangxi Province, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi Province, China
| | - Wanli Yu
- Department of Neurosurgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Nanchang University, Nanchang, Jiangxi Province, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi Province, China
| | - Jiabao Xie
- Department of Neurosurgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Nanchang University, Nanchang, Jiangxi Province, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi Province, China
| | - Lunshan Peng
- Department of Neurosurgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Nanchang University, Nanchang, Jiangxi Province, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yuanyuan Xiong
- Department of Neurosurgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhen Song
- Nanchang University, Nanchang, Jiangxi Province, China
- Department of Urology, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Haitao Luo
- Department of Neurosurgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Juexian Xiao
- Department of Neurosurgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Zujue Cheng
- Department of Neurosurgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Nanchang University, Nanchang, Jiangxi Province, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
15
|
Yan W, Rao D, Fan F, Liang H, Zhang Z, Dong H. Hepatitis B virus X protein and TGF-β: partners in the carcinogenic journey of hepatocellular carcinoma. Front Oncol 2024; 14:1407434. [PMID: 38962270 PMCID: PMC11220127 DOI: 10.3389/fonc.2024.1407434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Hepatitis B infection is substantially associated with the development of liver cancer globally, with the prevalence of hepatocellular carcinoma (HCC) cases exceeding 50%. Hepatitis B virus (HBV) encodes the Hepatitis B virus X (HBx) protein, a pleiotropic regulatory protein necessary for the transcription of the HBV covalently closed circular DNA (cccDNA) microchromosome. In previous studies, HBV-associated HCC was revealed to be affected by HBx in multiple signaling pathways, resulting in genetic mutations and epigenetic modifications in proto-oncogenes and tumor suppressor genes. In addition, transforming growth factor-β (TGF-β) has dichotomous potentials at various phases of malignancy as it is a crucial signaling pathway that regulates multiple cellular and physiological processes. In early HCC, TGF-β has a significant antitumor effect, whereas in advanced HCC, it promotes malignant progression. TGF-β interacts with the HBx protein in HCC, regulating the pathogenesis of HCC. This review summarizes the respective and combined functions of HBx and TGB-β in HCC occurrence and development.
Collapse
Affiliation(s)
- Wei Yan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Dean Rao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Feimu Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Zunyi Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Hanhua Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| |
Collapse
|
16
|
Lim BY, Guo Z, Lim JQ, Ko TK, Lee ECY, Kannan B, Lee JY, Lim AH, Li Z, Ng CCY, Busmanis I, Chan JY. Whole genome sequencing of HER2-positive metastatic extramammary Paget's disease: a case report. Orphanet J Rare Dis 2024; 19:223. [PMID: 38831459 PMCID: PMC11149212 DOI: 10.1186/s13023-024-03169-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/30/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Extramammary Paget's disease (EMPD) is a rare cancer that occurs within the epithelium of the skin, arising predominantly in areas with high apocrine gland concentration such as the vulva, scrotum, penis and perianal regions. Here, we aim to integrate clinicopathological data with genomic analysis of aggressive, rapidly-progressing de novo metastatic EMPD responding to HER2-directed treatment in combination with other agents, to attain a more comprehensive understanding of the disease landscape. METHODS Immunohistochemical staining on the scrotal wall tumor and bone marrow metastasis demonstrated HER2 overexpression. Whole genome sequencing of the tumor and matched blood was performed. RESULTS Notable copy number gains (log2FC > 0.9) on chromosomes 7 and 8 were detected (n = 81), with 92.6% of these unique genes specifically located on chromosome 8. Prominent cancer-associated genes include ZNF703, HOOK3, DDHD2, LSM1, NSD3, ADAM9, BRF2, KAT6A and FGFR1. Interestingly, ERBB2 gene did not exhibit high copy number gain (log2FC = 0.4) although 90% of tumor cells stained HER2-positive. Enrichment in pathways associated with transforming growth factor-beta (TGFβ) (FDR = 0.0376, Enrichment Ratio = 8.12) and fibroblast growth factor receptor (FGFR1) signaling (FDR = 0.0082, Enrichment Ratio = 2.3) was detected. Amplicon structure analysis revealed that this was a simple-linear amplification event. CONCLUSION Whole genome sequencing revealed the underlying copy number variation landscape in HER2-positive metastatic EMPD. The presence of alternative signalling pathways and genetic variants suggests potential interactions with HER2 signalling, which possibly contributed to the HER2 overexpression and observed response to HER2-directed therapy combined with other agents in a comprehensive treatment regimen.
Collapse
Affiliation(s)
- Boon Yee Lim
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore, Singapore
| | - Zexi Guo
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore, Singapore
| | - Jing Quan Lim
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Tun Kiat Ko
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore, Singapore
| | | | - Bavani Kannan
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore, Singapore
| | - Jing Yi Lee
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore, Singapore
| | - Abner Herbert Lim
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore, Singapore
| | - Zhimei Li
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore, Singapore
| | | | - Inny Busmanis
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Jason Yongsheng Chan
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
- Divison of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore.
| |
Collapse
|
17
|
Jiang J, Duan M, Wang Z, Lai Y, Zhang C, Duan C. RNA epigenetics in pulmonary diseases: Insights into methylation modification of lncRNAs in lung cancer. Biomed Pharmacother 2024; 175:116704. [PMID: 38749181 DOI: 10.1016/j.biopha.2024.116704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are pivotal controllers of gene expression through epigenetic mechanisms, Methylation, a prominent area of study in epigenetics, significantly impacts cellular processes. Various RNA base methylations, including m6A, m5C, m1A, and 2'-O-methylation, profoundly influence lncRNA folding, interactions, and stability, thereby shaping their functionality. LncRNAs and methylation significantly contribute to tumor development, especially in lung cancer. Their roles encompass cell differentiation, proliferation, the generation of cancer stem cells, and modulation of immune responses. Recent studies have suggested that dysregulation of lncRNA methylation can contribute to lung cancer development. Furthermore, methylation modifications of lncRNAs hold potential for clinical application in lung cancer. Dysregulated lncRNA methylation can promote lung cancer progression and may offer insights into potential biomarker or therapeutic target. This review summarizes the current knowledge of lncRNA methylation in lung cancer and its implications for RNA epigenetics and pulmonary diseases.
Collapse
Affiliation(s)
- Junjie Jiang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China
| | - Minghao Duan
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 412017, Hunan, People's Republic of China
| | - Zheng Wang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China
| | - Yuwei Lai
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, Hunan, People's Republic of China.
| |
Collapse
|
18
|
Kaviani M, Soleimanian S, Keshtkar S, Azarpira N, Asvar Z, Pakbaz S. Molecular Prospective on Malignant Transformation of Mesenchymal Stem Cells: An Issue in Cell Therapy. Cell Reprogram 2024; 26:96-106. [PMID: 38917438 DOI: 10.1089/cell.2024.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Mesenchymal stem cell (MSCs) therapy, as a rapidly developing area of medicine, holds great promise for the treatment of a variety of medical conditions. MSCs are multipotent stem cells that can be isolated from various tissues and could self-renew and differentiate. They secrete cytokines and trophic factors that create a regenerative microenvironment and have immunomodulatory properties. Although clinical trials have been conducted with MSCs in various diseases, concerns regarding the possibility of malignant transformation of these cells have been raised. The studies showed a higher rate of hematological malignancy and carcinogenesis in experimental models after MSC transplantation. The mechanisms underlying malignant transformation of MSCs are complex and not fully understood, but they are believed to involve the presence of special signaling molecules and alterations in cell behavior regulation pathways. Possible pathways that lead to MSCs' oncogenic transformation occur through two mechanisms: spontaneous and stimulated malignant transformation, including cell fusion, fusion proteins, and the tumor microenvironment. MSC-based therapies have the potential to revolutionize medicine, and addressing the issue of malignancy is crucial to ensure their safety and efficacy. Therefore, the purpose of the present review is to summarize the potential mechanisms of the malignant transformation of MSCs. [Figure: see text].
Collapse
Affiliation(s)
- Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Keshtkar
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Asvar
- Nanotechnology School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Pakbaz
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
19
|
Zhang YE, Stuelten CH. Alternative splicing in EMT and TGF-β signaling during cancer progression. Semin Cancer Biol 2024; 101:1-11. [PMID: 38614376 PMCID: PMC11180579 DOI: 10.1016/j.semcancer.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/20/2023] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
Epithelial to mesenchymal transition (EMT) is a physiological process during development where epithelial cells transform to acquire mesenchymal characteristics, which allows them to migrate and colonize secondary tissues. Many cellular signaling pathways and master transcriptional factors exert a myriad of controls to fine tune this vital process to meet various developmental and physiological needs. Adding to the complexity of this network are post-transcriptional and post-translational regulations. Among them, alternative splicing has been shown to play important roles to drive EMT-associated phenotypic changes, including actin cytoskeleton remodeling, cell-cell junction changes, cell motility and invasiveness. In advanced cancers, transforming growth factor-β (TGF-β) is a major inducer of EMT and is associated with tumor cell metastasis, cancer stem cell self-renewal, and drug resistance. This review aims to provide an overview of recent discoveries regarding alternative splicing events and the involvement of splicing factors in the EMT and TGF-β signaling. It will emphasize the importance of various splicing factors involved in EMT and explore their regulatory mechanisms.
Collapse
Affiliation(s)
- Ying E Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Christina H Stuelten
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Lai YJ, Chang SH, Tung YC, Chang GJ, Almeida CD, Chen WJ, Yeh YH, Tsai FC. Naringin activates semaphorin 3A to ameliorate TGF-β-induced endothelial-to-mesenchymal transition related to atrial fibrillation. J Cell Physiol 2024; 239:e31248. [PMID: 38501506 DOI: 10.1002/jcp.31248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
The loss of semaphorin 3A (Sema3A), which is related to endothelial-to-mesenchymal transition (EndMT) in atrial fibrosis, is implicated in the pathogenesis of atrial fibrillation (AF). To explore the mechanisms by which EndMT affects atrial fibrosis and assess the potential of a Sema3A activator (naringin) to prevent atrial fibrosis by targeting transforming growth factor-beta (TGF-β)-induced EndMT, we used human atria, isolated human atrial endocardial endothelial cells (AEECs), and used transgenic mice expressing TGF-β specifically in cardiac tissues (TGF-β transgenic mice). We evaluated an EndMT marker (Twist), a proliferation marker (proliferating cell nuclear antigen; PCNA), and an endothelial cell (EC) marker (CD31) through triple immunohistochemistry and confirmed that both EndMT and EC proliferation contribute to atrial endocardial fibrosis during AF in TGF-β transgenic mice and AF patient tissue sections. Additionally, we investigated the impact of naringin on EndMT and EC proliferation in AEECs and atrial fibroblasts. Naringin exhibited an antiproliferative effect, to which AEECs were more responsive. Subsequently, we downregulated Sema3A in AEECs using small interfering RNA to clarify a correlation between the reduction in Sema3A and the elevation of EndMT markers. Naringin treatment induced the expression of Sema3A and a concurrent decrease in EndMT markers. Furthermore, naringin administration ameliorated AF and endocardial fibrosis in TGF-β transgenic mice by stimulating Sema3A expression, inhibiting EndMT markers, reducing atrial fibrosis, and lowering AF vulnerability. This suggests therapeutic potential for naringin in AF treatment.
Collapse
Affiliation(s)
- Ying-Ju Lai
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chia-Yi, Puzi, Taiwan
| | - Shang-Hung Chang
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Ying-Chang Tung
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Gwo-Jyh Chang
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Celina De Almeida
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Wei-Jan Chen
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Feng-Chun Tsai
- Department of Surgery, Division of Cardiovascular Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
21
|
Bhat AA, Moglad E, Bansal P, Kaur H, Deorari M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Kukreti N, Ali H. Pollutants to pathogens: The role of heavy metals in modulating TGF-β signaling and lung cancer risk. Pathol Res Pract 2024; 256:155260. [PMID: 38493726 DOI: 10.1016/j.prp.2024.155260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Lung cancer is a malignant tumor that develops in the lungs due to the uncontrolled growth of aberrant cells. Heavy metals, such as arsenic, cadmium, mercury, and lead, are metallic elements characterized by their high atomic weights and densities. Anthropogenic activities, such as industrial operations and pollution, have the potential to discharge heavy metals into the environment, hence presenting hazards to ecosystems and human well-being. The TGF-β signalling pathways have a crucial function in controlling several cellular processes, with the ability to both prevent and promote tumor growth. TGF-β regulates cellular responses by interacting in both canonical and non-canonical signalling pathways. Research employing both in vitro and in vivo models has shown that heavy metals may trigger TGF-β signalling via complex molecular pathways. Experiments conducted in a controlled laboratory environment show that heavy metals like cadmium and arsenic may directly bind to TGF-β receptors, leading to alterations in their structure that enable the receptor to be phosphorylated. Activation of this route sets in motion subsequent signalling cascades, most notably the canonical Smad pathway. The development of lung cancer has been linked to heavy metals, which are ubiquitous environmental pollutants. To grasp the underlying processes, it is necessary to comprehend their molecular effect on TGF-β pathways. With a particular emphasis on its consequences for lung cancer, this abstract delves into the complex connection between exposure to heavy metals and the stimulation of TGF-β signalling.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan.
| |
Collapse
|
22
|
Liu X, Shen L, Wang H. Decreased Expression of PLD2 Promotes EMT in Colorectal Cancer Invasion and Metastasis. J Cancer 2024; 15:2981-2993. [PMID: 38706911 PMCID: PMC11064252 DOI: 10.7150/jca.89970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/09/2024] [Indexed: 05/07/2024] Open
Abstract
Background and Objectives: PLD2 has been identified as playing a critical role in cancer cell motility and migration and other pathophysiological processes. We investigated the expression of PLD2 and its biological functions and clinical implications in human colorectal cancer. Materials and Methods: In this study, the expressions of PLD2 were analyzed in CRC cell lines and CRC samples by RT-PCR, western blot and immunohistochemistry. The PLD enzyme activity was studied using an PLD detection kit. We also performed matrigel invasion assay to evaluate the invasive capabilities in CRC cells. The expressions of EMT-related markers were quantified at mRNA and protein level using RT-PCR and western blot. We performed high-throughput RNA sequencing on PLD2 knockdown and overexpression CRC cell lines to explore the changes in gene expression associated with PLD2. Result: Herein, we showed that PLD2 expression was relatively low in CRC cell lines and CRC samples and PLD2 deficiency was significantly correlated with more advanced clinical phenotype regarding lymphatic and distant metastasis and poor patient survival. We also detected that PLD2 knockdown favored epithelial-mesenchymal transition (EMT) and thus promoted CRC invasion and metastasis. Further exploration uncovered that the expressions of several important genes closely related to metabolic pathways in CRC were noticeably altered due to PLD2 deficiency, including ID1, IFIT4, OASL, IFIT2 and CTAG2. Conclusion: Our results revealed that PLD2 deficiency promotes cell invasion and metastasis in CRC via EMT indicating PLD2 might have an important implication in carcinogenesis and progression and would be a new therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Xuan Liu
- Department of General Surgery, Central Hospital of Xuhui District, Shanghai, China
| | - Lei Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haiyu Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Rahman Z, Bordoloi AD, Rouhana H, Tavasso M, van der Zon G, Garbin V, Ten Dijke P, Boukany PE. Interstitial flow potentiates TGF-β/Smad-signaling activity in lung cancer spheroids in a 3D-microfluidic chip. LAB ON A CHIP 2024; 24:422-433. [PMID: 38087979 PMCID: PMC10826459 DOI: 10.1039/d3lc00886j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/01/2023] [Indexed: 01/31/2024]
Abstract
Within the tumor microenvironment (TME), cancer cells use mechanotransduction pathways to convert biophysical forces to biochemical signals. However, the underlying mechanisms and functional significance of these pathways remain largely unclear. The upregulation of mechanosensitive pathways from biophysical forces such as interstitial flow (IF), leads to the activation of various cytokines, including transforming growth factor-β (TGF-β). TGF-β promotes in part via a Smad-dependent signaling pathway the epithelial-mesenchymal transition (EMT) in cancer cells. The latter process is linked to increased cancer cell motility and invasion. Current research models have limited ability to investigate the combined effects of biophysical forces (such as IF) and cytokines (TGF-β) in a 3D microenvironment. We used a 3D-matrix based microfluidic platform to demonstrate the potentiating effect of IF on exogenous TGF-β induced upregulation of the Smad-signaling activity and the expression of mesenchymal marker vimentin in A549 lung cancer spheroids. To monitor this, we used stably integrated fluorescent based reporters into the A549 cancer cell genome. Our results demonstrate that IF enhances exogenous TGF-β induced Smad-signaling activity in lung cancer spheroids embedded in a matrix microenvironment. In addition, we observed an increased cell motility for A549 spheroids when exposed to IF and TGF-β. Our 3D-microfluidic model integrated with real-time imaging provides a powerful tool for investigating cancer cell signaling and motility associated with invasion characteristics in a physiologically relevant TME.
Collapse
Affiliation(s)
- Zaid Rahman
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Ankur Deep Bordoloi
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Haifa Rouhana
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Margherita Tavasso
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Gerard van der Zon
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Valeria Garbin
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Pouyan E Boukany
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
24
|
Cui L, Lu Y, Zheng J, Guo B, Zhao X. ACTN1 promotes HNSCC tumorigenesis and cisplatin resistance by enhancing MYH9-dependent degradation of GSK-3β and integrin β1-mediated phosphorylation of FAK. J Exp Clin Cancer Res 2023; 42:335. [PMID: 38057867 DOI: 10.1186/s13046-023-02904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignant tumors globally. Understanding the molecular basis of tumor progression and drug resistance can offer innovative strategies to enhance clinical outcomes for HNSCC patients. METHODS The cytoskeletal remodeling genes associated with cisplatin resistance were screened using a PCR array. The role of alpha-actinin 1 (ACTN1) in modulating cisplatin resistance and tumorigenesis in HNSCC was evaluated both in vitro and in vivo. Co-immunoprecipitation (Co-IP), IP-mass spectrometry (MS), western blotting, dual-luciferase assay, and bioinformatics analysis were performed to elucidate the underlying mechanisms involved. RESULTS Our study identifies ACTN1 as a crucial contributor to cisplatin resistance and tumorigenesis in HNSCC, as evidenced across cellular, animal, and patient-derived xenograft models. From a clinical perspective, overexpression of ACTN1 significantly correlates with a suboptimal response to neoadjuvant chemotherapy and reduced overall survival in HNSCC patients. Mechanistically, ACTN1 predominantly activates β-catenin-mediated signaling by promoting the interaction between myosin heavy chain 9 (MYH9) and GSK-3β, leading to the ubiquitin-dependent degradation of GSK-3β. ACTN1 also interacts with integrin β1, subsequently activating the FAK/PI3K/AKT pathway, providing an additional avenue for the activation of β-catenin signaling. Our study also unveils that the β-catenin/c-Myc axis transcriptionally regulates ACTN1, thereby creating a positive feedback loop promoting HNSCC tumorigenesis and drug resistance. CONCLUSIONS These insights underscore the novel mechanisms that highlight ACTN1's pivotal role in driving HNSCC progression and resistance to chemotherapy, suggesting ACTN1 as a promising therapeutic target in HNSCC management.
Collapse
Affiliation(s)
- Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Bing Guo
- Department of Dentistry, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
25
|
Yang J, Liu J, Liang J, Li F, Wang W, Chen H, Xie X. Epithelial-mesenchymal transition in age-associated thymic involution: Mechanisms and therapeutic implications. Ageing Res Rev 2023; 92:102115. [PMID: 37922996 DOI: 10.1016/j.arr.2023.102115] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
The thymus is a critical immune organ with endocrine and immune functions that plays important roles in the physiological and pathological processes of the body. However, with aging, the thymus undergoes degenerative changes leading to decreased production and output of naive T cells and the secretion of thymic hormones and related cytokines, thereby promoting the occurrence and development of various age-associated diseases. Therefore, identifying essential processes that regulate age-associated thymic involution is crucial for long-term control of thymic involution and age-associated disease progression. Epithelial-mesenchymal transition (EMT) is a well-established process involved in organ aging and functional impairment through tissue fibrosis in several organs, such as the heart and kidney. In the thymus, EMT promotes fibrosis and potentially adipogenesis, leading to thymic involution. This review focuses on the factors involved in thymic involution, including oxidative stress, inflammation, and hormones, from the perspective of EMT. Furthermore, current interventions for reversing age-associated thymic involution by targeting EMT-associated processes are summarized. Understanding the key mechanisms of thymic involution through EMT as an entry point may promote the development of new therapies and clinical agents to reverse thymic involution and age-associated disease.
Collapse
Affiliation(s)
- Jiali Yang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Juan Liu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Jiayu Liang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Fan Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Wenwen Wang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| |
Collapse
|
26
|
Richardson L, Wilcockson SG, Guglielmi L, Hill CS. Context-dependent TGFβ family signalling in cell fate regulation. Nat Rev Mol Cell Biol 2023; 24:876-894. [PMID: 37596501 DOI: 10.1038/s41580-023-00638-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/20/2023]
Abstract
The transforming growth factor-β (TGFβ) family are a large group of evolutionarily conserved cytokines whose signalling modulates cell fate decision-making across varying cellular contexts at different stages of life. Here we discuss new findings in early embryos that reveal how, in contrast to our original understanding of morphogen interpretation, robust cell fate specification can originate from a noisy combination of signalling inputs and a broad range of signalling levels. We compare this evidence with novel findings on the roles of TGFβ family signalling in tissue maintenance and homeostasis during juvenile and adult life, spanning the skeletal, haemopoietic and immune systems. From these comparisons, it emerges that in contrast to robust developing systems, relatively small perturbations in TGFβ family signalling have detrimental effects at later stages in life, leading to aberrant cell fate specification and disease, for example in cancer or congenital disorders. Finally, we highlight novel strategies to target and amend dysfunction in signalling and discuss how gleaning knowledge from different fields of biology can help in the development of therapeutics for aberrant TGFβ family signalling in disease.
Collapse
Affiliation(s)
- Louise Richardson
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Scott G Wilcockson
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Luca Guglielmi
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
27
|
Zhang W, Dong J. Suppressing epithelial-mesenchymal-transition blue light therapy for reducing macrophage-mediated cancerous pulmonary fibrosis: An in-vitro study. JOURNAL OF BIOPHOTONICS 2023; 16:e202300253. [PMID: 37589213 DOI: 10.1002/jbio.202300253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Lung cancer is the leading killer among all types of cancer globally. As a key factor, epithelial-mesenchymal transition (EMT) plays a crucial role in pathological fibrosis and lung cancer metastasis. This study endeavors to investigate the effect of blue light at specific wavelengths of 405 nm and 415 nm (54 J/cm2 ) on EMT induced by TGF-β1 in A549 cells. The results revealed that the blue light irradiation reduced the morphological characteristics of EMT in the A549 cells, and cell-to-cell connections were weakened significantly. Molecular analysis showed upregulation of epithelial marker E-cadherin and downregulation of EMT marker vimentin. Additionally, exposure to blue light irradiation at 405 nm and 415 nm significantly decelerated the ability of invasion and migration. Moreover, cell viability was also investigated. Based on these findings, blue light can serve as a useful therapeutic option for inhibiting EMT in cases of lung cancer and fibrotic lung disease.
Collapse
Affiliation(s)
- Wenjun Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jianfei Dong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- School of Future Science and Engineering, Soochow University, Suzhou, China
| |
Collapse
|
28
|
Xue H, Jiang J, Gao J, Guo M, Tang Q, Li X, Lu H, Sun X, Wu J, Zhang Y. Correlation of TGF-β signaling pathway gene polymorphisms with unexplained recurrent spontaneous abortion. Medicine (Baltimore) 2023; 102:e35697. [PMID: 37904417 PMCID: PMC10615491 DOI: 10.1097/md.0000000000035697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/27/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND The association of key genes in the transforming growth factor-β (TGF-β) signaling pathway and their gene polymorphisms with unexplained recurrent spontaneous abortion (URSA) is unclear. OBJECTIVE To investigate the association of gene polymorphisms related to the TGF-β signaling pathway in URSA women. METHODS The study population consisted of 80 women with URSA and 90 normal control women, of which 10 women with URSA and 10 normal control women underwent high-throughput sequencing to select loci, and the remaining 70 women with URSA and 80 normal control women underwent flight mass spectrometry experiments to verify gene loci polymorphism. A total of 7 polymorphic loci in interleukin-6 (IL-6), TGF-β1, TNF-α, SMAD1, and TNFRSF4 genes were screened by high-throughput sequencing combined with a review of databases. An SNP flight mass spectrometer (Mass ARRAY detection system) was applied to detect the polymorphisms and their frequencies in 70 women with URSA and 80 normal control women at the 7 gene loci. RESULTS Among the 7 loci of IL-6, TGF-β1, TNF-α, SMAD1, and TNFRSF4 genes, 2 loci were found to have significantly different allele and genotype frequency distributions between the 70 URSA and 80 normal controls, one was the IL-6 gene -174G/C locus (rs1800795), the risk of disease was 2.636 and 3.231 times higher in individuals carrying the C allele and CC genotype than in those carrying the G allele and GG genotype, respectively; the other was the TGF-β1 gene -509T/C locus (rs1800469), and the risk of disease was 1.959 and 3.609 times higher in individuals carrying the T allele and TT genotype than in those carrying the C allele and CC genotype, respectively. The remaining 5 genetic loci have no statistically significant. CONCLUSION IL-6 gene -174G/C locus (rs1800795) genotype CC and allele C may be the causative factor of URSA, TGF-β1 gene -509T/C locus (rs1800469) genotype TT and allele T may be the causative factor of URSA, and polymorphisms of the 2 loci may be associated with URSA.
Collapse
Affiliation(s)
- Huiqin Xue
- Department of Cytogenetic Laboratory, Children’s Hospital of Shanxi, Women Health Center of Shanxi, Affiliated Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jinsong Jiang
- Department of Paediatric Medicine, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jingbo Gao
- Department of Cytogenetic Laboratory, Children’s Hospital of Shanxi, Women Health Center of Shanxi, Affiliated Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Min Guo
- Department of Paediatric Medicine, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Qiaoyin Tang
- Department of Paediatric Medicine, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xinyan Li
- Department of Obstetrics and Gynecology, Children’s Hospital of Shanxi, Women Health Center of Shanxi, Affiliated Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Hongyong Lu
- Department of Cytogenetic Laboratory, Children’s Hospital of Shanxi, Women Health Center of Shanxi, Affiliated Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xiayu Sun
- Department of Cytogenetic Laboratory, Children’s Hospital of Shanxi, Women Health Center of Shanxi, Affiliated Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jianrui Wu
- Department of Cytogenetic Laboratory, Children’s Hospital of Shanxi, Women Health Center of Shanxi, Affiliated Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yuping Zhang
- Department of Obstetrics and Gynecology, Children’s Hospital of Shanxi, Women Health Center of Shanxi, Affiliated Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
29
|
Xia W, Chen X, Zhu Z, Chen H, Li B, Wang K, Huang L, Liu Z, Chen Z. Knockdown of lncRNA MALAT1 attenuates renal interstitial fibrosis through miR-124-3p/ITGB1 axis. Sci Rep 2023; 13:18076. [PMID: 37872392 PMCID: PMC10593763 DOI: 10.1038/s41598-023-45188-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
Renal interstitial fibrosis (RIF) considered the primary irreversible cause of chronic kidney disease. Recently, accumulating studies demonstrated that lncRNAs play an important role in the pathogenesis of RIF. However, the underlying exact mechanism of lncRNA MALAT1 in RIF remains barely known. Here, the aim of our study was to investigate the dysregulate expression of lncRNA MALAT1 in TGF-β1 treated HK2/NRK-49F cells and unilateral ureteral obstruction (UUO) mice model, defining its effects on HK2/NRK-49F cells and UUO mice fibrosis process through the miR-124-3p/ITGB1 signaling axis. It was found that lncRNA MALAT1 and ITGB1 was significantly overexpression, while miR-124-3p was downregulated in HK2/NRK-49F cells induced by TGF-β1 and in UUO mice model. Moreover, knockdown of lncRNA MALAT1 remarkably downregulated the proteins level of fibrosis-related markers, ITGB1, and upregulated the expression of epithelial marker E-cadherin. Consistently, mechanistic studies showed that miR-124-3p can directly binds to lncRNA MALAT1 and ITGB1. And the protect effect of Len-sh-MALAT1 on fibrosis related protein levels could be partially reversed by co-transfected with inhibitor-miR-124-3p. Moreover, the expression trend of LncRNA MALAT1/miR-124-3p/ITGB1 in renal tissues of patients with obstructive nephropathy (ON) was consistent with the results of cell and animal experiments. Taken together, these results indicated that lncRNA MALAT1 could promote RIF process in vitro and in vivo via the miR-124-3p/ITGB1 signaling pathway. These findings suggest a new regulatory pathway involving lncRNA MALAT1, which probably serves as a potential therapeutic target for RIF.
Collapse
Affiliation(s)
- Weiping Xia
- Department of Urology, Xiangya Hospital, Central South University, Xiangya Road 88, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Intensive Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Xiangya Road 88, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zewu Zhu
- Department of Urology, Xiangya Hospital, Central South University, Xiangya Road 88, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hequn Chen
- Department of Urology, Xiangya Hospital, Central South University, Xiangya Road 88, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bingsheng Li
- Department of Urology, Xiangya Hospital, Central South University, Xiangya Road 88, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kangning Wang
- Department of Urology, Xiangya Hospital, Central South University, Xiangya Road 88, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Li Huang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Intensive Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zhi Liu
- Department of Urology, Xiangya Hospital, Central South University, Xiangya Road 88, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Chen
- Department of Urology, Xiangya Hospital, Central South University, Xiangya Road 88, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
30
|
Guo Z, Ma X, Chen X, Zhang RX, Yan H. Oxidative stress-induced temporal activation of ERK1/2 phosphorylates coreceptor of Wnt/β-catenin for myofibroblast formation in human lens epithelial cells. Mol Vis 2023; 29:206-216. [PMID: 38222447 PMCID: PMC10784218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/15/2023] [Indexed: 01/16/2024] Open
Abstract
Purpose Posterior capsular opacification (PCO) is the most common complication postcataract surgery, and its underlying mechanisms involve epithelial-mesenchymal transition (EMT) of remnant lens epithelial cells (LECs) in response to drastic changes in stimuli in the intraocular environment, such as oxidative stress and growth factors. Wnt/β-catenin signaling is a major pathway mediating oxidative stress-induced EMT in LECs, but its interplay with other transduction pathways remains little known in the development of PCO. ERK1/2 signaling is the downstream component of a phosphorelay pathway in response to extracellular stimuli (e.g., reactive oxygen species), and its activation regulates multiple cellular processes, including proliferation and EMT. Thus, this study aimed to investigate how ERK1/2 signaling and Wnt/β-catenin pathway crosstalk in oxidative stress-induced EMT in LECs. Methods Hydrogen peroxide (H2O2) at 50 μM treatment for 48 h was used to establish a moderate oxidative stress-induced EMT model in LECs. ERK1/2 signaling was inhibited using MEK1/2 inhibitor U0126 at 20 μM. Western blotting was used to quantify protein expression of various biomarkers of EMT and phosphorylated components in ERK1/2 and Wnt/β-catenin signaling. LEC proliferation was determined using an EdU staining assay and expression of proliferating cellular nuclear antigen (PCNA). Subcellular localization of biomarker proteins was visualized with immunofluorescent staining. Results Under the moderate level of H2O2-induced EMT in LECs, ERK1/2 signaling was activated, as evidenced by a marked increase in the ratio of phosphorylated ERK1/2 to total ERK1/2 at early (i.e., 5-15 min) and late time points (i.e., 12 h); the canonical Wnt/β-catenin pathway was activated by H2O2 at 48 h. LECs exposed to H2O2 exhibited hyperproliferation and EMT; however, these were restored by inhibition of ERK1/2 signaling demonstrated by reduced DNA synthesis and PCNA expression for cellular proliferation and altered expression of various EMT protein markers, including E-cadherin, α-SMA, and vimentin. More importantly, inhibition of ERK1/2 signaling reduced β-catenin accumulation in the activated Wnt/β-catenin signaling cascade. Specifically, there was significant downregulation in the phosphorylation level of LRP6 at Ser 1490 and GSK-3β at Ser 9, the key coreceptor of Wnt and regulator of β-catenin, respectively. Conclusions ERK1/2 signaling plays a crucial role in the moderate level of oxidative stress-induced EMT in LECs. Pharmacologically blocking ERK1/2 signaling significantly inhibited LEC proliferation and EMT. Mechanistically, ERK1/2 signaling regulated Wnt/β-catenin cascade by phosphorylating Wnt coreceptor LRP6 at Ser 1490 in the plasma membrane. These results shed light on a potential molecular switch of ERK1/2 and Wnt/β-catenin crosstalk underlying the development of PCO.
Collapse
Affiliation(s)
- Zaoxia Guo
- Shaanxi Eye Hospital, Xi'an People’s Hospital (Xi'an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi' an, Shaanxi, China
| | - Xiaopan Ma
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Xi Chen
- Shaanxi Eye Hospital, Xi'an People’s Hospital (Xi'an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi' an, Shaanxi, China
| | - Rui Xue Zhang
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Hong Yan
- Shaanxi Eye Hospital, Xi'an People’s Hospital (Xi'an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi' an, Shaanxi, China
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
31
|
Singh S, Gouri V, Samant M. TGF-β in correlation with tumor progression, immunosuppression and targeted therapy in colorectal cancer. Med Oncol 2023; 40:335. [PMID: 37855975 DOI: 10.1007/s12032-023-02204-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
Colorectal cancer (CRC) is a complex malignancy responsible for the second-highest cancer deaths worldwide. TGF-β maintains normal cellular homeostasis by inhibiting the cell cycle and inducing apoptosis, but its elevated level is correlated with colorectal cancer progression, as TGF-β is a master regulator of the epithelial-to-mesenchymal transition, a critical step of metastasis. Tumors, including CRC, use elevated TGF-β levels to avoid immune surveillance by modulating immune cell differentiation, proliferation, and effector function. Presently, the treatment of advanced CRC is mainly based on chemotherapy, with multiple adverse effects. Thus, there is a need to develop alternate tactics because CRC continue to be mostly resistant to the present therapeutic regimen. TGF-β blockade has emerged as a promising therapeutic target in cancer therapy. Blocking TGF-β with phytochemicals and other molecules, such as antisense oligonucleotides, monoclonal antibodies, and bifunctional traps, alone or in combination, may be a safer and more effective way to treat CRC. Furthermore, combination immunotherapy comprising TGF-β blockers and immune checkpoint inhibitors is gaining popularity because both molecules work synergistically to suppress the immune system. Here, we summarize the current understanding of TGF-β as a therapeutic target for managing CRC and its context-dependent tumor-promoting or tumor-suppressing nature.
Collapse
Affiliation(s)
- Sumeet Singh
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Vinita Gouri
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
- Department of Zoology, Kumaun University, Nainital, Uttarakhand, India
| | - Mukesh Samant
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India.
| |
Collapse
|
32
|
Bocian-Jastrzębska A, Malczewska-Herman A, Kos-Kudła B. Role of Leptin and Adiponectin in Carcinogenesis. Cancers (Basel) 2023; 15:4250. [PMID: 37686525 PMCID: PMC10486522 DOI: 10.3390/cancers15174250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Hormones produced by adipocytes, leptin and adiponectin, are associated with the process of carcinogenesis. Both of these adipokines have well-proven oncologic potential and can affect many aspects of tumorigenesis, from initiation and primary tumor growth to metastatic progression. Involvement in the formation of cancer includes interactions with the tumor microenvironment and its components, such as tumor-associated macrophages, cancer-associated fibroblasts, extracellular matrix and matrix metalloproteinases. Furthermore, these adipokines participate in the epithelial-mesenchymal transition and connect to angiogenesis, which is critical for cancer invasiveness and cancer cell migration. In addition, an enormous amount of evidence has demonstrated that altered concentrations of these adipocyte-derived hormones and the expression of their receptors in tumors are associated with poor prognosis in various types of cancer. Therefore, leptin and adiponectin dysfunction play a prominent role in cancer and impact tumor invasion and metastasis in different ways. This review clearly and comprehensively summarizes the recent findings and presents the role of leptin and adiponectin in cancer initiation, promotion and progression, focusing on associations with the tumor microenvironment and its components as well as roles in the epithelial-mesenchymal transition and angiogenesis.
Collapse
Affiliation(s)
- Agnes Bocian-Jastrzębska
- Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinogy, Medical University of Silesia, 40-514 Katowice, Poland; (A.M.-H.); (B.K.-K.)
| | | | | |
Collapse
|
33
|
Lampropoulou DI, Papadimitriou M, Papadimitriou C, Filippou D, Kourlaba G, Aravantinos G, Gazouli M. The Role of EMT-Related lncRNAs in Ovarian Cancer. Int J Mol Sci 2023; 24:10079. [PMID: 37373222 PMCID: PMC10298523 DOI: 10.3390/ijms241210079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Ovarian cancer (OC) is one of the deadliest cancers worldwide; late diagnosis and drug resistance are two major factors often responsible for high morbidity and treatment failure. Epithelial-to-mesenchymal transition (EMT) is a dynamic process that has been closely linked with cancer. Long non-coding RNAs (lncRNAs) have been also associated with several cancer-related mechanisms, including EMT. We conducted a literature search in the PubMed database in order to sum up and discuss the role of lncRNAs in regulating OC-related EMT and their underlying mechanisms. Seventy (70) original research articles were identified, as of 23 April 2023. Our review concluded that the dysregulation of lncRNAs is highly associated with EMT-mediated OC progression. A comprehensive understanding of lncRNAs' mechanisms in OC will help in identifying novel and sensitive biomarkers and therapeutic targets for this malignancy.
Collapse
Affiliation(s)
| | - Marios Papadimitriou
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
- Second Department of Surgery, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Papadimitriou
- Second Department of Surgery, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Filippou
- Department of Anatomy and Surgical Anatomy, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- National Organization for Medicines (EOF), 15562 Athens, Greece
| | - Georgia Kourlaba
- Department of Nursing, University of Peloponnese, 22100 Tripoli, Greece;
| | | | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
34
|
Mishra AB, Nishank SS. Therapeutic targeting approach on epithelial-mesenchymal plasticity to combat cancer metastasis. Med Oncol 2023; 40:190. [PMID: 37247000 DOI: 10.1007/s12032-023-02049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/06/2023] [Indexed: 05/30/2023]
Abstract
Epithelial-mesenchymal plasticity (EMP) is a process in which epithelial cells lose their characteristics and acquire mesenchymal properties, leading to increased motility and invasiveness, which are key factors in cancer metastasis. Targeting EMP has emerged as a promising therapeutic approach to combat cancer metastasis. Various strategies have been developed to target EMP, including inhibition of key signaling pathways, such as TGF-β, Wnt/β-catenin, and Notch, that regulate EMP, as well as targeting specific transcription factors, such as Snail, Slug, and Twist, that promote EMP. Additionally, targeting the tumor microenvironment, which plays a critical role in promoting EMP, has also shown promise. Several preclinical and clinical studies have demonstrated the efficacy of EMP-targeting therapies in inhibiting cancer metastasis. However, further research is needed to optimize these strategies and improve their clinical efficacy. Overall, therapeutic targeting of EMP represents a promising approach for the development of novel cancer therapies that can effectively inhibit metastasis, a major cause of cancer-related mortality.
Collapse
|
35
|
Huang CW, Lee SY, Du CX, Ku HC. Soluble dipeptidyl peptidase-4 induces epithelial-mesenchymal transition through tumor growth factor-β receptor. Pharmacol Rep 2023:10.1007/s43440-023-00496-y. [PMID: 37233949 DOI: 10.1007/s43440-023-00496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Kidney fibrosis is the final manifestation of chronic kidney disease, a condition mainly caused by diabetic nephropathy. Persistent tissue damage leads to chronic inflammation and excessive deposition of extracellular matrix (ECM) proteins. Epithelial-mesenchymal transition (EMT) is involved in a variety of tissue fibrosis and is a process during which epithelial cells transform into mesenchymal-like cells and lose their epithelial functionality and characteristics Dipeptidyl peptidase-4 (DPP4) is widely expressed in tissues, especially those of the kidney and small intestine. DPP4 exists in two forms: a plasma membrane-bound and a soluble form. Serum-soluble DPP4 (sDPP4) levels are altered in many pathophysiological conditions. Elevated circulating sDPP4 is correlated with metabolic syndrome. Because the role of sDPP4 in EMT remains unclear, we examined the effect of sDPP4 on renal epithelial cells. METHODS The influences of sDPP4 on renal epithelial cells were demonstrated by measuring the expression of EMT markers and ECM proteins. RESULTS sDPP4 upregulated the EMT markers ACTA2 and COL1A1 and increased total collagen content. sDPP4 activated SMAD signaling in renal epithelial cells. Using genetic and pharmacological methods to target TGFBR, we observed that sDPP4 activated SMAD signaling through TGFBR in epithelial cells, whereas genetic ablation and treatment with TGFBR antagonist prevented SMAD signaling and EMT. Linagliptin, a clinically available DPP4 inhibitor, abrogated sDPP4-induced EMT. CONCLUSIONS This study indicated that sDPP4/TGFBR/SMAD axis leads to EMT in renal epithelial cells. Elevated circulating sDPP4 levels may contribute to mediators that induce renal fibrosis.
Collapse
Affiliation(s)
- Cheng-Wei Huang
- Department of Life Science, Fu Jen Catholic University, No.510, Zhongzheng Road, Xinzhuang District, New Taipei City, 242, Taiwan
| | - Shih-Yi Lee
- Division of Pulmonary and Critical Care Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Chen-Xuan Du
- Department of Life Science, Fu Jen Catholic University, No.510, Zhongzheng Road, Xinzhuang District, New Taipei City, 242, Taiwan
| | - Hui-Chun Ku
- Department of Life Science, Fu Jen Catholic University, No.510, Zhongzheng Road, Xinzhuang District, New Taipei City, 242, Taiwan.
| |
Collapse
|
36
|
Rocchetti MT, Bellanti F, Zadorozhna M, Fiocco D, Mangieri D. Multi-Faceted Role of Luteolin in Cancer Metastasis: EMT, Angiogenesis, ECM Degradation and Apoptosis. Int J Mol Sci 2023; 24:8824. [PMID: 37240168 PMCID: PMC10218870 DOI: 10.3390/ijms24108824] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Luteolin (3',4',5,7-tetrahydroxyflavone), a member of the flavonoid family derived from plants and fruits, shows a wide range of biomedical applications. In fact, due to its anti-inflammatory, antioxidant and immunomodulatory activities, Asian medicine has been using luteolin for centuries to treat several human diseases, including arthritis, rheumatism, hypertension, neurodegenerative disorders and various infections. Of note, luteolin displays many anti-cancer/anti-metastatic properties. Thus, the purpose of this review consists in highlighting the relevant mechanisms by which luteolin inhibits tumor progression in metastasis, i.e., affecting epithelial-mesenchymal transition (EMT), repressing angiogenesis and lysis of extracellular matrix (ECM), as well as inducing apoptosis.
Collapse
Affiliation(s)
- Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy; (M.T.R.); (D.F.)
| | - Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Via Pinto 1, 71122 Foggia, Italy;
| | - Mariia Zadorozhna
- Medical Genetics Unit, Department of Molecular Medicine, University of Pavia, Via Forlanini 14, 27100 Pavia, Italy;
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy; (M.T.R.); (D.F.)
| | - Domenica Mangieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy; (M.T.R.); (D.F.)
| |
Collapse
|
37
|
Yue Z, Yu Y, Gao B, Wang D, Sun H, Feng Y, Ma Z, Xie X. Advances in protein glycosylation and its role in tissue repair and regeneration. Glycoconj J 2023; 40:355-373. [PMID: 37097318 DOI: 10.1007/s10719-023-10117-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
After tissue damage, a series of molecular and cellular events are initiated to promote tissue repair and regeneration to restore its original structure and function. These events include inter-cell communication, cell proliferation, cell migration, extracellular matrix differentiation, and other critical biological processes. Glycosylation is the crucial conservative and universal post-translational modification in all eukaryotic cells [1], with influential roles in intercellular recognition, regulation, signaling, immune response, cellular transformation, and disease development. Studies have shown that abnormally glycosylation of proteins is a well-recognized feature of cancer cells, and specific glycan structures are considered markers of tumor development. There are many studies on gene expression and regulation during tissue repair and regeneration. Still, there needs to be more knowledge of complex carbohydrates' effects on tissue repair and regeneration, such as glycosylation. Here, we present a review of studies investigating protein glycosylation in the tissue repair and regeneration process.
Collapse
Affiliation(s)
- Zhongyu Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yajie Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Boyuan Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Du Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Hongxiao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yue Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Zihan Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China.
- GeWu Medical Research Institute (GMRI), Xi'an, China.
| |
Collapse
|
38
|
Sripathi SR, Hu MW, Turaga RC, Mikeasky R, Satyanarayana G, Cheng J, Duan Y, Maruotti J, Wahlin KJ, Berlinicke CA, Qian J, Esumi N, Zack DJ. IKKβ Inhibition Attenuates Epithelial Mesenchymal Transition of Human Stem Cell-Derived Retinal Pigment Epithelium. Cells 2023; 12:1155. [PMID: 37190063 PMCID: PMC10136838 DOI: 10.3390/cells12081155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 05/17/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT), which is well known for its role in embryonic development, malignant transformation, and tumor progression, has also been implicated in a variety of retinal diseases, including proliferative vitreoretinopathy (PVR), age-related macular degeneration (AMD), and diabetic retinopathy. EMT of the retinal pigment epithelium (RPE), although important in the pathogenesis of these retinal conditions, is not well understood at the molecular level. We and others have shown that a variety of molecules, including the co-treatment of human stem cell-derived RPE monolayer cultures with transforming growth factor beta (TGF-β) and the inflammatory cytokine tumor necrosis factor alpha (TNF-α), can induce RPE-EMT; however, small molecule inhibitors of RPE-EMT have been less well studied. Here, we demonstrate that BAY651942, a small molecule inhibitor of nuclear factor kapa-B kinase subunit beta (IKKβ) that selectively targets NF-κB signaling, can modulate TGF-β/TNF-α-induced RPE-EMT. Next, we performed RNA-seq studies on BAY651942 treated hRPE monolayers to dissect altered biological pathways and signaling events. Further, we validated the effect of IKKβ inhibition on RPE-EMT-associated factors using a second IKKβ inhibitor, BMS345541, with RPE monolayers derived from an independent stem cell line. Our data highlights the fact that pharmacological inhibition of RPE-EMT restores RPE identity and may provide a promising approach for treating retinal diseases that involve RPE dedifferentiation and EMT.
Collapse
Affiliation(s)
- Srinivasa R. Sripathi
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Henderson Ocular Stem Cell Laboratory, Retina Foundation of the Southwest, Dallas, TX 75231, USA
| | - Ming-Wen Hu
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ravi Chakra Turaga
- Caris Life Sciences, 350 W Washington St., Tempe, AZ 85281, USA
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Rebekah Mikeasky
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ganesh Satyanarayana
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
- Emory Eye Center, Department of Ophthalmology, Emory University, Atlanta, GA 30322, USA
| | - Jie Cheng
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yukan Duan
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Karl J. Wahlin
- Shiley Eye Institute, University of California, San Diego, CA 92093, USA
| | - Cynthia A. Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Noriko Esumi
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Donald J. Zack
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Whiting School of Engineering, Baltimore, MD 21218, USA
| |
Collapse
|
39
|
El-Ashmawy NE, Khedr EG, Khedr NF, El-Adawy SA. Suppression of epithelial-mesenchymal transition and SIRT1/AKT signaling pathway in breast cancer by montelukast. Int Immunopharmacol 2023; 119:110148. [PMID: 37044036 DOI: 10.1016/j.intimp.2023.110148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Breast cancer is usually associated with metastatic features, poor prognosis, and high mortality. The epithelial-mesenchymal transition (EMT) process has been implicated in the initiation and metastasis of breast cancer. OBJECTIVE The study aimed to investigate the possible role of montelukast (Mont), the cysteinyl leukotriene receptor (CystLT1R) antagonist, in mitigating EMT in triple-negative breast cancer (TNBC) (in vitro study) and solid Ehrlich carcinoma (SEC) bearing mice (in vivo study) as well as to clarify the underlying molecular mechanisms in the presence and absence of sirtuin-1 inhibitor (sirtinol; Sirt). METHODS TNBC MDA-MB-231 cells were treated with either 5 μM Mont or 25 μM Sirt or both for 48 h. Alternatively, SEC cells were inoculated in mice to induce breast cancer. After 12 days, the mice were divided into four groups: Untreated SEC group (vehicle), Sirt group (1 mg/kg), Mont group (10 mg/kg), and cotreatment Sirt/Mont group. The mice groups received the assigned treatment for the consequent 16 days. RESULTS Mont and/or Sirt decreased cell proliferation, migration and suppressed EMT in both in vitro and in vivo experiments. All treatments downregulated sirtuin-1 and vimentin expression but upregulated E-cadherin expression. Furthermore, all treatments retarded angiogenesis as evidenced by decreased VEGF expression. These findings were associated with suppressing active protein kinase B (p-AKT). CONCLUSION Cotreatment with Sirt and Mont proved more effective anti-tumor activity in TNBC cell line and in SEC bearing mice than either treatment alone, which could be attributed to the inhibition of sirtuin-1 and AKT- activated pathways, with the subsequent inhibition of EMT.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Egypt
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Egypt
| | - Naglaa F Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Egypt
| | - Samar A El-Adawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Egypt.
| |
Collapse
|
40
|
Unraveling the function of epithelial-mesenchymal transition (EMT) in colorectal cancer: Metastasis, therapy response, and revisiting molecular pathways. Biomed Pharmacother 2023; 160:114395. [PMID: 36804124 DOI: 10.1016/j.biopha.2023.114395] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Colorectal cancer (CRC) is a dangerous form of cancer that affects the gastrointestinal tract. It is a major global health concern, and the aggressive behavior of tumor cells makes it difficult to treat, leading to poor survival rates for patients. One major challenge in treating CRC is the metastasis, or spread, of the cancer, which is a major cause of death. In order to improve the prognosis for patients with CRC, it is necessary to focus on ways to inhibit the cancer's ability to invade and spread. Epithelial-mesenchymal transition (EMT) is a process that is linked to the spread of cancer cells, also known as metastasis. The process transforms epithelial cells into mesenchymal ones, increasing their mobility and ability to invade other tissues. This has been shown to be a key mechanism in the progression of colorectal cancer (CRC), a particularly aggressive form of gastrointestinal cancer. The activation of EMT leads to increases in the spread of CRC cells, and during this process, levels of the protein E-cadherin decrease while levels of N-cadherin and vimentin increase. EMT also contributes to the development of resistance to chemotherapy and radiation therapy in CRC. Non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play a role in regulating EMT in CRC, often through their ability to "sponge" microRNAs. Anti-cancer agents have been shown to suppress EMT and reduce the progression and spread of CRC cells. These findings suggest that targeting EMT or related mechanisms may be a promising approach for treating CRC patients in the clinic.
Collapse
|
41
|
Nicotinamide Adenine Dinucleotide Precursor Suppresses Hepatocellular Cancer Progression in Mice. Nutrients 2023; 15:nu15061447. [PMID: 36986177 PMCID: PMC10055624 DOI: 10.3390/nu15061447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/02/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Targeting Nicotinamide adenine dinucleotide (NAD) metabolism has emerged as a promising anti-cancer strategy; we aimed to explore the health benefits of boosting NAD levels with nicotinamide riboside (NR) on hepatocellular carcinoma (HCC). We established three in vivo tumor models, including subcutaneous transplantation tumor model in both Balb/c nude mice (xenograft), C57BL/6J mice (allograft), and hematogenous metastatic neoplasm in nude mice. NR (400 mg/kg bw) was supplied daily in gavage. In-situ tumor growth or noninvasive bioluminescence were measured to evaluate the effect of NR on the HCC process. HepG2 cells were treated with transforming growth factor-β (TGF-β) in the absence/presence of NR in vitro. We found that NR supplementation alleviated malignancy-induced weight loss and metastasis to lung in nude mice in both subcutaneous xenograft and hematogenous metastasis models. NR supplementation decreased metastasis to the bone and liver in the hematogenous metastasis model. NR supplementation also significantly decreased the size of allografted tumors and extended the survival time in C57BL/6J mice. In vitro experiments showed that NR intervention inhibited the migration and invasion of HepG2 cells triggered by TGF-β. In summary, our results supply evidence that boosting NAD levels by supplementing NR alleviates HCC progression and metastasis, which may serve as an effective treatment for the suppression of HCC progression.
Collapse
|
42
|
Zhang J, van der Zon G, Ma J, Mei H, Cabukusta B, Agaser CC, Madunić K, Wuhrer M, Zhang T, Ten Dijke P. ST3GAL5-catalyzed gangliosides inhibit TGF-β-induced epithelial-mesenchymal transition via TβRI degradation. EMBO J 2023; 42:e110553. [PMID: 36504224 PMCID: PMC9841337 DOI: 10.15252/embj.2021110553] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is pivotal in the initiation and development of cancer cell metastasis. We observed that the abundance of glycosphingolipids (GSLs), especially ganglioside subtypes, decreased significantly during TGF-β-induced EMT in NMuMG mouse mammary epithelial cells and A549 human lung adenocarcinoma cells. Transcriptional profiling showed that TGF-β/SMAD response genes and EMT signatures were strongly enriched in NMuMG cells, along with depletion of UDP-glucose ceramide glucosyltransferase (UGCG), the enzyme that catalyzes the initial step in GSL biosynthesis. Consistent with this finding, genetic or pharmacological inhibition of UGCG promoted TGF-β signaling and TGF-β-induced EMT. UGCG inhibition promoted A549 cell migration, extravasation in the zebrafish xenograft model, and metastasis in mice. Mechanistically, GSLs inhibited TGF-β signaling by promoting lipid raft localization of the TGF-β type I receptor (TβRI) and by increasing TβRI ubiquitination and degradation. Importantly, we identified ST3GAL5-synthesized a-series gangliosides as the main GSL subtype involved in inhibition of TGF-β signaling and TGF-β-induced EMT in A549 cells. Notably, ST3GAL5 is weakly expressed in lung cancer tissues compared to adjacent nonmalignant tissues, and its expression correlates with good prognosis.
Collapse
Affiliation(s)
- Jing Zhang
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerard van der Zon
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jin Ma
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Birol Cabukusta
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cedrick C Agaser
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Katarina Madunić
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
43
|
Adulla A, Patel U, Ashok A, Katiyar P, Kaulakis M, Kritikos AE, Pillai S, Lee H, Lindner E, Rhee DJ, Singh N. α-Synuclein modulates fibronectin expression in the trabecular meshwork independent of TGFβ2. Exp Eye Res 2023; 226:109351. [PMID: 36539052 PMCID: PMC10384565 DOI: 10.1016/j.exer.2022.109351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
α-Synuclein (α-Syn) is implicated in Parkinson's disease (PD), a neuromotor disorder with prominent visual symptoms. The underlying cause of motor dysfunction has been studied extensively, and is attributed to the death of dopaminergic neurons mediated in part by intracellular aggregation of α-Syn. The cause of visual symptoms, however, is less clear. Neuroretinal degeneration due to the presence of aggregated α-Syn has been reported, but the evidence is controversial. Other symptoms including those arising from primary open angle glaucoma (POAG) are believed to be the side-effects of medications prescribed for PD. Here, we explored the alternative hypothesis that dysfunction of α-Syn in the anterior eye alters the interaction between the actin cytoskeleton of trabecular meshwork (TM) cells with the extracellular matrix (ECM), impairing their ability to respond to physiological changes in intraocular pressure (IOP). A similar dysfunction in neurons is responsible for impaired neuritogenesis, a characteristic feature of PD. Using cadaveric human and bovine TM tissue and primary human TM cells as models, we report two main observations: 1) α-Syn is expressed in human and bovine TM cells, and significant amounts of monomeric and oligomeric α-Syn are present in the AH, and 2) primary human TM cells and human and bovine TM tissue endocytose extracellular recombinant monomeric and oligomeric α-Syn via the prion protein (PrPC), and upregulate fibronectin (FN) and α-smooth muscle actin (α-SMA), fibrogenic proteins implicated in POAG. Transforming growth factor β2 (TGFβ2), a fibrogenic cytokine implicated in ∼50% cases of POAG, is also increased, and so is RhoA-associated coiled-coil-containing protein kinase 1 (ROCK-1). However, silencing of α-Syn in primary human TM cells reduces FN, α-SMA, and ROCK-1 in the absence or presence of over-expressed active TGFβ2, suggesting modulation of FN and ROCK-1 independent of, or upstream of TGFβ2. These observations suggest that extracellular α-Syn modulates ECM proteins in the TM independently or via PrPC by activating the RhoA-ROCK pathway. These observations reveal a novel function of α-Syn in the anterior eye, and offer new therapeutic options.
Collapse
Affiliation(s)
- Anika Adulla
- Departments of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Urvi Patel
- Departments of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ajay Ashok
- Departments of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Priya Katiyar
- Departments of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mare Kaulakis
- Departments of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Alexander E Kritikos
- Departments of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sachin Pillai
- Departments of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - HyunPin Lee
- Departments of Ophthalmology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ewald Lindner
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036, Graz, Austria
| | - Douglas J Rhee
- Departments of Ophthalmology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Neena Singh
- Departments of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
44
|
Zhang ZH, Liu MD, Yao K, Xu S, Yu DX, Xie DD, Xu DX. Vitamin D deficiency aggravates growth and metastasis of prostate cancer through promoting EMT in two β-catenin-related mechanisms. J Nutr Biochem 2023; 111:109177. [PMID: 36223833 DOI: 10.1016/j.jnutbio.2022.109177] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/06/2022] [Accepted: 08/30/2022] [Indexed: 11/09/2022]
Abstract
Increasing evidence has demonstrated that vitamin D deficiency is associated with prostate cancer progression, but its mechanism remains unclear. This study investigated effects of vitamin D deficiency on growth and metastasis of prostate cancer. Nude mice and Transgenic adenocarcinoma of the mouse prostate (TRAMP) mice were fed with vitamin D-deficient (VDD) diets. Prostate cancer growth was aggravated in VDD diet-fed nude mice and TRAMP mice. Invasion and metastasis of prostate cancer were exacerbated in VDD diet-fed TRAMP mice. In vitro experiments showed that calcitriol, an active vitamin D3, inhibited migration and invasion in transforming growth factor (TGF)-β1 -stimulated and -unstimulated PC-3 and DU145 cells. Mechanistically, calcitriol inhibited epithelial-mesenchymal transition (EMT) in TGF-β1 -stimulated and -unstimulated DU145 cells. Unexpectedly, calcitriol did not inhibit Smad2/3 phosphorylation in TGF-β1-stimulated DU145 cells. Instead, calcitriol downregulated expression of proliferation-, metastasis- and EMT-related genes, includes Cyclin D1, MMP7, and Zeb1, by inhibiting interaction between TCF4 and β-catenin. In addition, calcitriol promoted interaction between cytoplasmic VDR and β-catenin, reduced β-catenin phosphorylation and elevated β-catenin/E-cadherin adherens junction complex formation. We provide novel evidence that vitamin D deficiency aggravates growth and metastasis of prostate cancer possibly through promoting EMT in two β-catenin-related mechanisms.
Collapse
Affiliation(s)
- Zhi-Hui Zhang
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Ming-Dong Liu
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Kai Yao
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Shen Xu
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - De-Xin Yu
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Dong-Dong Xie
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, China; Department of Urology, Fuyang Hospital of Anhui Medical University, Fuyang, China.
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, China.
| |
Collapse
|
45
|
Wang K, Wen D, Xu X, Zhao R, Jiang F, Yuan S, Zhang Y, Gao Y, Li Q. Extracellular matrix stiffness-The central cue for skin fibrosis. Front Mol Biosci 2023; 10:1132353. [PMID: 36968277 PMCID: PMC10031116 DOI: 10.3389/fmolb.2023.1132353] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Skin fibrosis is a physiopathological process featuring the excessive deposition of extracellular matrix (ECM), which is the main architecture that provides structural support and constitutes the microenvironment for various cellular behaviors. Recently, increasing interest has been drawn to the relationship between the mechanical properties of the ECM and the initiation and modulation of skin fibrosis, with the engagement of a complex network of signaling pathways, the activation of mechanosensitive proteins, and changes in immunoregulation and metabolism. Simultaneous with the progression of skin fibrosis, the stiffness of ECM increases, which in turn perturbs mechanical and humoral homeostasis to drive cell fate toward an outcome that maintains and enhances the fibrosis process, thus forming a pro-fibrotic "positive feedback loop". In this review, we highlighted the central role of the ECM and its dynamic changes at both the molecular and cellular levels in skin fibrosis. We paid special attention to signaling pathways regulated by mechanical cues in ECM remodeling. We also systematically summarized antifibrotic interventions targeting the ECM, hopefully enlightening new strategies for fibrotic diseases.
Collapse
Affiliation(s)
- Kang Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuewen Xu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Zhao
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Feipeng Jiang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Shengqin Yuan
- School of Public Administration, Sichuan University, Chengdu, Sichuan, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| |
Collapse
|
46
|
Husanie H, Abu-Remaileh M, Maroun K, Abu-Tair L, Safadi H, Atlan K, Golan T, Aqeilan RI. Loss of tumor suppressor WWOX accelerates pancreatic cancer development through promotion of TGFβ/BMP2 signaling. Cell Death Dis 2022; 13:1074. [PMID: 36572673 PMCID: PMC9792466 DOI: 10.1038/s41419-022-05519-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022]
Abstract
Pancreatic cancer is one of the most lethal cancers, owing to its late diagnosis and resistance to chemotherapy. The tumor suppressor WW domain-containing oxidoreductase (WWOX), one of the most active fragile sites in the human genome (FRA16D), is commonly altered in pancreatic cancer. However, the direct contribution of WWOX loss to pancreatic cancer development and progression remains largely unknown. Here, we report that combined conditional deletion of Wwox and activation of KRasG12D in Ptf1a-CreER-expressing mice results in accelerated formation of precursor lesions and pancreatic carcinoma. At the molecular level, we found that WWOX physically interacts with SMAD3 and BMP2, which are known activators of the TGF-β signaling pathway. In the absence of WWOX, TGFβ/BMPs signaling was enhanced, leading to increased macrophage infiltration and enhanced cancer stemness. Finally, overexpression of WWOX in patient-derived xenografts led to diminished aggressiveness both in vitro and in vivo. Overall, our findings reveal an essential role of WWOX in pancreatic cancer development and progression and underscore its role as a bona fide tumor suppressor.
Collapse
Affiliation(s)
- Hussam Husanie
- grid.9619.70000 0004 1937 0538The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Muhannad Abu-Remaileh
- grid.9619.70000 0004 1937 0538The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kian Maroun
- grid.9619.70000 0004 1937 0538The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lina Abu-Tair
- grid.9619.70000 0004 1937 0538The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hazem Safadi
- grid.9619.70000 0004 1937 0538The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Karine Atlan
- grid.17788.310000 0001 2221 2926Department of Pathology, Hadassah Medical Center, Jerusalem, Israel
| | - Talia Golan
- grid.12136.370000 0004 1937 0546Oncology Institute, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Rami I. Aqeilan
- grid.9619.70000 0004 1937 0538The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
47
|
Kang D, Lee Y, Kim W, Lee HR, Jung S. 3D pulmonary fibrosis model for anti-fibrotic drug discovery by inkjet-bioprinting. Biomed Mater 2022; 18. [PMID: 36562496 DOI: 10.1088/1748-605x/aca8e3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Pulmonary fibrosis (PF) is known as a chronic and irreversible disease characterized by excessive extracellular matrix accumulation and lung architecture changes. Large efforts have been made to develop prospective treatments and study the etiology of pulmonary fibrotic diseases utilizing animal models and spherical organoids. As part of these efforts, we created an all-inkjet-printed three-dimensional (3D) alveolar barrier model that can be used for anti-fibrotic drug discovery. Then, we developed a PF model by treating the 3D alveolar barrier with pro-fibrotic cytokine and confirmed that it is suitable for the fibrosis model by observing changes in structural deposition, pulmonary function, epithelial-mesenchymal transition, and fibrosis markers. The model was tested with two approved anti-fibrotic drugs, and we could observe that the symptoms in the disease model were alleviated. Consequently, structural abnormalities and changes in mRNA expression were found in the induced fibrosis model, which were shown to be recovered in all drug treatment groups. The all-inkjet-printed alveolar barrier model was reproducible for disease onset and therapeutic effects in the human body. This finding emphasized that thein vitroartificial tissue with faithfully implemented 3D microstructures using bioprinting technology may be employed as a novel testing platform and disease model to evaluate potential drug efficacy.
Collapse
Affiliation(s)
- Dayoon Kang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Yunji Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Wookyeom Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Hwa-Rim Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Sungjune Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea.,Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| |
Collapse
|
48
|
Lv S, Chen Z, Mi H, Yu X. Cofilin Acts as a Booster for Progression of Malignant Tumors Represented by Glioma. Cancer Manag Res 2022; 14:3245-3269. [PMID: 36452435 PMCID: PMC9703913 DOI: 10.2147/cmar.s389825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/10/2022] [Indexed: 07/20/2023] Open
Abstract
Cofilin, as a depolymerization factor of actin filaments, has been widely studied. Evidences show that cofilin has a role in actin structural reorganization and dynamic regulation. In recent years, several studies have demonstrated a regulatory role for cofilin in the migration and invasion mediated by cell dynamics and epithelial to mesenchymal transition (EMT)/EMT-like process, apoptosis, radiotherapy resistance, immune escape, and transcriptional dysregulation of malignant tumor cells, particularly glioma cells. On this basis, it is practical to evaluate cofilin as a biomarker for predicting tumor metastasis and prognosis. Targeting cofilin regulating kinases, Lin11, Isl-1 and Mec-3 kinases (LIM kinases/LIMKs) and their major upstream molecules inhibits tumor cell migration and invasion and targeting cofilin-mediated mitochondrial pathway induces apoptosis of tumor cells represent effective options for the development of novel anti-malignant tumor drug, especially anti-glioma drugs. This review explores the structure, general biological function, and regulation of cofilin, with an emphasis on the critical functions and prospects for clinical therapeutic applications of cofilin in malignant tumors represented by glioma.
Collapse
Affiliation(s)
- Shihong Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang Medical College, Mudanjiang, 157011, People’s Republic of China
| | - Zhiye Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Hailong Mi
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xingjiang Yu
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
49
|
Li X, Wu Y, Tian T. TGF-β Signaling in Metastatic Colorectal Cancer (mCRC): From Underlying Mechanism to Potential Applications in Clinical Development. Int J Mol Sci 2022; 23:14436. [PMID: 36430910 PMCID: PMC9698504 DOI: 10.3390/ijms232214436] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Colorectal cancer (CRC) is a serious public health issue, and it has the leading incidence and mortality among malignant tumors worldwide. CRC patients with metastasis in the liver, lung or other distant sites always have poor prognosis. Thus, there is an urgent need to discover the underlying mechanisms of metastatic colorectal cancer (mCRC) and to develop optimal therapy for mCRC. Transforming growth factor-β (TGF-β) signaling plays a significant role in various physiologic and pathologic processes, and aberrant TGF-β signal transduction contributes to mCRC progression. In this review, we summarize the alterations of the TGF-β signaling pathway in mCRC patients, the functional mechanisms of TGF-β signaling, its promotion of epithelial-mesenchymal transition, its facilitation of angiogenesis, its suppression of anti-tumor activity of immune cells in the microenvironment and its contribution to stemness of CRC cells. We also discuss the possible applications of TGF-β signaling in mCRC diagnosis, prognosis and targeted therapies in clinical trials. Hopefully, these research advances in TGF-β signaling in mCRC will improve the development of new strategies that can be combined with molecular targeted therapy, immunotherapy and traditional therapies to achieve better efficacy and benefit mCRC patients in the near future.
Collapse
Affiliation(s)
| | | | - Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
50
|
Saliem SS, Bede SY, Cooper PR, Abdulkareem AA, Milward MR, Abdullah BH. Pathogenesis of periodontitis - A potential role for epithelial-mesenchymal transition. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:268-278. [PMID: 36159185 PMCID: PMC9489739 DOI: 10.1016/j.jdsr.2022.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 02/06/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) is a process comprising cellular and molecular events which result in cells shifting from an epithelial to a mesenchymal phenotype. Periodontitis is a destructive chronic disease of the periodontium initiated in response to a dysbiotic microbiome, and dominated by Gram-negative bacteria in the subgingival niches accompanied by an aberrant immune response in susceptible subjects. Both EMT and periodontitis share common risk factors and drivers, including Gram-negative bacteria, excess inflammatory cytokine production, smoking, oxidative stress and diabetes mellitus. In addition, periodontitis is characterized by down-regulation of key epithelial markers such as E-cadherin together with up-regulation of transcriptional factors and mesenchymal proteins, including Snail1, vimentin and N-cadherin, which also occur in the EMT program. Clinically, these phenotypic changes may be reflected by increases in microulceration of the pocket epithelial lining, granulation tissue formation, and fibrosis. Both in vitro and in vivo data now support the potential involvement of EMT as a pathogenic mechanism in periodontal diseases which may facilitate bacterial invasion into the underlying gingival tissues and propagation of inflammation. This review surveys the available literature and provides evidence linking EMT to periodontitis pathogenesis.
Collapse
Affiliation(s)
- Saif S Saliem
- College of Dentistry, University of Baghdad, P.O. Box 1417, Bab Al Mudam, Baghdad, Iraq
| | - Salwan Y Bede
- College of Dentistry, University of Baghdad, P.O. Box 1417, Bab Al Mudam, Baghdad, Iraq
| | - Paul R Cooper
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Ali A Abdulkareem
- College of Dentistry, University of Baghdad, P.O. Box 1417, Bab Al Mudam, Baghdad, Iraq
| | - Michael R Milward
- ŌSchool of Dentistry, University of Birmingham, 5 Mill Pool Way, B5 7EG Birmingham, UK
| | - Bashar H Abdullah
- College of Dentistry, University of Baghdad, P.O. Box 1417, Bab Al Mudam, Baghdad, Iraq
| |
Collapse
|