1
|
Patra AT, Tan E, Kok YJ, Ng SK, Bi X. Temporal insights into molecular and cellular responses during rAAV production in HEK293T cells. Mol Ther Methods Clin Dev 2024; 32:101278. [PMID: 39022743 PMCID: PMC11253160 DOI: 10.1016/j.omtm.2024.101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/04/2024] [Indexed: 07/20/2024]
Abstract
The gene therapy field seeks cost-effective, large-scale production of recombinant adeno-associated virus (rAAV) vectors for high-dosage therapeutic applications. Although strategies like suspension cell culture and transfection optimization have shown moderate success, challenges persist for large-scale applications. To unravel molecular and cellular mechanisms influencing rAAV production, we conducted an SWATH-MS proteomic analysis of HEK293T cells transfected using standard, sub-optimal, and optimal conditions. Gene Ontology and pathway analysis revealed significant protein expression variations, particularly in processes related to cellular homeostasis, metabolic regulation, vesicular transport, ribosomal biogenesis, and cellular proliferation under optimal transfection conditions. This resulted in a 50% increase in rAAV titer compared with the standard protocol. Additionally, we identified modifications in host cell proteins crucial for AAV mRNA stability and gene translation, particularly regarding AAV capsid transcripts under optimal transfection conditions. Our study identified 124 host proteins associated with AAV replication and assembly, each exhibiting distinct expression pattern throughout rAAV production stages in optimal transfection condition. This investigation sheds light on the cellular mechanisms involved in rAAV production in HEK293T cells and proposes promising avenues for further enhancing rAAV titer during production.
Collapse
Affiliation(s)
- Alok Tanala Patra
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A∗STAR), Singapore 138668, Singapore
| | - Evan Tan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A∗STAR), Singapore 138668, Singapore
| | - Yee Jiun Kok
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A∗STAR), Singapore 138668, Singapore
| | - Say Kong Ng
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A∗STAR), Singapore 138668, Singapore
| | - Xuezhi Bi
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A∗STAR), Singapore 138668, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, Singapore 138683, Singapore
| |
Collapse
|
2
|
Pust S, Brech A, Wegner CS, Stenmark H, Haglund K. Vesicle-mediated transport of ALIX and ESCRT-III to the intercellular bridge during cytokinesis. Cell Mol Life Sci 2023; 80:235. [PMID: 37523003 PMCID: PMC10390626 DOI: 10.1007/s00018-023-04864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 08/01/2023]
Abstract
Cellular abscission is the final step of cytokinesis that leads to the physical separation of the two daughter cells. The scaffold protein ALIX and the ESCRT-I protein TSG101 contribute to recruiting ESCRT-III to the midbody, which orchestrates the final membrane scission of the intercellular bridge. Here, we addressed the transport mechanisms of ALIX and ESCRT-III subunit CHMP4B to the midbody. Structured illumination microscopy revealed gradual accumulation of ALIX at the midbody, resulting in the formation of spiral-like structures extending from the midbody to the abscission site, which strongly co-localized with CHMP4B. Live-cell microscopy uncovered that ALIX appeared together with CHMP4B in vesicular structures, whose motility was microtubule-dependent. Depletion of ALIX led to structural alterations of the midbody and delayed recruitment of CHMP4B, resulting in delayed abscission. Likewise, depletion of the kinesin-1 motor KIF5B reduced the motility of ALIX-positive vesicles and delayed midbody recruitment of ALIX, TSG101 and CHMP4B, accompanied by impeded abscission. We propose that ALIX, TSG101 and CHMP4B are associated with endosomal vesicles transported on microtubules by kinesin-1 to the cytokinetic bridge and midbody, thereby contributing to their function in abscission.
Collapse
Affiliation(s)
- Sascha Pust
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway.
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway.
| | - Andreas Brech
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Catherine Sem Wegner
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Harald Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Kaisa Haglund
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway.
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway.
| |
Collapse
|
3
|
Rivera-Cuevas Y, Carruthers VB. The multifaceted interactions between pathogens and host ESCRT machinery. PLoS Pathog 2023; 19:e1011344. [PMID: 37141275 PMCID: PMC10159163 DOI: 10.1371/journal.ppat.1011344] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) machinery consists of multiple protein complexes that coordinate vesicle budding away from the host cytosol. ESCRTs function in many fundamental cellular processes including the biogenesis of multivesicular bodies and exosomes, membrane repair and restoration, and cell abscission during cytokinesis. Work over the past 2 decades has shown that a diverse cohort of viruses critically rely upon host ESCRT machinery for virus replication and envelopment. More recent studies reported that intracellular bacteria and the intracellular parasite Toxoplasma gondii benefit from, antagonize, or exploit host ESCRT machinery to preserve their intracellular niche, gain resources, or egress from infected cells. Here, we review how intracellular pathogens interact with the ESCRT machinery of their hosts, highlighting the variety of strategies they use to bind ESCRT complexes using short linear amino acid motifs like those used by ESCRTs to sequentially assemble on target membranes. Future work exposing new mechanisms of this molecular mimicry will yield novel insight of how pathogens exploit host ESCRT machinery and how ESCRTs facilitate key cellular processes.
Collapse
Affiliation(s)
- Yolanda Rivera-Cuevas
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
4
|
Cruz Camacho A, Alfandari D, Kozela E, Regev-Rudzki N. Biogenesis of extracellular vesicles in protozoan parasites: The ESCRT complex in the trafficking fast lane? PLoS Pathog 2023; 19:e1011140. [PMID: 36821560 PMCID: PMC9949670 DOI: 10.1371/journal.ppat.1011140] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Extracellular vesicles (EVs) provide a central mechanism of cell-cell communication. While EVs are found in most organisms, their pathogenesis-promoting roles in parasites are of particular interest given the potential for medical insight and consequential therapeutic intervention. Yet, a key feature of EVs in human parasitic protozoa remains elusive: their mechanisms of biogenesis. Here, we survey the current knowledge on the biogenesis pathways of EVs secreted by the four main clades of human parasitic protozoa: apicomplexans, trypanosomatids, flagellates, and amoebae. In particular, we shine a light on findings pertaining to the Endosomal Sorting Complex Required for Transport (ESCRT) machinery, as in mammals it plays important roles in EV biogenesis. This review highlights the diversity in EV biogenesis in protozoa, as well as the related involvement of the ESCRT system in these unique organisms.
Collapse
Affiliation(s)
- Abel Cruz Camacho
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Alfandari
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ewa Kozela
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Hansen J, Siddiq MM, Yadaw AS, Tolentino RE, Rabinovich V, Jayaraman G, Jain MR, Liu T, Li H, Xiong Y, Goldfarb J, Iyengar R. Whole cell response to receptor stimulation involves many deep and distributed subcellular biochemical processes. J Biol Chem 2022; 298:102325. [PMID: 35926710 PMCID: PMC9520007 DOI: 10.1016/j.jbc.2022.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022] Open
Abstract
Neurite outgrowth is an integrated whole cell response triggered by the cannabinoid-1 receptor. We sought to identify the many different biochemical pathways that contribute to this whole cell response. To understand underlying mechanisms, we identified subcellular processes (SCPs) composed of one or more biochemical pathways and their interactions required for this response. Differentially expressed genes and proteins were obtained from bulk transcriptomics and proteomic analysis of extracts from cells stimulated with a cannabinoid-1 receptor agonist. We used these differentially expressed genes and proteins to build networks of interacting SCPs by combining the expression data with prior pathway knowledge. From these SCP networks, we identified additional genes that when ablated, experimentally validated the SCP involvement in neurite outgrowth. Our experiments and informatics modeling allowed us to identify diverse SCPs such as those involved in pyrimidine metabolism, lipid biosynthesis, and mRNA splicing and stability, along with more predictable SCPs such as membrane vesicle transport and microtubule dynamics. We find that SCPs required for neurite outgrowth are widely distributed among many biochemical pathways required for constitutive cellular functions, several of which are termed ‘deep’, since they are distal to signaling pathways and the key SCPs directly involved in extension of the neurite. In contrast, ‘proximal’ SCPs are involved in microtubule growth and membrane vesicle transport dynamics required for neurite outgrowth. From these bioinformatics and dynamical models based on experimental data, we conclude that receptor-mediated regulation of subcellular functions for neurite outgrowth is both distributed, that is, involves many different biochemical pathways, and deep.
Collapse
Affiliation(s)
- Jens Hansen
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Mustafa M Siddiq
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Arjun Singh Yadaw
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Rosa E Tolentino
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Vera Rabinovich
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Gomathi Jayaraman
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Mohit Raja Jain
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School, Newark, NY, 07103, United States
| | - Tong Liu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School, Newark, NY, 07103, United States
| | - Hong Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School, Newark, NY, 07103, United States
| | - Yuguang Xiong
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Joseph Goldfarb
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ravi Iyengar
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
6
|
Chen L, Wang H, Cha S, Li J, Zhang J, Wu J, Guo G, Zhang J. Phosphorylation of Spastin Promotes the Surface Delivery and Synaptic Function of AMPA Receptors. Front Cell Neurosci 2022; 16:809934. [PMID: 35418834 PMCID: PMC8995424 DOI: 10.3389/fncel.2022.809934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Synaptic plasticity is essential for cognitive functions such as learning and memory. One of the mechanisms involved in synaptic plasticity is the dynamic delivery of AMPA receptors (AMPARs) in and out of synapses. Mutations of SPAST, which encodes SPASTIN, a microtubule-severing protein, are considered the most common cause of hereditary spastic paraparesis (HSP). In some cases, patients with HSP also manifest cognitive impairment. In addition, mice with Spastin depletion exhibit working and associative memory deficits and reduced AMPAR levels. However, the exact effect and molecular mechanism of Spastin on AMPARs trafficking has remained unclear. Here, we report that Spastin interacts with AMPAR, and phosphorylation of Spastin enhances its interaction with AMPAR subunit GluA2. Further study shows that phosphorylation of Spastin can increase AMPAR GluA2 surface expression and the amplitude and frequency of miniature excitatory synaptic currents (mEPSC) in cultured hippocampal neurons. Moreover, phosphorylation of Spastin at Ser210 is crucial for GluA2 surface expression. Phosphorylation of Spastin K353A, which obliterates microtubule-severing activity, also promotes AMPAR GluA2 subunit trafficking to the surface and increases the amplitude and frequency of mEPSCs in cultured neurons. Taken together, our data demonstrate that Spastin phosphorylation promotes the surface delivery of the AMPAR GluA2 subunit independent of microtubule dynamics.
Collapse
Affiliation(s)
- Li Chen
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, China
| | - Hanjie Wang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, China
| | - Shuhan Cha
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, China
| | - Jiong Li
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, China
| | - Jiaqi Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, China
| | - Jiaming Wu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, China
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guoqing Guo
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, China
- *Correspondence: Guoqing Guo Jifeng Zhang
| | - Jifeng Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, China
- *Correspondence: Guoqing Guo Jifeng Zhang
| |
Collapse
|
7
|
Kumar V, Kiran S, Kumar S, Singh UP. Extracellular vesicles in obesity and its associated inflammation. Int Rev Immunol 2022; 41:30-44. [PMID: 34423733 PMCID: PMC8770589 DOI: 10.1080/08830185.2021.1964497] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Obesity is characterized by low-grade, chronic inflammation, which promotes insulin resistance and diabetes. Obesity can lead to the development and progression of many autoimmune diseases, including inflammatory bowel disease, psoriasis, psoriatic arthritis, rheumatoid arthritis, thyroid autoimmunity, and type 1 diabetes mellitus (T1DM). These diseases result from an alteration of self-tolerance by promoting pro-inflammatory immune response by lowering numbers of regulatory T cells (Tregs), increasing Th1 and Th17 immune responses, and inflammatory cytokine production. Therefore, understanding the immunological changes that lead to this low-grade inflammatory milieu becomes crucial for the development of therapies that suppress the risk of autoimmune diseases and other immunological conditions. Cells generate extracellular vesicles (EVs) to eliminate cellular waste as well as communicating the adjacent and distant cells through exchanging the components (genetic material [DNA or RNA], lipids, and proteins) between them. Immune cells and adipocytes from individuals with obesity and a high basal metabolic index (BMI) produce also release exosomes (EXOs) and microvesicles (MVs), which are collectively called EVs. These EVs play a crucial role in the development of autoimmune diseases. The current review discusses the immunological dysregulation that leads to inflammation, inflammatory diseases associated with obesity, and the role played by EXOs and MVs in the induction and progression of this devastating conditi8on.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee, 38103 USA
| | - Sonia Kiran
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee, 38103 USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee, 38103 USA
| | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee, 38103 USA,Correspondence: Udai P Singh, Ph.D., Associate Professor, Department of Pharmaceutical Sciences, College of Pharmacy, 881 Madison Avenue, The University of Tennessee Health Science Center Memphis, TN, 38163 USA,
| |
Collapse
|
8
|
Transcriptional profiles of genes potentially involved in extracellular vesicle biogenesis in Schistosoma japonicum. Acta Trop 2021; 217:105851. [PMID: 33524382 DOI: 10.1016/j.actatropica.2021.105851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 01/16/2023]
Abstract
Schistosomiasis is a severe chronic disease caused by parasitic worms of the genus Schistosoma. Recent studies indicate that schistosomes can secrete extracellular vesicles (EVs), which play important regulatory roles in many biological processes. However, the mechanisms underlying EV biogenesis in schistosomes are poorly understood. In this study, we performed bioinformatic analyses and identified several genes putatively involved in EV biogenesis in Schistosoma japonicum, which were then confirmed by PCR. Quantitative transcriptional profiles of the selected genes indicated that they were differentially expressed in male and female worms as well as in the different developmental stages of S. japonicum. Thus, the highest expression of VAMP3 was detected in cercariae, whereas that of ARF6 was detected in eggs. RAB11A and the Syntenin-encoding gene SDCBP were highly expressed in 14-day schistosomula and VPS4A and RAB27A were highly expressed in 35-day-old adult schistosomes. The expression of RAB11A, CHMP4C, VPS4A, and SDCBP was higher in male worms, whereas that of ARF6, VAMP3, and RAB27A was higher in female worms. Our results are expected to provide important clues for understanding the role of EV biogenesis in S. japonicum development.
Collapse
|
9
|
Hirota Y, Hayashi M, Miyauchi Y, Ishii Y, Tanaka Y, Fujimoto K. LAPTM4α is targeted from the Golgi to late endosomes/lysosomes in a manner dependent on the E3 ubiquitin ligase Nedd4-1 and ESCRT proteins. Biochem Biophys Res Commun 2021; 556:9-15. [PMID: 33836347 DOI: 10.1016/j.bbrc.2021.03.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/20/2023]
Abstract
Lysosome-associated protein transmembrane 4α (LAPTM4α) is a four transmembrane-spanning protein primarily localized in endosomes and lysosomes and has several putative lysosomal targeting signals at its C-terminal cytoplasmic domain, including tyrosine-based motifs (YxxΦ) and PY motifs (L/PxxY). LAPTM4α has been previously shown to be ubiquitinated by the E3 ubiquitin ligase Nedd4-1 through binding to its PY motifs and sorted to lysosomes, however, the molecular mechanisms underlying the localization of LAPTM4α to endosomes/lysosomes have not yet been fully elucidated. In the present study, we show that LAPTM4α binds Nedd4-1 in a manner dependent on PY motifs, while the PY motifs and Nedd4-1 are not necessarily required for LAPTM4α ubiquitination. The binding of LAPTM4α with Nedd4-1, however, is necessary for an effective sorting of LAPTM4α from the Golgi to late endosomes/lysosomes. An unexpected finding is that LAPTM4α is localized in the lumen, but not in the limiting membrane, of late endosomes, and degraded in lysosomes over time. Interestingly, we further found that siRNA knockdown of endosomal sorting complexes required for transport (ESCRT) components that mediate sorting of ubiquitinated membrane proteins into intralumenal vesicles (ILVs) of endosomes selectively blocks the transport of LAPTM4α to endosomes. Collectively, these results suggest that trafficking of LAPTM4α from the Golgi to endosomes is promoted by the interaction with Nedd4-1, which further requires ESCRT components. Furthermore, our findings highlight a novel function for ESCRT proteins in mediating protein and/or vesicle trafficking from the Golgi to endosomes/lysosomes.
Collapse
Affiliation(s)
- Yuko Hirota
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Masaharu Hayashi
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuu Miyauchi
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuji Ishii
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keiko Fujimoto
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
10
|
Why Cells and Viruses Cannot Survive without an ESCRT. Cells 2021; 10:cells10030483. [PMID: 33668191 PMCID: PMC7995964 DOI: 10.3390/cells10030483] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/15/2022] Open
Abstract
Intracellular organelles enwrapped in membranes along with a complex network of vesicles trafficking in, out and inside the cellular environment are one of the main features of eukaryotic cells. Given their central role in cell life, compartmentalization and mechanisms allowing their maintenance despite continuous crosstalk among different organelles have been deeply investigated over the past years. Here, we review the multiple functions exerted by the endosomal sorting complex required for transport (ESCRT) machinery in driving membrane remodeling and fission, as well as in repairing physiological and pathological membrane damages. In this way, ESCRT machinery enables different fundamental cellular processes, such as cell cytokinesis, biogenesis of organelles and vesicles, maintenance of nuclear–cytoplasmic compartmentalization, endolysosomal activity. Furthermore, we discuss some examples of how viruses, as obligate intracellular parasites, have evolved to hijack the ESCRT machinery or part of it to execute/optimize their replication cycle/infection. A special emphasis is given to the herpes simplex virus type 1 (HSV-1) interaction with the ESCRT proteins, considering the peculiarities of this interplay and the need for HSV-1 to cross both the nuclear-cytoplasmic and the cytoplasmic-extracellular environment compartmentalization to egress from infected cells.
Collapse
|
11
|
Loss of Coiled-Coil Protein Cep55 Impairs Neural Stem Cell Abscission and Results in p53-Dependent Apoptosis in Developing Cortex. J Neurosci 2021; 41:3344-3365. [PMID: 33622776 DOI: 10.1523/jneurosci.1955-20.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/24/2020] [Accepted: 02/13/2021] [Indexed: 12/23/2022] Open
Abstract
To build the brain, embryonic neural stem cells (NSCs) tightly regulate their cell divisions, undergoing a polarized form of cytokinesis that is poorly understood. Cytokinetic abscission is mediated by the midbody to sever the daughter cells at the apical membrane. In cell lines, the coiled-coil protein Cep55 was reported to be required for abscission. Mutations of Cep55 in humans cause a variety of cortical malformations. However, its role in the specialized divisions of NSCs is unclear. Here, we elucidate the roles of Cep55 in abscission and brain development. KO of Cep55 in mice causes abscission defects in neural and non-neural cell types, and postnatal lethality. The brain is disproportionately affected, with severe microcephaly at birth. Quantitative analyses of abscission in fixed and live cortical NSCs show that Cep55 acts to increase the speed and success rate of abscission, by facilitating ESCRT recruitment and timely microtubule disassembly. However, most NSCs complete abscission successfully in the absence of Cep55 Those that fail show a tissue-specific response: binucleate NSCs and neurons elevate p53, but binucleate fibroblasts do not. This leads to massive apoptosis in the brain, but not other tissues. Double KO of both p53 and Cep55 blocks apoptosis but only partially rescues Cep55 -/- brain size. This may be because of the persistent NSC cell division defects and p53-independent premature cell cycle exit. This work adds to emerging evidence that abscission regulation and error tolerance vary by cell type and are especially crucial in neural stem cells as they build the brain.SIGNIFICANCE STATEMENT During brain growth, embryonic neural stem cells (NSCs) must divide many times. In the last step of cell division, the daughter cell severs its connection to the mother stem cell, a process called abscission. The protein Cep55 is thought to be essential for recruiting proteins to the mother-daughter cell connection to complete abscission. We find that Cep55 mutants have very small brains with disturbed structure, but almost normal size bodies. NSC abscission can occur, but it is slower than normal, and failures are increased. Furthermore, NSCs that do fail abscission activate a signal for programmed cell death, whereas non-neural cells do not. Blocking this signal only partly restores brain growth, showing that regulation of abscission is crucial for brain development.
Collapse
|
12
|
Zanin N, Viaris de Lesegno C, Lamaze C, Blouin CM. Interferon Receptor Trafficking and Signaling: Journey to the Cross Roads. Front Immunol 2021; 11:615603. [PMID: 33552080 PMCID: PMC7855707 DOI: 10.3389/fimmu.2020.615603] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
Like most plasma membrane proteins, type I interferon (IFN) receptor (IFNAR) traffics from the outer surface to the inner compartments of the cell. Long considered as a passive means to simply control subunits availability at the plasma membrane, an array of new evidence establishes IFNAR endocytosis as an active contributor to the regulation of signal transduction triggered by IFN binding to IFNAR. During its complex journey initiated at the plasma membrane, the internalized IFNAR complex, i.e. IFNAR1 and IFNAR2 subunits, will experience post-translational modifications and recruit specific effectors. These finely tuned interactions will determine not only IFNAR subunits destiny (lysosomal degradation vs. plasma membrane recycling) but also the control of IFN-induced signal transduction. Finally, the IFNAR system perfectly illustrates the paradigm of the crosstalk between membrane trafficking and intracellular signaling. Investigating the complexity of IFN receptor intracellular routes is therefore necessary to reveal new insight into the role of IFNAR membrane dynamics in type I IFNs signaling selectivity and biological activity.
Collapse
Affiliation(s)
- Natacha Zanin
- NDORMS, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Christine Viaris de Lesegno
- Institut Curie-Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signalling Laboratory, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| | - Christophe Lamaze
- Institut Curie-Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signalling Laboratory, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| | - Cedric M Blouin
- Institut Curie-Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signalling Laboratory, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| |
Collapse
|
13
|
Di Giaimo R, Penna E, Pizzella A, Cirillo R, Perrone-Capano C, Crispino M. Cross Talk at the Cytoskeleton-Plasma Membrane Interface: Impact on Neuronal Morphology and Functions. Int J Mol Sci 2020; 21:ijms21239133. [PMID: 33266269 PMCID: PMC7730950 DOI: 10.3390/ijms21239133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/18/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022] Open
Abstract
The cytoskeleton and its associated proteins present at the plasma membrane not only determine the cell shape but also modulate important aspects of cell physiology such as intracellular transport including secretory and endocytic pathways. Continuous remodeling of the cell structure and intense communication with extracellular environment heavily depend on interactions between cytoskeletal elements and plasma membrane. This review focuses on the plasma membrane-cytoskeleton interface in neurons, with a special emphasis on the axon and nerve endings. We discuss the interaction between the cytoskeleton and membrane mainly in two emerging topics of neurobiology: (i) production and release of extracellular vesicles and (ii) local synthesis of new proteins at the synapses upon signaling cues. Both of these events contribute to synaptic plasticity. Our review provides new insights into the physiological and pathological significance of the cytoskeleton-membrane interface in the nervous system.
Collapse
Affiliation(s)
- Rossella Di Giaimo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (R.C.)
- Correspondence: (R.D.G.); (M.C.)
| | - Eduardo Penna
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (R.C.)
| | - Amelia Pizzella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (R.C.)
| | - Raffaella Cirillo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (R.C.)
| | - Carla Perrone-Capano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, National Research Council (CNR), 80131 Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (R.C.)
- Correspondence: (R.D.G.); (M.C.)
| |
Collapse
|
14
|
Rajwar A, Morya V, Kharbanda S, Bhatia D. DNA Nanodevices to Probe and Program Membrane Organization, Dynamics, and Applications. J Membr Biol 2020; 253:577-587. [DOI: 10.1007/s00232-020-00154-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/07/2020] [Indexed: 12/18/2022]
|
15
|
Matusek T, Marcetteau J, Thérond PP. Functions of Wnt and Hedgehog-containing extracellular vesicles in development and disease. J Cell Sci 2020; 133:133/18/jcs209742. [PMID: 32989011 DOI: 10.1242/jcs.209742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Secreted morphogens play a major role in the intercellular communication necessary for animal development. It was initially thought that, in order to organize tissue morphogenesis and control cell fate and proliferation, morphogens diffused freely in the extracellular space. This view has since changed following the discovery that morphogens of the Wnt and Hedgehog (Hh) families are modified by various lipid adducts during their biosynthesis, providing them with high affinity for the membrane bilayer. Recent work performed in model organisms suggests that Wnt and Hh proteins are carried on extracellular vesicles. In this Review, we provide our perspectives on the mechanisms of formation of Wnt- and Hh-containing extracellular vesicles, and discuss their functions during animal development, as well as in various human physiopathologies.
Collapse
Affiliation(s)
- Tamás Matusek
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose (iBV), Parc Valrose, 06108 Nice Cedex 2, France
| | - Julien Marcetteau
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose (iBV), Parc Valrose, 06108 Nice Cedex 2, France
| | - Pascal P Thérond
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose (iBV), Parc Valrose, 06108 Nice Cedex 2, France
| |
Collapse
|
16
|
Connell JW, Allison RJ, Rodger CE, Pearson G, Zlamalova E, Reid E. ESCRT-III-associated proteins and spastin inhibit protrudin-dependent polarised membrane traffic. Cell Mol Life Sci 2020; 77:2641-2658. [PMID: 31587092 PMCID: PMC7320071 DOI: 10.1007/s00018-019-03313-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/27/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022]
Abstract
Mutations in the gene encoding the microtubule severing ATPase spastin are the most frequent cause of hereditary spastic paraplegia, a genetic condition characterised by length-dependent axonal degeneration. Here, we show that HeLa cells lacking spastin and embryonic fibroblasts from a spastin knock-in mouse model become highly polarised and develop cellular protrusions. In HeLa cells, this phenotype was rescued by wild-type spastin, but not by forms unable to sever microtubules or interact with endosomal ESCRT-III proteins. Cells lacking the spastin-interacting ESCRT-III-associated proteins IST1 or CHMP1B also developed protrusions. The protrusion phenotype required protrudin, a RAB-interacting protein that interacts with spastin and localises to ER-endosome contact sites, where it promotes KIF5-dependent endosomal motility to protrusions. Consistent with this, the protrusion phenotype in cells lacking spastin also required KIF5. Lack or mutation of spastin resulted in functional consequences for receptor traffic of a pathway implicated in HSP, as Bone Morphogenetic Protein receptor distribution became polarised. Our results, therefore, identify a novel role for ESCRT-III proteins and spastin in regulating polarised membrane traffic.
Collapse
Affiliation(s)
- James W Connell
- Department of Medical Genetics and Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
- Alzheimer's Research, Cambridge, UK
| | - Rachel J Allison
- Department of Medical Genetics and Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Catherine E Rodger
- Department of Medical Genetics and Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Guy Pearson
- Department of Medical Genetics and Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Eliska Zlamalova
- Department of Medical Genetics and Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Evan Reid
- Department of Medical Genetics and Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK.
| |
Collapse
|
17
|
Bahmanyar S, Schlieker C. Lipid and protein dynamics that shape nuclear envelope identity. Mol Biol Cell 2020; 31:1315-1323. [PMID: 32530796 PMCID: PMC7353140 DOI: 10.1091/mbc.e18-10-0636] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
The nuclear envelope (NE) is continuous with the endoplasmic reticulum (ER), yet the NE carries out many functions distinct from those of bulk ER. This functional specialization depends on a unique protein composition that defines NE identity and must be both established and actively maintained. The NE undergoes extensive remodeling in interphase and mitosis, so mechanisms that seal NE holes and protect its unique composition are critical for maintaining its functions. New evidence shows that closure of NE holes relies on regulated de novo lipid synthesis, providing a link between lipid metabolism and generating and maintaining NE identity. Here, we review regulation of the lipid bilayers of the NE and suggest ways to generate lipid asymmetry across the NE despite its direct continuity with the ER. We also discuss the elusive mechanism of membrane fusion during nuclear pore complex (NPC) biogenesis. We propose a model in which NPC biogenesis is carefully controlled to ensure that a permeability barrier has been established before membrane fusion, thereby avoiding a major threat to compartmentalization.
Collapse
Affiliation(s)
- Shirin Bahmanyar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Christian Schlieker
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
18
|
Flower TG, Takahashi Y, Hudait A, Rose K, Tjahjono N, Pak AJ, Yokom AL, Liang X, Wang HG, Bouamr F, Voth GA, Hurley JH. A helical assembly of human ESCRT-I scaffolds reverse-topology membrane scission. Nat Struct Mol Biol 2020; 27:570-580. [PMID: 32424346 PMCID: PMC7339825 DOI: 10.1038/s41594-020-0426-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/31/2020] [Indexed: 12/26/2022]
Abstract
The ESCRT complexes drive membrane scission in HIV-1 release, autophagosome closure, MVB biogenesis, cytokinesis, and other cell processes. ESCRT-I is the most upstream complex and bridges the system to HIV-1 Gag in virus release. The crystal structure of the headpiece of human ESCRT-I comprising TSG101–VPS28–VPS37B–MVB12A was determined, revealing an ESCRT-I helical assembly with a 12 molecule repeat. Electron microscopy confirmed that ESCRT-I subcomplexes form helical filaments in solution. Mutation of VPS28 helical interface residues blocks filament formation in vitro and autophagosome closure and HIV-1 release in human cells. Coarse grained simulations of ESCRT assembly at HIV-1 budding sites suggest that formation of a 12-membered ring of ESCRT-I molecules is a geometry-dependent checkpoint during late stages of Gag assembly and HIV-1 budding, and templates ESCRT-III assembly for membrane scission. These data show that ESCRT-I is not merely a bridging adaptor, but has an essential scaffolding and mechanical role in its own right. Further information on experimental design is available in the Nature Research Reporting Summary linked to this article.
Collapse
Affiliation(s)
- Thomas G Flower
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Yoshinori Takahashi
- Department of Pediatrics, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Arpa Hudait
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Kevin Rose
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas Tjahjono
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Alexander J Pak
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Adam L Yokom
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Xinwen Liang
- Department of Pediatrics, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Hong-Gang Wang
- Department of Pediatrics, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Fadila Bouamr
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - James H Hurley
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA. .,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
19
|
Yagisawa F, Fujiwara T, Takemura T, Kobayashi Y, Sumiya N, Miyagishima SY, Nakamura S, Imoto Y, Misumi O, Tanaka K, Kuroiwa H, Kuroiwa T. ESCRT Machinery Mediates Cytokinetic Abscission in the Unicellular Red Alga Cyanidioschyzon merolae. Front Cell Dev Biol 2020; 8:169. [PMID: 32346536 PMCID: PMC7169423 DOI: 10.3389/fcell.2020.00169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/29/2020] [Indexed: 12/17/2022] Open
Abstract
In many eukaryotes, cytokinesis proceeds in two successive steps: first, ingression of the cleavage furrow and second, abscission of the intercellular bridge. In animal cells, the actomyosin contractile ring is involved in the first step, while the endosomal sorting complex required for transport (ESCRT), which participates in various membrane fusion/fission events, mediates the second step. Intriguingly, in archaea, ESCRT is involved in cytokinesis, raising the hypothesis that the function of ESCRT in eukaryotic cytokinesis descended from the archaeal ancestor. In eukaryotes other than in animals, the roles of ESCRT in cytokinesis are poorly understood. To explore the primordial core mechanisms for eukaryotic cytokinesis, we investigated ESCRT functions in the unicellular red alga Cyanidioschyzon merolae that diverged early in eukaryotic evolution. C. merolae provides an excellent experimental system. The cell has a simple organelle composition. The genome (16.5 Mb, 5335 genes) has been completely sequenced, transformation methods are established, and the cell cycle is synchronized by a light and dark cycle. Similar to animal and fungal cells, C. merolae cells divide by furrowing at the division site followed by abscission of the intercellular bridge. However, they lack an actomyosin contractile ring. The proteins that comprise ESCRT-I-IV, the four subcomplexes of ESCRT, are partially conserved in C. merolae. Immunofluorescence of native or tagged proteins localized the homologs of the five ESCRT-III components [charged multivesicular body protein (CHMP) 1, 2, and 4-6], apoptosis-linked gene-2-interacting protein X (ALIX), the ESCRT-III adapter, and the main ESCRT-IV player vacuolar protein sorting (VPS) 4, to the intercellular bridge. In addition, ALIX was enriched around the cleavage furrow early in cytokinesis. When the ESCRT function was perturbed by expressing dominant-negative VPS4, cells with an elongated intercellular bridge accumulated-a phenotype resulting from abscission failure. Our results show that ESCRT mediates cytokinetic abscission in C. merolae. The fact that ESCRT plays a role in cytokinesis in archaea, animals, and early diverged alga C. merolae supports the hypothesis that the function of ESCRT in cytokinesis descended from archaea to a common ancestor of eukaryotes.
Collapse
Affiliation(s)
- Fumi Yagisawa
- Center for Research Advancement and Collaboration, University of the Ryukyus, Okinawa, Japan
- Graduate School of Engineering and Science, University of the Ryukyus, Okinawa, Japan
| | - Takayuki Fujiwara
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
- JST-Mirai Program, Japan Science and Technology Agency, Saitama, Japan
- Department of Genetics, The Graduate University for Advanced Studies, Shizuoka, Japan
| | - Tokiaki Takemura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- School of Life Sciences and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuki Kobayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Nobuko Sumiya
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
| | - Shin-ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
- JST-Mirai Program, Japan Science and Technology Agency, Saitama, Japan
- Department of Genetics, The Graduate University for Advanced Studies, Shizuoka, Japan
| | - Soichi Nakamura
- Laboratory of Cell and Functional Biology, Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Yuuta Imoto
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Osami Misumi
- Department of Biological Science and Chemistry, Faculty of Science, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Haruko Kuroiwa
- Department of Chemical and Biological Science, Japan Women’s University, Tokyo, Japan
| | - Tsuneyoshi Kuroiwa
- Department of Chemical and Biological Science, Japan Women’s University, Tokyo, Japan
| |
Collapse
|
20
|
Liu T, Li Y, Qiao B, Jiang Y, Ji N, Li Z. Disrupting the association of Autographa californica multiple nucleopolyhedrovirus Ac93 with cellular ESCRT-III/Vps4 hinders nuclear egress of nucleocapsids and intranuclear microvesicles formation. Virology 2020; 541:85-100. [PMID: 32056718 DOI: 10.1016/j.virol.2019.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 11/27/2022]
Abstract
The endosomal sorting complex required for transport (ESCRT) pathway is required for efficient egress of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). In this study, we found that Ac93, a baculovirus core protein, contains a conserved MIM1-like motif. Alanine substitutions for six leucine residues in MIM1-like motif revealed that L142, L145, L146, and L149 are required for association of Ac93 with the MIT domain of Vps4. Mutations of these residues also blocked self-association and the association of Ac93 with ESCRT-III proteins or other viral core proteins Ac76 and Ac103, and resulted in a substantial reduction of infectious virus production, less efficient nuclear egress of progeny nucleocapsids, and the defect of intranuclear microvesicles formation. Combined with the localization of the association of Ac93 with ESCRT-III/Vps4 and other viral proteins at the nuclear membrane, we propose that the coordinated action of these viral proteins and ESCRT-III/Vps4 may be involved in remodeling the nuclear membrane.
Collapse
Affiliation(s)
- Tingting Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bin Qiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuanyuan Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ning Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhaofei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
21
|
Carlton JG, Jones H, Eggert US. Membrane and organelle dynamics during cell division. Nat Rev Mol Cell Biol 2020; 21:151-166. [DOI: 10.1038/s41580-019-0208-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 12/31/2022]
|
22
|
Zeng Y, Li B, Lin Y, Jiang L. The interplay between endomembranes and autophagy in plants. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:14-22. [PMID: 31344498 DOI: 10.1016/j.pbi.2019.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/08/2019] [Accepted: 05/22/2019] [Indexed: 06/10/2023]
Abstract
Autophagosomes are unique double-membrane organelles that enclose a portion of intracellular components for lysosome/vacuole delivery to maintain cellular homeostasis in eukaryotic cells. Genetic screening has revealed the requirement of autophagy-related proteins for autophagosome formation, although the origin of the autophagosome membrane remains elusive. The endomembrane system is a series of membranous organelles maintained by dynamic membrane flow between various compartments. In plants, there is accumulating evidence pointing to a link between autophagy and the endomembrane system, in particular between the endoplasmic reticulum and autophagosome. Here, we highlight and discuss about recent findings on plant autophagosome formation. We also look into the functional roles of endomembrane machineries in regard to the autophagy pathway in plants.
Collapse
Affiliation(s)
- Yonglun Zeng
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Baiying Li
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Youshun Lin
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong; The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
23
|
Chichger H, Rounds S, Harrington EO. Endosomes and Autophagy: Regulators of Pulmonary Endothelial Cell Homeostasis in Health and Disease. Antioxid Redox Signal 2019; 31:994-1008. [PMID: 31190562 PMCID: PMC6765061 DOI: 10.1089/ars.2019.7817] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022]
Abstract
Significance: Alterations in oxidant/antioxidant balance injure pulmonary endothelial cells and are important in the pathogenesis of lung diseases, such as Acute Respiratory Distress Syndrome (ARDS), ischemia/reperfusion injury, pulmonary arterial hypertension (PAH), and emphysema. Recent Advances: The endosomal and autophagic pathways regulate cell homeostasis. Both pathways support recycling or degradation of macromolecules or organelles, targeted to endosomes or lysosomes, respectively. Thus, both processes promote cell survival. However, with environmental stress or injury, imbalance in endosomal and autophagic pathways may enhance macromolecular or organelle degradation, diminish biosynthetic processes, and cause cell death. Critical Issues: While the role of autophagy in cellular homeostasis in pulmonary disease has been investigated, the role of the endosome in the lung vasculature is less known. Furthermore, autophagy can either decrease or exacerbate endothelial injury, depending upon inciting insult and disease process. Future Directions: Diseases affecting the pulmonary endothelium, such as emphysema, ARDS, and PAH, are linked to altered endosomal or autophagic processing, leading to enhanced degradation of macromolecules and potential cell death. Efforts to target this imbalance have yielded limited success as treatments for lung injuries, which may be due to the complexity of both processes. It is possible that endosomal trafficking proteins, such as Rab GTPases and late endosomal/lysosomal adaptor, MAPK and MTOR activator 1, may be novel therapeutic targets. While endocytosis or autophagy have been linked to improved function of the pulmonary endothelium in vitro and in vivo, further studies are needed to identify targets for modulating cellular homeostasis in the lung.
Collapse
Affiliation(s)
- Havovi Chichger
- Biomedical Research Group, Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Sharon Rounds
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Elizabeth O. Harrington
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
24
|
Functional Analysis of ESCRT-Positive Extracellular Vesicles in the Drosophila Wing Imaginal Disc. Methods Mol Biol 2019; 1998:31-47. [PMID: 31250292 DOI: 10.1007/978-1-4939-9492-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
A large number of studies have shown that proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) can trigger the biogenesis of different types of Extracellular Vesicles (EV). The functions that these vesicular carriers exert in vivo remain, however, poorly understood. In this chapter, we describe a series of experimental approaches that we established in the Drosophila wing imaginal disc to study the importance of ESCRT-positive EVs for the extracellular transport of signaling molecules, as exemplified by a functional analysis of the mechanism of secretion and propagation of the major developmental morphogen Hedgehog (Hh).Through the combined use of genetic, cell biological, and imaging approaches, we investigate four important aspects of exovesicle biology: (1) The genetic identification of ESCRT proteins that are specifically required for Hh secretion. (2) The imaging of ESCRT and Hh-positive EVs in the lumenal space of both living and fixed wing imaginal discs. (3) The receptor-mediated capture of Hh-containing EVs on the surface of Hh-receiving cells. (4) The effect of manipulations of ESCRT function on the extracellular pool of Hh ligands.
Collapse
|
25
|
Schöneberg J, Pavlin MR, Yan S, Righini M, Lee IH, Carlson LA, Bahrami AH, Goldman DH, Ren X, Hummer G, Bustamante C, Hurley JH. ATP-dependent force generation and membrane scission by ESCRT-III and Vps4. Science 2019; 362:1423-1428. [PMID: 30573630 DOI: 10.1126/science.aat1839] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/17/2018] [Accepted: 11/07/2018] [Indexed: 12/23/2022]
Abstract
The endosomal sorting complexes required for transport (ESCRTs) catalyze reverse-topology scission from the inner face of membrane necks in HIV budding, multivesicular endosome biogenesis, cytokinesis, and other pathways. We encapsulated ESCRT-III subunits Snf7, Vps24, and Vps2 and the AAA+ ATPase (adenosine triphosphatase) Vps4 in giant vesicles from which membrane nanotubes reflecting the correct topology of scission could be pulled. Upon ATP release by photo-uncaging, this system generated forces within the nanotubes that led to membrane scission in a manner dependent upon Vps4 catalytic activity and Vps4 coupling to the ESCRT-III proteins. Imaging of scission revealed Snf7 and Vps4 puncta within nanotubes whose presence followed ATP release, correlated with force generation and nanotube constriction, and preceded scission. These observations directly verify long-standing predictions that ATP-hydrolyzing assemblies of ESCRT-III and Vps4 sever membranes.
Collapse
Affiliation(s)
- Johannes Schöneberg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.,Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Mark Remec Pavlin
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.,Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shannon Yan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Maurizio Righini
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Il-Hyung Lee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lars-Anders Carlson
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Amir Houshang Bahrami
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Daniel H Goldman
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xuefeng Ren
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.,Institute of Biophysics, Goethe University, Frankfurt/M, Germany
| | - Carlos Bustamante
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. .,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.,Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.,Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James H Hurley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. .,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.,Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
26
|
Hasegawa J, Imen J, Yamamoto H, Tsujita K, Tokuda E, Shibata H, Maki M, Itoh T. SH3YL1 cooperates with ESCRT-I in the sorting and degradation of the EGF receptor. J Cell Sci 2019; 132:jcs.229179. [DOI: 10.1242/jcs.229179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Ubiquitinated membrane proteins such as epidermal growth factor receptor (EGFR) are delivered to early endosomes and then sorted to lysosomes via multivesicular bodies (MVBs) for degradation. The regulatory mechanism underlying formation of intralumenal vesicles en route to generation of MVBs is not fully understood. In this study, we found that SH3YL1, a phosphoinositide-binding protein, had a vesicular localization pattern overlapping with internalized EGF in endosomes in the degradative pathway. Deficiency of SH3YL1 prevents EGF trafficking from early to late endosomes and inhibits degradation of EGFR. Moreover, we show that SH3YL1 mediates EGFR sorting into MVBs in a manner dependent on its carboxy-terminal SH3 domain, which is necessary for the interaction with an ESCRT-I component, Vps37B. Taken together, our observations reveal an indispensable role of SH3YL1 in MVB-sorting and EGFR degradation mediated by ESCRT complexes.
Collapse
Affiliation(s)
- Junya Hasegawa
- Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Jebri Imen
- Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hikaru Yamamoto
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Kazuya Tsujita
- Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Emi Tokuda
- Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Hideki Shibata
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Masatoshi Maki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Toshiki Itoh
- Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
27
|
Gustafsson ÅB, Dorn GW. Evolving and Expanding the Roles of Mitophagy as a Homeostatic and Pathogenic Process. Physiol Rev 2019; 99:853-892. [PMID: 30540226 PMCID: PMC6442924 DOI: 10.1152/physrev.00005.2018] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 08/10/2018] [Accepted: 09/29/2018] [Indexed: 02/07/2023] Open
Abstract
The central functions fulfilled by mitochondria as both energy generators essential for tissue homeostasis and gateways to programmed apoptotic and necrotic cell death mandate tight control over the quality and quantity of these ubiquitous endosymbiotic organelles. Mitophagy, the targeted engulfment and destruction of mitochondria by the cellular autophagy apparatus, has conventionally been considered as the mechanism primarily responsible for mitochondrial quality control. However, our understanding of how, why, and under what specific conditions mitophagy is activated has grown tremendously over the past decade. Evidence is accumulating that nonmitophagic mitochondrial quality control mechanisms are more important to maintaining normal tissue homeostasis whereas mitophagy is an acute tissue stress response. Moreover, previously unrecognized mitophagic regulation of mitochondrial quantity control, metabolic reprogramming, and cell differentiation suggests that the mechanisms linking genetic or acquired defects in mitophagy to neurodegenerative and cardiovascular diseases or cancer are more complex than simple failure of normal mitochondrial quality control. Here, we provide a comprehensive overview of mitophagy in cellular homeostasis and disease and examine the most revolutionary concepts in these areas. In this context, we discuss evidence that atypical mitophagy and nonmitophagic pathways play central roles in mitochondrial quality control, functioning that was previously considered to be the primary domain of mitophagy.
Collapse
Affiliation(s)
- Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego , La Jolla, California ; and Washington University School of Medicine, St. Louis, Missouri
| | - Gerald W Dorn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego , La Jolla, California ; and Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
28
|
Haag C, Klein T, Feldbrügge M. ESCRT Mutant Analysis and Imaging of ESCRT Components in the Model Fungus Ustilago maydis. Methods Mol Biol 2019; 1998:251-271. [PMID: 31250308 DOI: 10.1007/978-1-4939-9492-2_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ESCRT machinery (endosomal sorting complex required for transport) is an evolutionarily highly conserved multiprotein complex involved in numerous cellular processes like endocytosis, membrane repair, or endosomal long-distance transport. In fungal hyphae, endocytosis and long-distance mRNA transport are tightly linked, as endocytotic vesicles are also the key carrier vehicles for mRNAs. Studying the regulatory component Did2 (CHMP1) in the plant pathogen Ustilago maydis revealed that loss of Did2 resulted in disturbed endosomal maturation, thereby causing defects in microtubule-dependent transport of early endosomes. Here, we describe methods and protocols that allow studying the role of ESCRT components during endosomal transport. We present experimental strategies to analyze U. maydis ESCRT mutant phenotypes and test complementation with heterologous components, such as ESCRT regulators from Drosophila melanogaster.
Collapse
Affiliation(s)
- Carl Haag
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Microbiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas Klein
- Institute of Genetics, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Feldbrügge
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Microbiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
29
|
Cadete VJJ, Vasam G, Menzies KJ, Burelle Y. Mitochondrial quality control in the cardiac system: An integrative view. Biochim Biophys Acta Mol Basis Dis 2018; 1865:782-796. [PMID: 30472159 DOI: 10.1016/j.bbadis.2018.11.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/29/2018] [Accepted: 11/15/2018] [Indexed: 01/26/2023]
Abstract
Recent studies have led to the discovery of multiple mitochondrial quality control (mQC) processes that operate at various scales, ranging from the degradation of proteins by mitochondrial proteases to the degradation of selected cargos or entire organelles in lysosomes. While the mechanisms governing these mQC processes are progressively being delineated, their role and importance remain unclear. Converging evidence however point to a complex system whereby multiple and partly overlapping processes are recruited to orchestrate a cell type specific mQC response that is adapted to the physiological state and level of stress encountered. Knowledge gained from basic model systems of mQC therefore need to be integrated within organ-specific (patho)physiological frameworks. Building on this notion, this article focuses on mQC in the heart, where developmental metabolic reprogramming, sustained contraction, and multiple pathophysiological conditions pose broadly different constraints. We provide an overview of current knowledge of mQC processes, and discuss their implication in cardiac mQC under normal and diseased conditions.
Collapse
Affiliation(s)
- Virgilio J J Cadete
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Keir J Menzies
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa Brain and Mind Research Institute and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| | - Yan Burelle
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
30
|
Fruhmann G, Marchal C, Vignaud H, Verduyckt M, Talarek N, De Virgilio C, Winderickx J, Cullin C. The Impact of ESCRT on Aβ 1-42 Induced Membrane Lesions in a Yeast Model for Alzheimer's Disease. Front Mol Neurosci 2018; 11:406. [PMID: 30455629 PMCID: PMC6230623 DOI: 10.3389/fnmol.2018.00406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/16/2018] [Indexed: 12/30/2022] Open
Abstract
Aβ metabolism plays a pivotal role in Alzheimer’s disease. Here, we used a yeast model to monitor Aβ42 toxicity when entering the secretory pathway and demonstrate that processing in, and exit from the endoplasmic reticulum (ER) is required to unleash the full Aβ42 toxic potential. Consistent with previously reported data, our data suggests that Aβ42 interacts with mitochondria, thereby enhancing formation of reactive oxygen species and eventually leading to cell demise. We used our model to search for genes that modulate this deleterious effect, either by reducing or enhancing Aβ42 toxicity, based on screening of the yeast knockout collection. This revealed a reduced Aβ42 toxicity not only in strains hampered in ER-Golgi traffic and mitochondrial functioning but also in strains lacking genes connected to the cell cycle and the DNA replication stress response. On the other hand, increased Aβ42 toxicity was observed in strains affected in the actin cytoskeleton organization, endocytosis and the formation of multivesicular bodies, including key factors of the ESCRT machinery. Since the latter was shown to be required for the repair of membrane lesions in mammalian systems, we studied this aspect in more detail in our yeast model. Our data demonstrated that Aβ42 heavily disturbed the plasma membrane integrity in a strain lacking the ESCRT-III accessory factor Bro1, a phenotype that came along with a severe growth defect and enhanced loading of lipid droplets. Thus, it appears that also in yeast ESCRT is required for membrane repair, thereby counteracting one of the deleterious effects induced by the expression of Aβ42. Combined, our studies once more validated the use of yeast as a model to investigate fundamental mechanisms underlying the etiology of neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Christelle Marchal
- Institut de Chimie et Biologie des Membranes et des Nano-objets, University of Bordeaux, CNRS UMR 5248, Pessac, France
| | - Hélène Vignaud
- Institut de Chimie et Biologie des Membranes et des Nano-objets, University of Bordeaux, CNRS UMR 5248, Pessac, France
| | | | - Nicolas Talarek
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | | | | | - Christophe Cullin
- Institut de Chimie et Biologie des Membranes et des Nano-objets, University of Bordeaux, CNRS UMR 5248, Pessac, France
| |
Collapse
|
31
|
Chand S, Beales P, Claeyssens F, Ciani B. Topography design in model membranes: Where biology meets physics. Exp Biol Med (Maywood) 2018; 244:294-303. [PMID: 30379575 DOI: 10.1177/1535370218809369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
IMPACT STATEMENT Artificial membranes with complex topography aid the understanding of biological processes where membrane geometry plays a key regulatory role. In this review, we highlight how emerging material and engineering technologies have been employed to create minimal models of cell signaling pathways, in vitro. These artificial systems allow life scientists to answer ever more challenging questions with regards to mechanisms in cellular biology. In vitro reconstitution of biology is an area that draws on the expertise and collaboration between biophysicists, material scientists and biologists and has recently generated a number of high impact results, some of which are also discussed in this review.
Collapse
Affiliation(s)
- Sarina Chand
- 1 Centre for Membrane Structure and Dynamics, Krebs Institute and Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK.,2 The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
| | - Paul Beales
- 3 School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Frederik Claeyssens
- 2 The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
| | - Barbara Ciani
- 1 Centre for Membrane Structure and Dynamics, Krebs Institute and Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
| |
Collapse
|
32
|
Hurley JH, Cada AK. Inside job: how the ESCRTs release HIV-1 from infected cells. Biochem Soc Trans 2018; 46:1029-1036. [PMID: 30154094 PMCID: PMC6277019 DOI: 10.1042/bst20180019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) hijacks the host endosomal sorting complex required for transport (ESCRT) proteins in order to release infectious viral particles from the cell. ESCRT recruitment is virtually essential for the production of infectious virus, despite that the main structural protein of HIV-1, Gag, is capable of self-assembling and eventually budding from membranes on its own. Recent data have reinforced the paradigm of ESCRT-dependent particle release while clarifying why this rapid release is so critical. The ESCRTs were originally discovered as integral players in endosome maturation and are now implicated in many important cellular processes beyond viral and endosomal budding. Nearly all of these roles have in common that membrane scission occurs from the inward face of the membrane neck, which we refer to as 'reverse topology' scission. A satisfactory mechanistic description of reverse-topology membrane scission by ESCRTs remains a major challenge both in general and in the context of HIV-1 release. New observations concerning the fundamental scission mechanism for ESCRTs in general, and the process of HIV-1 release specifically, have generated new insights in both directions, bringing us closer to a mechanistic understanding.
Collapse
Affiliation(s)
- James H Hurley
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, U.S.A.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| | - A King Cada
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, U.S.A
| |
Collapse
|
33
|
CHMP4C: A novel regulator of the mitotic spindle checkpoint. Mol Cell Oncol 2018; 5:e1445944. [PMID: 30250900 DOI: 10.1080/23723556.2018.1445944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/12/2022]
Abstract
The mitotic spindle checkpoint delays anaphase onset until all chromosomes have achieved stable kinetochore-microtubule attachments. Here, we discuss recent findings showing that CHMP4C, a component of the endosomal sorting complex required for transport (ESCRT) machinery, protects human cells against chromosome missegregation by promoting localisation of the ROD-ZW10-ZWILCH (RZZ) spindle checkpoint complex to unattached kinetochores.
Collapse
|
34
|
Concerted ESCRT and clathrin recruitment waves define the timing and morphology of intraluminal vesicle formation. Nat Commun 2018; 9:2932. [PMID: 30050131 PMCID: PMC6062606 DOI: 10.1038/s41467-018-05345-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 06/29/2018] [Indexed: 01/09/2023] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery mediates cargo sorting, membrane deformation and membrane scission on the surface of endosomes, generating intraluminal vesicles (ILVs) to degrade signaling receptors. By live-cell imaging of individual endosomes in human cells, we find that ESCRT proteins are recruited in a repetitive pattern: ESCRT-0 and -I show a gradual and linear recruitment and dissociation, whereas ESCRT-III and its regulatory ATPase VPS4 display fast and transient dynamics. Electron microscopy shows that ILVs are formed consecutively, starting immediately after endocytic uptake of cargo proteins and correlating with the repeated ESCRT recruitment waves, unraveling the timing of ILV formation. Clathrin, recruited by ESCRT-0, is required for timely ESCRT-0 dissociation, efficient ILV formation, correct ILV size and cargo degradation. Thus, cargo sorting and ILV formation occur by concerted, coordinated and repetitive recruitment waves of individual ESCRT subcomplexes and are controlled by clathrin. Intraluminal vesicles are formed by the endosomal sorting complex required for transport (ESCRT) machinery. Here, the authors unravel the timing of vesicle budding, and that endosomal clathrin regulates concerted recruitment of ESCRT subcomplexes, required for efficient membrane remodeling.
Collapse
|
35
|
Petsalaki E, Dandoulaki M, Zachos G. Chmp4c is required for stable kinetochore-microtubule attachments. Chromosoma 2018; 127:461-473. [PMID: 29968190 DOI: 10.1007/s00412-018-0675-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 01/20/2023]
Abstract
Formation of stable kinetochore-microtubule attachments is essential for accurate chromosome segregation in human cells and depends on the NDC80 complex. We recently showed that Chmp4c, an endosomal sorting complex required for transport protein involved in membrane remodelling, localises to prometaphase kinetochores and promotes cold-stable kinetochore microtubules, faithful chromosome alignment and segregation. In the present study, we show that Chmp4c associates with the NDC80 components Hec1 and Nuf2 and is required for optimal NDC80 stability and Hec1-Nuf2 localisation to kinetochores in prometaphase. However, Chmp4c-depletion does not cause a gross disassembly of outer or inner kinetochore complexes. Conversely, Nuf2 is required for Chmp4c kinetochore targeting. Constitutive Chmp4c kinetochore tethering partially rescues cold-stable microtubule polymers in cells depleted of the endogenous Nuf2, showing that Chmp4c also contributes to kinetochore-microtubule stability independently of regulating Hec1 and Nuf2 localisation. Chmp4c interacts with tubulin in cell extracts, and binds and bundles microtubules in vitro through its highly basic N-terminal region (amino acids 1-77). Furthermore, the N-terminal region of Chmp4c is required for cold-stable kinetochore microtubules and efficient chromosome alignment. We propose that Chmp4c promotes stable kinetochore-microtubule attachments by regulating Hec1-Nuf2 localisation to kinetochores in prometaphase and by binding to spindle microtubules. These results identify Chmp4c as a novel protein that regulates kinetochore-microtubule interactions to promote accurate chromosome segregation in human cells.
Collapse
Affiliation(s)
- Eleni Petsalaki
- Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece
| | - Maria Dandoulaki
- Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece
| | - George Zachos
- Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece.
| |
Collapse
|
36
|
Rumlová M, Ruml T. In vitro methods for testing antiviral drugs. Biotechnol Adv 2018; 36:557-576. [PMID: 29292156 PMCID: PMC7127693 DOI: 10.1016/j.biotechadv.2017.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022]
Abstract
Despite successful vaccination programs and effective treatments for some viral infections, humans are still losing the battle with viruses. Persisting human pandemics, emerging and re-emerging viruses, and evolution of drug-resistant strains impose continuous search for new antiviral drugs. A combination of detailed information about the molecular organization of viruses and progress in molecular biology and computer technologies has enabled rational antivirals design. Initial step in establishing efficacy of new antivirals is based on simple methods assessing inhibition of the intended target. We provide here an overview of biochemical and cell-based assays evaluating the activity of inhibitors of clinically important viruses.
Collapse
Affiliation(s)
- Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| |
Collapse
|
37
|
Cho HJ, Mook-Jung I. O
‐GlcNAcylation regulates endoplasmic reticulum exit sites through
Sec31A
modification in conventional secretory pathway. FASEB J 2018; 32:4641-4657. [DOI: 10.1096/fj.201701523r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hyun Jin Cho
- Department of Biochemistry and Biomedical SciencesCollege of MedicineSeoul National UniversitySeoulSouth Korea
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical SciencesCollege of MedicineSeoul National UniversitySeoulSouth Korea
| |
Collapse
|
38
|
Increasing Diversity of Biological Membrane Fission Mechanisms. Trends Cell Biol 2018; 28:274-286. [DOI: 10.1016/j.tcb.2017.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022]
|
39
|
Caspi Y, Dekker C. Dividing the Archaeal Way: The Ancient Cdv Cell-Division Machinery. Front Microbiol 2018; 9:174. [PMID: 29551994 PMCID: PMC5840170 DOI: 10.3389/fmicb.2018.00174] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/25/2018] [Indexed: 01/06/2023] Open
Abstract
Cell division in most prokaryotes is mediated by the well-studied fts genes, with FtsZ as the principal player. In many archaeal species, however, division is orchestrated differently. The Crenarchaeota phylum of archaea features the action of the three proteins, CdvABC. This Cdv system is a unique and less-well-studied division mechanism that merits closer inspection. In vivo, the three Cdv proteins form a composite band that contracts concomitantly with the septum formation. Of the three Cdv proteins, CdvA is the first to be recruited to the division site, while CdvB and CdvC are thought to participate in the active part of the Cdv division machinery. Interestingly, CdvB shares homology with a family of proteins from the eukaryotic ESCRT-III complex, and CdvC is a homolog of the eukaryotic Vps4 complex. These two eukaryotic complexes are key factors in the endosomal sorting complex required for transport (ESCRT) pathway, which is responsible for various budding processes in eukaryotic cells and which participates in the final stages of division in Metazoa. There, ESCRT-III forms a contractile machinery that actively cuts the membrane, whereas Vps4, which is an ATPase, is necessary for the turnover of the ESCRT membrane-abscission polymers. In contrast to CdvB and CdvC, CdvA is unique to the archaeal Crenarchaeota and Thaumarchaeota phyla. The Crenarchaeota division mechanism has often been suggested to represent a simplified version of the ESCRT division machinery thus providing a model system to study the evolution and mechanism of cell division in higher organisms. However, there are still many open questions regarding this parallelism and the division mechanism of Crenarchaeota. Here, we review the existing data on the role of the Cdv proteins in the division process of Crenarchaeota as well as concisely review the ESCRT system in eukaryotes. We survey the similarities and differences between the division and abscission mechanisms in the two cases. We suggest that the Cdv system functions differently in archaea than ESCRT does in eukaryotes, and that, unlike the eukaryotic case, the Cdv system's main function may be related to surplus membrane invagination and cell-wall synthesis.
Collapse
Affiliation(s)
- Yaron Caspi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
40
|
Mealy MA, Nam TS, Pardo SJ, Pardo CA, Sobreira NL, Avramopoulos D, Valle D, Burns KH, Levy M. Familial monophasic acute transverse myelitis due to the pathogenic variant in VPS37A. NEUROLOGY-GENETICS 2018; 4:e213. [PMID: 29473047 PMCID: PMC5820602 DOI: 10.1212/nxg.0000000000000213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/20/2017] [Indexed: 12/30/2022]
Abstract
Objective To identify genetic differences among siblings with a family history of idiopathic transverse myelitis (ITM). Methods We compared whole-exome sequencing (WES) on germline samples from the 2 affected sisters with ITM with 3 of their healthy siblings. Results The 2 sisters with ITM both had acute onset of sensory loss in the legs, weakness, and bowel/bladder dysfunction. The first developed ITM at age 15 years with a clinical nadir of complete paralysis, which slowly recovered over a few years. MRI demonstrated a persistent T2 lesion in the lower thoracic cord. The second developed ITM at age 50 years with a nadir of sensory loss from T6 down and paraparesis in the legs, associated with an MRI lesion at T6. She also made a partial recovery with treatment. Both sisters are homozygous for a missense variant in VPS37A (c.700C>A, p.Leu234Ile) identified by WES. We performed targeted sequencing of VPS37A in an additional 86 samples from patients with ITM and 175 with other diseases to investigate the p.Leu234Ile variant. We identified another patient with ITM homozygous for the same rare variant. No patients with multiple sclerosis, neuromyelitis optica, other neurologic conditions, or any healthy controls in public databases were homozygous for this variant. Conclusions A rare missense variant in VPS37A may predispose to development of ITM. Further studies are necessary to determine the frequency of this variant in the patient population and the mechanism through which it contributes to the risk of disease.
Collapse
Affiliation(s)
- Maureen A Mealy
- Department of Neurology (M.A.M., S.J.P., C.A.P., M.L.), Institute of Genetic Medicine (N.L.S., D.A., D.V., K.H.B.), and Department of Pathology (K.H.B.), Johns Hopkins University, Baltimore, MD; and Department of Neurology (T.-S.N.), Chonnam National University Medical School, Gwangju, South Korea
| | - Tai-Seung Nam
- Department of Neurology (M.A.M., S.J.P., C.A.P., M.L.), Institute of Genetic Medicine (N.L.S., D.A., D.V., K.H.B.), and Department of Pathology (K.H.B.), Johns Hopkins University, Baltimore, MD; and Department of Neurology (T.-S.N.), Chonnam National University Medical School, Gwangju, South Korea
| | - Santiago J Pardo
- Department of Neurology (M.A.M., S.J.P., C.A.P., M.L.), Institute of Genetic Medicine (N.L.S., D.A., D.V., K.H.B.), and Department of Pathology (K.H.B.), Johns Hopkins University, Baltimore, MD; and Department of Neurology (T.-S.N.), Chonnam National University Medical School, Gwangju, South Korea
| | - Carlos A Pardo
- Department of Neurology (M.A.M., S.J.P., C.A.P., M.L.), Institute of Genetic Medicine (N.L.S., D.A., D.V., K.H.B.), and Department of Pathology (K.H.B.), Johns Hopkins University, Baltimore, MD; and Department of Neurology (T.-S.N.), Chonnam National University Medical School, Gwangju, South Korea
| | - Nara L Sobreira
- Department of Neurology (M.A.M., S.J.P., C.A.P., M.L.), Institute of Genetic Medicine (N.L.S., D.A., D.V., K.H.B.), and Department of Pathology (K.H.B.), Johns Hopkins University, Baltimore, MD; and Department of Neurology (T.-S.N.), Chonnam National University Medical School, Gwangju, South Korea
| | - Dimitrios Avramopoulos
- Department of Neurology (M.A.M., S.J.P., C.A.P., M.L.), Institute of Genetic Medicine (N.L.S., D.A., D.V., K.H.B.), and Department of Pathology (K.H.B.), Johns Hopkins University, Baltimore, MD; and Department of Neurology (T.-S.N.), Chonnam National University Medical School, Gwangju, South Korea
| | - David Valle
- Department of Neurology (M.A.M., S.J.P., C.A.P., M.L.), Institute of Genetic Medicine (N.L.S., D.A., D.V., K.H.B.), and Department of Pathology (K.H.B.), Johns Hopkins University, Baltimore, MD; and Department of Neurology (T.-S.N.), Chonnam National University Medical School, Gwangju, South Korea
| | - Kathleen H Burns
- Department of Neurology (M.A.M., S.J.P., C.A.P., M.L.), Institute of Genetic Medicine (N.L.S., D.A., D.V., K.H.B.), and Department of Pathology (K.H.B.), Johns Hopkins University, Baltimore, MD; and Department of Neurology (T.-S.N.), Chonnam National University Medical School, Gwangju, South Korea
| | - Michael Levy
- Department of Neurology (M.A.M., S.J.P., C.A.P., M.L.), Institute of Genetic Medicine (N.L.S., D.A., D.V., K.H.B.), and Department of Pathology (K.H.B.), Johns Hopkins University, Baltimore, MD; and Department of Neurology (T.-S.N.), Chonnam National University Medical School, Gwangju, South Korea
| |
Collapse
|
41
|
Petsalaki E, Dandoulaki M, Zachos G. The ESCRT protein Chmp4c regulates mitotic spindle checkpoint signaling. J Cell Biol 2018; 217:861-876. [PMID: 29362225 PMCID: PMC5839794 DOI: 10.1083/jcb.201709005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/16/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022] Open
Abstract
The mitotic spindle checkpoint delays anaphase onset in the presence of unattached kinetochores, and efficient checkpoint signaling requires kinetochore localization of the Rod-ZW10-Zwilch (RZZ) complex. In the present study, we show that human Chmp4c, a protein involved in membrane remodeling, localizes to kinetochores in prometaphase but is reduced in chromosomes aligned at the metaphase plate. Chmp4c promotes stable kinetochore-microtubule attachments and is required for proper mitotic progression, faithful chromosome alignment, and segregation. Depletion of Chmp4c diminishes localization of RZZ and Mad1-Mad2 checkpoint proteins to prometaphase kinetochores and impairs mitotic arrest when microtubules are depolymerized by nocodazole. Furthermore, Chmp4c binds to ZW10 through a small C-terminal region, and constitutive Chmp4c kinetochore targeting causes a ZW10-dependent checkpoint metaphase arrest. In addition, Chmp4c spindle functions do not require endosomal sorting complex required for transport-dependent membrane remodeling. These results show that Chmp4c regulates the mitotic spindle checkpoint by promoting localization of the RZZ complex to unattached kinetochores.
Collapse
Affiliation(s)
- Eleni Petsalaki
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion, Greece
| | - Maria Dandoulaki
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion, Greece
| | - George Zachos
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion, Greece
| |
Collapse
|
42
|
|
43
|
Manni MM, Derganc J, Čopič A. Crowd-Sourcing of Membrane Fission. Bioessays 2017; 39. [DOI: 10.1002/bies.201700117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/06/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Marco M. Manni
- Université Côte d'Azur; CNRS, IPMC; 06560 Valbonne France
| | - Jure Derganc
- Institute of Biophysics; Faculty of Medicine; University of Ljubljana; 1000 Ljubljana Slovenia
| | - Alenka Čopič
- Institut Jacques Monod, CNRS UMR 7592; Université Paris Diderot; Sorbonne Paris Cité 75013 Paris France
| |
Collapse
|
44
|
Hammerling BC, Shires SE, Leon LJ, Cortez MQ, Gustafsson ÅB. Isolation of Rab5-positive endosomes reveals a new mitochondrial degradation pathway utilized by BNIP3 and Parkin. Small GTPases 2017; 11:69-76. [PMID: 28696827 DOI: 10.1080/21541248.2017.1342749] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Degradation of mitochondria is an important cellular quality control mechanism mediated by two distinct pathways: one involving Parkin-mediated ubiquitination and the other dependent on mitophagy receptors. It is known that mitochondria are degraded by the autophagy pathway; however, we recently reported that the small GTPase Rab5 and early endosomes also participate in Parkin-mediated mitochondrial clearance. Here, we have developed a protocol to isolate Rab5-positive vesicles from cells for proteomics analysis and provide additional data confirming that mitophagy regulators and mitochondrial proteins are present in these vesicles. We also demonstrate that the mitophagy receptor BNIP3 utilizes the Rab5-endosomal pathway to clear mitochondria in cells. These findings indicate that a redundancy exists in the downstream degradation pathways to ensure efficient mitochondrial clearance.
Collapse
Affiliation(s)
- Babette C Hammerling
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Sarah E Shires
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Leonardo J Leon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Melissa Q Cortez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
45
|
Stoten CL, Carlton JG. ESCRT-dependent control of membrane remodelling during cell division. Semin Cell Dev Biol 2017; 74:50-65. [PMID: 28843980 PMCID: PMC6015221 DOI: 10.1016/j.semcdb.2017.08.035] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/07/2017] [Accepted: 08/18/2017] [Indexed: 12/16/2022]
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) proteins form an evolutionarily conserved membrane remodelling machinery. Identified originally for their role in cargo sorting and remodelling of endosomal membranes during yeast vacuolar sorting, an extensive body of work now implicates a sub-complex of this machinery (ESCRT-III), as a transplantable membrane fission machinery that is dispatched to various cellular locations to achieve a topologically unique membrane separation. Surprisingly, several ESCRT-III-regulated processes occur during cell division, when cells undergo a dramatic and co-ordinated remodelling of their membranes to allow the physical processes of division to occur. The ESCRT machinery functions in regeneration of the nuclear envelope during open mitosis and in the abscission phase of cytokinesis, where daughter cells are separated from each other in the last act of division. Roles for the ESCRT machinery in cell division are conserved as far back as Archaea, suggesting that the ancestral role of these proteins was as a membrane remodelling machinery that facilitated division and that was co-opted throughout evolution to perform a variety of other cell biological functions. Here, we will explore the function and regulation of the ESCRT machinery in cell division.
Collapse
|
46
|
Szymanska E, Budick-Harmelin N, Miaczynska M. Endosomal "sort" of signaling control: The role of ESCRT machinery in regulation of receptor-mediated signaling pathways. Semin Cell Dev Biol 2017; 74:11-20. [PMID: 28797837 DOI: 10.1016/j.semcdb.2017.08.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/24/2017] [Accepted: 08/04/2017] [Indexed: 12/31/2022]
Abstract
The endosomal sorting complexes required for transport (ESCRTs) machinery consists of four protein assemblies (ESCRT-0 to -III subcomplexes) which mediate various processes of membrane remodeling in the cell. In the endocytic pathway, ESCRTs sort cargo destined for degradation into intraluminal vesicles (ILVs) of endosomes. Cargos targeted by ESCRTs include various signaling molecules, mainly internalized cell-surface receptors but also some cytosolic proteins. It is therefore expected that aberrant trafficking caused by ESCRT dysfunction affects different signaling pathways. Here we review how perturbation of ESCRT activity alters intracellular transport of membrane receptors, causing their accumulation on endocytic compartments, decreased degradation and/or altered recycling to the plasma membrane. We further describe how perturbed trafficking of receptors impacts the activity of their downstream signaling pathways, with or without changes in transcriptional responses. Finally, we present evidence that ESCRT components can also control activity and intracellular distribution of cytosolic signaling proteins (kinases, other effectors and soluble receptors). The underlying mechanisms involve sequestration of such proteins in ILVs, their sorting for degradation or towards non-lysosomal destinations, and regulating their availability in various cellular compartments. All these ESCRT-mediated processes can modulate final outputs of multiple signaling pathways.
Collapse
Affiliation(s)
- Ewelina Szymanska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Noga Budick-Harmelin
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland; Cell Research and Immunology Department, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | - Marta Miaczynska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.
| |
Collapse
|
47
|
Chiaruttini N, Roux A. Dynamic and elastic shape transitions in curved ESCRT-III filaments. Curr Opin Cell Biol 2017; 47:126-135. [PMID: 28728013 DOI: 10.1016/j.ceb.2017.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The ESCRT-III complex is an evolutionary ancient and conserved complex that catalyzes fission of lipid membranes from the lumen of the neck in many, if not all processes requiring this specific fission reaction. The ESCRT-III membrane remodeling complex is unique as its molecular and polymeric structures do not intuitively suggests how it could deform and break lipid membranes. Here we review the common structural features of the ESCRT-III subunits, and the shape diversity of the various filamentous forms. We propose a simple geometry and elasticity framework that could help to isolate which features of the ESCRT-III filaments are common to all filamentous forms as well as to explain their diversity. We speculate on how these features could provide mechanistic insights into the many functions of the ESCRT-III complex.
Collapse
Affiliation(s)
- Nicolas Chiaruttini
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland; Swiss National Centre for Competence in Research Programme Chemical Biology, CH-1211 Geneva, Switzerland.
| |
Collapse
|
48
|
Huang G, Tang Y, Sun L, Xing H, Ma H, He R. Ultrasonic irradiation of low intensity with a mode of sweeping frequency enhances the membrane permeability and cell growth rate of Candida tropicalis. ULTRASONICS SONOCHEMISTRY 2017; 37:518-528. [PMID: 28427664 DOI: 10.1016/j.ultsonch.2017.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 06/07/2023]
Abstract
Here we report the enhancement of both cellular permeability and cell growth rate of Candida tropicalis after treatment with the ultrasonic irradiation of low intensity using a mode of sweeping frequency (UILS) generated by a self-developed ultrasonic device in our lab. After the ultrasonic treatment, remarkable biomass enhancement of the yeast was observed; the hyphae became significantly longer; the seeped cellular protein and nucleic acid from the yeast increased and the cellular Ca2+ content became lower. Illumina transcriptome sequencing showed that the ultrasonic treatment affected the expression of genes involved in diverse cellular components, biological processes and molecular functions. RT-PCR and Western blotting further confirmed the up-/down-regulation of genes in the ultrasound-treated yeasts. The optimal conditions of the ultrasonic treatment for the maximum biomass addition were determined as follows: the yeast was treated for 1h at the mid logarithmic phase, the frequency was 28±2kHz and the power density was 120W/L. Under these conditions, the Candida tropicalis biomass increased by 142.5% compared with the untreated yeast.
Collapse
Affiliation(s)
- Guoping Huang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Yingxiu Tang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Ling Sun
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Huan Xing
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Haile Ma
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Ronghai He
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
49
|
Monroe N, Han H, Shen PS, Sundquist WI, Hill CP. Structural basis of protein translocation by the Vps4-Vta1 AAA ATPase. eLife 2017; 6. [PMID: 28379137 PMCID: PMC5413351 DOI: 10.7554/elife.24487] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/04/2017] [Indexed: 12/18/2022] Open
Abstract
Many important cellular membrane fission reactions are driven by ESCRT pathways, which culminate in disassembly of ESCRT-III polymers by the AAA ATPase Vps4. We report a 4.3 Å resolution cryo-EM structure of the active Vps4 hexamer with its cofactor Vta1, ADP·BeFx, and an ESCRT-III substrate peptide. Four Vps4 subunits form a helix whose interfaces are consistent with ATP binding, is stabilized by Vta1, and binds the substrate peptide. The fifth subunit approximately continues this helix but appears to be dissociating. The final Vps4 subunit completes a notched-washer configuration as if transitioning between the ends of the helix. We propose that ATP binding propagates growth at one end of the helix while hydrolysis promotes disassembly at the other end, so that Vps4 ‘walks’ along ESCRT-III until it encounters the ordered N-terminal domain to destabilize the ESCRT-III lattice. This model may be generally applicable to other protein-translocating AAA ATPases. DOI:http://dx.doi.org/10.7554/eLife.24487.001 Membranes surround multiple compartments within cells as well as the cell itself. In living cells, these membranes are remodeled continuously. This allows cells to divide, move molecules between different compartments and perform other essential activities. One important remodeling event is known as fission, which splits a membrane into separate parts. Large repeating structures (or polymers) of ESCRT-III proteins play a crucial role in membrane fission. Breaking apart ESCRT-III polymers triggers membrane fission and also recycles the ESCRT-III proteins so that they can be used again. An enzyme called Vps4 converts chemical energy (stored in the form of a molecule called ATP) into the mechanical force that breaks apart the ESCRT-III polymers. The active form of Vps4 consists of six Vps4 subunits working together to form a complex that includes a cofactor protein called Vta1. Monroe et al. have now used a technique called cryo-electron microscopy to determine the structure of an active yeast Vps4-Vta1 complex while it is bound to a segment of an ESCRT-III protein. This revealed that four of the six Vps4 subunits form a helix (which resembles a spiral staircase) that binds ESCRT-III in its central pore. The structure implies that binding of ATP causes the Vps4 helix to grow at one end and that converting ATP into a molecule called ADP (to release energy) causes disassembly at the other end. The two additional Vps4 subunits move from the disassembling end to the growing end of the helix. In this manner, Vps4 ‘walks’ along ESCRT-III, thereby pulling it through the pore at the center of the Vps4 complex and triggering breakdown of the ESCRT-III polymer. Further work is now needed to understand exactly how this activity leads to membrane fission. DOI:http://dx.doi.org/10.7554/eLife.24487.002
Collapse
Affiliation(s)
- Nicole Monroe
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Han Han
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Peter S Shen
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Christopher P Hill
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
50
|
Ellena JF, Xiong W, Zhao X, Shanaiah N, Capelluto DGS. Backbone 1H, 15N, and 13C resonance assignments of the Tom1 VHS domain. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:1-4. [PMID: 27704363 DOI: 10.1007/s12104-016-9709-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
Efficient trafficking of ubiquitinated receptors (cargo) to endosomes requires the recruitment of adaptor proteins that exhibit ubiquitin-binding domains for recognition and transport. Tom1 is an adaptor protein that not only associates with ubiquitinated cargo but also represents a phosphoinositide effector during specific bacterial infections. This phosphoinositide-binding property is associated with its N-terminal Vps27, Hrs, STAM (VHS) domain. Despite its biological relevance, there are no resonance assignments of Tom1 VHS available that can fully characterize its molecular interactions. Here, we report the nearly complete 1H, 15N, and 13C backbone resonance assignments of the VHS domain of human Tom1.
Collapse
Affiliation(s)
- Jeffrey F Ellena
- Biomolecular Magnetic Resonance Facility, University of Virginia, Charlottesville, VA, 22904, USA
| | - Wen Xiong
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Biocomplexity Institute and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Xiaolin Zhao
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Biocomplexity Institute and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | - Daniel G S Capelluto
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Biocomplexity Institute and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|