1
|
Renganathan B, Moore AS, Yeo WH, Petruncio A, Ackerman D, Weigel AV, Team TC, Pasolli HA, Xu CS, Shtengel G, Hess HF, Serpinskaya AS, Zhang HF, Lippincott-Schwartz J, Gelfand VI. Vimentin filament transport and organization revealed by single-particle tracking and 3D FIB-SEM. J Cell Biol 2025; 224:e202406054. [PMID: 40062969 PMCID: PMC11893169 DOI: 10.1083/jcb.202406054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/22/2024] [Accepted: 01/09/2025] [Indexed: 03/14/2025] Open
Abstract
Vimentin intermediate filaments (VIFs) form complex, tightly packed networks; due to this density, traditional imaging approaches cannot discern single-filament behavior. To address this, we developed and validated a sparse vimentin-SunTag labeling strategy, enabling single-particle tracking of individual VIFs and providing a sensitive, unbiased, and quantitative method for measuring global VIF motility. Using this approach, we define the steady-state VIF motility rate, showing a constant ∼8% of VIFs undergo directed microtubule-based motion irrespective of subcellular location or local filament density. Significantly, our single-particle tracking approach revealed uncorrelated motion of individual VIFs within bundles, an observation seemingly at odds with conventional models of tightly cross-linked bundles. To address this, we acquired high-resolution focused ion beam scanning electron microscopy volumes of vitreously frozen cells and reconstructed three-dimensional VIF bundles, finding that they form only loosely organized, semi-coherent structures from which single VIFs frequently emerge to locally engage neighboring microtubules. Overall, this work demonstrates single VIF dynamics and organization in the cellular milieu for the first time.
Collapse
Affiliation(s)
- Bhuvanasundar Renganathan
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Andrew S. Moore
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Wei-Hong Yeo
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Alyson Petruncio
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - David Ackerman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Aubrey V. Weigel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - The CellMap Team
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - H. Amalia Pasolli
- Electron Microscopy Resource Center, Rockefeller University, New York, NY, USA
| | - C. Shan Xu
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Gleb Shtengel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Harald F. Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Anna S. Serpinskaya
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | | | - Vladimir I. Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
2
|
Becker B, Gobom J, Brinkmalm G, Andreasson U, Meda FJ, Zetterberg H, Blennow K. Novel insights into the molecular nature of neurofilament light polypeptide species in cerebrospinal fluid. Brain Commun 2025; 7:fcaf129. [PMID: 40248348 PMCID: PMC12003950 DOI: 10.1093/braincomms/fcaf129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 02/11/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025] Open
Abstract
The quantification of neurofilament light polypeptide (NFL) in biofluids is being clinically used to detect and grade general neuronal damage in neurodegenerative diseases and quantify neuronal injury during acute events like traumatic brain injury. Specific assays that target only particular molecular breakdown products of neurofilaments have the potential to distinguish between various pathologies. Nevertheless, the molecular structure of neurofilament light polypeptide in cerebrospinal fluid remains to be elucidated. We characterized neurofilament light polypeptide in cerebrospinal fluid by size-exclusion chromatography, Western blotting and mass spectrometry. Neurofilament light polypeptide in cerebrospinal fluid was found to be composed of aggregates of fragments of the full-length molecule. These aggregates were sensitive to reduction by dithiothreitol and dissociated to monomeric fragments of 6-12 kDa (Western blot), covering most of the coiled-coil domains of neurofilament light polypeptide. Since only cysteine residues can form disulfide bonds, this points to a role of the single cysteine 322 for maintaining the stability of the aggregates. The sequence region covered by the identified fragments ended just a few amino acids C-terminally of the coiled-coil region at a site which had been previously mapped to a calpain cleavage site in the glial fibrillary acidic protein, which is highly homologous to neurofilament light polypeptide in the coiled-coil region. This cleavage site was also confirmed to be present in bovine neurofilament light polypeptide by in vitro digestion of purified neurofilament light polypeptide with calpain-1. The difference of the molecular weights of the reduced and non-reduced forms of neurofilament light polypeptide suggests that neurofilament light polypeptide in CSF consists of disulfide-linked aggregated fragments, most likely tetramers, or alternately dimers in a complex with another binding partner.
Collapse
Affiliation(s)
- Bruno Becker
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, S-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-43180 Mölndal, Sweden
| | - Johan Gobom
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, S-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-43180 Mölndal, Sweden
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, S-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-43180 Mölndal, Sweden
| | - Ulf Andreasson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, S-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-43180 Mölndal, Sweden
| | - Francisco J Meda
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, S-43180 Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, S-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-43180 Mölndal, Sweden
- UCL Institute of Neurology, Department of Molecular Neuroscience, University College London, Queen Square, London WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London NW1 3BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Shatin, N.T., Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, S-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-43180 Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, FR-75013 Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, PR China
| |
Collapse
|
3
|
Kahn OI, Dominguez SL, Glock C, Hayne M, Vito S, Sengupta Ghosh A, Adrian M, Burgess BL, Meilandt WJ, Friedman BA, Hoogenraad CC. Secreted neurofilament light chain after neuronal damage induces myeloid cell activation and neuroinflammation. Cell Rep 2025; 44:115382. [PMID: 40056413 DOI: 10.1016/j.celrep.2025.115382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/20/2024] [Accepted: 02/11/2025] [Indexed: 03/10/2025] Open
Abstract
Neurofilament light chain (NfL) is a neuron-specific cytoskeletal protein that provides structural support for axons and is released into the extracellular space following neuronal injury. While NfL has been extensively studied as a disease biomarker, the underlying release mechanisms and role in neurodegeneration remain poorly understood. Here, we find that neurons secrete low baseline levels of NfL, while neuronal damage triggers calpain-driven proteolysis and release of fragmented NfL. Secreted NfL activates microglial cells, which can be blocked with anti-NfL antibodies. We utilize in vivo single-cell RNA sequencing to profile brain cells after injection of recombinant NfL into the mouse hippocampus and find robust macrophage and microglial responses. Consistently, NfL knockout mice ameliorate microgliosis and delay symptom onset in the SOD1 mouse model of amyotrophic lateral sclerosis (ALS). Our results show that released NfL can activate myeloid cells in the brain and is, thus, a potential therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Olga I Kahn
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Sara L Dominguez
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Caspar Glock
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA; Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Margaret Hayne
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Steve Vito
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | - Max Adrian
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Braydon L Burgess
- Department of Translational Medicine, Genentech, Inc., South San Francisco, CA 94080, USA
| | - William J Meilandt
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Brad A Friedman
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA; Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Casper C Hoogenraad
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
4
|
Meyer J, Gaur N, von der Gablentz J, Friedrich B, Roediger A, Grosskreutz J, Steinbach R. Phosphorylated neurofilament heavy chain (pNfH) concentration in cerebrospinal fluid predicts overall disease aggressiveness (D50) in amyotrophic lateral sclerosis. Front Neurosci 2025; 19:1536818. [PMID: 40143847 PMCID: PMC11936903 DOI: 10.3389/fnins.2025.1536818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Introduction Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder, characterized by tremendous clinical heterogeneity that necessitates reliable biomarkers for the trajectory of the disease. The potential of phosphorylated Neurofilament-Heavy-chain (pNfH) measured in cerebrospinal fluid (CSF) to mirror disease progressiveness has repeatedly been suggested but is not applicable as outcome on an individual patient-level. This potential was probably obfuscated before due to imprecise clinical measures of disease progression that assumed a linear decline of motoric function over time. The primary objective was therefore to study if disease aggressiveness, as quantified via the D50 model, would reveal more stable correlations with pNfH. Methods ELISA-quantified pNfH CSF levels of 108 patients with ALS were comparatively analyzed in relation to three different measures of disease progression speed via analyses of covariance, linear and non-linear regressions, respectively. These were (a) the D50, depicting a patient's overall disease aggressiveness, (b) cFL, the calculated functional loss-rate as locally derived parameter of progression speed, and (c) DPR, the disease progression-rate as more commonly used linear approximation of points lost per month in the ALS functional rating scale since symptom onset. Results All analyses of covariance showed a significant main impact of the respective disease progression-speed parameter on pNfH, independent of disease phase, presence of frontotemporal dementia, analyzing laboratory, sex or clinical onset type, while only age revealed borderline additional influence. Notably, CSF pNfH concentration was independent of how far the disease had progressed, as neither disease phase nor a direct regression with the quantified disease accumulation at the time of lumbar puncture revealed a significant correlation. However, the parameter D50 quantifying aggressiveness showed the most significant impact on pNfH-levels, as compared to the cFL and even more evident in contrast to the DPR. This superiority of D50 was confirmed in direct linear and most evident in non-linear regressions with pNfH. Conclusion Overall disease aggressiveness in ALS, as quantified by D50, most robustly correlated with CSF pNfH-levels, independent of the time of collection during symptomatic disease. This opens perspectives to use CSF pNfH as a prognostic outcome measure for future therapeutic interventions in the sense of precision medicine.
Collapse
Affiliation(s)
- Julia Meyer
- Precision Neurology of Neuromuscular and Motor Neuron Diseases, University of Lübeck, Lübeck, Germany
| | - Nayana Gaur
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Janina von der Gablentz
- Precision Neurology of Neuromuscular and Motor Neuron Diseases, University of Lübeck, Lübeck, Germany
| | - Bernd Friedrich
- Precision Neurology of Neuromuscular and Motor Neuron Diseases, University of Lübeck, Lübeck, Germany
| | - Annekathrin Roediger
- Department of Neurology, Jena University Hospital, Jena, Germany
- Center for Rare Diseases, University Hospital, Jena, Germany
| | - Julian Grosskreutz
- Precision Neurology of Neuromuscular and Motor Neuron Diseases, University of Lübeck, Lübeck, Germany
- Department of Neurology, Jena University Hospital, Jena, Germany
- Cluster for Precision Medicine in Inflammation, Universities of Kiel and Lübeck, Lübeck, Germany
| | - Robert Steinbach
- Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
5
|
Ruggieri M, Paparella G, Clemente L, Libro G, Gargano CD, de Tommaso M. Plasma neurofilament light chain in fibromyalgia: A case control study exploring correlation with clinical and cognitive features. Eur J Pain 2025; 29:e4752. [PMID: 39494473 DOI: 10.1002/ejp.4752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Plasma neurofilament light chain (NFL) has been measured as a biomarker of neuronal damage in various neurological disorders. Elevated tau and β-amyloid levels have been found in patients with fibromyalgia (FM). The aim of the present study was to compare plasma neurofilament levels in fibromyalgia patients with normal controls and to investigate the correlation with clinical features and cognitive tests. METHODS Plasma NFL levels were assessed in 33 FM patients and compared with 22 age-matched controls. All patients were also assessed with clinical scales examining fibromyalgia disability, sleep quality and duration, fatigue, anxiety, and depression, and a neuropsychological battery examining executive function, verbal short-term memory, and working memory, as well as attentional executive function and selective attention, interference sensitivity, and inhibition of automatic responses. RESULTS NFL levels were higher in FM patients (controls 6.19± 1.92; FM 17.28± 15.94 pg/mL ANOVA p 0.002). Working memory was the most impaired cognitive function significantly correlated with high NFL scores (Pearson p 0.034). Short sleep times also correlated with higher NFL scores (Pearson p 0.02) and poorer working memory performance (Pearson p 0.02). No correlation was found with indices of disease severity and duration. CONCLUSIONS Plasma NFL levels are elevated in fibromyalgia patients, suggesting neuronal damage and correlating with a slight decrease in working memory and short sleep duration. SIGNIFICANCE STATEMENT Plasma neurofilament levels are elevated in patients with fibromyalgia, regardless of disease severity and duration. Neurofilament levels are higher in patients with mild working memory impairment and sleep disorders. Subgroups of patients with primary neuronal damage phenomena could be individualized for prospective evaluation with regard to the possible development of cognitive decline and sleep disturbances, which would justify a tailored therapeutic approach.
Collapse
Affiliation(s)
- Maddalena Ruggieri
- Neurophysiopathology Unit, Policlinico General Hospital, DiBrain Department, Bari Aldo Moro University, Bari, Italy
| | - Giulia Paparella
- Neurophysiopathology Unit, Policlinico General Hospital, DiBrain Department, Bari Aldo Moro University, Bari, Italy
| | - Livio Clemente
- Neurophysiopathology Unit, Policlinico General Hospital, DiBrain Department, Bari Aldo Moro University, Bari, Italy
| | - Giuseppe Libro
- Neurophysiopathology Unit, Policlinico General Hospital, DiBrain Department, Bari Aldo Moro University, Bari, Italy
| | - Concetta Domenica Gargano
- Neurophysiopathology Unit, Policlinico General Hospital, DiBrain Department, Bari Aldo Moro University, Bari, Italy
| | - Marina de Tommaso
- Neurophysiopathology Unit, Policlinico General Hospital, DiBrain Department, Bari Aldo Moro University, Bari, Italy
| |
Collapse
|
6
|
Petzold A. Proteolysis-Based Biomarker Repertoire of the Neurofilament Proteome. J Neurochem 2025; 169:e70023. [PMID: 40066701 PMCID: PMC11894590 DOI: 10.1111/jnc.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 03/15/2025]
Abstract
Neurodegeneration presents a significant challenge in ageing populations, often being detected too late for effective intervention. Biomarkers have shown great potential in addressing this issue, with neurofilament (Nf) proteins emerging as validated biomarkers presently transitioning from research to routine laboratory use. Whilst advances in large-scale quantitative analyses have enabled the targeted study of proteolytic Nf fragments in blood, the complete landscape of the Nf proteolytic breakdown remains unknown. This study presents a comprehensive atlas of the human Nf isoform (Z) degradome, based on the number of known cleavage sites (x). The full scale of the Nf degradome is described by the formula: Z = ((x + 1) × (x + 2)/2) - 1. The resulting neurofilament degradome atlas (NDA) was validated through a triple-layer approach using in vitro data (open access at: https://doi.org/10.5522/04/25689378.v1). The NDA offers valuable applications in biomarker detection, targeted antibody development, exploration of autoimmunity and understanding Nf aggregate formation. Analysis of the Nf degradome reveals novel insights into neurodegenerative diseases by investigating peptide pools affected by genetic mutations in the Nf genome and alterations in proteolytic pathways. The annotated NDA is publicly available as a database resource, supporting advancements in affinity-based biomarker tests through informed peptide selection and minimising biases in label-free approaches. In conclusion, this study highlights the biological significance of a dynamic pool of coexisting proteolytic Nf peptides, providing a framework that can be applied to other proteins.
Collapse
Affiliation(s)
- Axel Petzold
- Queen Square Institute of Neurology, UCL and The National Hospital for Neurology and NeurosurgeryLondonUK
| |
Collapse
|
7
|
Wang T, Yan LM, Ma TC, Gao XR. Association between serum neurofilament light chains and Life's Essential 8: A cross-sectional analysis. PLoS One 2025; 20:e0306315. [PMID: 39992894 PMCID: PMC11849891 DOI: 10.1371/journal.pone.0306315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/14/2024] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND AND AIM Serum neurofilament light chain (sNfL), a protein released into the bloodstream post-neuronal axonal damage, has been validated as a robust biomarker for a range of neurological and systemic diseases. Concurrently, Life's Essential 8 (LE8) comprises a holistic suite of health behaviors and metabolic markers that are essential for assessing and enhancing cardiovascular health. Nevertheless, the interrelation between LE8 and sNfL is not yet fully elucidated. This investigation seeks to evaluate the association between LE8 and sNfL within the framework of the National Health and Nutrition Examination Survey (NHANES). METHODS According to data from the 2013-2014 NHANES, the study enrolled a total of 5262 participants aged between 20 and 75 years. We excluded 3035 individuals lacking sNfL measurements, included 2071 subjects for analysis, and further excluded cases from LE8 due to missing data. Ultimately, 1691 valid datasets were obtained. Hierarchical and multiple regression analyses were conducted, supplemented by smooth curve fitting and saturation effect analysis to investigate the relationship between LE8 and sNfL. RESULTS An inverse correlation was observed between LE8 scores and sNfL levels. For each SD change increase in LE8, log-transformed sNfL levels decreased by 0.14 (-0.17, -0.11 in the non-adjusted model), 0.08 (-0.10, -0.05 in the minimally adjusted model), and 0.08 (-0.12, -0.05 in the fully adjusted model). The multi-factor adjusted β coefficients and 95% confidence intervals (CIs) for LE8 categories (<50, 50 ~ 80, and ≥80) were as follows: reference, -0.20 (-0.34, -0.06), and -0.26 (-0.42, -0.10). The inflection point was determined to be 58.12, identified using a two-piece linear regression model. CONCLUSION The analysis indicated a non-linear relationship between LE8 scores and sNfL levels. Associations were noted a positive association between LE8 and sNfL. These results suggest that lifestyle modifications and optimization of metabolic markers could potentially correlate with reduced sNfL levels; further investigation is necessary to confirm a causal relationship.
Collapse
Affiliation(s)
- Tao Wang
- Department of Neurology, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Li-Ming Yan
- Department of Gynecology, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Teng-Chi Ma
- The First Affiliated Hospital of Xi’an Jiaotong University, Yulin Hospital, Yulin, Shaanxi, China
| | - Xiao-Rong Gao
- Department of Neurology, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
8
|
Marzetti E, Di Lorenzo R, Calvani R, Pesce V, Landi F, Coelho-Júnior HJ, Picca A. From Cell Architecture to Mitochondrial Signaling: Role of Intermediate Filaments in Health, Aging, and Disease. Int J Mol Sci 2025; 26:1100. [PMID: 39940869 PMCID: PMC11817570 DOI: 10.3390/ijms26031100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The coordination of cytoskeletal proteins shapes cell architectures and functions. Age-related changes in cellular mechanical properties have been linked to decreased cellular and tissue dysfunction. Studies have also found a relationship between mitochondrial function and the cytoskeleton. Cytoskeleton inhibitors impact mitochondrial quality and function, including motility and morphology, membrane potential, and respiration. The regulatory properties of the cytoskeleton on mitochondrial functions are involved in the pathogenesis of several diseases. Disassembly of the axon's cytoskeleton and the release of neurofilament fragments have been documented during neurodegeneration. However, these changes can also be related to mitochondrial impairments, spanning from reduced mitochondrial quality to altered bioenergetics. Herein, we discuss recent research highlighting some of the pathophysiological roles of cytoskeleton disassembly in aging, neurodegeneration, and neuromuscular diseases, with a focus on studies that explored the relationship between intermediate filaments and mitochondrial signaling as relevant contributors to cellular health and disease.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (E.M.); (R.C.); (F.L.); (H.J.C.-J.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Rosa Di Lorenzo
- Department of Biosciences, Biotechnologies and Environment, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy; (R.D.L.); (V.P.)
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (E.M.); (R.C.); (F.L.); (H.J.C.-J.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Vito Pesce
- Department of Biosciences, Biotechnologies and Environment, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy; (R.D.L.); (V.P.)
| | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (E.M.); (R.C.); (F.L.); (H.J.C.-J.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Hélio José Coelho-Júnior
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (E.M.); (R.C.); (F.L.); (H.J.C.-J.)
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (E.M.); (R.C.); (F.L.); (H.J.C.-J.)
- Department of Medicine and Surgery, LUM University, Str. Statale 100, 70010 Casamassima, Italy
| |
Collapse
|
9
|
Yuan X, Li W, Yan Q, Ou Y, Long Q, Zhang P. Biomarkers of mature neuronal differentiation and related diseases. Future Sci OA 2024; 10:2410146. [PMID: 39429212 PMCID: PMC11497955 DOI: 10.1080/20565623.2024.2410146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
The nervous system regulates perception, cognition and behavioral responses by serving as the body's primary communication system for receiving, regulating and transmitting information. Neurons are the fundamental structures and units of the nervous system. Their differentiation and maturation processes rely on the expression of specific biomarkers. Neuron-specific intracellular markers can be used to determine the degree of neuronal maturation. Neuronal cytoskeletal proteins dictate the shape and structure of neurons, while synaptic plasticity and signaling processes are intricately associated with neuronal synaptic markers. Furthermore, abnormal expression levels of biomarkers can serve as diagnostic indicators for nervous system diseases. This article reviews the markers of mature neuronal differentiation and their relationship with nervous system diseases.
Collapse
Affiliation(s)
- Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Wen Li
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Qi Yan
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Ya Ou
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Qingxi Long
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Pingshu Zhang
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| |
Collapse
|
10
|
Sharma P, Giri A, Tripathi PN. Emerging Trends: Neurofilament Biomarkers in Precision Neurology. Neurochem Res 2024; 49:3208-3225. [PMID: 39347854 DOI: 10.1007/s11064-024-04244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
Neurofilaments are structural proteins found in the cytoplasm of neurons, particularly in axons, providing structural support and stability to the axon. They consist of multiple subunits, including NF-H, NF-M, and NF-L, which form long filaments along the axon's length. Neurofilaments are crucial for maintaining the shape and integrity of neurons, promoting axonal transport, and regulating neuronal function. They are part of the intermediate filament (IF) family, which has approximately 70 tissue-specific genes. This diversity allows for a customizable cytoplasmic meshwork, adapting to the unique structural demands of different tissues and cell types. Neurofilament proteins show increased levels in both cerebrospinal fluid (CSF) and blood after neuroaxonal damage, indicating injury regardless of the underlying etiology. Precise measurement and long-term monitoring of damage are necessary for determining prognosis, assessing disease activity, tracking therapeutic responses, and creating treatments. These investigations contribute to our understanding of the importance of proper NF composition in fundamental neuronal processes and have implications for neurological disorders associated with NF abnormalities along with its alteration in different animal and human models. Here in this review, we have highlighted various neurological disorders such as Alzheimer's, Parkinson's, Huntington's, Dementia, and paved the way to use neurofilament as a marker in managing neurological disorders.
Collapse
Affiliation(s)
- Priti Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India
| | - Aditi Giri
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India.
| | - Prabhash Nath Tripathi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
11
|
Devarakonda SS, Basha S, Pithakumar A, L B T, Mukunda DC, Rodrigues J, K A, Biswas S, Pai AR, Belurkar S, Mahato KK. Molecular mechanisms of neurofilament alterations and its application in assessing neurodegenerative disorders. Ageing Res Rev 2024; 102:102566. [PMID: 39481763 DOI: 10.1016/j.arr.2024.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Neurofilaments are intermediate filaments present in neurons. These provide structural support and maintain the size and shape of the neurons. Dysregulation, mutation, and aggregation of neurofilaments raise the levels of these proteins in the blood and cerebrospinal fluid (CSF), which are characteristic features of axonal damage and certain rare neurological diseases, such as Giant Axonal Neuropathy and Charcot-Mare-Tooth disease. Understanding the structure, dynamics, and function of neurofilaments has been greatly enhanced by a diverse range of biochemical and preclinical investigations conducted over more than four decades. Recently, there has been a resurgence of interest in post-translational modifications of neurofilaments, such as phosphorylation, aggregation, mutation, oxidation, etc. Over the past twenty years, several rare disorders have been studied from structural alterations of neurofilaments. These disorders are monitored by fluid biomarkers such as neurofilament light chains. Currently, there are many tools, such as Enzyme-Linked Immunosorbent Assay, Electrochemiluminescence Assay, Single-Molecule Array, Western/immunoblotting, etc., in use to assess the neurofilament proteins in Blood and CSF. However, all these techniques utilize expensive, non-specific, or antibody-based methods, which make them unsuitable for routine screening of neurodegenerative disorders. This provides room to search for newer sensitive, cost-effective, point-of-care tools for rapid screening of the disease. For a long time, the molecular mechanisms of neurofilaments have been poorly understood due to insufficient research attempts, and a deeper understanding of them remains elusive. Therefore, this review aims to highlight the available literature on molecular mechanisms of neurofilaments and the function of neurofilaments in axonal transport, axonal conduction, axonal growth, and neurofilament aggregation, respectively. Further, this review discusses the role of neurofilaments as potential biomarkers for the identification of several neurodegenerative diseases in clinical laboratory practice.
Collapse
Affiliation(s)
| | - Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Anjana Pithakumar
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Thoshna L B
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | | | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Ameera K
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Shimul Biswas
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Sushma Belurkar
- Department of Pathology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India.
| |
Collapse
|
12
|
Liu X, Chen X, Chen J. Relationship between serum neurofilament light chain protein and depression: A nationwide survey and Mendelian randomization study. J Affect Disord 2024; 366:162-171. [PMID: 39197554 DOI: 10.1016/j.jad.2024.08.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/22/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Investigating the link between serum neurofilament protein (sNfL) levels and depression remains an area of limited understanding. This study explores the correlation in US adults and employs Mendelian randomization (MR) to ascertain causality. METHODS Our cross-sectional study analyzed data from participants aged 20 and above in the National Health and Nutrition Examination Survey (2013-2014). We employed a weighted multiple logistic regression model to examine the relationship between ln (sNfL) and depression. Restricted cubic splines (RCS) were used to visualize non-linear relationships. Stratified analyses examined associations between ln(sNfL) and depression in different subgroups. Subsequently, we conducted a two-sample bidirectional Mendelian randomization (MR) to assess the causal relationship between sNfL and depression. The inverse variance-weighted (IVW) method was utilized as the primary analysis. RESULTS Among 1765 participants (mean age 45.19 years; 49.37 % male), 166 had depression with a Patient Health Questionnaire (PHQ-9) score ≥ 10. After adjusting for covariates, a positive correlation remained between sNfL and depression (OR 1.511, 95 % CI: 1.050-2.175). RCS curves indicated a non-linear association, with a turning point at 2.76 pg/ml. Stratified analyses revealed positive correlations in specific subgroups, with interactions involving age, race, family income, recreational activity, and ln(sNfL). MR using IVW found no significant causal relationship between sNfL and depression genetically (OR = 0.956, 95 % CI: 0.878-1.042), with reverse analysis yielding similar results (OR = 0.897, 95 % CI: 0.756-1.065). CONCLUSIONS This cross-sectional study highlights a significant correlation between ln(sNfL) and depression. However, MR results indicate no causal relationship between sNfL and depression.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, China.
| | - Xiong Chen
- Department of Mental Health Centre, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jun Chen
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
13
|
Dallon JC, Evans E, Grant CP, Portet S. Steady state distributions of moving particles in one dimension: with an eye towards axonal transport. J Math Biol 2024; 89:56. [PMID: 39476169 DOI: 10.1007/s00285-024-02157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/03/2024] [Accepted: 10/20/2024] [Indexed: 11/10/2024]
Abstract
Axonal transport, propelled by motor proteins, plays a crucial role in maintaining the homeostasis of functional and structural components over time. To establish a steady-state distribution of moving particles, what conditions are necessary for axonal transport? This question is pertinent, for instance, to both neurofilaments and mitochondria, which are structural and functional cargoes of axonal transport. In this paper we prove four theorems regarding steady state distributions of moving particles in one dimension on a finite domain. Three of the theorems consider cases where particles approach a uniform distribution at large time. Two consider periodic boundary conditions and one considers reflecting boundary conditions. The other theorem considers reflecting boundary conditions where the velocity is space dependent. If the theoretical results hold in the complex setting of the cell, they would imply that the uniform distribution of neurofilaments observed under healthy conditions appears to require a continuous distribution of neurofilament velocities. Similarly, the spatial distribution of axonal mitochondria may be linked to spatially dependent transport velocities that remain invariant over time.
Collapse
Affiliation(s)
- J C Dallon
- Department of Mathematics, Brigham Young University, Provo, UT, 84602-6539, USA.
| | - Emily Evans
- Department of Mathematics, Brigham Young University, Provo, UT, 84602-6539, USA
| | - Christopher P Grant
- Department of Mathematics, Brigham Young University, Provo, UT, 84602-6539, USA
| | - Stephanie Portet
- Department of Mathematics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
14
|
Urbano T, Maramotti R, Tondelli M, Gallingani C, Carbone C, Iacovino N, Vinceti G, Zamboni G, Chiari A, Bedin R. Comparison of Serum and Cerebrospinal Fluid Neurofilament Light Chain Concentrations Measured by Ella™ and Lumipulse™ in Patients with Cognitive Impairment. Diagnostics (Basel) 2024; 14:2408. [PMID: 39518375 PMCID: PMC11544876 DOI: 10.3390/diagnostics14212408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE Neurofilament light chain proteins (NfLs) are considered a promising biomarker of neuroaxonal damage in several neurological diseases. Their measurement in the serum and cerebrospinal fluid (CSF) of patients with dementia may be especially useful. Our aim was to compare the NfL measurement performance of two advanced technologies, specifically the Ella™ microfluidic platform and the Lumipulse™ fully automated system, in patients with cognitive disorders. METHODS Thirty subjects with neurodegenerative cognitive disorders (10 with Alzheimer's Disease, 10 with Frontotemporal Dementia, and 10 with non-progressive Mild Cognitive Impairment) seen at the Cognitive Neurology Clinic of Modena University Hospital (Italy) underwent CSF and serum NfL measurement with both the Ella™ microfluidic platform (Bio-Techne, Minneapolis, MN, USA)) and the Lumipulse™ fully automated system for the CLEIA (Fujirebio Inc., Ghent, Belgium). Correlation and regression analyses were applied to assess the association between NfL concentrations obtained with the two assays in CSF and serum. The Passing-Bablok regression method was employed to evaluate the agreement between the assays. RESULTS There were high correlations between the two assays (r = 0.976, 95% CI. 0.950-0.989 for CSF vs. r = 0.923, 95% CI 0.842-0.964 for serum). A Passing-Bablok regression model was estimated to explain the relationship between the two assays, allowing us to switch from one to the other when only one assay was available. CONCLUSIONS We found a good degree of correlation between the two methods in patients with neurocognitive disorders. We also established a method that will allow comparisons between results obtained with either technique, allowing for meta-analyses and larger sample sizes.
Collapse
Affiliation(s)
- Teresa Urbano
- Neuroimmunology Laboratory, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Baggiovara Hospital, 41126 Modena, Italy; (T.U.); (R.B.)
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Riccardo Maramotti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.M.); (C.G.); (C.C.); (N.I.); (G.Z.)
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Mathematics and Computer Science, University of Ferrara, 44121 Ferrara, Italy
| | - Manuela Tondelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.M.); (C.G.); (C.C.); (N.I.); (G.Z.)
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Chiara Gallingani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.M.); (C.G.); (C.C.); (N.I.); (G.Z.)
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Chiara Carbone
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.M.); (C.G.); (C.C.); (N.I.); (G.Z.)
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Najara Iacovino
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.M.); (C.G.); (C.C.); (N.I.); (G.Z.)
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Giulia Vinceti
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Giovanna Zamboni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.M.); (C.G.); (C.C.); (N.I.); (G.Z.)
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Annalisa Chiari
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Roberta Bedin
- Neuroimmunology Laboratory, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Baggiovara Hospital, 41126 Modena, Italy; (T.U.); (R.B.)
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.M.); (C.G.); (C.C.); (N.I.); (G.Z.)
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| |
Collapse
|
15
|
Xu Q, Wang J, Li H, Gao Y. Association between serum neurofilament light chains (sNfL) and neurologic disorders in a representative sample of US adults: a cross-sectional study. Rev Clin Esp 2024; 224:510-521. [PMID: 38972635 DOI: 10.1016/j.rceng.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND While increased neurofilament light chain (NfL) in serum concentrations are linked to the progression of several neurological conditions, their distribution and implications within the general adult population remain largely unexplored. The current research aims to clarify the relationship between serum NfL levels and neurological disorders in a broad and representative population sample. METHODS We utilized information gathered from 1751 adults involved in the 2013-2014 cycle of the National Health and Nutrition Examination Survey . Our analytical approach encompassed logistic regression, smoothed curve fitting, and subgroup analyses to identify potential correlations between serum NfL levels and neurological conditions, such as depression, severe hearing and visual impairments, stroke, subjective memory deficits, and sleep problems. RESULTS After adjusting for all confounders, we found that higher serum NfL levels were significantly associated with increased risks of depression, stroke, subjective memory deficits, and longer sleep duration (p < 0.05). Subgroup analyses supported these findings. Additionally, BMI significantly influenced the relationship between serum NfL levels and long-term subjective memory decline. CONCLUSION Our research shows that higher serum NfL levels are strongly related to an elevated risk for several neurological disorders. These findings highlight the role of serum NfL serving as a critical marker for early detection and monitoring of neurological conditions, emphasizing its importance in both clinical and public health settings.
Collapse
Affiliation(s)
- Qi Xu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Nanyang Medical College, Nanyang, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Jiale Wang
- Department of Internal Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Hanzhi Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Nanyang Medical College, Nanyang, China
| | - Yuwan Gao
- Department of Ophthalmology, The First Affiliated Hospital of Nanyang Medical College, Nanyang, China
| |
Collapse
|
16
|
Coelho-Rato LS, Parvanian S, Andrs Salajkova S, Medalia O, Eriksson JE. Intermediate filaments at a glance. J Cell Sci 2024; 137:jcs261386. [PMID: 39206824 DOI: 10.1242/jcs.261386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Intermediate filaments (IFs) comprise a large family of versatile cytoskeletal proteins, divided into six subtypes with tissue-specific expression patterns. IFs have a wide repertoire of cellular functions, including providing structural support to cells, as well as active roles in mechanical support and signaling pathways. Consequently, defects in IFs are associated with more than 100 diseases. In this Cell Science at a Glance article, we discuss the established classes of IFs and their general features, their functions beyond structural support, and recent advances in the field. We also highlight their involvement in disease and potential use as clinical markers of pathological conditions. Finally, we provide our view on current knowledge gaps and the future directions of the IF field.
Collapse
Affiliation(s)
- Leila S Coelho-Rato
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
| | - Sepideh Parvanian
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Sarka Andrs Salajkova
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - John E Eriksson
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
- Euro-Bioimaging ERIC, 20520 Turku, Finland
| |
Collapse
|
17
|
Mousele C, Holden D, Gnanapavan S. Neurofilaments in neurologic disease. Adv Clin Chem 2024; 123:65-128. [PMID: 39181624 DOI: 10.1016/bs.acc.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Neurofilaments (NFs), major cytoskeletal constituents of neurons, have emerged as universal biomarkers of neuronal injury. Neuroaxonal damage underlies permanent disability in various neurological conditions. It is crucial to accurately quantify and longitudinally monitor this damage to evaluate disease progression, evaluate treatment effectiveness, contribute to novel treatment development, and offer prognostic insights. Neurofilaments show promise for this purpose, as their levels increase with neuroaxonal damage in both cerebrospinal fluid and blood, independent of specific causal pathways. New assays with high sensitivity allow reliable measurement of neurofilaments in body fluids and open avenues to investigate their role in neurological disorders. This book chapter will delve into the evolving landscape of neurofilaments, starting with their structure and cellular functions within neurons. It will then provide a comprehensive overview of their broad clinical value as biomarkers in diseases affecting the central or peripheral nervous system.
Collapse
|
18
|
Ding EA, Kumar S. Neurofilament Biophysics: From Structure to Biomechanics. Mol Biol Cell 2024; 35:re1. [PMID: 38598299 PMCID: PMC11151108 DOI: 10.1091/mbc.e23-11-0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Neurofilaments (NFs) are multisubunit, neuron-specific intermediate filaments consisting of a 10-nm diameter filament "core" surrounded by a layer of long intrinsically disordered protein (IDP) "tails." NFs are thought to regulate axonal caliber during development and then stabilize the mature axon, with NF subunit misregulation, mutation, and aggregation featuring prominently in multiple neurological diseases. The field's understanding of NF structure, mechanics, and function has been deeply informed by a rich variety of biochemical, cell biological, and mouse genetic studies spanning more than four decades. These studies have contributed much to our collective understanding of NF function in axonal physiology and disease. In recent years, however, there has been a resurgence of interest in NF subunit proteins in two new contexts: as potential blood- and cerebrospinal fluid-based biomarkers of neuronal damage, and as model IDPs with intriguing properties. Here, we review established principles and more recent discoveries in NF structure and function. Where possible, we place these findings in the context of biophysics of NF assembly, interaction, and contributions to axonal mechanics.
Collapse
Affiliation(s)
- Erika A. Ding
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
19
|
D’Onghia D, Colangelo D, Bellan M, Tonello S, Puricelli C, Virgilio E, Apostolo D, Minisini R, Ferreira LL, Sozzi L, Vincenzi F, Cantello R, Comi C, Pirisi M, Vecchio D, Sainaghi PP. Gas6/TAM system as potential biomarker for multiple sclerosis prognosis. Front Immunol 2024; 15:1362960. [PMID: 38745659 PMCID: PMC11091300 DOI: 10.3389/fimmu.2024.1362960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction The protein growth arrest-specific 6 (Gas6) and its tyrosine kinase receptors Tyro-3, Axl, and Mer (TAM) are ubiquitous proteins involved in regulating inflammation and apoptotic body clearance. Multiple sclerosis (MS) is the most common inflammatory demyelinating disease of the central nervous system leading to progressive and irreversible disability if not diagnosed and treated promptly. Gas6 and TAM receptors have been associated with neuronal remyelination and stimulation of oligodendrocyte survival. However, few data are available regarding clinical correlation in MS patients. We aimed to evaluate soluble levels of these molecules in the cerebrospinal fluid (CSF) and serum at MS diagnosis and correlate them with short-term disease severity. Methods In a prospective cohort study, we enrolled 64 patients with a diagnosis of clinical isolated syndrome (CIS), radiological isolated syndrome (RIS) and relapsing-remitting (RR) MS according to the McDonald 2017 Criteria. Before any treatment initiation, we sampled the serum and CSF, and collected clinical data: disease course, presence of gadolinium-enhancing lesions, and expanded disability status score (EDSS). At the last clinical follow-up, we assessed EDSS and calculated MS severity score (MSSS) and age-related MS severity (ARMSS). Gas6 and TAM receptors were determined using an ELISA kit (R&D Systems) and compared to neurofilament (NFLs) levels evaluated with SimplePlex™ fluorescence-based immunoassay. Results At diagnosis, serum sAxl was higher in patients receiving none or low-efficacy disease-modifying treatments (DMTs) versus patients with high-efficacy DMTs (p = 0.04). Higher CSF Gas6 and serum sAXL were associated with an EDSS <3 at diagnosis (p = 0.04; p = 0.037). Serum Gas6 correlates to a lower MSSS (r2 = -0.32, p = 0.01). Serum and CSF NFLs were confirmed as disability biomarkers in our cohort according to EDSS (p = 0.005; p = 0.002) and MSSS (r2 = 0.27, p = 0.03; r2 = 0.39, p = 0.001). Results were corroborated using multivariate analysis. Conclusions Our data suggest a protective role of Gas6 and its receptors in patients with MS and suitable severity disease biomarkers.
Collapse
Affiliation(s)
- Davide D’Onghia
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Donato Colangelo
- Department of Health Sciences, Pharmacology, University of Piemonte Orientale (UPO), Novara, Italy
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
- Internal Medicine and Rheumatology Unit, Azienda Ospedaliera Universitaria (AOU) “Maggiore della Carita”, Novara, Italy
| | - Stelvio Tonello
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Chiara Puricelli
- Department of Health Sciences, Clinical Biochemistry, University of Piemonte Orientale (UPO), Novara, Italy
| | - Eleonora Virgilio
- Department of Translational Medicine, Neurology Unit, Maggiore Della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Daria Apostolo
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
| | - Luciana L. Ferreira
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
| | - Leonardo Sozzi
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
| | - Federica Vincenzi
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
| | - Roberto Cantello
- Department of Translational Medicine, Neurology Unit, Maggiore Della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Cristoforo Comi
- Department of Translational Medicine, Neurology Unit, S. Andrea Hospital, University of Piemonte Orientale (UPO), Vercelli, Italy
| | - Mario Pirisi
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
- Internal Medicine and Rheumatology Unit, Azienda Ospedaliera Universitaria (AOU) “Maggiore della Carita”, Novara, Italy
| | - Domizia Vecchio
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
- Department of Translational Medicine, Neurology Unit, Maggiore Della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Pier Paolo Sainaghi
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
- Internal Medicine and Rheumatology Unit, Azienda Ospedaliera Universitaria (AOU) “Maggiore della Carita”, Novara, Italy
| |
Collapse
|
20
|
van Asperen JV, Kotaich F, Caillol D, Bomont P. Neurofilaments: Novel findings and future challenges. Curr Opin Cell Biol 2024; 87:102326. [PMID: 38401181 DOI: 10.1016/j.ceb.2024.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/07/2024] [Indexed: 02/26/2024]
Abstract
Neurofilaments (NFs) are abundant cytoskeletal proteins that emerge as a critical hub for cell signalling within neurons. As we start to uncover essential roles of NFs in regulating microtubule and organelle dynamics, nerve conduction and neurotransmission, novel discoveries are expected to arise in genetics, with NFs identified as causal genes for various neurodegenerative diseases. This review will discuss how the latest advances in fundamental and translational research illuminate our understanding of NF biology, particularly their assembly, organisation, transport and degradation. We will emphasise the notion that filaments are not one entity and that future challenges will be to apprehend their diverse composition and structural heterogeneity and to scrutinize how this regulates signalling, sustains neuronal physiology and drives pathophysiology in disease.
Collapse
Affiliation(s)
- Jessy V van Asperen
- ERC Team, NeuroMyoGene Insitute, INMG-PGNM, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| | - Farah Kotaich
- ERC Team, NeuroMyoGene Insitute, INMG-PGNM, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| | - Damien Caillol
- ERC Team, NeuroMyoGene Insitute, INMG-PGNM, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| | - Pascale Bomont
- ERC Team, NeuroMyoGene Insitute, INMG-PGNM, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France.
| |
Collapse
|
21
|
Feng T, Du H, Yang C, Wang Y, Hu F. Loss of TMEM106B exacerbates Tau pathology and neurodegeneration in PS19 mice. Acta Neuropathol 2024; 147:62. [PMID: 38526799 PMCID: PMC11924916 DOI: 10.1007/s00401-024-02702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/27/2024]
Abstract
TMEM106B, a gene encoding a lysosome membrane protein, is tightly associated with brain aging, hypomyelinating leukodystrophy, and multiple neurodegenerative diseases, including frontotemporal lobar degeneration with TDP-43 aggregates (FTLD-TDP). Recently, TMEM106B polymorphisms have been associated with tauopathy in chronic traumatic encephalopathy (CTE) and FTLD-TDP patients. However, how TMEM106B influences Tau pathology and its associated neurodegeneration, is unclear. Here we show that loss of TMEM106B enhances the accumulation of pathological Tau, especially in the neuronal soma in the hippocampus, resulting in severe neuronal loss in the PS19 Tau transgenic mice. Moreover, Tmem106b-/- PS19 mice develop significantly increased abnormalities in the neuronal cytoskeleton, autophagy-lysosome activities, as well as glial activation, compared with PS19 and Tmem106b-/- mice. Together, our findings demonstrate that loss of TMEM106B drastically exacerbates Tau pathology and its associated disease phenotypes, and provide new insights into the roles of TMEM106B in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tuancheng Feng
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Huan Du
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Cha Yang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Ya Wang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
22
|
Veena MS, Gahng JJ, Alani M, Ko AY, Basak SK, Liu IY, Hwang KJ, Chatoff JR, Venkatesan N, Morselli M, Yan W, Ali I, Kaczor-Urbanowicz KE, Gowda BS, Frost P, Pellegrini M, Moatamed NA, Wilczynski SP, Bomont P, Wang MB, Shin DS, Srivatsan ES. Gigaxonin Suppresses Epithelial-to-Mesenchymal Transition of Human Cancer Through Downregulation of Snail. CANCER RESEARCH COMMUNICATIONS 2024; 4:706-722. [PMID: 38421310 PMCID: PMC10921914 DOI: 10.1158/2767-9764.crc-23-0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/22/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
Gigaxonin is an E3 ubiquitin ligase that plays a role in cytoskeletal stability. Its role in cancer is not yet clearly understood. Our previous studies of head and neck cancer had identified gigaxonin interacting with p16 for NFκB ubiquitination. To explore its role in cancer cell growth suppression, we analyzed normal and tumor DNA from cervical and head and neck cancers. There was a higher frequency of exon 8 SNP (c.1293 C>T, rs2608555) in the tumor (46% vs. 25% normal, P = 0.011) pointing to a relationship to cancer. Comparison of primary tumor with recurrence and metastasis did not reveal a statistical significance. Two cervical cancer cell lines, ME180 and HT3 harboring exon 8 SNP and showing T allele expression correlated with higher gigaxonin expression, reduced in vitro cell growth and enhanced cisplatin sensitivity in comparison with C allele expressing cancer cell lines. Loss of gigaxonin expression in ME180 cells through CRISPR-Cas9 or siRNA led to aggressive cancer cell growth including increased migration and Matrigel invasion. The in vitro cell growth phenotypes were reversed with re-expression of gigaxonin. Suppression of cell growth correlated with reduced Snail and increased e-cadherin expression. Mouse tail vein injection studies showed increased lung metastasis of cells with low gigaxonin expression and reduced metastasis with reexpression of gigaxonin. We have found an association between C allele expression and RNA instability and absence of multimeric protein formation. From our results, we conclude that gigaxonin expression is associated with suppression of epithelial-mesenchymal transition through inhibition of Snail. SIGNIFICANCE Our results suggest that GAN gene exon 8 SNP T allele expression correlates with higher gigaxonin expression and suppression of aggressive cancer cell growth. There is downregulation of Snail and upregulation of e-cadherin through NFκB ubiquitination. We hypothesize that exon 8 T allele and gigaxonin expression could serve as diagnostic markers of suppression of aggressive growth of head and neck cancer.
Collapse
Affiliation(s)
- Mysore S. Veena
- Department of Surgery, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jungmo J. Gahng
- Department of Surgery, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Mustafa Alani
- Department of Surgery, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Albert Y. Ko
- Department of Surgery, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Saroj K. Basak
- Department of Surgery, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Isabelle Y. Liu
- Department of Surgery, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Kimberly J. Hwang
- Department of Surgery, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jenna R. Chatoff
- Department of Surgery, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Natarajan Venkatesan
- Department of Surgery, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Marco Morselli
- Department of Molecular, Cellular and Developmental Biology, UCLA, Los Angeles, California
| | - Weihong Yan
- Department of Chemistry and Biochemistry and the Institute for Quantitative and Computational Biology, UCLA, Los Angeles, California
| | - Ibraheem Ali
- Department of Louise M. Darling Biomedical Library and The Institute for Quantitative and Computational Biology, UCLA, Los Angeles, California
| | - Karolina Elżbieta Kaczor-Urbanowicz
- Department of Oral Biology and Medicine, Center for Oral and Head/Neck Oncology Research, School of Dentistry, UCLA, Los Angeles, California
- The Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, California
| | - Bhavani Shankara Gowda
- Department of Surgery, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Patrick Frost
- Department of Medicine, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Matteo Pellegrini
- Department of Molecular, Cellular and Developmental Biology, UCLA, Los Angeles, California
| | - Neda A. Moatamed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Sharon P. Wilczynski
- Department of Pathology, City of Hope National Medical Center, Duarte, California
| | - Pascale Bomont
- ERC team, INMG, UCBL Lyon1 – CNRS UMR5261 – INSERM U1315, Université Lyon 1, Université de Lyon, Lyon, France
| | - Marilene B. Wang
- Department of Surgery, VAGLAHS and Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Daniel Sanghoon Shin
- Department of Medicine, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Eri S. Srivatsan
- Department of Surgery, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
23
|
Vrillon A, Ashton NJ, Karikari TK, Götze K, Cognat E, Dumurgier J, Lilamand M, Zetterberg H, Blennow K, Paquet C. Comparison of CSF and plasma NfL and pNfH for Alzheimer's disease diagnosis: a memory clinic study. J Neurol 2024; 271:1297-1310. [PMID: 37950758 DOI: 10.1007/s00415-023-12066-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/13/2023]
Abstract
Plasma neurofilament light chain (NfL) is a promising biomarker of axonal damage for the diagnosis of neurodegenerative diseases. Phosphorylated neurofilament heavy chain (pNfH) has demonstrated its value in motor neuron diseases diagnosis, but has less been explored for dementia diagnosis. In a cross-sectional study, we compared cerebrospinal fluid (CSF) and plasma NfL and pNfH levels in n = 188 patients from Lariboisière Hospital, Paris, France, including AD patients at mild cognitive impairment stage (AD-MCI, n = 36) and dementia stage (n = 64), non-AD MCI (n = 38), non-AD dementia (n = 28) patients and control subjects (n = 22). Plasma NfL, plasma and CSF pNfH levels were measured using Simoa and CSF NfL using ELISA. The correlation between CSF and plasma levels was stronger for NfL than pNfH (rho = 0.77 and rho = 0.52, respectively). All neurofilament markers were increased in AD-MCI, AD dementia and non-AD dementia groups compared with controls. CSF NfL, CSF pNfH and plasma NfL showed high performance to discriminate AD at both MCI and dementia stages from control subjects [AUC (area under the curve) = 0.82-0.91]. Plasma pNfH displayed overall lower AUCs for discrimination between groups compared with CSF pNfH. Neurofilament markers showed similar moderate association with cognition. NfL levels displayed significant association with mediotemporal lobe atrophy and white matter lesions in the AD group. Our results suggest that CSF NfL and pNfH as well as plasma NfL levels display equivalent performance in both positive and differential AD diagnosis in memory clinic settings. In contrast to motoneuron disorders, plasma pNfH did not demonstrate added value as compared with plasma NfL.
Collapse
Affiliation(s)
- Agathe Vrillon
- Cognitive Neurology Center, Lariboisière Fernand Widal Hospital, Assistance Publique Hôpitaux de Paris, Université Paris Cité, Paris, France.
- INSERM U1144, Therapeutic Optimization in Neuropsychopharmacology, Paris, France.
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Maurice Wohl Institute Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Karl Götze
- INSERM U1144, Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| | - Emmanuel Cognat
- Cognitive Neurology Center, Lariboisière Fernand Widal Hospital, Assistance Publique Hôpitaux de Paris, Université Paris Cité, Paris, France
- INSERM U1144, Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| | - Julien Dumurgier
- Cognitive Neurology Center, Lariboisière Fernand Widal Hospital, Assistance Publique Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Matthieu Lilamand
- Cognitive Neurology Center, Lariboisière Fernand Widal Hospital, Assistance Publique Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Maurice Wohl Institute Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Claire Paquet
- Cognitive Neurology Center, Lariboisière Fernand Widal Hospital, Assistance Publique Hôpitaux de Paris, Université Paris Cité, Paris, France
- INSERM U1144, Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| |
Collapse
|
24
|
Yin P, Niu X, Guan C, Zhang Z, Liu Y, Li J, Cui G, Zan K, Xu C. Relationship between increased serum neurofilament light chain and glial fibrillary acidic protein levels with non-motor symptoms in patients with Parkinson's disease. Psychogeriatrics 2024; 24:415-425. [PMID: 38339819 DOI: 10.1111/psyg.13088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND This study set out to investigate the relationship between serum neurofilament light chain (NFL), glial fibrillary acidic protein (GFAP), and various non-motor symptoms (NMSs) in patients with Parkinson's disease (PD). METHODS The study included 37 healthy controls (HCs) and 51 PD patients. Clinical assessments of PD symptoms were conducted for all PD patients. The NMSS was utilised to evaluate the NMS burden (NMSB) in individuals. Based on the severity of NMSB, we further categorised the PD group into two subgroups: mild-moderate NMSB group and severe-very severe NMSB group. The amounts of NFL and GFAP in the serum were measured using an extremely sensitive single molecule array (Simoa) method. Statistical analyses were performed on the collected data using SPSS 26.0 and R (version 3.6.3). RESULTS Serum GFAP and NFL levels in the PD group with severe-very severe NMSB were significantly higher than those in the mild-moderate NMSB group (GFAP: P < 0.007; NFL: P < 0.009). Serum NFL and GFAP levels had positive correlations with NMSS total scores (GFAP: r = 0.326, P = 0.020; NFL: r = 0.318, P = 0.023) and multiple subdomains. The relationship between the attention/memory domains of NMSS and NFL levels is significantly positive (r = 0.283, P = 0.044). Similarly, the mood/apathy domains of NMSS are also significantly positively correlated with GFAP levels (r = 0.441, P = 0.001). Patients with emotional problems or cognitive impairment had higher GFAP or NFL levels, respectively. Furthermore, it has been demonstrated that NMSs play a mediating role in the quality of life of patients with PD. Moreover, the combination of NFL and GFAP has proven to be more effective than using a single component in identifying PD patients with severe-very severe NMSB. CONCLUSIONS The severity of NMSs in PD patients, particularly cognitive and emotional symptoms, was found to be associated with the levels of serum NFL and GFAP. This study marks the first attempt to examine the connection between NMSs of PD and the simultaneous identification of NFL and GFAP levels.
Collapse
Affiliation(s)
- Peixiao Yin
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Xuebin Niu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Chenyang Guan
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Zixuan Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Yuning Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Jinyu Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Kun Zan
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Chuanying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
25
|
Kruize Z, van Campen I, Vermunt L, Geerse O, Stoffels J, Teunissen C, van Zuylen L. Delirium pathophysiology in cancer: neurofilament light chain biomarker - narrative review. BMJ Support Palliat Care 2024:spcare-2024-004781. [PMID: 38290815 DOI: 10.1136/spcare-2024-004781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/01/2024]
Abstract
Background Delirium is a debilitating disorder with high prevalence near the end of life, impacting quality of life of patients and their relatives. Timely recognition of delirium can lead to prevention and/or better treatment of delirium. According to current hypotheses delirium is thought to result from aberrant inflammation and neurotransmission, with a possible role for neuronal damage. Neurofilament light chain (NfL) is a protein biomarker in body fluids that is unique to neurons, with elevated levels when neurons are damaged, making NfL a viable biomarker for early detection of delirium. This narrative review summarises current research regarding the pathophysiology of delirium and the potential of NfL as a susceptibility biomarker for delirium and places this in the context of care for patients with advanced cancer.Results Six studies were conducted exclusively on NfL in patients with delirium. Three of these studies demonstrated that high plasma NfL levels preoperatively predict delirium in older adult patients postoperatively. Two studies demonstrated that high levels of NfL in intensive care unit (ICU) patients are correlated with delirium duration and severity. One study found that incident delirium in older adult patients was associated with increased median NfL levels during hospitalisation.Conclusions Targeted studies are required to understand if NfL is a susceptibility biomarker for delirium in patients with advanced cancer. In this palliative care context, better accessible matrices, such as saliva or urine, would be helpful for repetitive testing. Improvement of biological measures for delirium can lead to improved early recognition and lay the groundwork for novel therapeutic strategies.
Collapse
Affiliation(s)
- Zita Kruize
- Department of Medical Oncology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Isa van Campen
- Department of Medical Oncology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Lisa Vermunt
- Department of Laboratory medicine, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Olaf Geerse
- Department of Medical Oncology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Josephine Stoffels
- Department of Internal Medicine, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Charlotte Teunissen
- Department of Laboratory medicine, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Lia van Zuylen
- Department of Medical Oncology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Liu X, Chen J, Meng C, Zhou L, Liu Y. Serum neurofilament light chain and cognition decline in US elderly: A cross-sectional study. Ann Clin Transl Neurol 2024; 11:17-29. [PMID: 37902309 PMCID: PMC10791034 DOI: 10.1002/acn3.51929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023] Open
Abstract
OBJECTIVE Early identification of cognitive impairment in neurodegenerative diseases like Alzheimer's disease (AD) is crucial. Neurofilament, a potential biomarker for neurological disorders, has gained attention. Our study aims to investigate the relationship between serum neurofilament light (sNfL) levels and cognitive function in elderly individuals in the United States. METHODS This cross-sectional study analyzed data from participants aged 60 and above in the National Health and Nutrition Examination Survey (2013-2014). We collected sNfL levels, cognitive function tests, sociodemographic characteristics, comorbidities, and other variables. Weighted multiple linear regression models examined the relationship between ln(sNfL) and cognitive scores. Restricted cubic spline (RCS) visualization explored nonlinear relationships. The stratified analysis examined subgroups' ln(sNfL) and cognitive function association. RESULTS The study included 446 participants (47.73% male). Participants with ln(sNfL) levels between 2.58 and 2.81 pg/mL (second quintile) performed relatively well in cognitive tests. After adjusting for multiple factors, ln(sNfL) levels were negatively correlated with cognitive function, with adjusted β (95% CI) as follows: immediate recall test (IRT): -0.763 (-1.301 to -0.224), delayed recall test (DRT): -0.308 (-0.576 to -0.04), animal fluency test (AFT): -1.616 (-2.639 to -0.594), and digit symbol substitution test (DSST): -2.790 (-4.369 to -1.21). RCS curves showed nonlinear relationships between ln(sNfL) and DRT, AFT, with inflection points around 2.7 pg/mL. The stratified analysis revealed a negative correlation between ln(sNfL) and cognition in specific subgroups with distinct features, with an interaction between diabetes and ln(sNfL). INTERPRETATION Higher sNfL levels are associated with poorer cognitive function in the elderly population of the United States. sNfL shows promise as a potential biomarker for early identification of cognitive decline.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Neurology, Taihe HospitalHubei University of MedicineShiyanChina
| | - Jun Chen
- Department of Neurology, Taihe HospitalHubei University of MedicineShiyanChina
| | - Chen Meng
- Department of Anesthesiology, Taihe HospitalHubei University of MedicineShiyanHubeiChina
| | - Lan Zhou
- Department of Neurology, Taihe HospitalHubei University of MedicineShiyanChina
| | - Yong Liu
- Department of Neurology, Taihe HospitalHubei University of MedicineShiyanChina
| |
Collapse
|
27
|
Kotaich F, Caillol D, Bomont P. Neurofilaments in health and Charcot-Marie-Tooth disease. Front Cell Dev Biol 2023; 11:1275155. [PMID: 38164457 PMCID: PMC10758125 DOI: 10.3389/fcell.2023.1275155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024] Open
Abstract
Neurofilaments (NFs) are the most abundant component of mature neurons, that interconnect with actin and microtubules to form the cytoskeleton. Specifically expressed in the nervous system, NFs present the particularity within the Intermediate Filament family of being formed by four subunits, the neurofilament light (NF-L), medium (NF-M), heavy (NF-H) proteins and α-internexin or peripherin. Here, we review the current knowledge on NF proteins and neurofilaments, from their domain structures and their model of assembly to the dynamics of their transport and degradation along the axon. The formation of the filament and its behaviour are regulated by various determinants, including post-transcriptional (miRNA and RBP proteins) and post-translational (phosphorylation and ubiquitination) modifiers. Altogether, the complex set of modifications enable the neuron to establish a stable but elastic NF array constituting the structural scaffold of the axon, while permitting the local expression of NF proteins and providing the dynamics necessary to fulfil local demands and respond to stimuli and injury. Thus, in addition to their roles in mechano-resistance, radial axonal outgrowth and nerve conduction, NFs control microtubule dynamics, organelle distribution and neurotransmission at the synapse. We discuss how the studies of neurodegenerative diseases with NF aggregation shed light on the biology of NFs. In particular, the NEFL and NEFH genes are mutated in Charcot-Marie-Tooth (CMT) disease, the most common inherited neurological disorder of the peripheral nervous system. The clinical features of the CMT forms (axonal CMT2E, CMT2CC; demyelinating CMT1F; intermediate I-CMT) with symptoms affecting the central nervous system (CNS) will allow us to further investigate the physiological roles of NFs in the brain. Thus, NF-CMT mouse models exhibit various degrees of sensory-motor deficits associated with CNS symptoms. Cellular systems brought findings regarding the dominant effect of NF-L mutants on NF aggregation and transport, although these have been recently challenged. Neurofilament detection without NF-L in recessive CMT is puzzling, calling for a re-examination of the current model in which NF-L is indispensable for NF assembly. Overall, we discuss how the fundamental and translational fields are feeding each-other to increase but also challenge our knowledge of NF biology, and to develop therapeutic avenues for CMT and neurodegenerative diseases with NF aggregation.
Collapse
Affiliation(s)
| | | | - Pascale Bomont
- ERC team, NeuroMyoGene Institute-Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| |
Collapse
|
28
|
Phillips CL, Faridounnia M, Armao D, Snider NT. Stability dynamics of neurofilament and GFAP networks and protein fragments. Curr Opin Cell Biol 2023; 85:102266. [PMID: 37866019 PMCID: PMC11402464 DOI: 10.1016/j.ceb.2023.102266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/24/2023]
Abstract
Neurofilaments (NFs) and GFAP are cytoskeletal intermediate filaments (IFs) that support cellular processes unfolding within the uniquely complex environments of neurons and astrocytes, respectively. This review highlights emerging concepts on the transitions between stable and destabilized IF networks in the nervous system. While self-association between transiently structured low-complexity IF domains promotes filament assembly, the opposing destabilizing actions of phosphorylation-mediated filament severing facilitate faster intracellular transport. Cellular proteases, including caspases and calpains, produce a variety of IF fragments, which may interact with N-degron and C-degron pathways of the protein degradation machinery. The rapid adoption of NF and GFAP-based clinical biomarker tests is contrasted with the lagging understanding of the dynamics between the native IF proteins and their fragments.
Collapse
Affiliation(s)
- Cassandra L Phillips
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, USA
| | - Maryam Faridounnia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, USA
| | - Diane Armao
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, USA; Department of Radiology, University of North Carolina at Chapel Hill, USA
| | - Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
29
|
Feng T, Du H, Hu F. Loss of TMEM106B exacerbates Tau pathology and neurodegeneration in PS19 mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.11.566707. [PMID: 38014238 PMCID: PMC10680640 DOI: 10.1101/2023.11.11.566707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
TMEM106B, a gene encoding a lysosome membrane protein, is tightly associated with brain aging, hypomyelinating leukodystrophy, and multiple neurodegenerative diseases, including frontotemporal lobar degeneration with TDP-43 aggregates (FTLD-TDP). Recently, TMEM106B polymorphisms have been associated with tauopathy in chronic traumatic encephalopathy (CTE) and FTLD-TDP patients. However, how TMEM106B influences Tau pathology and its associated neurodegeneration, is unclear. Here we show that loss of TMEM106B enhances the accumulation of pathological Tau, especially in the neuronal soma in the hippocampus, resulting in severe neuronal loss in the PS19 Tau transgenic mice. Moreover, Tmem106b-/- PS19 mice develop significantly increased disruption of the neuronal cytoskeleton, autophagy-lysosomal function, and lysosomal trafficking along the axon as well as enhanced gliosis compared with PS19 and Tmem106b-/- mice. Together, our findings demonstrate that loss of TMEM106B drastically exacerbates Tau pathology and its associated disease phenotypes, and provide new insights into the roles of TMEM106B in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tuancheng Feng
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Huan Du
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
30
|
Fang J, Wu J, Zhang T, Yuan X, Zhao J, Zheng L, Hong G, Yu L, Lin Q, An X, Jing C, Zhang Q, Wang C, Wang Z, Ma Q. Serum neurofilament light chain levels in migraine patients: a monocentric case-control study in China. J Headache Pain 2023; 24:149. [PMID: 37932721 PMCID: PMC10626745 DOI: 10.1186/s10194-023-01674-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/28/2023] [Indexed: 11/08/2023] Open
Abstract
PURPOSE Serum neurofilament light chain (sNfL) can reflect nerve damage. Whether migraine can cause neurological damage remain unclear. This study assesses sNfL levels in migraine patients and explores whether there is nerve damage in migraine. METHODS A case-control study was conducted in Xiamen, China. A total of 138 migraine patients and 70 healthy controls were recruited. sNfL (pg/mL) was measured on the single-molecule array platform. Univariate, Pearson correlation and linear regression analysis were used to assess the relationship between migraine and sNfL levels, with further subgroup analysis by migraine characteristics. RESULTS Overall, 85.10% of the 208 subjects were female, with a median age of 36 years. sNfL levels were higher in the migraine group than in the control group (4.85 (3.49, 6.62) vs. 4.11 (3.22, 5.59)), but the difference was not significant (P = 0.133). The two groups showed an almost consistent trend in which sNfL levels increased significantly with age. Subgroup analysis showed a significant increase in sNfL levels in patients with a migraine course ≥ 10 years (β = 0.693 (0.168, 1.220), P = 0.010). Regression analysis results show that age and migraine course are independent risk factors for elevated sNfL levels, and there is an interaction between the two factors. Patients aged < 45 years and with a migraine course ≥ 10 years have significantly increased sNfL levels. CONCLUSIONS This is the first study to evaluate sNfL levels in migraine patients. The sNfL levels significantly increased in patients with a migraine course ≥ 10 years. More attention to nerve damage in young patients with a long course of migraine is required.
Collapse
Affiliation(s)
- Jie Fang
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Jielong Wu
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China
- School of Medicine, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Tengkun Zhang
- Department of Neurology, The Fifth Hospital of Xiamen, Xiamen, China
| | - Xiaodong Yuan
- Department of Gynecology, Xiamen Maternal and Child Health Care Hospital, Xiamen, China
| | - Jiedong Zhao
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Liangcheng Zheng
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
| | - Ganji Hong
- Cerebrovascular Interventional Department, Zhangzhou Hospital of Fujian Province, Zhangzhou, China
| | - Lu Yu
- Department of Neurology, Changxing People's Hospital, Huzhou, China
| | - Qing Lin
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
| | - Xingkai An
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
| | - Chuya Jing
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
| | - Qiuhong Zhang
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
| | - Chen Wang
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
| | - Zhanxiang Wang
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China.
- Xiamen Key Laboratory of Brain Center, Xiamen, China.
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China.
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China.
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China.
- School of Medicine, Xiamen University, Xiamen, China.
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China.
| | - Qilin Ma
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China.
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China.
- Xiamen Key Laboratory of Brain Center, Xiamen, China.
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China.
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China.
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China.
- School of Medicine, Xiamen University, Xiamen, China.
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
31
|
Doganyigit Z, Eroglu E, Okan A. Intermediate filament proteins are reliable immunohistological biomarkers to help diagnose multiple tissue-specific diseases. Anat Histol Embryol 2023; 52:655-672. [PMID: 37329162 DOI: 10.1111/ahe.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
Cytoskeletal networks are proteins that effectively maintain cell integrity and provide mechanical support to cells by actively transmitting mechanical signals. Intermediate filaments, which are from the cytoskeleton family and are 10 nanometres in diameter, are unlike actin and microtubules, which are highly dynamic cytoskeletal elements. Intermediate filaments are flexible at low strain, harden at high strain and resist breaking. For this reason, these filaments fulfil structural functions by providing mechanical support to the cells through their different strain-hardening properties. Intermediate filaments are suitable in that cells both cope with mechanical forces and modulate signal transmission. These filaments are composed of fibrous proteins that exhibit a central α-helical rod domain with a conserved substructure. Intermediate filament proteins are divided into six groups. Type I and type II include acidic and basic keratins, type III, vimentin, desmin, peripheralin and glial fibrillary acidic protein (GFAP), respectively. Type IV intermediate filament group includes neurofilament proteins and a fourth neurofilament subunit, α-internexin proteins. Type V consists of lamins located in the nucleus, and the type VI group consists of lens-specific intermediate filaments, CP49/phakinin and filen. Intermediate filament proteins show specific immunoreactivity in differentiating cells and mature cells of various types. Various carcinomas such as colorectal, urothelial and ovarian, diseases such as chronic pancreatitis, cirrhosis, hepatitis and cataract have been associated with intermediate filaments. Accordingly, this section reviews available immunohistochemical antibodies to intermediate filament proteins. Identification of intermediate filament proteins by methodological methods may contribute to the understanding of complex diseases.
Collapse
Affiliation(s)
- Zuleyha Doganyigit
- Faculty of Medicine, Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| | - Ece Eroglu
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Aslı Okan
- Faculty of Medicine, Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
32
|
Pafiti A, Krashias G, Tzartos J, Tzartos S, Stergiou C, Gaglia E, Smoleski I, Christodoulou C, Pantzaris M, Lambrianides A. A Comparison of Two Analytical Approaches for the Quantification of Neurofilament Light Chain, a Biomarker of Axonal Damage in Multiple Sclerosis. Int J Mol Sci 2023; 24:10787. [PMID: 37445963 DOI: 10.3390/ijms241310787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Neurofilament light chain (NfL), is a neuron-specific cytoskeletal protein detected in extracellular fluid following axonal damage. Extensive research has focused on NfL quantification in CSF, establishing it as a prognostic biomarker of disability progression in Multiple Sclerosis (MS). Our study used a new commercially available Enzyme-Linked Immunosorbent Assay (ELISA) kit and Single Molecular Array (Simoa) advanced technology to assess serum NfL levels in MS patients and Healthy Controls (HC). Verifying the most accurate, cost-effective methodology will benefit its application in clinical settings. Blood samples were collected from 54 MS patients and 30 HC. Protocols accompanying the kits were followed. The ELISA thershold was set as 3 S.D. above the mean of the HC. For Simoa, the Z-score calculation created by Jens Kuhle's group was applied (with permission). Samples exceeding the threshold or z-score ≥1.5 indicated subclinical disease activity. To our knowledge, this is the first study to find strong-positive correlation between ELISA and Simoa for the quantification of NfL in serum (r = 0.919). Despite the strong correlation, Simoa has better analytical sensitivity and can detect small changes in samples making it valuable in clinical settings. Further research is required to evaluate whether serum NfL quantification using ELISA could be utilized to predict disability progression.
Collapse
Affiliation(s)
- Anna Pafiti
- Postgraduate School, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Neuroimmunology Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - George Krashias
- Postgraduate School, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - John Tzartos
- B' Neurology Department, School of Medicine, National and Kapodistrian University of Athens, "Attikon" Univeristy Hospital, 10676 Athens, Greece
- Tzartos NeuroDiagnostics, 3, Eslin Street, 11523 Athens, Greece
| | | | | | - Eftychia Gaglia
- Clinical Sciences, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Irene Smoleski
- Clinical Sciences, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Christina Christodoulou
- Postgraduate School, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Marios Pantzaris
- Postgraduate School, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Neuroimmunology Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Anastasia Lambrianides
- Postgraduate School, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Neuroimmunology Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| |
Collapse
|
33
|
Renganathan B, Zewe JP, Cheng Y, Paumier J, Kittisopikul M, Ridge KM, Opal P, Gelfand VI. Gigaxonin is required for intermediate filament transport. FASEB J 2023; 37:e22886. [PMID: 37043392 PMCID: PMC10237250 DOI: 10.1096/fj.202202119r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 04/13/2023]
Abstract
Gigaxonin is an adaptor protein for E3 ubiquitin ligase substrates. It is necessary for ubiquitination and degradation of intermediate filament (IF) proteins. Giant axonal neuropathy is a pathological condition caused by mutations in the GAN gene that encodes gigaxonin. This condition is characterized by abnormal accumulation of IFs in both neuronal and non-neuronal cells; however, it is unclear what causes IF aggregation. In this work, we studied the dynamics of IFs using their subunits tagged with a photoconvertible protein mEOS 3.2. We have demonstrated that the loss of gigaxonin dramatically inhibited transport of IFs along microtubules by the microtubule motor kinesin-1. This inhibition was specific for IFs, as other kinesin-1 cargoes, with the exception of mitochondria, were transported normally. Abnormal distribution of IFs in the cytoplasm can be rescued by direct binding of kinesin-1 to IFs, demonstrating that transport inhibition is the primary cause for the abnormal IF distribution. Another effect of gigaxonin loss was a more than 20-fold increase in the amount of soluble vimentin oligomers in the cytosol of gigaxonin knock-out cells. We speculate that these oligomers saturate a yet unidentified adapter that is required for kinesin-1 binding to IFs, which might inhibit IF transport along microtubules causing their abnormal accumulation.
Collapse
Affiliation(s)
- Bhuvanasundar Renganathan
- Department of Cell and Developmental BiologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - James P. Zewe
- Ken and Ruth Davee Department of NeurologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Yuan Cheng
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - Jean‐Michel Paumier
- Ken and Ruth Davee Department of NeurologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Mark Kittisopikul
- Department of Cell and Developmental BiologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Karen M. Ridge
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - Puneet Opal
- Ken and Ruth Davee Department of NeurologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Vladimir I. Gelfand
- Department of Cell and Developmental BiologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
34
|
Hour NL, Cabana T, Pflieger JF. Transient expression of NF200 by fibers in the nasal septum and rostral telencephalon of developing opossums (Monodelphis domestica). Anat Rec (Hoboken) 2023; 306:879-888. [PMID: 36056623 DOI: 10.1002/ar.25057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/14/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022]
Abstract
Marsupials are born very immature and crawl on their mother's belly to attach to teats. Sensory information is required to guide the newborn and to induce attachment to the teat. Olfaction has been classically proposed to influence neonatal behaviors, but recent studies suggest that the central olfactory structures are too immature to account for them. In the newborn opossum, we previously described a fascicle of nerve fibers expressing neurofilament-200 (NF200, a marker of fiber maturity) from the olfactory bulbs to the rostral telencephalon. The course of these fibers is compatible with that of the terminal nerve that, during development, is characterized by the presence of neurons synthetizing gonadotropin hormones (GnRH). To evaluate if these fibers are related to the terminal nerve and if they play a role in precocious behaviors in opossums, we used immunohistochemistry against NF200 and GnRH. The results show that NF200-labeled fibers are present between P0 and P11, but do not reach much further caudally than the septal region. Only a few NF200-labeled fibers were found near the olfactory and vomeronasal epitheliums and they did not penetrate the olfactory bulbs. NF200-labeled fibers follow the same path as fibers labeled for GnRH. In contrast to the latter, NF200-labeled fibers are no longer visible at P15. These results suggest that these fibers are neither from the olfactory nor from the vomeronasal nerves but may be part of the terminal nerve. Their limited caudal extension does not support a role in the sensorimotor behaviors of the newborn opossum.
Collapse
|
35
|
Gürth CM, do Rego Barros Fernandes Lima MA, Macarrón Palacios V, Cereceda Delgado AR, Hubrich J, D’Este E. Neurofilament Levels in Dendritic Spines Associate with Synaptic Status. Cells 2023; 12:cells12060909. [PMID: 36980250 PMCID: PMC10047839 DOI: 10.3390/cells12060909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Neurofilaments are one of the main cytoskeletal components in neurons; they can be found in the form of oligomers at pre- and postsynapses. How their presence is regulated at the postsynapse remains largely unclear. Here we systematically quantified, by immunolabeling, the occurrence of the neurofilament isoform triplet neurofilament light (NFL), medium (NFM), and heavy (NFH) at the postsynapse using STED nanoscopy together with markers of synaptic strength and activity. Our data show that, within dendritic spines, neurofilament isoforms rarely colocalize with each other and that they are present to different extents, with NFL being the most abundant isoform. The amount of the three isoforms correlates with markers of postsynaptic strength and presynaptic activity to varying degrees: NFL shows the highest correlation to both synaptic traits, suggesting its involvement in synaptic response, while NFM exhibits the lowest correlations. By quantifying the presence of neurofilaments at the postsynapse within the context of the synaptic status, this work sheds new light on the regulation of synaptic neurofilaments and their possible contribution to synaptopathies.
Collapse
Affiliation(s)
- Clara-Marie Gürth
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | | | - Victor Macarrón Palacios
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Angel Rafael Cereceda Delgado
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Jasmine Hubrich
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Elisa D’Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-(0)6221-486-380
| |
Collapse
|
36
|
Maalmi H, Strom A, Petrera A, Hauck SM, Strassburger K, Kuss O, Zaharia OP, Bönhof GJ, Rathmann W, Trenkamp S, Burkart V, Szendroedi J, Ziegler D, Roden M, Herder C. Serum neurofilament light chain: a novel biomarker for early diabetic sensorimotor polyneuropathy. Diabetologia 2023; 66:579-589. [PMID: 36472640 PMCID: PMC9892145 DOI: 10.1007/s00125-022-05846-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/19/2022] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS No established blood-based biomarker exists to monitor diabetic sensorimotor polyneuropathy (DSPN) and evaluate treatment response. The neurofilament light chain (NFL), a blood biomarker of neuroaxonal damage in several neurodegenerative diseases, represents a potential biomarker for DSPN. We hypothesised that higher serum NFL levels are associated with prevalent DSPN and nerve dysfunction in individuals recently diagnosed with diabetes. METHODS This cross-sectional study included 423 adults with type 1 and type 2 diabetes and known diabetes duration of less than 1 year from the prospective observational German Diabetes Study cohort. NFL was measured in serum samples of fasting participants in a multiplex approach using proximity extension assay technology. DSPN was assessed by neurological examination, nerve conduction studies and quantitative sensory testing. Associations of serum NFL with DSPN (defined according to the Toronto Consensus criteria) were estimated using Poisson regression, while multivariable linear and quantile regression models were used to assess associations with nerve function measures. In exploratory analyses, other biomarkers in the multiplex panel were also analysed similarly to NFL. RESULTS DSPN was found in 16% of the study sample. Serum NFL levels increased with age. After adjustment for age, sex, waist circumference, height, HbA1c, known diabetes duration, diabetes type, cholesterol, eGFR, hypertension, CVD, use of lipid-lowering drugs and use of non-steroidal anti-inflammatory drugs, higher serum NFL levels were associated with DSPN (RR [95% CI] per 1-normalised protein expression increase, 1.92 [1.50, 2.45], p<0.0001), slower motor (all p<0.0001) and sensory (all p≤0.03) nerve conduction velocities, lower sural sensory nerve action potential (p=0.0004) and higher thermal detection threshold to warm stimuli (p=0.023 and p=0.004 for hand and foot, respectively). There was no evidence for associations between other neurological biomarkers and DSPN or nerve function measures. CONCLUSIONS/INTERPRETATION Our findings in individuals recently diagnosed with diabetes provide new evidence associating higher serum NFL levels with DSPN and peripheral nerve dysfunction. The present study advocates NFL as a potential biomarker for DSPN.
Collapse
Affiliation(s)
- Haifa Maalmi
- Institute for Clinical Diabetology, German Diabetes Center (Deutsches Diabetes-Zentrum/DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center (Deutsches Diabetes-Zentrum/DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Agnese Petrera
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Stefanie M Hauck
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Klaus Strassburger
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center (Deutsches Diabetes-Zentrum/DDZ), Düsseldorf, Germany
| | - Oliver Kuss
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center (Deutsches Diabetes-Zentrum/DDZ), Düsseldorf, Germany
- Centre for Health and Society, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Oana-Patricia Zaharia
- Institute for Clinical Diabetology, German Diabetes Center (Deutsches Diabetes-Zentrum/DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center (Deutsches Diabetes-Zentrum/DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center (Deutsches Diabetes-Zentrum/DDZ), Düsseldorf, Germany
| | - Sandra Trenkamp
- Institute for Clinical Diabetology, German Diabetes Center (Deutsches Diabetes-Zentrum/DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center (Deutsches Diabetes-Zentrum/DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center (Deutsches Diabetes-Zentrum/DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Diabetes and Cancer (IDC) & Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Center Munich, München-Neuherberg, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center (Deutsches Diabetes-Zentrum/DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center (Deutsches Diabetes-Zentrum/DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center (Deutsches Diabetes-Zentrum/DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | | |
Collapse
|
37
|
Abu-Rumeileh S, Abdelhak A, Foschi M, D'Anna L, Russo M, Steinacker P, Kuhle J, Tumani H, Blennow K, Otto M. The multifaceted role of neurofilament light chain protein in non-primary neurological diseases. Brain 2023; 146:421-437. [PMID: 36083979 PMCID: PMC9494370 DOI: 10.1093/brain/awac328] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The advancing validation and exploitation of CSF and blood neurofilament light chain protein as a biomarker of neuroaxonal damage has deeply changed the current diagnostic and prognostic approach to neurological diseases. Further, recent studies have provided evidence of potential new applications of this biomarker also in non-primary neurological diseases. In the present review we summarize the state of the art, future perspectives, but also limitations, of neurofilament light chain protein as a CSF and blood biomarker in several medical fields, including intensive care medicine, surgery, internal medicine and psychiatry. In particular, neurofilament light chain protein is associated with the degree of neurological impairment and outcome in patients admitted to intensive care units or in the perioperative phase and it seems to be highly interconnected with cardiovascular risk factors. Beyond that, interesting diagnostic and prognostic insights have been provided by the investigation of neurofilament light chain protein in psychiatric disorders as well as in the current coronavirus disease-19 pandemic and in normal ageing. Altogether, current data outline a multifaceted applicability of CSF and blood neurofilament light chain protein ranging from the critical clinical setting to the development of precision medicine models suggesting a strict interplay between the nervous system pathophysiology and the health-illness continuum.
Collapse
Affiliation(s)
- Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Ahmed Abdelhak
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, USA
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Matteo Foschi
- Department of Neuroscience, Neurology Unit – S. Maria delle Croci Hospital of Ravenna, AUSL Romagna, Ravenna, Italy
| | - Lucio D'Anna
- Department of Stroke and Neuroscience, Charing Cross Hospital, Imperial College London, NHS Healthcare Trust, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Michele Russo
- Department of Cardiology, S. Maria dei Battuti Hospital, AULSS 2 Veneto, Conegliano, Italy
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Markus Otto
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
38
|
Dionisi C, Chazalon M, Rai M, Keime C, Imbault V, Communi D, Puccio H, Schiffmann SN, Pandolfo M. Proprioceptors-enriched neuronal cultures from induced pluripotent stem cells from Friedreich ataxia patients show altered transcriptomic and proteomic profiles, abnormal neurite extension, and impaired electrophysiological properties. Brain Commun 2023; 5:fcad007. [PMID: 36865673 PMCID: PMC9972525 DOI: 10.1093/braincomms/fcad007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/28/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Friedreich ataxia is an autosomal recessive multisystem disorder with prominent neurological manifestations and cardiac involvement. The disease is caused by large GAA expansions in the first intron of the FXN gene, encoding the mitochondrial protein frataxin, resulting in downregulation of gene expression and reduced synthesis of frataxin. The selective loss of proprioceptive neurons is a hallmark of Friedreich ataxia, but the cause of the specific vulnerability of these cells is still unknown. We herein perform an in vitro characterization of human induced pluripotent stem cell-derived sensory neuronal cultures highly enriched for primary proprioceptive neurons. We employ neurons differentiated from healthy donors, Friedreich ataxia patients and Friedreich ataxia sibling isogenic control lines. The analysis of the transcriptomic and proteomic profile suggests an impairment of cytoskeleton organization at the growth cone, neurite extension and, at later stages of maturation, synaptic plasticity. Alterations in the spiking profile of tonic neurons are also observed at the electrophysiological analysis of mature neurons. Despite the reversal of the repressive epigenetic state at the FXN locus and the restoration of FXN expression, isogenic control neurons retain many features of Friedreich ataxia neurons. Our study suggests the existence of abnormalities affecting proprioceptors in Friedreich ataxia, particularly their ability to extend towards their targets and transmit proper synaptic signals. It also highlights the need for further investigations to better understand the mechanistic link between FXN silencing and proprioceptive degeneration in Friedreich ataxia.
Collapse
Affiliation(s)
| | | | - Myriam Rai
- Laboratory of Experimental Neurology, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Céline Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire UMR 7104 CNRS-UdS / INSERM U1258, Université de Strasbourg, 67404 Illkirch Cedex, Strasbourg, France
| | - Virginie Imbault
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - David Communi
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire UMR 7104 CNRS-UdS / INSERM U1258, Université de Strasbourg, 67404 Illkirch Cedex, Strasbourg, France,Institut NeuroMyoGene (INMG) UMR5310—INSERM U1217, Faculté de Médecine, Université Claude Bernard—Lyon I, 69008 Lyon, France
| | - Serge N Schiffmann
- Laboratory of Neurophysiology, ULB-Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Massimo Pandolfo
- Correspondence to: Massimo Pandolfo Department of Neurology and Neurosurgery McGill University, Montreal Neurological Institute 3801 University Street, Montreal, Quebec H3A 2B4, Canada E-mail:
| |
Collapse
|
39
|
Axelsson Andrén E, Kettunen P, Bjerke M, Rolstad S, Zetterberg H, Blennow K, Wallin A, Svensson J. Diagnostic Performance of Cerebrospinal Fluid Neurofilament Light Chain and Soluble Amyloid-β Protein Precursor β in the Subcortical Small Vessel Type of Dementia. J Alzheimers Dis 2023; 96:1515-1528. [PMID: 37980667 PMCID: PMC10741327 DOI: 10.3233/jad-230680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND The subcortical small vessel type of dementia (SSVD) is a common subtype of vascular dementia, but there is a lack of disease-specific cerebrospinal fluid (CSF) biomarkers. OBJECTIVE We investigated whether CSF concentrations of neurofilament light chain (NFL), soluble amyloid-β protein precursor α (sAβPPα), sAβPPβ, and CSF/serum albumin ratio could separate SSVD from healthy controls, Alzheimer's disease (AD), and mixed dementia (combined AD and SSVD). METHODS This was a mono-center study of patients with SSVD (n = 38), AD (n = 121), mixed dementia (n = 62), and controls (n = 96). The CSF biomarkers were measured using immunoassays, and their independent contribution to the separation between groups were evaluated using the Wald test. Then, the area under the receiver operating characteristics curve (AUROC) and 95% confidence intervals (CIs) were calculated. RESULTS Elevated neurofilament light chain (NFL) and decreased sAβPPβ independently separated SSVD from controls, and sAβPPβ also distinguished SSVD from AD and mixed dementia. The combination of NFL and sAβPPβ discriminated SSVD from controls with high accuracy (AUROC 0.903, 95% CI: 0.834-0.972). Additionally, sAβPPβ combined with the core AD biomarkers (amyloid-β42, total tau, and phosphorylated tau181) had a high ability to separate SSVD from AD (AUROC 0.886, 95% CI: 0.830-0.942) and mixed dementia (AUROC 0.903, 95% CI: 0.838-0.968). CONCLUSIONS The high accuracy of NFL and sAβPPβ to separate SSVD from controls supports that SSVD is a specific diagnostic entity. Moreover, SSVD was distinguished from AD and mixed dementia using sAβPPβ in combination with the core AD biomarkers.
Collapse
Affiliation(s)
- Elin Axelsson Andrén
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry, Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Region Västra Götaland, Mölndal, Sweden
| | - Maria Bjerke
- Laboratory of Clinical Neurochemistry, Department of Clinical Biology, Universitair Ziekenhuis Brussel, and Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
- Department of Biomedical Sciences and Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Sindre Rolstad
- Department of Psychology, Faculty of Social Science, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Labratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute at University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Labratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry, Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Region Västra Götaland, Mölndal, Sweden
| | - Johan Svensson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Internal Medicine, Skaraborg Central Hospital, Region Västra Götaland, Skövde, Sweden
| |
Collapse
|
40
|
Petzold A. The 2022 Lady Estelle Wolfson lectureship on neurofilaments. J Neurochem 2022; 163:179-219. [PMID: 35950263 PMCID: PMC9826399 DOI: 10.1111/jnc.15682] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Neurofilament proteins (Nf) have been validated and established as a reliable body fluid biomarker for neurodegenerative pathology. This review covers seven Nf isoforms, Nf light (NfL), two splicing variants of Nf medium (NfM), two splicing variants of Nf heavy (NfH),α -internexin (INA) and peripherin (PRPH). The genetic and epigenetic aspects of Nf are discussed as relevant for neurodegenerative diseases and oncology. The comprehensive list of mutations for all Nf isoforms covers Amyotrophic Lateral Sclerosis, Charcot-Marie Tooth disease, Spinal muscular atrophy, Parkinson Disease and Lewy Body Dementia. Next, emphasis is given to the expanding field of post-translational modifications (PTM) of the Nf amino acid residues. Protein structural aspects are reviewed alongside PTMs causing neurodegenerative pathology and human autoimmunity. Molecular visualisations of NF PTMs, assembly and stoichiometry make use of Alphafold2 modelling. The implications for Nf function on the cellular level and axonal transport are discussed. Neurofilament aggregate formation and proteolytic breakdown are reviewed as relevant for biomarker tests and disease. Likewise, Nf stoichiometry is reviewed with regard to in vitro experiments and as a compensatory mechanism in neurodegeneration. The review of Nf across a spectrum of 87 diseases from all parts of medicine is followed by a critical appraisal of 33 meta-analyses on Nf body fluid levels. The review concludes with considerations for clinical trial design and an outlook for future research.
Collapse
Affiliation(s)
- Axel Petzold
- Department of NeurodegenerationQueen Square Insitute of Neurology, UCLLondonUK
| |
Collapse
|
41
|
Kmezic I, Samuelsson K, Finn A, Upate Z, Blennow K, Zetterberg H, Press R. Neurofilament light chain and total tau in the differential diagnosis and prognostic evaluation of acute and chronic inflammatory polyneuropathies. Eur J Neurol 2022; 29:2810-2822. [PMID: 35638376 PMCID: PMC9542418 DOI: 10.1111/ene.15428] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022]
Abstract
Background and Purpose To investigate the diagnostic and prognostic value of axonal injury biomarkers in patients with inflammatory polyneuropathies. Methods Neurofilament light chain (NfL) and total tau (T‐tau) were measured in the cerebrospinal fluid (CSF) and plasma in 41 patients with Guillain–Barré syndrome (GBS), 32 patients with chronic inflammatory demyelinating polyneuropathy (CIDP), 10 with paraproteinemia‐related demyelinating polyneuropathy (PDN), and 8 with multifocal motor neuropathy (MMN), in comparison with 39 disease‐free controls and 59 other controls. Outcome was measured with the GBS‐disability score (GBS‐ds) or Inflammatory Neuropathy Cause and Treatment (INCAT) disability score. Results Neurofilament light chain levels in CSF and plasma were higher in GBS, CIDP, and PDN vs. disease‐free controls. Patients with MMN had higher NfL levels in plasma vs. disease‐free controls, but lower levels in CSF and plasma vs. patients with amyotrophic lateral sclerosis (ALS). T‐tau levels in plasma were higher in GBS, CIDP, PDN, and MMN vs. all control groups. Neurofilament light chain levels in CSF and plasma in patients with GBS correlated with GBS‐ds, as higher levels were associated with inability to run after 6 and 12 months. NfL levels in CSF and plasma in CIDP did not correlate significantly with outcome. Conclusions Acute and chronic inflammatory neuropathies are associated with an increase in levels of NfL in CSF and plasma, but NfL is validated as a prognostic biomarker only in GBS. NfL could be used in differentiating patients with MMN from ALS. T‐tau in plasma is a novel biomarker that could be used in a diagnostic assessment of patients with acute and chronic inflammatory polyneuropathies.
Collapse
Affiliation(s)
- I Kmezic
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - K Samuelsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - A Finn
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Z Upate
- Department of Neurophysiology, Karolinska University Hospital, Stockholm, Sweden
| | - K Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Psychology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - H Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Psychology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - R Press
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
42
|
Paris A, Bora P, Parolo S, Monine M, Tong X, Eraly S, Masson E, Ferguson T, McCampbell A, Graham D, Domenici E, Nestorov I, Marchetti L. An age‐dependent mathematical model of neurofilament trafficking in healthy conditions. CPT Pharmacometrics Syst Pharmacol 2022; 11:447-457. [PMID: 35146969 PMCID: PMC9007607 DOI: 10.1002/psp4.12770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/12/2022] Open
Abstract
Neurofilaments (Nfs) are the major structural component of neurons. Their role as a potential biomarker of several neurodegenerative diseases has been investigated in past years with promising results. However, even under physiological conditions, little is known about the leaking of Nfs from the neuronal system and their detection in the cerebrospinal fluid (CSF) and blood. This study aimed at developing a mathematical model of Nf transport in healthy subjects in the 20–90 age range. The model was implemented as a set of ordinary differential equations describing the trafficking of Nfs from the nervous system to the periphery. Model parameters were calibrated on typical Nf levels obtained from the literature. An age‐dependent function modeled on CSF data was also included and validated on data measured in serum. We computed a global sensitivity analysis of model rates and volumes to identify the most sensitive parameters affecting the model’s steady state. Age, Nf synthesis, and degradation rates proved to be relevant for all model variables. Nf levels in the CSF and in blood were observed to be sensitive to the Nf leakage rates from neurons and to the blood clearance rate, and CSF levels were also sensitive to rates representing CSF turnover. An additional parameter perturbation analysis was also performed to investigate possible transient effects on the model variables not captured by the sensitivity analysis. The model provides useful insights into Nf transport and constitutes the basis for implementing quantitative system pharmacology extensions to investigate Nf trafficking in neurodegenerative diseases.
Collapse
Affiliation(s)
- Alessio Paris
- Fondazione The Microsoft Research – University of Trento Centre for Computational and Systems Biology Rovereto Italy
| | - Pranami Bora
- Fondazione The Microsoft Research – University of Trento Centre for Computational and Systems Biology Rovereto Italy
| | - Silvia Parolo
- Fondazione The Microsoft Research – University of Trento Centre for Computational and Systems Biology Rovereto Italy
| | | | - Xiao Tong
- Biogen, Inc. Cambridge Massachusetts USA
| | | | | | | | | | | | - Enrico Domenici
- Fondazione The Microsoft Research – University of Trento Centre for Computational and Systems Biology Rovereto Italy
- Department of Cellular, Computational and Integrative Biology University of Trento Trento Italy
| | | | - Luca Marchetti
- Fondazione The Microsoft Research – University of Trento Centre for Computational and Systems Biology Rovereto Italy
- Department of Cellular, Computational and Integrative Biology University of Trento Trento Italy
| |
Collapse
|
43
|
Hicks AI, Zhou S, Yang J, Prager-Khoutorsky M. Superresolution Imaging of Cytoskeletal Networks in Fixed Brain Tissue. Methods Mol Biol 2022; 2515:171-191. [PMID: 35776352 DOI: 10.1007/978-1-0716-2409-8_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Emerging evidence suggests that neurodegeneration is directly linked to dysfunction of cytoskeleton; however, visualizing the organization of cytoskeletal structures in brain tissues remains challenging due to the limitation of resolution of light microscopy. Superresolution imaging overcomes this limitation and resolves subcellular structures below the diffraction barrier of light (20-200 nm), while retaining the advantages of fluorescent microscopy such as simultaneous visualization of multiple proteins and increased signal sensitivity and contrast. However, superresolution imaging approaches have been largely limited to very thin samples such as cultured cells growing as a single monolayer. Analysis of thicker tissue sections represents a technical challenge due to high background fluorescence and quality of the tissue preservation methods. Among superresolution microscopy approaches, structured illumination microscopy is one of the most compatible methods for analyzing thicker native tissue samples. We have developed a methodology that allows maximal preservation and quantitative analyses of cytoskeletal networks in tissue sections from a rodent brain. This methodology includes a specialized fixation protocol, tissue preparation, and image acquisition procedures optimized for the characterization of subcellular cytoskeletal structures using superresolution with structured illumination microscopy.
Collapse
Affiliation(s)
| | - Suijian Zhou
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Jieyi Yang
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Converging evidence suggest axonal damage is implicated in depression and cognitive function. Neurofilament light protein, measured within serum and cerebrospinal fluid, may be a biomarker of axonal damage. This article examines the emerging evidence implicating neurofilament light protein in depression and cognitive function. RECENT FINDINGS Preliminary cross-sectional and case-control studies in cohorts with depression have yielded inconsistent results regarding the association between neurofilament light protein and symptomatology. However, these studies had methodological limitations, requiring further investigation. Importantly, neurofilament light protein concentrations may be a marker of progression of cognitive decline and may be associated with cognitive performance within cognitively intact cohorts. SUMMARY Axonal damage is implicated in the neuropathology of depression and cognitive dysfunction. Consequently, neurofilament light protein is an emerging biomarker with potential in depression and cognitive function. Results are more consistent for cognition, requiring more research to assess neurofilament light protein in depression as well as other psychiatric disorders. Future longitudinal studies are necessary to determine whether neurofilament light protein can predict the onset and progression of depression and measure the effectiveness of potential psychiatric interventions and medications.
Collapse
|
45
|
Zhao Y, Arceneaux L, Culicchia F, Lukiw WJ. Neurofilament Light (NF-L) Chain Protein from a Highly Polymerized Structural Component of the Neuronal Cytoskeleton to a Neurodegenerative Disease Biomarker in the Periphery. HSOA JOURNAL OF ALZHEIMER'S & NEURODEGENERATIVE DISEASES 2021; 7:056. [PMID: 34881359 PMCID: PMC8651065 DOI: 10.24966/and-9608/100056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurofilaments (NFs) are critical scaffolding components of the axoskeleton of healthy neurons interacting directly with multiple synaptic-phosphoproteins to support and coordinate neuronal cell shape, cytoarchitecture, synaptogenesis and neurotransmission. While neuronal presynaptic proteins such as synapsin-2 (SYN II) degrade rapidly via the ubiquitin-proteasome pathway, a considerably more stable neurofilament light (NF-L) chain protein turns over much more slowly, and in several neurological diseases is accompanied by a pathological shift from an intracellular neuronal cytoplasmic location into various biofluid compartments. NF-L has been found to be significantly elevated in peripheral biofluids in multiple neurodegenerative disorders, however it is not as widely appreciated that NF-L expression within neurons undergoing inflammatory neurodegeneration exhibit a significant down-regulation in these neuron-specific intermediate-filament components. Down-regulated NF-L in neurons correlates well with the observed axonal and neuronal atrophy, neurite deterioration and synaptic disorganization in tissues affected by Alzheimer's disease (AD) and other progressive, age-related neurological diseases. This Review paper: (i) will briefly assess the remarkably high number of neurological disorders that exhibit NF-L depolymerization, liberation from neuron-specific compartments, mobilization and enrichment into pathological biofluids; (ii) will evaluate how NF-L exhibits compartmentalization effects in age-related neurological disorders; (iii) will review how the shift of NF-L compartmentalization from within the neuronal cytoskeleton into peripheral biofluids may be a diagnostic biomarker for neuronal-decline in all cause dementia most useful in distinguishing between closely related neurological disorders; and (iv) will review emerging evidence that deficits in plasma membrane barrier integrity, pathological transport and/or vesicle-mediated trafficking dysfunction of NF-L may contribute to neuronal decline, with specific reference to AD wherever possible.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans LA 70112, USA
- Department of Cell Biology and Anatomy, LSU Health Science Center, New Orleans LA 70112, USA
| | - Lisa Arceneaux
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans LA 70112, USA
| | - Frank Culicchia
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans LA 70112, USA
- Department of Neurosurgery, Louisiana State University Health Science Center, New Orleans LA 70112, USA
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans LA 70112, USA
- Department of Ophthalmology, Louisiana State University Health Science Center, New Orleans LA 7011, USA
- Department of Neurology, Louisiana State University Health Science Center, New Orleans LA 70112, USA
| |
Collapse
|
46
|
Plectin in the Central Nervous System and a Putative Role in Brain Astrocytes. Cells 2021; 10:cells10092353. [PMID: 34572001 PMCID: PMC8464768 DOI: 10.3390/cells10092353] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
Plectin, a high-molecular-mass cytolinker, is abundantly expressed in the central nervous system (CNS). Currently, a limited amount of data about plectin in the CNS prevents us from seeing the complete picture of how plectin affects the functioning of the CNS as a whole. Yet, by analogy to its role in other tissues, it is anticipated that, in the CNS, plectin also functions as the key cytoskeleton interlinking molecule. Thus, it is likely involved in signalling processes, thereby affecting numerous fundamental functions in the brain and spinal cord. Versatile direct and indirect interactions of plectin with cytoskeletal filaments and enzymes in the cells of the CNS in normal physiological and in pathologic conditions remain to be fully addressed. Several pathologies of the CNS related to plectin have been discovered in patients with plectinopathies. However, in view of plectin as an integrator of a cohesive mesh of cellular proteins, it is important that the role of plectin is also considered in other CNS pathologies. This review summarizes the current knowledge of plectin in the CNS, focusing on plectin isoforms that have been detected in the CNS, along with its expression profile and distribution alongside diverse cytoskeleton filaments in CNS cell types. Considering that the bidirectional communication between neurons and glial cells, especially astrocytes, is crucial for proper functioning of the CNS, we place particular emphasis on the known roles of plectin in neurons, and we propose possible roles of plectin in astrocytes.
Collapse
|
47
|
Aruta F, Severi D, Iovino A, Spina E, Barghigiani M, Ruggiero L, Iodice R, Santorelli FM, Manganelli F, Tozza S. Proximal weakness involvement in the first Italian case of Charcot-Marie-Tooth 2CC harboring a novel frameshift variant in NEFH. J Peripher Nerv Syst 2021; 26:231-234. [PMID: 33987933 DOI: 10.1111/jns.12454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022]
Abstract
Charcot-Marie-Tooth (CMT) diseases are a clinically and genetically heterogeneous group of disorders. Different variants in the neurofilament heavy chain (NEFH) gene have been described to cause the CMT2CC subtype. Here we report the first Italian patient affected by CMT2CC, harboring a novel variant in NEFH. In describing our patient, we also reviewed previously CMT2CC individuals, and suggested to consider NEFH variant if patients have an axonal sensory-motor neuropathy with a prominent proximal muscles involvement with early requirement of walking aids or wheelchair, remembering a motor neuron disorder.
Collapse
Affiliation(s)
- Francesco Aruta
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples "Federico II", Naples, Italy
| | - Daniele Severi
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples "Federico II", Naples, Italy
| | - Aniello Iovino
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples "Federico II", Naples, Italy
| | - Emanuele Spina
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples "Federico II", Naples, Italy
| | | | - Lucia Ruggiero
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples "Federico II", Naples, Italy
| | - Rosa Iodice
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples "Federico II", Naples, Italy
| | | | - Fiore Manganelli
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples "Federico II", Naples, Italy
| | - Stefano Tozza
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
48
|
Assembly of NFL and desmin intermediate filaments: Headed in the right direction. Proc Natl Acad Sci U S A 2021; 118:2102176118. [PMID: 33707309 PMCID: PMC8020673 DOI: 10.1073/pnas.2102176118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
49
|
Coulombe PA, Lappalainen P. Editorial: Architectural cell elements as multimodal sensors, transducers, and actuators. Curr Opin Cell Biol 2021; 68:iii-v. [PMID: 33419601 DOI: 10.1016/j.ceb.2020.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pierre A Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Pekka Lappalainen
- HiLIFE Institute of Biotechnology, University of Helsinki, Biocenter 2, room 2016, Viikinkaari 5D, 00790 Helsinki, Finland.
| |
Collapse
|
50
|
Redmond CJ, Coulombe PA. Intermediate filaments as effectors of differentiation. Curr Opin Cell Biol 2020; 68:155-162. [PMID: 33246268 DOI: 10.1016/j.ceb.2020.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022]
Abstract
After the initial discovery of intermediate filament (IF)-forming proteins in 1968, a decade would elapse before they were revealed to comprise a diverse group of proteins which undergo tissue-, developmental stage-, differentiation-, and context-dependent regulation. Our appreciation for just how large (n = 70), conserved, complex, and dynamic IF genes and proteins are became even sharper upon completion of the human genome project. While there has been extraordinary progress in understanding the multimodal roles of IFs in cells and tissues, even revealing them as direct causative agents in a broad array of human genetic disorders, the link between individual IFs and cell differentiation has remained elusive. Here, we review evidence that demonstrates a role for IFs in lineage determination, cell differentiation, and tissue homeostasis. A major theme in this review is the function of IFs as sensors and transducers of mechanical forces, intersecting microenvironmental cues and fundamental processes through cellular redox balance.
Collapse
Affiliation(s)
- Catherine J Redmond
- Graduate Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Pierre A Coulombe
- Graduate Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA; Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|