1
|
The Molecular Heterogeneity of Store-Operated Ca 2+ Entry in Vascular Endothelial Cells: The Different roles of Orai1 and TRPC1/TRPC4 Channels in the Transition from Ca 2+-Selective to Non-Selective Cation Currents. Int J Mol Sci 2023; 24:ijms24043259. [PMID: 36834672 PMCID: PMC9967124 DOI: 10.3390/ijms24043259] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Store-operated Ca2+ entry (SOCE) is activated in response to the inositol-1,4,5-trisphosphate (InsP3)-dependent depletion of the endoplasmic reticulum (ER) Ca2+ store and represents a ubiquitous mode of Ca2+ influx. In vascular endothelial cells, SOCE regulates a plethora of functions that maintain cardiovascular homeostasis, such as angiogenesis, vascular tone, vascular permeability, platelet aggregation, and monocyte adhesion. The molecular mechanisms responsible for SOCE activation in vascular endothelial cells have engendered a long-lasting controversy. Traditionally, it has been assumed that the endothelial SOCE is mediated by two distinct ion channel signalplexes, i.e., STIM1/Orai1 and STIM1/Transient Receptor Potential Canonical 1(TRPC1)/TRPC4. However, recent evidence has shown that Orai1 can assemble with TRPC1 and TRPC4 to form a non-selective cation channel with intermediate electrophysiological features. Herein, we aim at bringing order to the distinct mechanisms that mediate endothelial SOCE in the vascular tree from multiple species (e.g., human, mouse, rat, and bovine). We propose that three distinct currents can mediate SOCE in vascular endothelial cells: (1) the Ca2+-selective Ca2+-release activated Ca2+ current (ICRAC), which is mediated by STIM1 and Orai1; (2) the store-operated non-selective current (ISOC), which is mediated by STIM1, TRPC1, and TRPC4; and (3) the moderately Ca2+-selective, ICRAC-like current, which is mediated by STIM1, TRPC1, TRPC4, and Orai1.
Collapse
|
2
|
Mathematical modeling of intracellular calcium in presence of receptor: a homeostatic model for endothelial cell. Biomech Model Mechanobiol 2023; 22:217-232. [PMID: 36219362 DOI: 10.1007/s10237-022-01643-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2022]
Abstract
Calcium is a ubiquitous molecule and second messenger that regulates many cellular functions ranging from exocytosis to cell proliferation at different time scales. In the vasculature, a constant adenosine triphosphate (ATP) concentration is maintained because of ATP released by red blood cells (RBCs). These ATP molecules continuously react with purinergic receptors on the surface of endothelial cells (ECs). Consequently, a cascade of chemical reactions are triggered that result in a transient cytoplasmic calcium (Ca[Formula: see text]), followed by return to its basal concentration. The mathematical models proposed in the literature are able to reproduce the transient peak. However, the trailing concentration is always higher than the basal cytoplasmic Ca[Formula: see text] concentrations, and the Ca[Formula: see text] concentration in endoplasmic reticulum (ER) remains lower than its initial concentration. This means that the intracellular homeostasis is not recovered. We propose, herein, a minimal model of calcium kinetics. We find that the desensitization of EC surface receptors due to phosphorylation and recycling plays a vital role in maintaining calcium homeostasis in the presence of a constant stimulus (ATP). The model is able to capture several experimental observations such as refilling of Ca[Formula: see text] in the ER, variation of cytoplasmic Ca[Formula: see text] transient peak in ECs, the resting cytoplasmic Ca[Formula: see text] concentration, the effect of removing ATP from the plasma on Ca[Formula: see text] homeostasis, and the saturation of cytoplasmic Ca[Formula: see text] transient peak with increase in ATP concentration. Direct confrontation with several experimental results is conducted. This work paves the way for systematic studies on coupling between blood flow and chemical signaling, and should contribute to a better understanding of the relation between (patho)physiological conditions and Ca[Formula: see text] kinetics.
Collapse
|
3
|
Bachkoenig OA, Gottschalk B, Malli R, Graier WF. An unexpected effect of risperidone reveals a nonlinear relationship between cytosolic Ca 2+ and mitochondrial Ca 2+ uptake. CURRENT TOPICS IN MEMBRANES 2022; 90:13-35. [PMID: 36368872 DOI: 10.1016/bs.ctm.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mitochondria actively contribute to cellular Ca2+ homeostasis. The molecular mechanisms of mitochondrial Ca2+ uptake and release are well characterized and are attributed to the multi-protein assembly of the mitochondrial Ca2+ uniporter complex (MCUC) and the mitochondrial sodium-calcium exchanger (NCLX), respectively. Hence, Ca2+ transfer from the endoplasmic reticulum (ER) and store-operated Ca2+ entry (SOCE) into the mitochondrial matrix has been quantitatively visualized on the subcellular level using targeted fluorescent biosensors. However, a correlation between the amplitude of cytosolic Ca2+ elevation with that in the mitochondrial matrix has not been investigated in detail so far. In the present study, we combined the Ca2+-mobilizing agonist histamine with the H1-receptor antagonist risperidone to establish a well-tunable experimental approach allowing the correlation between low, slow, high, and fast cytosolic and mitochondrial Ca2+ signals in response to inositol 1,4,5-trisphosphate (IP3)-triggered ER Ca2+ release. Our present data confirm a defined threshold in cytosolic Ca2+, which is necessary for the activation of mitochondrial Ca2+ uptake. Moreover, our data support the hypothesis of different modes of mitochondrial Ca2+ uptake depending on the source of the ion (i.e., ER vs SOCE).
Collapse
Affiliation(s)
- Olaf A Bachkoenig
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Benjamin Gottschalk
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Roland Malli
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Wolfgang F Graier
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.
| |
Collapse
|
4
|
Henry C, Carreras-Sureda A, Demaurex N. Enforced tethering elongates the cortical endoplasmic reticulum and limits store-operated calcium entry. J Cell Sci 2022; 135:274483. [PMID: 35191477 PMCID: PMC8995094 DOI: 10.1242/jcs.259313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/14/2022] [Indexed: 12/03/2022] Open
Abstract
Recruitment of STIM proteins to cortical endoplasmic reticulum (cER) domains forming membrane contact sites (MCSs) mediate the store-operated Ca2+ entry (SOCE) pathway essential for human immunity. The cER is dynamically regulated by STIM and tethering proteins during SOCE, but the ultrastructural rearrangement and functional consequences of cER remodeling are unknown. Here, we express natural (E-Syt1 and E-Syt2) and artificial (MAPPER-S and MAPPER-L) protein tethers in HEK-293T cells and correlate the changes in cER length and gap distance, as measured by electron microscopy, with ionic fluxes. We found that native cER cisternae extended during store depletion and remained elongated at a constant ER-plasma membrane (PM) gap distance during subsequent Ca2+ elevations. Tethering proteins enhanced store-dependent cER expansion, anchoring the enlarged cER at tether-specific gap distances of 12-15 nm (E-Syts) and 5-9 nm (MAPPERs). Cells with artificially extended cER had reduced SOCE and reduced agonist-induced Ca2+ release. SOCE remained modulated by calmodulin and exhibited enhanced Ca2+-dependent inhibition. We propose that cER expansion mediated by ER-PM tethering at a close distance negatively regulates SOCE by confining STIM-ORAI complexes to the periphery of enlarged cER sheets, a process that might participate in the termination of store-operated Ca2+ entry. Summary: ER-PM tethering at close distance limits Ca2+ entry by confining STIM-ORAI complexes to the periphery of contact sites.
Collapse
Affiliation(s)
- Christopher Henry
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| | - Amado Carreras-Sureda
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| |
Collapse
|
5
|
Wang S, Li C, Sun P, Shi J, Wu X, Liu C, Peng Z, Han H, Xu S, Yang Y, Tian Y, Li J, He H, Li J, Wang Z. PCV2 Triggers PK-15 Cell Apoptosis Through the PLC-IP3R-Ca 2+ Signaling Pathway. Front Microbiol 2021; 12:674907. [PMID: 34211446 PMCID: PMC8239299 DOI: 10.3389/fmicb.2021.674907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/11/2021] [Indexed: 11/22/2022] Open
Abstract
The endoplasmic reticulum (ER) plays an essential role in Ca2+ concentration balance and protein biosynthesis. During infection, the virus needs to complete its life process with the help of ER. At the same time, ER also produces ER stress (ERS), which induces apoptosis to resist virus infection. Our study explored the Ca2+ concentration, ERS, and the apoptosis mechanism after porcine circovirus 2 (PCV2) infection. We show here that PCV2 infection induces the increased cytoplasmic Ca2+ level and PK-15 cell ER swelling. The colocalization of phospholipase C (PLC) and inositol 1,4,5-trisphosphate receptor (IP3R) in the cytoplasm was observed by laser confocal microscopy. Western blot and quantitative polymerase chain reaction experiments confirmed that PLC and IP3R expression levels increased after PCV2 infection, and Ca2+ concentration in the cytoplasm increased after virus infection. These results suggest that PCV2 infection triggers ERS of PK-15 cells via the PLC–IP3R–Ca2+ signaling pathway to promote the release of intracellular Ca2+ and led to cell apoptosis.
Collapse
Affiliation(s)
- Shuo Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China.,College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chen Li
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China
| | - Panpan Sun
- Qingdao Agricultural University, Qingdao, China
| | - Jianli Shi
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaoyan Wu
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China.,College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chang Liu
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhe Peng
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hong Han
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shaojian Xu
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ying Yang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China.,College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yao Tian
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China.,Qingdao Agricultural University, Qingdao, China
| | - Jiaxin Li
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China.,Qingdao Agricultural University, Qingdao, China
| | - Hongbin He
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Li
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China.,College of Life Sciences, Shandong Normal University, Jinan, China.,Qingdao Agricultural University, Qingdao, China
| | - Zhao Wang
- China Institute of Veterinary Drug Control, Beijing, China
| |
Collapse
|
6
|
Zhang IX, Raghavan M, Satin LS. The Endoplasmic Reticulum and Calcium Homeostasis in Pancreatic Beta Cells. Endocrinology 2020; 161:bqz028. [PMID: 31796960 PMCID: PMC7028010 DOI: 10.1210/endocr/bqz028] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/01/2019] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) mediates the first steps of protein assembly within the secretory pathway and is the site where protein folding and quality control are initiated. The storage and release of Ca2+ are critical physiological functions of the ER. Disrupted ER homeostasis activates the unfolded protein response (UPR), a pathway which attempts to restore cellular equilibrium in the face of ER stress. Unremitting ER stress, and insufficient compensation for it results in beta-cell apoptosis, a process that has been linked to both type 1 diabetes (T1D) and type 2 diabetes (T2D). Both types are characterized by progressive beta-cell failure and a loss of beta-cell mass, although the underlying causes are different. The reduction of mass occurs secondary to apoptosis in the case of T2D, while beta cells undergo autoimmune destruction in T1D. In this review, we examine recent findings that link the UPR pathway and ER Ca2+ to beta cell dysfunction. We also discuss how UPR activation in beta cells favors cell survival versus apoptosis and death, and how ER protein chaperones are involved in regulating ER Ca2+ levels. Abbreviations: BiP, Binding immunoglobulin Protein ER; endoplasmic reticulum; ERAD, ER-associated protein degradation; IFN, interferon; IL, interleukin; JNK, c-Jun N-terminal kinase; KHE, proton-K+ exchanger; MODY, maturity-onset diabetes of young; PERK, PRKR-like ER kinase; SERCA, Sarco/Endoplasmic Reticulum Ca2+-ATPases; T1D, type 1 diabetes; T2D, type 2 diabetes; TNF, tumor necrosis factor; UPR, unfolded protein response; WRS, Wolcott-Rallison syndrome.
Collapse
Affiliation(s)
- Irina X Zhang
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan, Ann Arbor, MI
| | - Malini Raghavan
- Department of Microbiology and Immunology Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - Leslie S Satin
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
7
|
Functional properties and mode of regulation of the mitochondrial Na +/Ca 2+ exchanger, NCLX. Semin Cell Dev Biol 2019; 94:59-65. [PMID: 30658153 DOI: 10.1016/j.semcdb.2019.01.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/23/2022]
Abstract
Mitochondrial Ca2+ transient is the earliest discovered organellar Ca2+ signaling pathway. It consist of a Ca2+ influx, mediated by mitochondrial Ca2+ uniporter (MCU), and mitochondrial Ca2+ efflux mediated by a Na+/Ca2+ exchanger (NCLX). Mitochondrial Ca2+ signaling machinery plays a fundamental role in linking metabolic activity to cellular Ca2+ signaling, and in controlling local Ca2+ concertation in distinct cellular compartments. Impaired balance between mitochondrial Ca2+ influx and efflux leads to mitochondrial Ca2+ overload, an early and key event in ischemic or neurodegenerative syndromes. Molecular identification of NCLX and MCU happened only recently. Surprisingly, MCU knockout yielded a relatively mild phenotype while conditional knockout of NCLX led to a rapid fatal heart failure. Here we will focus on recent functional and molecular studies on NCLX structure and its mode of regulation. We will describe the unique crosstalk of this exchanger with Na+ and Ca2+ signaling pathways in the cell membrane and the endoplasmic reticulum, and with protein kinases that posttranslationally modulate NCLX activity. We will critically compare selectivity of pharmacological blockers versus molecular control of NCLX expression and activity. Finally we will discuss why this exchanger is essential for survival and can serve as an attractive therapeutic target.
Collapse
|
8
|
Zuccolo E, Laforenza U, Ferulli F, Pellavio G, Scarpellino G, Tanzi M, Turin I, Faris P, Lucariello A, Maestri M, Kheder DA, Guerra G, Pedrazzoli P, Montagna D, Moccia F. Stim and Orai mediate constitutive Ca 2+ entry and control endoplasmic reticulum Ca 2+ refilling in primary cultures of colorectal carcinoma cells. Oncotarget 2018; 9:31098-31119. [PMID: 30123430 PMCID: PMC6089563 DOI: 10.18632/oncotarget.25785] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/23/2018] [Indexed: 12/18/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) provides a major Ca2+ entry route in cancer cells. SOCE is mediated by the assembly of Stim and Orai proteins at endoplasmic reticulum (ER)-plasma membrane junctions upon depletion of the ER Ca2+ store. Additionally, Stim and Orai proteins underpin constitutive Ca2+ entry in a growing number of cancer cell types due to the partial depletion of their ER Ca2+ reservoir. Herein, we investigated for the first time the structure and function of SOCE in primary cultures of colorectal carcinoma (CRC) established from primary tumor (pCRC) and metastatic lesions (mCRC) of human subjects. Stim1-2 and Orai1-3 transcripts were equally expressed in pCRC and mCRC cells, although Stim1 and Orai3 proteins were up-regulated in mCRC cells. The Mn2+-quenching technique revealed that constitutive Ca2+ entry was significantly enhanced in pCRC cells and was inhibited by the pharmacological and genetic blockade of Stim1, Stim2, Orai1 and Orai3. The larger resting Ca2+ influx in pCRC was associated to their lower ER Ca2+ content as compared to mCRC cells. Pharmacological and genetic blockade of Stim1, Stim2, Orai1 and Orai3 prevented ER-dependent Ca2+ release, thereby suggesting that constitutive SOCE maintains ER Ca2+ levels. Nevertheless, pharmacological and genetic blockade of Stim1, Stim2, Orai1 and Orai3 did not affect CRC cell proliferation and migration. These data provide the first evidence that Stim and Orai proteins mediate constitutive Ca2+ entry and replenish ER with Ca2+ in primary cultures of CRC cells. However, SOCE is not a promising target to design alternative therapies for CRC.
Collapse
Affiliation(s)
- Estella Zuccolo
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | | | - Federica Ferulli
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giorgia Pellavio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giorgia Scarpellino
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Matteo Tanzi
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ilaria Turin
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Pawan Faris
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Department of Biology, College of Science, Salahaddin University, Erbil, Kurdistan-Region of Iraq, Iraq
| | - Angela Lucariello
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Marcello Maestri
- Unit of General Surgery, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Dlzar Ali Kheder
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Department of Biology, University of Zakho, Zakho, Kurdistan-Region of Iraq, Iraq
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Paolo Pedrazzoli
- Medical Oncology, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Daniela Montagna
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia, Pavia, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
Guerra G, Lucariello A, Perna A, Botta L, De Luca A, Moccia F. The Role of Endothelial Ca 2+ Signaling in Neurovascular Coupling: A View from the Lumen. Int J Mol Sci 2018; 19:E938. [PMID: 29561829 PMCID: PMC5979341 DOI: 10.3390/ijms19040938] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neurovascular coupling (NVC) is the mechanism whereby an increase in neuronal activity (NA) leads to local elevation in cerebral blood flow (CBF) to match the metabolic requirements of firing neurons. Following synaptic activity, an increase in neuronal and/or astrocyte Ca2+ concentration leads to the synthesis of multiple vasoactive messengers. Curiously, the role of endothelial Ca2+ signaling in NVC has been rather neglected, although endothelial cells are known to control the vascular tone in a Ca2+-dependent manner throughout peripheral vasculature. METHODS We analyzed the literature in search of the most recent updates on the potential role of endothelial Ca2+ signaling in NVC. RESULTS We found that several neurotransmitters (i.e., glutamate and acetylcholine) and neuromodulators (e.g., ATP) can induce dilation of cerebral vessels by inducing an increase in endothelial Ca2+ concentration. This, in turn, results in nitric oxide or prostaglandin E2 release or activate intermediate and small-conductance Ca2+-activated K⁺ channels, which are responsible for endothelial-dependent hyperpolarization (EDH). In addition, brain endothelial cells express multiple transient receptor potential (TRP) channels (i.e., TRPC3, TRPV3, TRPV4, TRPA1), which induce vasodilation by activating EDH. CONCLUSIONS It is possible to conclude that endothelial Ca2+ signaling is an emerging pathway in the control of NVC.
Collapse
Affiliation(s)
- Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, via F. De Santis, 86100 Campobasso, Italy.
| | - Angela Lucariello
- Department of Mental Health and Preventive Medicine, Section of Human Anatomy, University of Campania "L. Vanvitelli", 81100 Naples, Italy.
| | - Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, via F. De Santis, 86100 Campobasso, Italy.
| | - Laura Botta
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Forlanini 6, 27100 Pavia, Italy.
| | - Antonio De Luca
- Department of Mental Health and Preventive Medicine, Section of Human Anatomy, University of Campania "L. Vanvitelli", 81100 Naples, Italy.
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Forlanini 6, 27100 Pavia, Italy.
| |
Collapse
|
10
|
Di Giuro CML, Shrestha N, Malli R, Groschner K, van Breemen C, Fameli N. Na +/Ca 2+ exchangers and Orai channels jointly refill endoplasmic reticulum (ER) Ca 2+ via ER nanojunctions in vascular endothelial cells. Pflugers Arch 2017; 469:1287-1299. [PMID: 28497275 PMCID: PMC5590033 DOI: 10.1007/s00424-017-1989-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 11/29/2022]
Abstract
We investigated the role of Na+/ Ca2+ exchange (NCX) in the refilling of endoplasmic reticulum (ER) Ca2+ in vascular endothelial cells under various conditions of cell stimulation and plasma membrane (PM) polarization. Better understanding of the mechanisms behind basic ER Ca2+ content regulation is important, since current hypotheses on the possible ultimate causes of ER stress point to deterioration of the Ca2+ transport mechanism to/from ER itself. We measured [Ca2+]i temporal changes by Fura-2 fluorescence under experimental protocols that inhibit a host of transporters (NCX, Orai, non-selective transient receptor potential canonical (TRPC) channels, sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), Na+/ K+ ATPase (NKA)) involved in the Ca2+ communication between the extracellular space and the ER. Following histamine-stimulated ER Ca2+ release, blockade of NCX Ca2+-influx mode (by 10 μM KB-R7943) diminished the ER refilling capacity by about 40%, while in Orai1 dominant negative-transfected cells NCX blockade attenuated ER refilling by about 60%. Conversely, inhibiting the ouabain sensitive NKA (10 nM ouabain), which may be localized in PM-ER junctions, increased the ER Ca2+ releasable fraction by about 20%, thereby supporting the hypothesis that this process of privileged ER refilling is junction-mediated. Junctions were observed in the cell ultrastructure and their main parameters of membrane separation and linear extension were (9.6 ± 3.8) nm and (128 ± 63) nm, respectively. Our findings point to a process of privileged refilling of the ER, in which NCX and store-operated Ca2+ entry via the stromal interaction molecule (STIM)-Orai system are the sole protagonists. These results shed light on the molecular machinery involved in the function of a previously hypothesized subplasmalemmal Ca2+ control unit during ER refilling with extracellular Ca2+.
Collapse
Affiliation(s)
| | - Niroj Shrestha
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Roland Malli
- Institute of Molecular Biology & Biochemistry, Medical University of Graz, Graz, Austria
| | - Klaus Groschner
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Cornelis van Breemen
- BC Children's Hospital Research Institute, Department of Anaesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicola Fameli
- Institute of Biophysics, Medical University of Graz, Graz, Austria.
| |
Collapse
|
11
|
Groschner K, Shrestha N, Fameli N. Cardiovascular and Hemostatic Disorders: SOCE in Cardiovascular Cells: Emerging Targets for Therapeutic Intervention. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:473-503. [PMID: 28900929 DOI: 10.1007/978-3-319-57732-6_24] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The discovery of the store-operated Ca2+ entry (SOCE) phenomenon is tightly associated with its recognition as a pathway of high (patho)physiological significance in the cardiovascular system. Early on, SOCE has been investigated primarily in non-excitable cell types, and the vascular endothelium received particular attention, while a role of SOCE in excitable cells, specifically cardiac myocytes and pacemakers, was initially ignored and remains largely enigmatic even to date. With the recent gain in knowledge on the molecular components of SOCE as well as their cellular organization within nanodomains, potential tissue/cell type-dependent heterogeneity of the SOCE machinery along with high specificity of linkage to downstream signaling pathways emerged for cardiovascular cells. The basis of precise decoding of cellular Ca2+ signals was recently uncovered to involve correct spatiotemporal organization of signaling components, and even minor disturbances in these assemblies trigger cardiovascular pathologies. With this chapter, we wish to provide an overview on current concepts of cellular organization of SOCE signaling complexes in cardiovascular cells with particular focus on the spatiotemporal aspects of coupling to downstream signaling and the potential disturbance of these mechanisms by pathogenic factors. The significance of these mechanistic concepts for the development of novel therapeutic strategies will be discussed.
Collapse
Affiliation(s)
- Klaus Groschner
- Institute of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/4, 8010, Graz, Austria.
| | - Niroj Shrestha
- Institute of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/4, 8010, Graz, Austria
| | - Nicola Fameli
- Institute of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/4, 8010, Graz, Austria
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Blatter LA. Tissue Specificity: SOCE: Implications for Ca 2+ Handling in Endothelial Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:343-361. [PMID: 28900923 DOI: 10.1007/978-3-319-57732-6_18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many cellular functions of the vascular endothelium are regulated by fine-tuned global and local, microdomain-confined changes of cytosolic free Ca2+ ([Ca2+]i). Vasoactive agonist-induced stimulation of vascular endothelial cells (VECs) typically induces Ca2+ release through IP3 receptor Ca2+ release channels embedded in the membrane of the endoplasmic reticulum (ER) Ca2+ store, followed by Ca2+ entry from the extracellular space elicited by Ca2+ store depletion and referred to as capacitative or store-operated Ca2+ entry (SOCE). In vascular endothelial cells, SOCE is graded with the degree of store depletion and controlled locally in the subcellular microdomain where depletion occurs. SOCE provides distinct Ca2+ signals that selectively control specific endothelial functions: in calf pulmonary artery endothelial cells, the SOCE Ca2+ signal drives nitric oxide (an endothelium-derived relaxing factor of the vascular smooth muscle) production and controls activation and nuclear translocation of the transcription factor NFAT. Both cellular events are not affected by Ca2+ signals of comparable magnitude arising directly from Ca2+ release from intracellular stores, clearly indicating that SOCE regulates specific Ca2+-dependent cellular tasks by a unique and exclusive mechanism. This review discusses the mechanisms of intracellular Ca2+ regulation in vascular endothelial cells and the role of store-operated Ca2+ entry for endothelium-dependent smooth muscle relaxation and nitric oxide signaling, endothelial oxidative stress response, and excitation-transcription coupling in the vascular endothelium.
Collapse
Affiliation(s)
- Lothar A Blatter
- Department of Physiology and Biophysics, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL, 60612, USA.
| |
Collapse
|
13
|
Fameli N, Evans AM, van Breemen C. Tissue Specificity: The Role of Organellar Membrane Nanojunctions in Smooth Muscle Ca2+ Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:321-342. [DOI: 10.1007/978-3-319-57732-6_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
14
|
Functional impairment of endothelial cells by the antimycotic amphotericin B. Biochem Biophys Res Commun 2016; 472:40-5. [PMID: 26902113 DOI: 10.1016/j.bbrc.2016.02.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 11/21/2022]
Abstract
We set out to determine the membrane potential (Vm) of the endothelial cell line EA.hy926 and its sensitivity to the antimycotic amphotericin B (AmB), a commonly used antifungal component in cell culture media. We measured the endothelial Vm under various experimental conditions by patch clamp technique and found that Vm of AmB-treated cells is (-12.1 ± 9.3) mV, while in AmB-untreated (control) cells it is (-57.1 ± 4.1) mV. In AmB-free extracellular solutions, Vm recovered toward control levels and this gain in Vm rapidly dissipated upon re-addition of AmB, demonstrating a rapid and reversible effect of AmB on endothelial Vm. The consequences of AmB dependent alterations in endothelial transmembrane potential were tested at the levels of Ca(2+) signaling, of nucleotide concentrations, and energy metabolism. In AmB-treated cells we found substantially reduced Ca(2+) entry (to about 60% of that in control cells) in response to histamine induced endoplasmic reticulum (ER) Ca(2+) depletion, and diminished the ATP-to-ADP ratio (by >30%). Our data demonstrate a marked and experimentally relevant dependence of basic functional parameters of cultured endothelial cells on the presence of the ionophoric antimycotic AmB. The profound and reversible effects of the widely used culture media component AmB need careful consideration when interpreting experimental data obtained under respective culture conditions.
Collapse
|
15
|
Zuccolo E, Bottino C, Diofano F, Poletto V, Codazzi AC, Mannarino S, Campanelli R, Fois G, Marseglia GL, Guerra G, Montagna D, Laforenza U, Rosti V, Massa M, Moccia F. Constitutive Store-Operated Ca2+ Entry Leads to Enhanced Nitric Oxide Production and Proliferation in Infantile Hemangioma-Derived Endothelial Colony-Forming Cells. Stem Cells Dev 2016; 25:301-19. [DOI: 10.1089/scd.2015.0240] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Cinzia Bottino
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Federica Diofano
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Valentina Poletto
- Research Laboratory of Biotechnology, Center for the Study of Myelofibrosis, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Savina Mannarino
- Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Rita Campanelli
- Research Laboratory of Biotechnology, Center for the Study of Myelofibrosis, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gabriella Fois
- Research Laboratory of Biotechnology, Center for the Study of Myelofibrosis, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Germano Guerra
- Department of Medicine and Health Sciences “Vincenzo Tiberio,” University of Molise, Campobasso, Italy
| | - Daniela Montagna
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Vittorio Rosti
- Research Laboratory of Biotechnology, Center for the Study of Myelofibrosis, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Margherita Massa
- Laboratory of Biotechnology, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| |
Collapse
|
16
|
Eroglu E, Gottschalk B, Charoensin S, Blass S, Bischof H, Rost R, Madreiter-Sokolowski CT, Pelzmann B, Bernhart E, Sattler W, Hallström S, Malinski T, Waldeck-Weiermair M, Graier WF, Malli R. Development of novel FP-based probes for live-cell imaging of nitric oxide dynamics. Nat Commun 2016; 7:10623. [PMID: 26842907 PMCID: PMC4743004 DOI: 10.1038/ncomms10623] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/05/2016] [Indexed: 12/22/2022] Open
Abstract
Nitric oxide () is a free radical with a wide range of biological effects, but practically impossible to visualize in single cells. Here we report the development of novel multicoloured fluorescent quenching-based probes by fusing a bacteria-derived -binding domain close to distinct fluorescent protein variants. These genetically encoded probes, referred to as geNOps, provide a selective, specific and real-time read-out of cellular dynamics and, hence, open a new era of bioimaging. The combination of geNOps with a Ca(2+) sensor allowed us to visualize and Ca(2+) signals simultaneously in single endothelial cells. Moreover, targeting of the probes was used to detect signals within mitochondria. The geNOps are useful new tools to further investigate and understand the complex patterns of signalling on the single (sub)cellular level.
Collapse
Affiliation(s)
- Emrah Eroglu
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Benjamin Gottschalk
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Suphachai Charoensin
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Sandra Blass
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Helmut Bischof
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Rene Rost
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Corina T Madreiter-Sokolowski
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Brigitte Pelzmann
- Institute of Biophysics, Center of Physiological Medicine, Medical University of Graz, Harrachgasse 21/IV, 8010 Graz, Austria
| | - Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Seth Hallström
- Institute of Physiological Chemistry, Center of Physiological Medicine, Medical University of Graz, Harrachgasse 21/II, 8010 Graz, Austria
| | - Tadeusz Malinski
- Nanomedical Research Laboratory, Department of Chemistry and Biochemistry, Ohio University, 350 West State Street, Athens, Ohio 45701, USA
| | - Markus Waldeck-Weiermair
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Roland Malli
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| |
Collapse
|
17
|
Abstract
The regulatory protein STIM1 controls gating of the Ca(2+) channel ORAI1 by a direct protein-protein interaction. Because STIM1 is anchored in the ER membrane and ORAI1 is in the plasma membrane, the STIM-ORAI pathway can support Ca(2+) influx only where the two membranes come into close apposition, effectively demarcating a microdomain for Ca(2+) signalling. This review begins with a brief summary of the STIM-ORAI pathway of store-operated Ca(2+) influx, then turns to the special geometry of the STIM-ORAI microdomain and the expected characteristics of the microdomain Ca(2+) signal. A final section of the review seeks to place the STIM-ORAI microdomain into a broader context of cellular Ca(2+) signalling.
Collapse
Affiliation(s)
- Patrick G Hogan
- La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
18
|
Gilon P, Chae HY, Rutter GA, Ravier MA. Calcium signaling in pancreatic β-cells in health and in Type 2 diabetes. Cell Calcium 2014; 56:340-61. [DOI: 10.1016/j.ceca.2014.09.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/26/2014] [Accepted: 09/01/2014] [Indexed: 12/24/2022]
|
19
|
Bálint Z, Zabini D, Konya V, Nagaraj C, Végh AG, Váró G, Wilhelm I, Fazakas C, Krizbai IA, Heinemann A, Olschewski H, Olschewski A. Double-stranded RNA attenuates the barrier function of human pulmonary artery endothelial cells. PLoS One 2013; 8:e63776. [PMID: 23755110 PMCID: PMC3670875 DOI: 10.1371/journal.pone.0063776] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/05/2013] [Indexed: 11/18/2022] Open
Abstract
Circulating RNA may result from excessive cell damage or acute viral infection and can interact with vascular endothelial cells. Despite the obvious clinical implications associated with the presence of circulating RNA, its pathological effects on endothelial cells and the governing molecular mechanisms are still not fully elucidated. We analyzed the effects of double stranded RNA on primary human pulmonary artery endothelial cells (hPAECs). The effect of natural and synthetic double-stranded RNA (dsRNA) on hPAECs was investigated using trans-endothelial electric resistance, molecule trafficking, calcium (Ca2+) homeostasis, gene expression and proliferation studies. Furthermore, the morphology and mechanical changes of the cells caused by synthetic dsRNA was followed by in-situ atomic force microscopy, by vascular-endothelial cadherin and F-actin staining. Our results indicated that exposure of hPAECs to synthetic dsRNA led to functional deficits. This was reflected by morphological and mechanical changes and an increase in the permeability of the endothelial monolayer. hPAECs treated with synthetic dsRNA accumulated in the G1 phase of the cell cycle. Additionally, the proliferation rate of the cells in the presence of synthetic dsRNA was significantly decreased. Furthermore, we found that natural and synthetic dsRNA modulated Ca2+ signaling in hPAECs by inhibiting the sarco-endoplasmic Ca2+-ATPase (SERCA) which is involved in the regulation of the intracellular Ca2+ homeostasis and thus cell growth. Even upon synthetic dsRNA stimulation silencing of SERCA3 preserved the endothelial monolayer integrity. Our data identify novel mechanisms by which dsRNA can disrupt endothelial barrier function and these may be relevant in inflammatory processes.
Collapse
Affiliation(s)
- Zoltán Bálint
- Experimental Anesthesiology, Department of Anesthesia and Intensive Care Medicine, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Diana Zabini
- Experimental Anesthesiology, Department of Anesthesia and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Viktoria Konya
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Chandran Nagaraj
- Experimental Anesthesiology, Department of Anesthesia and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Attila G. Végh
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - György Váró
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Csilla Fazakas
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - István A. Krizbai
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Andrea Olschewski
- Experimental Anesthesiology, Department of Anesthesia and Intensive Care Medicine, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- * E-mail:
| |
Collapse
|
20
|
Deak AT, Groschner LN, Alam MR, Seles E, Bondarenko AI, Graier WF, Malli R. The endocannabinoid N-arachidonoyl glycine (NAGly) inhibits store-operated Ca2+ entry by preventing STIM1-Orai1 interaction. J Cell Sci 2012; 126:879-88. [PMID: 23239024 DOI: 10.1242/jcs.118075] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The endocannabiniod anandamide (AEA) and its derivate N-arachidonoyl glycine (NAGly) have a broad spectrum of physiological effects, which are induced by both binding to receptors and receptor-independent modulations of ion channels and transporters. The impact of AEA and NAGly on store-operated Ca(2+) entry (SOCE), a ubiquitous Ca(2+) entry pathway regulating many cellular functions, is unknown. Here we show that NAGly, but not AEA reversibly hinders SOCE in a time- and concentration-dependent manner. The inhibitory effect of NAGly on SOCE was found in the human endothelial cell line EA.hy926, the rat pancreatic β-cell line INS-1 832/13, and the rat basophilic leukemia cell line RBL-2H3. NAGly diminished SOCE independently from the mode of Ca(2+) depletion of the endoplasmic reticulum, whereas it had no effect on Ca(2+) entry through L-type voltage-gated Ca(2+) channels. Enhanced Ca(2+) entry was effectively hampered by NAGly in cells overexpressing the key molecular constituents of SOCE, stromal interacting molecule 1 (STIM1) and the pore-forming subunit of SOCE channels, Orai1. Fluorescence microscopy revealed that NAGly did not affect STIM1 oligomerization, STIM1 clustering, or the colocalization of STIM1 with Orai1, which were induced by Ca(2+) depletion of the endoplasmic reticulum. In contrast, independently from its slow depolarizing effect on mitochondria, NAGly instantly and strongly diminished the interaction of STIM1 with Orai1, indicating that NAGly inhibits SOCE primarily by uncoupling STIM1 from Orai1. In summary, our findings revealed the STIM1-Orai1-mediated SOCE machinery as a molecular target of NAGly, which might have many implications in cell physiology.
Collapse
Affiliation(s)
- Andras T Deak
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz, Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
21
|
Alam MR, Groschner LN, Parichatikanond W, Kuo L, Bondarenko AI, Rost R, Waldeck-Weiermair M, Malli R, Graier WF. Mitochondrial Ca2+ uptake 1 (MICU1) and mitochondrial ca2+ uniporter (MCU) contribute to metabolism-secretion coupling in clonal pancreatic β-cells. J Biol Chem 2012; 287:34445-54. [PMID: 22904319 PMCID: PMC3464549 DOI: 10.1074/jbc.m112.392084] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In pancreatic β-cells, uptake of Ca2+ into mitochondria facilitates metabolism-secretion coupling by activation of various matrix enzymes, thus facilitating ATP generation by oxidative phosphorylation and, in turn, augmenting insulin release. We employed an siRNA-based approach to evaluate the individual contribution of four proteins that were recently described to be engaged in mitochondrial Ca2+ sequestration in clonal INS-1 832/13 pancreatic β-cells: the mitochondrial Ca2+ uptake 1 (MICU1), mitochondrial Ca2+ uniporter (MCU), uncoupling protein 2 (UCP2), and leucine zipper EF-hand-containing transmembrane protein 1 (LETM1). Using a FRET-based genetically encoded Ca2+ sensor targeted to mitochondria, we show that a transient knockdown of MICU1 or MCU diminished mitochondrial Ca2+ uptake upon both intracellular Ca2+ release and Ca2+ entry via L-type channels. In contrast, knockdown of UCP2 and LETM1 exclusively reduced mitochondrial Ca2+ uptake in response to either intracellular Ca2+ release or Ca2+ entry, respectively. Therefore, we further investigated the role of MICU1 and MCU in metabolism-secretion coupling. Diminution of MICU1 or MCU reduced mitochondrial Ca2+ uptake in response to d-glucose, whereas d-glucose-triggered cytosolic Ca2+ oscillations remained unaffected. Moreover, d-glucose-evoked increases in cytosolic ATP and d-glucose-stimulated insulin secretion were diminished in MICU1- or MCU-silenced cells. Our data highlight the crucial role of MICU1 and MCU in mitochondrial Ca2+ uptake in pancreatic β-cells and their involvement in the positive feedback required for sustained insulin secretion.
Collapse
Affiliation(s)
- Muhammad Rizwan Alam
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Moccia F, Berra-Romani R, Tanzi F. Update on vascular endothelial Ca 2+ signalling: A tale of ion channels, pumps and transporters. World J Biol Chem 2012; 3:127-58. [PMID: 22905291 PMCID: PMC3421132 DOI: 10.4331/wjbc.v3.i7.127] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/04/2012] [Accepted: 07/11/2012] [Indexed: 02/05/2023] Open
Abstract
A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and forms a multifunctional transducing organ that mediates a plethora of cardiovascular processes. The activation of ECs from as state of quiescence is, therefore, regarded among the early events leading to the onset and progression of potentially lethal diseases, such as hypertension, myocardial infarction, brain stroke, and tumor. Intracellular Ca2+ signals have long been know to play a central role in the complex network of signaling pathways regulating the endothelial functions. Notably, recent work has outlined how any change in the pattern of expression of endothelial channels, transporters and pumps involved in the modulation of intracellular Ca2+ levels may dramatically affect whole body homeostasis. Vascular ECs may react to both mechanical and chemical stimuli by generating a variety of intracellular Ca2+ signals, ranging from brief, localized Ca2+ pulses to prolonged Ca2+ oscillations engulfing the whole cytoplasm. The well-defined spatiotemporal profile of the subcellular Ca2+ signals elicited in ECs by specific extracellular inputs depends on the interaction between Ca2+ releasing channels, which are located both on the plasma membrane and in a number of intracellular organelles, and Ca2+ removing systems. The present article aims to summarize both the past and recent literature in the field to provide a clear-cut picture of our current knowledge on the molecular nature and the role played by the components of the Ca2+ machinery in vascular ECs under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Francesco Moccia
- Francesco Moccia, Franco Tanzi, Department of Biology and Biotechnologies "Lazzaro Spallanzani", Laboratory of Physiology, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | | | | |
Collapse
|
23
|
Abstract
SOCE (store-operated calcium entry) is a ubiquitous cellular mechanism linking the calcium depletion of the ER (endoplasmic reticulum) to the activation of PM (plasma membrane) Ca2+-permeable channels. The activation of SOCE channels favours the entry of extracellular Ca2+ into the cytosol, thereby promoting the refilling of the depleted ER Ca2+ stores as well as the generation of long-lasting calcium signals. The molecules that govern SOCE activation comprise ER Ca2+ sensors [STIM1 (stromal interaction molecule 1) and STIM2], PM Ca2+-permeable channels {Orai and TRPC [TRP (transient receptor potential) canonical]} and regulatory Ca2+-sensitive cytosolic proteins {CRACR2 [CRAC (Ca2+ release-activated Ca2+ current) regulator 2]}. Upon Ca2+ depletion of the ER, STIM molecules move towards the PM to bind and activate Orai or TRPC channels, initiating calcium entry and store refilling. This molecular rearrangement is accompanied by the formation of specialized compartments derived from the ER, the pre-cER (cortical ER) and cER. The pre-cER appears on the electron microscope as thin ER tubules enriched in STIM1 that extend along microtubules and that are devoid of contacts with the PM. The cER is located in immediate proximity to the PM and comprises thinner sections enriched in STIM1 and devoid of chaperones that might be dedicated to calcium signalling. Here, we review the molecular interactions and the morphological changes in ER structure that occur during the SOCE process.
Collapse
|
24
|
Ehrlich LS, Medina GN, Carter CA. ESCRT machinery potentiates HIV-1 utilization of the PI(4,5)P(2)-PLC-IP3R-Ca(2+) signaling cascade. J Mol Biol 2011; 413:347-58. [PMID: 21875593 PMCID: PMC3193579 DOI: 10.1016/j.jmb.2011.08.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/05/2011] [Accepted: 08/16/2011] [Indexed: 01/09/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) release efficiency is directed by late (L) domain motifs in the viral structural precursor polyprotein Gag, which serve as links to the ESCRT (endosomal sorting complex required for transport) machinery. Linkage is normally through binding of Tsg101, an ESCRT-1 component, to the P(7)TAP motif in the p6 region of Gag. In its absence, budding is directed by binding of Alix, an ESCRT adaptor protein, to the LY(36)PX(n)L motif in Gag. We recently showed that budding requires activation of the inositol 1,4,5-triphosphate receptor (IP3R), a protein that "gates" Ca(2+) release from intracellular stores, triggers Ca(2+) cell influx and thereby functions as a major regulator of Ca(2+) signaling. In the present study, we determined whether the L domain links Gag to Ca(2+) signaling machinery. Depletion of IP3R and inactivation of phospholipase C (PLC) inhibited budding whether or not Tsg101 was bound to Gag. PLC hydrolysis of phosphatidylinositol-(4,5)-bisphosphate generates inositol (1,4,5)-triphosphate, the ligand that activates IP3R. However, with Tsg101 bound, Gag release was independent of Gq-mediated activation of PLC, and budding was readily enhanced by pharmacological stimulation of PLC. Moreover, IP3R was redistributed to the cell periphery and cytosolic Ca(2+) was elevated, events indicative of induction of Ca(2+) signaling. The results suggest that L domain function, ESCRT machinery and Ca(2+) signaling are linked events in Gag release.
Collapse
Affiliation(s)
- Lorna S. Ehrlich
- Dept. of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Gisselle N. Medina
- Dept. of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Carol A. Carter
- Dept. of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| |
Collapse
|
25
|
Antigny F, Jousset H, König S, Frieden M. Thapsigargin activates Ca²+ entry both by store-dependent, STIM1/Orai1-mediated, and store-independent, TRPC3/PLC/PKC-mediated pathways in human endothelial cells. Cell Calcium 2010; 49:115-27. [PMID: 21193229 DOI: 10.1016/j.ceca.2010.12.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/11/2010] [Accepted: 12/02/2010] [Indexed: 11/30/2022]
Abstract
The ER Ca²+ sensor STIM1 and the Ca²+ channel Orai1 are key players in store-operated Ca²+ entry (SOCE). In addition, channels from the TRPC family were also shown to be engaged during SOCE, while their precise implication remains controversial. In this study, we investigated the molecular players involved in SOCE triggered by the SERCA pump inhibitor thapsigargin in an endothelial cell line, the EA.hy926. siRNA directed against STIM1 or Orai1 reduced Ca²+ entry by about 50-60%, showing that a large part of the entry is independent from these proteins. Blocking the PLC or the PKC pathway completely abolished thapsigargin-induced Ca²+ entry in cells depleted from STIM1 and/or Orai1. The phorbol ester PMA or the DAG analog OAG restored the Ca²+ entry inhibited by PLC blockers, showing an involvement of PLC/PKC pathway in SOCE. Using pharmacological inhibitors or siRNA revealed that the PKCeta is required for Ca²+ entry, and pharmacological inhibition of the tyrosine kinase Src also reduced Ca²+ entry. TRPC3 silencing diminished the entry by 45%, while the double STIM1/TRPC3 invalidation reduced Ca²+ entry by more than 85%. Hence, in EA.hy926 cells, TG-induced Ca²+ entry results from the activation of the STIM1/Orai1 machinery, and from the activation of TRPC3.
Collapse
Affiliation(s)
- Fabrice Antigny
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
26
|
Bondarenko A, Waldeck-Weiermair M, Naghdi S, Poteser M, Malli R, Graier WF. GPR55-dependent and -independent ion signalling in response to lysophosphatidylinositol in endothelial cells. Br J Pharmacol 2010; 161:308-20. [PMID: 20735417 PMCID: PMC2931756 DOI: 10.1111/j.1476-5381.2010.00744.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 01/31/2010] [Accepted: 02/06/2010] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AND PURPOSE The glycerol-based lysophospholipid lysophosphatidylinositol (LPI) is an endogenous agonist of the G-protein-coupled receptor 55 (GPR55) exhibiting cannabinoid receptor-like properties in endothelial cells. To estimate the contribution of GPR55 to the physiological effects of LPI, the GPR55-dependent and -independent electrical responses in this cell type were investigated. EXPERIMENTAL APPROACH Applying small interference RNA-mediated knock-down and transient overexpression, GPR55-dependent and -independent effects of LPI on cytosolic free Ca(2+) concentration, membrane potential and transmembrane ion currents were studied in EA.hy296 cells. KEY RESULTS In a GPR55-dependent, GDPbetaS and U73122-sensitive manner, LPI induced rapid and transient intracellular Ca(2+) release that was associated with activation of charybdotoxin-sensitive, large conductance, Ca(2+)-activated, K(+) channels (BK(Ca)) and temporary membrane hyperpolarization. Following these initial electrical reactions, LPI elicited GPR55-independent long-lasting Na(+) loading and a non-selective inward current causing sustained membrane depolarization that depended on extracellular Ca(2+) and Na(+) and was partially inhibited by Ni(2+) and La(3+). This inward current was due to the activation of a voltage-independent non-selective cation current. The Ni(2+) and La(3+)-insensitive depolarization with LPI was prevented by inhibition of the Na/K-ATPase by ouabain. CONCLUSIONS AND IMPLICATIONS LPI elicited a biphasic response in endothelial cells of which the immediate Ca(2+) signalling depends on GPR55 while the subsequent depolarization is due to Na(+) loading via non-selective cation channels and an inhibition of the Na/K-ATPase. Thus, LPI is a potent signalling molecule that affects endothelial functions by modulating several cellular electrical responses that are only partially linked to GPR55.
Collapse
Affiliation(s)
- Alexander Bondarenko
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | | | | | | | | | | |
Collapse
|
27
|
Naghdi S, Waldeck-Weiermair M, Fertschai I, Poteser M, Graier WF, Malli R. Mitochondrial Ca2+ uptake and not mitochondrial motility is required for STIM1-Orai1-dependent store-operated Ca2+ entry. J Cell Sci 2010; 123:2553-64. [DOI: 10.1242/jcs.070151] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Store-operated Ca2+ entry (SOCE) is established by formation of subplasmalemmal clusters of the endoplasmic reticulum (ER) protein, stromal interacting molecule 1 (STIM1) upon ER Ca2+ depletion. Thereby, STIM1 couples to plasma membrane channels such as Orai1. Thus, a close proximity of ER domains to the plasma membrane is a prerequisite for SOCE activation, challenging the concept of local Ca2+ buffering by mitochondria as being essential for SOCE. This study assesses the impact of mitochondrial Ca2+ handling and motility on STIM1–Orai1-dependent SOCE. High-resolution microscopy showed only 10% of subplasmalemmal STIM1 clusters to be colocalized with mitochondria. Impairments of mitochondrial Ca2+ handling by inhibition of mitochondrial Na+-Ca2+ exchanger (NCXmito) or depolarization only partially suppressed Ca2+ entry in cells overexpressing STIM1-Orai1. However, SOCE was completely abolished when both NCXmito was inhibited and the inner mitochondrial membrane was depolarized, in STIM1- and Orai1-overexpressing cells. Immobilization of mitochondria by expression of mAKAP-RFP-CAAX, a construct that physically links mitochondria to the plasma membrane, affected the Ca2+ handling of the organelles but not the activity of SOCE. Our observations indicate that mitochondrial Ca2+ uptake, including reversal of NCXmito, is fundamental for STIM1–Orai1-dependent SOCE, whereas the proximity of mitochondria to STIM1-Orai1 SOCE units and their motility is not required.
Collapse
Affiliation(s)
- Shamim Naghdi
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Markus Waldeck-Weiermair
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Ismene Fertschai
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Michael Poteser
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Wolfgang F. Graier
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Roland Malli
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
28
|
The contribution of UCP2 and UCP3 to mitochondrial Ca(2+) uptake is differentially determined by the source of supplied Ca(2+). Cell Calcium 2010; 47:433-40. [PMID: 20403634 DOI: 10.1016/j.ceca.2010.03.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 03/08/2010] [Accepted: 03/15/2010] [Indexed: 11/21/2022]
Abstract
The transmission of Ca(2+) signals to mitochondria is an important phenomenon in cell signaling. We have recently reported that the novel uncoupling proteins UCP2 and UCP3 (UCP2/3) are fundamental for mitochondrial Ca(2+) uniport (MCU). In the present study we investigate the contribution of UCP2/3 to mitochondrial accumulation of Ca(2+) either exclusively released from the ER or entering the cell via the store-operated Ca(2+) entry (SOCE) pathway. Using siRNA we demonstrate that constitutively expressed UCP2/3 are essentially involved in mitochondrial sequestration of intracellularly released Ca(2+) but not of that entering the cells via SOCE. However, overexpression of UCP2/3 yielded elevated mitochondrial Ca(2+) uptake from both sources, though it was more pronounced in case of entering Ca(2+), indicating that the expression levels of UCP2/3 are crucial for the capacity of mitochondria to sequester entering Ca(2+). Our data point to distinct UCP2/3-dependent and UCP2/3-independent modes of mitochondrial Ca(2+) sequestration, which may meet the various demands necessary for an adequate organelle Ca(2+) loading from different Ca(2+) sources in intact cells.
Collapse
|
29
|
Osteoblasts modulate Ca2+ signaling in bone-metastatic prostate and breast cancer cells. Clin Exp Metastasis 2009; 26:955-64. [PMID: 19768662 DOI: 10.1007/s10585-009-9286-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 09/01/2009] [Indexed: 12/20/2022]
Abstract
Metastatic prostate and breast cancers display a predilection for the skeleton. The high incidence of skeletal metastasis may be a reflection of favorable reciprocal interactions between the bone microenvironment and disseminated cancer cells. Here we show that bone-metastatic PC3-ML prostate cancer cells and MDA-231 breast cancer cells-when co-cultured with human osteoblasts-down-regulate the increase in cytosolic free calcium (Ca(2+)) induced by agonist stimulation. This osteoblast promoted alteration of Ca(2+) signaling develops and reverts in a time-dependent manner. Most importantly, the Ca(2+) responses of cancer cells lacking bone metastatic potential are not affected by osteoblasts. The limited increase in cytosolic Ca(2+) observed in bone-metastatic cells does not result from depleted intracellular Ca(2+) stores but rather a decreased entry of Ca(2+) from the extracellular space. Interestingly, the inhibition of histone deacetylase in cancer cells replicates the changes in Ca(2+) signaling induced by osteoblasts, suggesting the participation of epigenetic mechanisms. Finally, cancer cells harvested from skeletal metastases induced in mice showed Ca(2+) responses identical to cells co-cultured with osteoblasts. However, Ca(2+) signaling in cancer cells recovered from metastases to soft-tissues was not affected, emphasizing the role of the bone microenvironment in regulating the functional behavior of bone-metastatic cells. We propose that osteoblasts protect selected malignant phenotypes from cell death caused by an excessive increase in cytosolic Ca(2+), thereby facilitating their progression into macroscopic skeletal metastases.
Collapse
|
30
|
Malli R, Naghdi S, Romanin C, Graier WF. Cytosolic Ca2+ prevents the subplasmalemmal clustering of STIM1: an intrinsic mechanism to avoid Ca2+ overload. J Cell Sci 2008; 121:3133-9. [PMID: 18765567 DOI: 10.1242/jcs.034496] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The stromal interacting molecule (STIM1) is pivotal for store-operated Ca(2+) entry (SOC). STIM1 proteins sense the Ca(2+) concentration within the lumen of the endoplasmic reticulum (ER) via an EF-hand domain. Dissociation of Ca(2+) from this domain allows fast oligomerization of STIM1 and the formation of spatially discrete clusters close to the plasma membrane. By lifetime-imaging of STIM1 interaction, the rearrangement of STIM1, ER Ca(2+) concentration ([Ca(2+)](ER)) and cytosolic Ca(2+) signals ([Ca(2+)](cyto)) we show that [Ca(2+)](cyto) affects the subcellular distribution of STIM1 oligomers and prevents subplasmalemmal STIM clustering, even if the ER is depleted. These data indicate that [Ca(2+)](cyto), independently of the ER Ca(2+) filling state, crucially tunes the formation and disassembly of subplasmalemmal STIM1 clusters, and, thus, protects cells against Ca(2+) overload resulting from excessive SOC activity.
Collapse
Affiliation(s)
- Roland Malli
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | | | | | | |
Collapse
|
31
|
Kansui Y, Garland CJ, Dora KA. Enhanced spontaneous Ca2+ events in endothelial cells reflect signalling through myoendothelial gap junctions in pressurized mesenteric arteries. Cell Calcium 2008; 44:135-46. [PMID: 18191200 DOI: 10.1016/j.ceca.2007.11.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 11/01/2007] [Accepted: 11/05/2007] [Indexed: 11/15/2022]
Abstract
Increases in global Ca(2+) in the endothelium are a crucial step in releasing relaxing factors to modulate arterial tone. In the present study we investigated spontaneous Ca(2+) events in endothelial cells, and the contribution of smooth muscle cells to these Ca(2+) events, in pressurized rat mesenteric resistance arteries. Spontaneous Ca(2+) events were observed under resting conditions in 34% of cells. These Ca(2+) events were absent in arteries preincubated with either cyclopiazonic acid or U-73122, but were unaffected by ryanodine or nicotinamide. Stimulation of smooth muscle cell depolarization and contraction with either phenylephrine or high concentrations of KCl significantly increased the frequency of endothelial cell Ca(2+) events. The putative gap junction uncouplers carbenoxolone and 18alpha-glycyrrhetinic acid each inhibited spontaneous and evoked Ca(2+) events, and the movement of calcein from endothelial to smooth muscle cells. In addition, spontaneous Ca(2+) events were diminished by nifedipine, lowering extracellular Ca(2+) levels, or by blockers of non-selective Ca(2+) influx pathways. These findings suggest that in pressurized rat mesenteric arteries, spontaneous Ca(2+) events in the endothelial cells appear to originate from endoplasmic reticulum IP(3) receptors, and are subject to regulation by surrounding smooth muscle cells via myoendothelial gap junctions, even under basal conditions.
Collapse
Affiliation(s)
- Yasuo Kansui
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA 7AY, UK
| | | | | |
Collapse
|
32
|
Poburko D, Liao CH, Lemos VS, Lin E, Maruyama Y, Cole WC, van Breemen C. Transient receptor potential channel 6-mediated, localized cytosolic [Na+] transients drive Na+/Ca2+ exchanger-mediated Ca2+ entry in purinergically stimulated aorta smooth muscle cells. Circ Res 2007; 101:1030-8. [PMID: 17872462 DOI: 10.1161/circresaha.107.155531] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Na+/Ca2+ exchanger (NCX) is increasingly recognized as a physiological mediator of Ca2+ influx and significantly contributes to salt-sensitive hypertension. We recently reported that Ca2+ influx by the NCX (1) is the primary mechanism of Ca2+ entry in purinergically stimulated rat aorta smooth muscle cells and (2) requires functional coupling with transient receptor potential channel 6 nonselective cation channels. Using the Na+ indicator CoroNa Green, we now directly observed and characterized the localized cytosolic [Na+] ([Na+]i) elevations that have long been hypothesized to underlie physiological NCX reversal but that have never been directly shown. Stimulation of rat aorta smooth muscle cells caused both global and monotonic [Na+]i elevations and localized [Na+]i transients (LNats) at the cell periphery. Inhibition of nonselective cation channels with SKF-96365 (50 micromol/L) and 2-amino-4-phosphonobutyrate (75 micromol/L) reduced both global and localized [Na+]i elevations in response to ATP (1 mmol/L). This effect was mimicked by expression of a dominant negative construct of transient receptor potential channel 6. Selective inhibition of NCX-mediated Ca2+ entry with KB-R7943 (10 micromol/L) enhanced the LNats, whereas the global cytosolic [Na+] signal was unaffected. Inhibition of mitochondrial Na+ uptake with CGP-37157 (10 micromol/L) increased both LNats and global cytosolic [Na+] elevations. These findings directly demonstrate NCX regulation by LNats, which are restricted to subsarcolemmal, cytoplasmic microdomains. Analysis of the LNats, which facilitate Ca2+ entry via NCX, suggests that mitochondria limit the cytosolic diffusion of LNats generated by agonist-mediated activation of transient receptor potential channel 6-containing channels.
Collapse
Affiliation(s)
- Damon Poburko
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, Canada, V6T 1Z1
| | | | | | | | | | | | | |
Collapse
|
33
|
Graier WF, Frieden M, Malli R. Mitochondria and Ca(2+) signaling: old guests, new functions. Pflugers Arch 2007; 455:375-96. [PMID: 17611770 PMCID: PMC4864527 DOI: 10.1007/s00424-007-0296-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 05/16/2007] [Indexed: 02/06/2023]
Abstract
Mitochondria are ancient endosymbiotic guests that joined the cells in the evolution of complex life. While the unique ability of mitochondria to produce adenosine triphosphate (ATP) and their contribution to cellular nutrition metabolism received condign attention, our understanding of the organelle's contribution to Ca(2+) homeostasis was restricted to serve as passive Ca(2+) sinks that accumulate Ca(2+) along the organelle's negative membrane potential. This paradigm has changed radically. Nowadays, mitochondria are known to respond to environmental Ca(2+) and to contribute actively to the regulation of spatial and temporal patterns of intracellular Ca(2+) signaling. Accordingly, mitochondria contribute to many signal transduction pathways and are actively involved in the maintenance of capacitative Ca(2+) entry, the accomplishment of Ca(2+) refilling of the endoplasmic reticulum and Ca(2+)-dependent protein folding. Mitochondrial Ca(2+) homeostasis is complex and regulated by numerous, so far, genetically unidentified Ca(2+) channels, pumps and exchangers that concertedly accomplish the organelle's Ca(2+) demand. Notably, mitochondrial Ca(2+) homeostasis and functions are crucially influenced by the organelle's structural organization and motility that, in turn, is controlled by matrix/cytosolic Ca(2+). This review intends to provide a condensed overview on the molecular mechanisms of mitochondrial Ca(2+) homeostasis (uptake, buffering and storage, extrusion), its modulation by other ions, kinases and small molecules, and its contribution to cellular processes as fundamental basis for the organelle's contribution to signaling pathways. Hence, emphasis is given to the structure-to-function and mobility-to-function relationship of the mitochondria and, thereby, bridging our most recent knowledge on mitochondria with the best-established mitochondrial function: metabolism and ATP production.
Collapse
Affiliation(s)
- Wolfgang F Graier
- Molecular and Cellular Physiology Research Unit, MCPRU, Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria.
| | | | | |
Collapse
|
34
|
Jousset H, Malli R, Girardin N, Graier W, Demaurex N, Frieden M. Evidence for a receptor-activated Ca2+ entry pathway independent from Ca2) store depletion in endothelial cells. Cell Calcium 2007; 43:83-94. [PMID: 17548108 PMCID: PMC6786894 DOI: 10.1016/j.ceca.2007.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 03/28/2007] [Accepted: 04/05/2007] [Indexed: 11/18/2022]
Abstract
Ca(2+) entry in endothelial cells is a key signaling event as it prolongs the Ca(2+) signal activated by a receptor agonist, and thus allows an adequate production of a variety of compounds. The possible routes that lead to Ca(2+) entry in non-excitable cells include the receptor-activated Ca(2+) entry (RACE), which requires the presence of an agonist to be activated, and the store-operated Ca(2+) entry (SOCE) pathway, whose activation requires the depletion of the ER Ca(2+) store. However, the relative importance of these two influx pathways during physiological stimulation is not known. In the present study we experimentally differentiated these two types of influxes and determined under which circumstances they are activated. We show that La(3+) (at 10 microM) is a discriminating compound that efficiently blocks SOCE but is almost without effect on histamine-induced Ca(2+) entry (RACE). In line with this, histamine does not induce massive store depletion when performed in the presence of extracellular Ca(2+). In addition, inhibition of mitochondrial respiration significantly reduces SOCE but modestly affects RACE. Thus, agonist-induced Ca(2+) entry is insensitive to La(3+), and only modestly affected by mitochondrial depolarization. These data shows that agonist relies almost exclusively on RACE for sustained Ca(2+) signaling in endothelial cells.
Collapse
Affiliation(s)
- H. Jousset
- Department of Cell Physiology and Metabolism, Geneva Medical Center, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - R. Malli
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz, 8010 Graz, Austria
| | - N. Girardin
- Department of Cell Physiology and Metabolism, Geneva Medical Center, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - W.F. Graier
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz, 8010 Graz, Austria
| | - N. Demaurex
- Department of Cell Physiology and Metabolism, Geneva Medical Center, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - M. Frieden
- Department of Cell Physiology and Metabolism, Geneva Medical Center, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
- Corresponding author at: Department of Cell Physiology and Metabolism, University of Geneva Medical School, 1 Michel-Servet, 1211 Geneva 4, Switzerland. Tel.: +41 22 379 5198; fax: +41 22 379 5338. (M. Frieden)
| |
Collapse
|
35
|
Jousset H, Frieden M, Demaurex N. STIM1 Knockdown Reveals That Store-operated Ca2+ Channels Located Close to Sarco/Endoplasmic Ca2+ ATPases (SERCA) Pumps Silently Refill the Endoplasmic Reticulum. J Biol Chem 2007; 282:11456-64. [PMID: 17283081 DOI: 10.1074/jbc.m609551200] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stromal interaction molecule (STIM) proteins are putative ER Ca2+ sensors that recruit and activate store-operated Ca2+ (SOC) channels at the plasma membrane, a process triggered by the Ca2+ depletion of the endoplasmic reticulum (ER). To test whether STIM1 is required for ER refilling, we used RNA interference and measured Ca2+ signals in the cytosol, the ER, and the mitochondria of HeLa cells. Knockdown of STIM1 (mRNA levels, 73%) reduced SOC entry by 73% when sarco/endoplasmic Ca2+ ATPases (SERCA) were inhibited by thapsigargin but did not prevent Ca2+ stores refilling when cells were stimulated by physiological agonists. Stores could be fully refilled by increasing the external Ca2+ concentration above physiological values, but no cytosolic Ca2+ signals were detected during store refilling even at very high Ca2+ concentrations. [Ca2+](ER) measurements revealed that the basal activity of SERCA was not affected in STIM1 knockdown cells and that [Ca2+](ER) levels were restored within 2 min in physiological saline following store depletion. Mitochondrial inhibitors reduced ER refilling in wild-type but not in STIM1 knockdown cells, indicating that ER refilling does not require functional mitochondria at low STIM1 levels. Our data show that ER refilling is largely preserved at reduced STIM1 levels, despite a drastic reduction of store-operated Ca2+ entry, because Ca2+ ions are directly transferred from SOC channels to SERCA. These findings are consistent with the formation of microdomains containing not only SOC channels on the plasma membrane and STIM proteins on the ER but also SERCA pumps and mitochondria to refill the ER without perturbing the cytosol.
Collapse
Affiliation(s)
- Hélène Jousset
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland
| | | | | |
Collapse
|