1
|
Allegrini B, Mignotet M, Rapetti-Mauss R, Borgese F, Soriani O, Guizouarn H. A new regulation mechanism for KCNN4, the Ca 2+-dependent K + channel, by molecular interactions with the Ca 2+pump PMCA4b. J Biol Chem 2025; 301:108114. [PMID: 39716493 PMCID: PMC11787511 DOI: 10.1016/j.jbc.2024.108114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/20/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024] Open
Abstract
KCNN4, a Ca2+-activated K+ channel, is involved in various physiological and pathological processes. It is essential for epithelial transport, immune system, and other physiological mechanisms, but its activation is also involved in cancer pathophysiology as well as red blood cell (RBC) disorders. The activation of KCNN4 in RBC leads to loss of KCl and water, a mechanism known as the "Gardos effect" described 70 years ago. This Ca2+-induced dehydration is irreversible in human RBC and must be tightly controlled to prevent not only hemolysis but also alterations in RBC rheological properties. In this study, we have investigated the regulation of KCNN4 activity after changes in RBC Ca2+ concentration. Using electrophysiology, immunoprecipitation, and proximity ligation assay in human embryonic kidney 293-transfected cells, K562 cells, or RBCs, we have found that KCNN4 and the Ca2+ pump PMCA4b (plasma membrane calcium-transporting ATPase 4b) interact tightly with each other, such that the C-terminal domain of PMCA4b regulates KCNN4 activity, independently of the Ca2+ extrusion activity of the pump. This regulation was not restricted to KCNN4: the small-conductance Ca2+-activated K+ channel KCNN2 was similarly regulated by the calcium pump. We propose a new mechanism that could control KCNN4 activity by a molecular inhibitory interaction with PMCA4b. It is suggested that this mechanism could attenuate erythrocyte dehydration in response to an increase in intracellular Ca2+.
Collapse
Affiliation(s)
- Benoit Allegrini
- Université Côte d'Azur, CNRS, Inserm, Institut Biologie Valrose, Nice, France
| | - Morgane Mignotet
- Université Côte d'Azur, CNRS, Inserm, Institut Biologie Valrose, Nice, France
| | | | - Franck Borgese
- Université Côte d'Azur, CNRS, Inserm, Institut Biologie Valrose, Nice, France
| | - Olivier Soriani
- Université Côte d'Azur, CNRS, Inserm, Institut Biologie Valrose, Nice, France
| | - Hélène Guizouarn
- Université Côte d'Azur, CNRS, Inserm, Institut Biologie Valrose, Nice, France; Laboratory of Excellence for RBC, LABEX GR-Ex, Paris, France.
| |
Collapse
|
2
|
Delgado-Coello B, Luna-Reyes I, Méndez-Acevedo KM, Bravo-Martínez J, Montalvan-Sorrosa D, Mas-Oliva J. Analysis of cholesterol-recognition motifs of the plasma membrane Ca 2+-ATPase. J Bioenerg Biomembr 2024; 56:205-219. [PMID: 38436904 PMCID: PMC11116186 DOI: 10.1007/s10863-024-10010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
The plasma membrane Ca2+-ATPase (PMCA) is crucial for the fine tuning of intracellular calcium levels in eukaryotic cells. In this study, we show the presence of CARC sequences in all human and rat PMCA isoforms and we performed further analysis by molecular dynamics simulations. This analysis focuses on PMCA1, containing three CARC motifs, and PMCA4, with four CARC domains. In PMCA1, two CARC motifs reside within transmembrane domains, while the third is situated at the intracellular interface. The simulations depict more stable RMSD values and lower RMSF fluctuations in the presence of cholesterol, emphasizing its potential stabilizing effect. In PMCA4, a distinct dynamic was found. Notably, the total energy differences between simulations with cholesterol and phospholipids are pronounced in PMCA4 compared to PMCA1. RMSD values for PMCA4 indicate a more energetically favorable conformation in the presence of cholesterol, suggesting a robust interaction between CARCs and this lipid in the membranes. Furthermore, RMSF analysis for CARCs in both PMCA isoforms exhibit lower values in the presence of cholesterol compared to POPC alone. The analysis of H-bond occupancy and total energy values strongly suggests the potential interaction of CARCs with cholesterol. Given the crucial role of PMCAs in physiological calcium regulation and their involvement in diverse pathological processes, this study underscores the significance of CARC motifs and their interaction with cholesterol in elucidating PMCA function. These insights into the energetic preferences associated with CARC-cholesterol interactions offer valuable implications for understanding PMCA function in maintaining calcium homeostasis and addressing potential associated pathologies.
Collapse
Affiliation(s)
- Blanca Delgado-Coello
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apdo. Postal 70-243, Ciudad de México, C.P. 04510, México.
| | - Ismael Luna-Reyes
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apdo. Postal 70-243, Ciudad de México, C.P. 04510, México
| | - Kevin M Méndez-Acevedo
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apdo. Postal 70-243, Ciudad de México, C.P. 04510, México
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Jorge Bravo-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Danai Montalvan-Sorrosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jaime Mas-Oliva
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apdo. Postal 70-243, Ciudad de México, C.P. 04510, México.
| |
Collapse
|
3
|
Pance A, Ng BL, Mwikali K, Koutsourakis M, Agu C, Rouhani FJ, Montandon R, Law F, Ponstingl H, Rayner JC. Novel stem cell technologies are powerful tools to understand the impact of human factors on Plasmodium falciparum malaria. Front Cell Infect Microbiol 2023; 13:1287355. [PMID: 38173794 PMCID: PMC10762799 DOI: 10.3389/fcimb.2023.1287355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Plasmodium falciparum parasites have a complex life cycle, but the most clinically relevant stage of the disease is the invasion of erythrocytes and the proliferation of the parasite in the blood. The influence of human genetic traits on malaria has been known for a long time, however understanding the role of the proteins involved is hampered by the anuclear nature of erythrocytes that makes them inaccessible to genetic tools. Here we overcome this limitation using stem cells to generate erythroid cells with an in-vitro differentiation protocol and assess parasite invasion with an adaptation of flow cytometry to detect parasite hemozoin. We combine this strategy with reprogramming of patient cells to Induced Pluripotent Stem Cells and genome editing to understand the role of key genes and human traits in malaria infection. We show that deletion of basigin ablates invasion while deletion of ATP2B4 has a minor effect and that erythroid cells from reprogrammed patient-derived HbBart α-thalassemia samples poorly support infection. The possibility to obtain patient-secific and genetically modifed erythoid cells offers an unparalleled opportunity to study the role of human genes and polymorphisms in malaria allowing preservation of the genomic background to demonstrate their function and understand their mechanisms.
Collapse
Affiliation(s)
- Alena Pance
- Wellcome Sanger Institute, Cambridge, United Kingdom
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Bee L. Ng
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Kioko Mwikali
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Chukwuma Agu
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Ruddy Montandon
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Wellcome Centre of Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances Law
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Julian C. Rayner
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Lew VL. The circulatory dynamics of human red blood cell homeostasis: Oxy-deoxy and PIEZO1-triggered changes. Biophys J 2023; 122:484-495. [PMID: 36588342 PMCID: PMC9941722 DOI: 10.1016/j.bpj.2022.12.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/14/2022] [Accepted: 12/30/2022] [Indexed: 01/02/2023] Open
Abstract
The vital function of red blood cells (RBCs) is to mediate the transport of oxygen from lungs to tissues and of CO2 from tissues to lungs. The gas exchanges occur during capillary transits within fractions of a second. Each oxygenation-deoxygenation and deoxygenation-reoxygenation transition on hemoglobin triggers sharp changes in RBC pH, leading to downstream changes in ion fluxes, membrane potential, and cell volume. The dynamics of these changes during the variable periods between capillary transits in vivo remains a mystery inaccessible to study by current methodologies, a knowledge gap on a fundamental physiological process that is the focus of the present study. The use of a computational model of human RBC homeostasis of tested accreditation enabled a detailed investigation of the expected RBC changes during intercapillary transits, with results advancing novel insights and predictions. The predicted rates of relative RBC volume change on oxygenation-deoxygenation (oxy-deoxy) and deoxygenation-reoxygenation transitions were about 1.5%/min and -0.9%/min, respectively, far too slow to allow the cells to reach steady states in the intervals between capillary transits. The amplitude of the oxy-deoxy-reoxygenation volume fluctuations varied in proportion with the duration of the intercapillary transit intervals. Upon capillary entry, oxy-deoxy-induced changes occur concurrently with deformation-induced PIEZO1 channel activation, both processes affecting cell pH, membrane potential, and cell volume during intertransit periods. The model showed that the effects were strictly additive as expected from processes operating independently on the cell's homeostatic fabric. Analysis of the mechanisms behind these predictions revealed, for the first time, the complex interactions between oxy-deoxy and ion transport processes that ensure the long-term homeostatic stability of RBCs for optimal gas transport in physiological conditions and how these may become altered in diseased states. Possible designs of microfluidic devices to test the model predictions are discussed.
Collapse
Affiliation(s)
- Virgilio L Lew
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, United Kingdom.
| |
Collapse
|
5
|
Joof F, Hartmann E, Jarvis A, Colley A, Cross JH, Avril M, Prentice AM, Cerami C. Genetic variations in human ATP2B4 gene alter Plasmodium falciparum in vitro growth in RBCs from Gambian adults. Malar J 2023; 22:5. [PMID: 36604655 PMCID: PMC9817369 DOI: 10.1186/s12936-022-04359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/03/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Polymorphisms in ATP2B4 coding for PMCA4b, the primary regulator of erythrocyte calcium concentration, have been shown by GWAS and cross-sectional studies to protect against severe malaria but the mechanism remains unknown. METHODS Using a recall-by-genotype design, we investigated the impact of a common haplotype variant in ATP2B4 using in vitro assays that model erythrocyte stage malaria pathogenesis. Ninety-six donors representing homozygote (carriers of the minor allele, C/C), heterozygote (T/C) and wildtype (T/T) carriers of the tagging SNP rs1541252 were selected from a cohort of over 12,000 participants in the Keneba Biobank. RESULTS Red blood cells (RBCs) from homozygotes showed reduced PMCA4b protein expression (mean fluorescence intensities (MFI = 2428 ± 124, 3544 ± 159 and 4261 ± 283], for homozygotes, heterozygotes and wildtypes respectively, p < 0.0001) and slower rates of calcium expulsion (calcium t½ ± SD = 4.7 ± 0.5, 1.8 ± 0.3 and 1.9 ± 0.4 min, p < 0.0001). Growth of a Plasmodium falciparum laboratory strain (FCR3) and two Gambian field isolates was decreased in RBCs from homozygotes compared to heterozygotes and wildtypes (p < 0.01). Genotype group did not affect parasite adhesion in vitro or var-gene expression in malaria-infected RBCs. Parasite growth was inhibited by a known inhibitor of PMCA4b, aurintricarboxylic acid (IC50 = 122uM CI: 110-134) confirming its sensitivity to calcium channel blockade. CONCLUSION The data support the hypothesis that this ATP2B4 genotype, common in The Gambia and other malaria-endemic areas, protects against severe malaria through the suppression of parasitaemia during an infection. Reduction in parasite density plays a pivotal role in disease outcome by minimizing all aspects of malaria pathogenesis. Follow up studies are needed to further elucidate the mechanism of protection and to determine if this ATP2B4 genotype carries a fitness cost or increases susceptibility to other human disease.
Collapse
Affiliation(s)
- Fatou Joof
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | | | | | - Alhassan Colley
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - James H Cross
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | | | - Andrew M Prentice
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Carla Cerami
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia.
| |
Collapse
|
6
|
Nortey LN, Anning AS, Nakotey GK, Ussif AM, Opoku YK, Osei SA, Aboagye B, Ghartey-Kwansah G. Genetics of cerebral malaria: pathogenesis, biomarkers and emerging therapeutic interventions. Cell Biosci 2022; 12:91. [PMID: 35715862 PMCID: PMC9204375 DOI: 10.1186/s13578-022-00830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cerebral malaria (CM) is a preeminent cause of severe disease and premature deaths in Sub-Saharan Africa, where an estimated 90% of cases occur. The key features of CM are a deep, unarousable coma that persists for longer than 1 h in patients with peripheral Plasmodium falciparum and no other explanation for encephalopathy. Significant research efforts on CM in the last few decades have focused on unravelling the molecular underpinnings of the disease pathogenesis and the identification of potential targets for therapeutic or pharmacologic intervention. These efforts have been greatly aided by the generation and study of mouse models of CM, which have provided great insights into key events of CM pathogenesis, revealed an interesting interplay of host versus parasite factors that determine the progression of malaria to severe disease and exposed possible targets for therapeutic intervention in severe disease.
Main Body
This paper reviews our current understanding of the pathogenic and immunologic factors involved in CM. We present the current view of the roles of certain gene products e.g., the var gene, ABCA-1, ICAM-1, TNF-alpha, CD-36, PfEMP-1 and G6PD, in CM pathogenesis. We also present alterations in the blood–brain barrier as a consequence of disease proliferation as well as complicated host and parasite interactions, including the T-cell immune reaction, reduced deformation of erythrocytes and cytoadherence. We further looked at recent advances in cerebral malaria treatment interventions by emphasizing on biomarkers, new diagnostic tools and emerging therapeutic options.
Conclusion
Finally, we discuss how the current understanding of some of these pathogenic and immunologic factors could inform the development of novel therapeutic interventions to fight CM.
Collapse
|
7
|
Bian S, Zhang X, Lin L, Sun L, Guo Z, Pan J, Cui J, Yao H, Xu J, Hao Z, Wang Y, Tong L, Bu X, Kong D, Liu N, Li Y. Exosomal MiR-4261 mediates calcium overload in RBCs by downregulating the expression of ATP2B4 in multiple myeloma. Front Oncol 2022; 12:978755. [PMID: 36091107 PMCID: PMC9458875 DOI: 10.3389/fonc.2022.978755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Hypercalcemia induced by multiple myeloma (MM) affects the biological functions of excitable and non-excitable cells. However, red blood cells (RBCs) regulatory effect on calcium in hypercalcemia is still not fully understood. Methods A total of 113 patients with MM osteolytic lesions were studied retrospectively. Flow cytometry and atomic absorption spectroscopy were used to detect calcium content. Immunofluorescence and Western blotting were used to investigate protein expression. GEO and miRNA databases were used to screen miRNAs. Exosomal miR-4261 migration was investigated by Transwell assay. Dual-luciferase assays confirmed the targeting relationship between miR-4261 and ATP2B4. An RBC oxidative stress model was constructed, and Omega-Agatoxin IVA was used to study the role of plasma membrane Ca2+-ATPase 4 (PMCA4) in RBCs. Results The results showed that MM RBCs had calcium overload, and serum calcium levels increased as the number of RBCs decreased. The expression of PMCA4 in MM RBCs was significantly lower than in normal RBCs. The exosomal miR-4261 produced by MM cells could be transferred to RBCs to downregulate the expression of ATP2B4. Conclusions Studies have confirmed that RBCs experience calcium overload in MM with osteolytic lesions, which is related to the downregulation of ATP2B4 by MM exosomal miR-4261.
Collapse
Affiliation(s)
- Sicheng Bian
- Key Laboratory of Cell Transplantation of National Health Commission, Heilongjiang Key Laboratory of Blood and Hematopoietic System, Harbin Medical University, Harbin, China
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xialin Zhang
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Leilei Lin
- Department of Hematology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Lili Sun
- Key Laboratory of Cell Transplantation of National Health Commission, Heilongjiang Key Laboratory of Blood and Hematopoietic System, Harbin Medical University, Harbin, China
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhibo Guo
- Key Laboratory of Cell Transplantation of National Health Commission, Heilongjiang Key Laboratory of Blood and Hematopoietic System, Harbin Medical University, Harbin, China
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jie Pan
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Jiangxia Cui
- Department of Hematology, Xi’an International Medical Center Hospital, Xi’an, China
| | - Hanbing Yao
- Department of Hematology, Xi’an International Medical Center Hospital, Xi’an, China
| | - Jing Xu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhuanghui Hao
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuzhu Wang
- Key Laboratory of Cell Transplantation of National Health Commission, Heilongjiang Key Laboratory of Blood and Hematopoietic System, Harbin Medical University, Harbin, China
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Liguo Tong
- Central Laboratory, Shanxi Academy of Traditional Chinese Medicine, Taiyuan, China
| | - Xingpeng Bu
- Department of Geriatrics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Desheng Kong
- Key Laboratory of Cell Transplantation of National Health Commission, Heilongjiang Key Laboratory of Blood and Hematopoietic System, Harbin Medical University, Harbin, China
| | - Nianjiao Liu
- Key Laboratory of Cell Transplantation of National Health Commission, Heilongjiang Key Laboratory of Blood and Hematopoietic System, Harbin Medical University, Harbin, China
| | - Yinghua Li
- Key Laboratory of Cell Transplantation of National Health Commission, Heilongjiang Key Laboratory of Blood and Hematopoietic System, Harbin Medical University, Harbin, China
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
- *Correspondence: Yinghua Li,
| |
Collapse
|
8
|
Identification of ATP2B4 Regulatory Element Containing Functional Genetic Variants Associated with Severe Malaria. Int J Mol Sci 2022; 23:ijms23094849. [PMID: 35563239 PMCID: PMC9101746 DOI: 10.3390/ijms23094849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022] Open
Abstract
Genome-wide association studies for severe malaria (SM) have identified 30 genetic variants mostly located in non-coding regions. Here, we aimed to identify potential causal genetic variants located in these loci and demonstrate their functional activity. We systematically investigated the regulatory effect of the SNPs in linkage disequilibrium (LD) with the malaria-associated genetic variants. Annotating and prioritizing genetic variants led to the identification of a regulatory region containing five ATP2B4 SNPs in LD with rs10900585. We found significant associations between SM and rs10900585 and our candidate SNPs (rs11240734, rs1541252, rs1541253, rs1541254, and rs1541255) in a Senegalese population. Then, we demonstrated that both individual SNPs and the combination of SNPs had regulatory effects. Moreover, CRISPR/Cas9-mediated deletion of this region decreased ATP2B4 transcript and protein levels and increased Ca2+ intracellular concentration in the K562 cell line. Our data demonstrate that severe malaria-associated genetic variants alter the expression of ATP2B4 encoding a plasma membrane calcium-transporting ATPase 4 (PMCA4) expressed on red blood cells. Altering the activity of this regulatory element affects the risk of SM, likely through calcium concentration effect on parasitaemia.
Collapse
|
9
|
Ebel ER, Uricchio LH, Petrov DA, Egan ES. Revisiting the malaria hypothesis: accounting for polygenicity and pleiotropy. Trends Parasitol 2022; 38:290-301. [PMID: 35065882 PMCID: PMC8916997 DOI: 10.1016/j.pt.2021.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 10/19/2022]
Abstract
The malaria hypothesis predicts local, balancing selection of deleterious alleles that confer strong protection from malaria. Three protective variants, recently discovered in red cell genes, are indeed more common in African than European populations. Still, up to 89% of the heritability of severe malaria is attributed to many genome-wide loci with individually small effects. Recent analyses of hundreds of genome-wide association studies (GWAS) in humans suggest that most functional, polygenic variation is pleiotropic for multiple traits. Interestingly, GWAS alleles and red cell traits associated with small reductions in malaria risk are not enriched in African populations. We propose that other selective and neutral forces, in addition to malaria prevalence, explain the global distribution of most genetic variation impacting malaria risk.
Collapse
|
10
|
Buks R, Dagher T, Rotordam MG, Monedero Alonso D, Cochet S, Gautier EF, Chafey P, Cassinat B, Kiladjian JJ, Becker N, Plo I, Egée S, El Nemer W. Altered Ca 2+ Homeostasis in Red Blood Cells of Polycythemia Vera Patients Following Disturbed Organelle Sorting during Terminal Erythropoiesis. Cells 2021; 11:49. [PMID: 35011611 PMCID: PMC8750512 DOI: 10.3390/cells11010049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
Over 95% of Polycythemia Vera (PV) patients carry the V617F mutation in the tyrosine kinase Janus kinase 2 (JAK2), resulting in uncontrolled erythroid proliferation and a high risk of thrombosis. Using mass spectrometry, we analyzed the RBC membrane proteome and showed elevated levels of multiple Ca2+ binding proteins as well as endoplasmic-reticulum-residing proteins in PV RBC membranes compared with RBC membranes from healthy individuals. In this study, we investigated the impact of JAK2V617F on (1) calcium homeostasis and RBC ion channel activity and (2) protein expression and sorting during terminal erythroid differentiation. Our data from automated patch-clamp show modified calcium homeostasis in PV RBCs and cell lines expressing JAK2V617F, with a functional impact on the activity of the Gárdos channel that could contribute to cellular dehydration. We show that JAK2V617F could play a role in organelle retention during the enucleation step of erythroid differentiation, resulting in modified whole cell proteome in reticulocytes and RBCs in PV patients. Given the central role that calcium plays in the regulation of signaling pathways, our study opens new perspectives to exploring the relationship between JAK2V617F, calcium homeostasis, and cellular abnormalities in myeloproliferative neoplasms, including cellular interactions in the bloodstream in relation to thrombotic events.
Collapse
Affiliation(s)
- Ralfs Buks
- BIGR, UMR_S1134, Inserm, Université de Paris, F-75015 Paris, France; (R.B.); (S.C.)
- Institut National de la Transfusion Sanguine, F-75015 Paris, France
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
| | - Tracy Dagher
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- U1287, Inserm, Université Paris-Saclay, Gustave Roussy, F-94800 Villejuif, France
| | - Maria Giustina Rotordam
- Nanion Technologies GmbH, 80339 Munich, Germany; (M.G.R.); (N.B.)
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Kirrbergerstr. 100, DE-66424 Homburg, Germany
| | - David Monedero Alonso
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- Sorbonne Université, CNRS, UMR LBI2M, Station Biologique de Roscoff SBR, F-29680 Roscoff, France
| | - Sylvie Cochet
- BIGR, UMR_S1134, Inserm, Université de Paris, F-75015 Paris, France; (R.B.); (S.C.)
- Institut National de la Transfusion Sanguine, F-75015 Paris, France
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
| | - Emilie-Fleur Gautier
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- Institut Imagine-INSERM U1163, Necker Hospital, Université de Paris, F-75015 Paris, France
- Proteomics Platform 3P5, Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104 Paris, France;
| | - Philippe Chafey
- Proteomics Platform 3P5, Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104 Paris, France;
| | - Bruno Cassinat
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- IRSL, U1131, INSERM, Université de Paris, F-75010 Paris, France
- Hôpital Saint-Louis, Laboratoire de Biologie Cellulaire, AP-HP, F-75010 Paris, France
| | - Jean-Jacques Kiladjian
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- IRSL, U1131, INSERM, Université de Paris, F-75010 Paris, France
- Centre d’Investigations Cliniques, Hôpital Saint-Louis, Université de Paris, F-75010 Paris, France
| | - Nadine Becker
- Nanion Technologies GmbH, 80339 Munich, Germany; (M.G.R.); (N.B.)
| | - Isabelle Plo
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- U1287, Inserm, Université Paris-Saclay, Gustave Roussy, F-94800 Villejuif, France
| | - Stéphane Egée
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- Sorbonne Université, CNRS, UMR LBI2M, Station Biologique de Roscoff SBR, F-29680 Roscoff, France
| | - Wassim El Nemer
- BIGR, UMR_S1134, Inserm, Université de Paris, F-75015 Paris, France; (R.B.); (S.C.)
- Institut National de la Transfusion Sanguine, F-75015 Paris, France
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- Etablissement Français du Sang PACA-Corse, F-13005Marseille, France
- Aix Marseille Univ, EFS, CNRS, ADES, “Biologie des Groupes Sanguins”, F-13005 Marseille, France
| |
Collapse
|
11
|
Ebel ER, Kuypers FA, Lin C, Petrov DA, Egan ES. Common host variation drives malaria parasite fitness in healthy human red cells. eLife 2021; 10:e69808. [PMID: 34553687 PMCID: PMC8497061 DOI: 10.7554/elife.69808] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
The replication of Plasmodium falciparum parasites within red blood cells (RBCs) causes severe disease in humans, especially in Africa. Deleterious alleles like hemoglobin S are well-known to confer strong resistance to malaria, but the effects of common RBC variation are largely undetermined. Here, we collected fresh blood samples from 121 healthy donors, most with African ancestry, and performed exome sequencing, detailed RBC phenotyping, and parasite fitness assays. Over one-third of healthy donors unknowingly carried alleles for G6PD deficiency or hemoglobinopathies, which were associated with characteristic RBC phenotypes. Among non-carriers alone, variation in RBC hydration, membrane deformability, and volume was strongly associated with P. falciparum growth rate. Common genetic variants in PIEZO1, SPTA1/SPTB, and several P. falciparum invasion receptors were also associated with parasite growth rate. Interestingly, we observed little or negative evidence for divergent selection on non-pathogenic RBC variation between Africans and Europeans. These findings suggest a model in which globally widespread variation in a moderate number of genes and phenotypes modulates P. falciparum fitness in RBCs.
Collapse
Affiliation(s)
- Emily R Ebel
- Department of Biology, Stanford UniversityStanfordUnited States
- Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
| | - Frans A Kuypers
- Children's Hospital Oakland Research InstituteOaklandUnited States
| | - Carrie Lin
- Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
| | - Dmitri A Petrov
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Elizabeth S Egan
- Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Department of Microbiology & Immunology, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
12
|
Mózner O, Zámbó B, Sarkadi B. Modulation of the Human Erythroid Plasma Membrane Calcium Pump (PMCA4b) Expression by Polymorphic Genetic Variants. MEMBRANES 2021; 11:membranes11080586. [PMID: 34436349 PMCID: PMC8401972 DOI: 10.3390/membranes11080586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/10/2023]
Abstract
In the human ATP2B4 gene, coding for the plasma membrane calcium pump PMCA4b, a minor haplotype results in the decreased expression of this membrane protein in erythroid cells. The presence of this haplotype and the consequently reduced PMCA4b expression have been suggested to affect red blood cell hydration and malaria susceptibility. By using dual-luciferase reporter assays, we have localized the erythroid-specific regulatory region within the haplotype of the ATP2B4 gene, containing predicted GATA1 binding sites that are affected by SNPs in the minor haplotype. Our results show that, in human erythroid cells, the regulation of ATP2B4 gene expression is significantly affected by GATA1 expression, and we document the role of specific SNPs involved in predicted GATA1 binding. Our findings provide a mechanistic explanation at the molecular level for the reduced erythroid-specific PMCA4b expression in carriers of ATP2B4 gene polymorphic variants.
Collapse
Affiliation(s)
- Orsolya Mózner
- Research Centre for Natural Sciences, Institute of Enzymology, ELKH, 1117 Budapest, Hungary; (O.M.); (B.Z.)
- Doctoral School of Molecular Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Boglárka Zámbó
- Research Centre for Natural Sciences, Institute of Enzymology, ELKH, 1117 Budapest, Hungary; (O.M.); (B.Z.)
| | - Balázs Sarkadi
- Research Centre for Natural Sciences, Institute of Enzymology, ELKH, 1117 Budapest, Hungary; (O.M.); (B.Z.)
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary
- Correspondence:
| |
Collapse
|
13
|
Alterations in erythrocyte membrane transporter expression levels in type 2 diabetic patients. Sci Rep 2021; 11:2765. [PMID: 33531564 PMCID: PMC7854743 DOI: 10.1038/s41598-021-82417-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most common multifactorial diseases and several membrane transporters are involved in its development, complications and treatment. We have recently developed a flow-cytometry assay panel for the quantitative determination of red cell membrane protein levels with potential relevance in diseases. Here we report a detailed phenotypic analysis of a medium scale, clinically based study on the expression of T2DM-related membrane proteins, the GLUT1, GLUT3, MCT1, URAT1, ABCA1, ABCG2 and the PMCA4 transporters in erythrocytes. By comparing age-matched control subjects and three groups of T2DM patients (recently diagnosed, successfully managed, and patients with disease-related complications), we found significant differences in the membrane expression levels of the transporters in these groups. This is a first detailed analysis of T2DM related alterations in erythrocyte membrane transporter protein levels, and the results suggest significant changes in some of the transporter expression levels in various patient groups. By performing a further, more detailed analysis of the clinical and molecular biology parameters, these data may serve as a basis of establishing new, personalized diagnostic markers helping the prevention and treatment of type 2 diabetes.
Collapse
|
14
|
Abstract
Malaria has been the pre-eminent cause of early mortality in many parts of the world throughout much of the last five thousand years and, as a result, it is the strongest force for selective pressure on the human genome yet described. Around one third of the variability in the risk of severe and complicated malaria is now explained by additive host genetic effects. Many individual variants have been identified that are associated with malaria protection, but the most important all relate to the structure or function of red blood cells. They include the classical polymorphisms that cause sickle cell trait, α-thalassaemia, G6PD deficiency, and the major red cell blood group variants. More recently however, with improving technology and experimental design, others have been identified that include the Dantu blood group variant, polymorphisms in the red cell membrane protein ATP2B4, and several variants related to the immune response. Characterising how these genes confer their effects could eventually inform novel therapeutic approaches to combat malaria. Nevertheless, all together, only a small proportion of the heritable component of malaria resistance can be explained by the variants described so far, underscoring its complex genetic architecture and the need for continued research.
Collapse
Affiliation(s)
- Silvia N Kariuki
- Department of Epidemiology, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
| | - Thomas N Williams
- Department of Epidemiology, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
- Department of Medicine, Imperial College of Science and Technology, London, UK.
| |
Collapse
|
15
|
Hegedűs L, Zámbó B, Pászty K, Padányi R, Varga K, Penniston JT, Enyedi Á. Molecular Diversity of Plasma Membrane Ca2+ Transporting ATPases: Their Function Under Normal and Pathological Conditions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:93-129. [DOI: 10.1007/978-3-030-12457-1_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Band G, Le QS, Clarke GM, Kivinen K, Hubbart C, Jeffreys AE, Rowlands K, Leffler EM, Jallow M, Conway DJ, Sisay-Joof F, Sirugo G, d’Alessandro U, Toure OB, Thera MA, Konate S, Sissoko S, Mangano VD, Bougouma EC, Sirima SB, Amenga-Etego LN, Ghansah AK, Hodgson AVO, Wilson MD, Enimil A, Ansong D, Evans J, Ademola SA, Apinjoh TO, Ndila CM, Manjurano A, Drakeley C, Reyburn H, Phu NH, Quyen NTN, Thai CQ, Hien TT, Teo YY, Manning L, Laman M, Michon P, Karunajeewa H, Siba P, Allen S, Allen A, Bahlo M, Davis TME, Simpson V, Shelton J, Spencer CCA, Busby GBJ, Kerasidou A, Drury E, Stalker J, Dilthey A, Mentzer AJ, McVean G, Bojang KA, Doumbo O, Modiano D, Koram KA, Agbenyega T, Amodu OK, Achidi E, Williams TN, Marsh K, Riley EM, Molyneux M, Taylor T, Dunstan SJ, Farrar J, Mueller I, Rockett KA, Kwiatkowski DP. Insights into malaria susceptibility using genome-wide data on 17,000 individuals from Africa, Asia and Oceania. Nat Commun 2019; 10:5732. [PMID: 31844061 PMCID: PMC6914791 DOI: 10.1038/s41467-019-13480-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/11/2019] [Indexed: 12/31/2022] Open
Abstract
The human genetic factors that affect resistance to infectious disease are poorly understood. Here we report a genome-wide association study in 17,000 severe malaria cases and population controls from 11 countries, informed by sequencing of family trios and by direct typing of candidate loci in an additional 15,000 samples. We identify five replicable associations with genome-wide levels of evidence including a newly implicated variant on chromosome 6. Jointly, these variants account for around one-tenth of the heritability of severe malaria, which we estimate as ~23% using genome-wide genotypes. We interrogate available functional data and discover an erythroid-specific transcription start site underlying the known association in ATP2B4, but are unable to identify a likely causal mechanism at the chromosome 6 locus. Previously reported HLA associations do not replicate in these samples. This large dataset will provide a foundation for further research on thegenetic determinants of malaria resistance in diverse populations.
Collapse
|
17
|
Garcia IJP, de Oliveira GC, de Moura Valadares JM, Banfi FF, Andrade SN, Freitas TR, Dos Santos Monção Filho E, Lima Santos HD, Júnior GMV, Chaves MH, de Jesus Rodrigues D, Sanchez BAM, Varotti FP, Barbosa LA. New bufadienolides extracted from Rhinella marina inhibit Na,K-ATPase and induce apoptosis by activating caspases 3 and 9 in human breast and ovarian cancer cells. Steroids 2019; 152:108490. [PMID: 31499071 DOI: 10.1016/j.steroids.2019.108490] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/24/2022]
Abstract
Bufadienolide compounds have been used for growth inhibition and apoptosis induction in tumor cells. Those families of cardiotonic steroids can bind the Na,K-ATPase, causing its inhibition. The use of bufadienolides is widely described in the literature as an anticancer function. The aim of this study was to evaluate the effects of bufadienolides and alkaloid isolated from venom samples from R. marina on tumor cells. We performed cytotoxicity assay in MDA-MB-231 and TOV-21G cells and evaluated the activity of Caspases (3 and 9), Na, K-ATPase, PMCA and SERCA. Four compounds were extrated from the venom of R. marina. The compound 1 showed higher cytotoxicity in MDA-MB-231cells. Compound 1 also showed activation of Caspase 3 and 9. This compound caused an inhibition of the activity and expression of Na, K-ATPase, and also showed activation of both caspase-9 and caspase-3 in MDA-MB-231 cells. We also observed that Compound 1 had a direct effect on some ATPases, such as Na, K-ATPase, PMCA and SERCA. Compound 1 was able to inhibit the activity of the purified Na, K-ATPase enzyme from the concentration of 5 µM. It also caused inhibition of PMCA at all concentrations tested (1 nM-30 µM). However, the compound 1 led to an increase of the activity of purified SERCA between the concentrations of 7.5-30 µM. Thus, we present a Na, K-ATPase and PMCA inhibitor, which may lead to the activation of caspases 3 and 9, causing the cells to enter into apoptosis. Our study suggests that compound 1 may be an interesting molecule as an anticancer agent.
Collapse
Affiliation(s)
- Israel José Pereira Garcia
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste, Divinópolis, MG, Brazil; Laboratório de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste, Divinópolis, MG, Brazil.
| | - Gisele Capanema de Oliveira
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste, Divinópolis, MG, Brazil
| | | | - Felipe Finger Banfi
- Universidade Federal de Mato Grosso, Instituto de Ciências da Saúde, Sinop, MT, Brazil
| | - Silmara Nunes Andrade
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Divinópolis, MG, Brazil
| | - Túlio Resende Freitas
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Divinópolis, MG, Brazil
| | | | - Hérica de Lima Santos
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste, Divinópolis, MG, Brazil; Laboratório de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste, Divinópolis, MG, Brazil
| | | | | | | | | | - Fernando P Varotti
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Divinópolis, MG, Brazil
| | - Leandro Augusto Barbosa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste, Divinópolis, MG, Brazil; Laboratório de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste, Divinópolis, MG, Brazil.
| |
Collapse
|
18
|
Damena D, Denis A, Golassa L, Chimusa ER. Genome-wide association studies of severe P. falciparum malaria susceptibility: progress, pitfalls and prospects. BMC Med Genomics 2019; 12:120. [PMID: 31409341 PMCID: PMC6693204 DOI: 10.1186/s12920-019-0564-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 07/29/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND P. falciparum malaria has been recognized as one of the prominent evolutionary selective forces of human genome that led to the emergence of multiple host protective alleles. A comprehensive understanding of the genetic bases of severe malaria susceptibility and resistance can potentially pave ways to the development of new therapeutics and vaccines. Genome-wide association studies (GWASs) have recently been implemented in malaria endemic areas and identified a number of novel association genetic variants. However, there are several open questions around heritability, epistatic interactions, genetic correlations and associated molecular pathways among others. Here, we assess the progress and pitfalls of severe malaria susceptibility GWASs and discuss the biology of the novel variants. RESULTS We obtained all severe malaria susceptibility GWASs published thus far and accessed GWAS dataset of Gambian populations from European Phenome Genome Archive (EGA) through the MalariaGen consortium standard data access protocols. We noticed that, while some of the well-known variants including HbS and ABO blood group were replicated across endemic populations, only few novel variants were convincingly identified and their biological functions remain to be understood. We estimated SNP-heritability of severe malaria at 20.1% in Gambian populations and showed how advanced statistical genetic analytic methods can potentially be implemented in malaria susceptibility studies to provide useful functional insights. CONCLUSIONS The ultimate goal of malaria susceptibility study is to discover a novel causal biological pathway that provide protections against severe malaria; a fundamental step towards translational medicine such as development of vaccine and new therapeutics. Beyond singe locus analysis, the future direction of malaria susceptibility requires a paradigm shift from single -omics to multi-stage and multi-dimensional integrative functional studies that combines multiple data types from the human host, the parasite, the mosquitoes and the environment. The current biotechnological and statistical advances may eventually lead to the feasibility of systems biology studies and revolutionize malaria research.
Collapse
Affiliation(s)
- Delesa Damena
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Private Bag, Rondebosch, Cape Town, 7700 South Africa
| | - Awany Denis
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Private Bag, Rondebosch, Cape Town, 7700 South Africa
| | - Lemu Golassa
- Aklilu Lema Institute of Pathobiology, Addis Ababa University, PO box 1176, Addis Ababa, Ethiopia
| | - Emile R. Chimusa
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Private Bag, Rondebosch, Cape Town, 7700 South Africa
| |
Collapse
|
19
|
Liao X, Du K, Zhang J, Meng W, Zuo S, Huang Q, Wang H, Gou D. Red blood cells are damaged by intraoperative blood salvage via Ca2+-dependent and -independent mechanisms. Life Sci 2019; 227:114-121. [DOI: 10.1016/j.lfs.2019.03.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 11/27/2022]
|
20
|
Gouveia MH, Bergen AW, Borda V, Nunes K, Leal TP, Ogwang MD, Yeboah ED, Mensah JE, Kinyera T, Otim I, Nabalende H, Legason ID, Mpoloka SW, Mokone GG, Kerchan P, Bhatia K, Reynolds SJ, Birtwum RB, Adjei AA, Tettey Y, Tay E, Hoover R, Pfeiffer RM, Biggar RJ, Goedert JJ, Prokunina-Olsson L, Dean M, Yeager M, Lima-Costa MF, Hsing AW, Tishkoff SA, Chanock SJ, Tarazona-Santos E, Mbulaiteye SM. Genetic signatures of gene flow and malaria-driven natural selection in sub-Saharan populations of the "endemic Burkitt Lymphoma belt". PLoS Genet 2019; 15:e1008027. [PMID: 30849090 PMCID: PMC6426263 DOI: 10.1371/journal.pgen.1008027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 03/20/2019] [Accepted: 02/17/2019] [Indexed: 12/13/2022] Open
Abstract
Populations in sub-Saharan Africa have historically been exposed to intense selection from chronic infection with falciparum malaria. Interestingly, populations with the highest malaria intensity can be identified by the increased occurrence of endemic Burkitt Lymphoma (eBL), a pediatric cancer that affects populations with intense malaria exposure, in the so called "eBL belt" in sub-Saharan Africa. However, the effects of intense malaria exposure and sub-Saharan populations' genetic histories remain poorly explored. To determine if historical migrations and intense malaria exposure have shaped the genetic composition of the eBL belt populations, we genotyped ~4.3 million SNPs in 1,708 individuals from Ghana and Northern Uganda, located on opposite sides of eBL belt and with ≥ 7 months/year of intense malaria exposure and published evidence of high incidence of BL. Among 35 Ghanaian tribes, we showed a predominantly West-Central African ancestry and genomic footprints of gene flow from Gambian and East African populations. In Uganda, the North West population showed a predominantly Nilotic ancestry, and the North Central population was a mixture of Nilotic and Southern Bantu ancestry, while the Southwest Ugandan population showed a predominant Southern Bantu ancestry. Our results support the hypothesis of diverse ancestral origins of the Ugandan, Kenyan and Tanzanian Great Lakes African populations, reflecting a confluence of Nilotic, Cushitic and Bantu migrations in the last 3000 years. Natural selection analyses suggest, for the first time, a strong positive selection signal in the ATP2B4 gene (rs10900588) in Northern Ugandan populations. These findings provide important baseline genomic data to facilitate disease association studies, including of eBL, in eBL belt populations.
Collapse
Affiliation(s)
- Mateus H. Gouveia
- Instituto de Pesquisa René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Center for Research on Genomics & Global Health, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Andrew W. Bergen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Victor Borda
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Kelly Nunes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago P. Leal
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Statistics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Martin D. Ogwang
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | | | | | - Tobias Kinyera
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Isaac Otim
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | | | | | | | - Gaonyadiwe George Mokone
- Department of Biomedical Sciences, University of Botswana School of Medicine, Gaborone, Botswana
| | - Patrick Kerchan
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Kishor Bhatia
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Steven J. Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | | | | | - Yao Tettey
- University of Ghana Medical School, Accra, Ghana
| | - Evelyn Tay
- University of Ghana Medical School, Accra, Ghana
| | - Robert Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Ruth M. Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Robert J. Biggar
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - James J. Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Michael Dean
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, US Department of Health and Human Services, Frederick, Maryland, United States of America
| | - M. Fernanda Lima-Costa
- Instituto de Pesquisa René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Ann W. Hsing
- Stanford Cancer Institute, Stanford University, Stanford, California, United States of America
| | - Sarah A. Tishkoff
- Department of Genetics and Biology, University of Pennsylvania, Philadelphia, United States of America
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Eduardo Tarazona-Santos
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sam M. Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| |
Collapse
|
21
|
Ndila CM, Uyoga S, Macharia AW, Nyutu G, Peshu N, Ojal J, Shebe M, Awuondo KO, Mturi N, Tsofa B, Sepúlveda N, Clark TG, Band G, Clarke G, Rowlands K, Hubbart C, Jeffreys A, Kariuki S, Marsh K, Mackinnon M, Maitland K, Kwiatkowski DP, Rockett KA, Williams TN, Abathina A, Abubakar I, Achidi E, Agbenyega T, Aiyegbo M, Akoto A, Allen A, Allen S, Amenga-Etego L, Amodu F, Amodu O, Anchang-Kimbi J, Ansah N, Ansah P, Ansong D, Antwi S, Anyorigiya T, Apinjoh T, Asafo-Agyei E, Asoala V, Atuguba F, Auburn S, Bah A, Bamba K, Bancone G, Band G, Barnwell D, Barry A, Bauni E, Besingi R, Bojang K, Bougouma E, Bull S, Busby G, Camara A, Camara L, Campino S, Carter R, Carucci D, Casals-Pascual C, Ceesay N, Ceesay P, Chau T, Chuong L, Clark T, Clarke G, Cole-Ceesay R, Conway D, Cook K, Cook O, Cornelius V, Corran P, Correa S, Cox S, Craik R, Danso B, Davis T, Day N, Deloukas P, Dembele A, deVries J, Dewasurendra R, Diakite M, Diarra E, Dibba Y, Diss A, Djimdé A, Dolo A, Doumbo O, Doyle A, Drakeley C, Drury E, Duffy P, Dunstan S, Ebonyi A, Elhassan A, et alNdila CM, Uyoga S, Macharia AW, Nyutu G, Peshu N, Ojal J, Shebe M, Awuondo KO, Mturi N, Tsofa B, Sepúlveda N, Clark TG, Band G, Clarke G, Rowlands K, Hubbart C, Jeffreys A, Kariuki S, Marsh K, Mackinnon M, Maitland K, Kwiatkowski DP, Rockett KA, Williams TN, Abathina A, Abubakar I, Achidi E, Agbenyega T, Aiyegbo M, Akoto A, Allen A, Allen S, Amenga-Etego L, Amodu F, Amodu O, Anchang-Kimbi J, Ansah N, Ansah P, Ansong D, Antwi S, Anyorigiya T, Apinjoh T, Asafo-Agyei E, Asoala V, Atuguba F, Auburn S, Bah A, Bamba K, Bancone G, Band G, Barnwell D, Barry A, Bauni E, Besingi R, Bojang K, Bougouma E, Bull S, Busby G, Camara A, Camara L, Campino S, Carter R, Carucci D, Casals-Pascual C, Ceesay N, Ceesay P, Chau T, Chuong L, Clark T, Clarke G, Cole-Ceesay R, Conway D, Cook K, Cook O, Cornelius V, Corran P, Correa S, Cox S, Craik R, Danso B, Davis T, Day N, Deloukas P, Dembele A, deVries J, Dewasurendra R, Diakite M, Diarra E, Dibba Y, Diss A, Djimdé A, Dolo A, Doumbo O, Doyle A, Drakeley C, Drury E, Duffy P, Dunstan S, Ebonyi A, Elhassan A, Elhassan I, Elzein A, Enimil A, Esangbedo P, Evans J, Evans J, Farrar J, Fernando D, Fitzpatrick K, Fullah J, Garcia J, Ghansah A, Gottleib M, Green A, Hart L, Hennsman M, Hien T, Hieu N, Hilton E, Hodgson A, Horstmann R, Hubbart C, Hughes C, Hussein A, Hutton R, Ibrahim M, Ishengoma D, Jaiteh J, Jallow M, Jallow M, Jammeh K, Jasseh M, Jeffreys A, Jobarteh A, Johnson K, Joseph S, Jyothi D, Kachala D, Kamuya D, Kanyi H, Karunajeewa H, Karunaweera N, Keita M, Kerasidou A, Khan A, Kivinen K, Kokwaro G, Konate A, Konate S, Koram K, Kwiatkowski D, Laman M, Le S, Leffler E, Lemnge M, Lin E, Ly A, Macharia A, MacInnis B, Mai N, Makani J, Malangone C, Mangano V, Manjurano A, Manneh L, Manning L, Manske M, Marsh K, Marsh V, Maslen G, Maxwell C, Mbunwe E, McCreight M, Mead D, Mendy A, Mendy A, Mensah N, Michon P, Miles A, Miotto O, Modiano D, Mohamed H, Molloy S, Molyneux M, Molyneux S, Moore M, Moyes C, Mtei F, Mtove G, Mueller I, Mugri R, Munthali A, Mutabingwa T, Nadjm B, Ndi A, Ndila C, Newton C, Niangaly A, Njie H, Njie J, Njie M, Njie M, Njie S, Njiragoma L, Nkrumah F, Ntunthama N, Nyika A, Nyirongo V, O'Brien J, Obu H, Oduro A, Ofori A, Olaniyan S, Olaosebikan R, Oluoch T, Omotade O, Oni O, Onykwelu E, Opi D, Orimadegun A, O'Riordan S, Ouedraogo I, Oyola S, Parker M, Pearson R, Pensulo P, Peshu N, Phiri A, Phu N, Pinder M, Pirinen M, Plowe C, Potter C, Poudiougou B, Puijalon O, Quyen N, Ragoussis I, Ragoussis J, Rasheed O, Reeder J, Reyburn H, Riley E, Risley P, Rockett K, Rodford J, Rogers J, Rogers W, Rowlands K, Ruano-Rubio V, Sabally-Ceesay K, Sadiq A, Saidy-Khan M, Saine H, Sakuntabhai A, Sall A, Sambian D, Sambou I, SanJoaquin M, Sepúlveda N, Shah S, Shelton J, Siba P, Silva N, Simmons C, Simpore J, Singhasivanon P, Sinh D, Sirima S, Sirugo G, Sisay-Joof F, Sissoko S, Small K, Somaskantharajah E, Spencer C, Stalker J, Stevens M, Suriyaphol P, Sylverken J, Taal B, Tall A, Taylor T, Teo Y, Thai C, Thera M, Titanji V, Toure O, Troye-Blomberg M, Usen S, Uyoga S, Vanderwal A, Wangai H, Watson R, Williams T, Wilson M, Wrigley R, Yafi C, Yamoah L. Human candidate gene polymorphisms and risk of severe malaria in children in Kilifi, Kenya: a case-control association study. Lancet Haematol 2018; 5:e333-e345. [PMID: 30033078 PMCID: PMC6069675 DOI: 10.1016/s2352-3026(18)30107-8] [Show More Authors] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Human genetic factors are important determinants of malaria risk. We investigated associations between multiple candidate polymorphisms-many related to the structure or function of red blood cells-and risk for severe Plasmodium falciparum malaria and its specific phenotypes, including cerebral malaria, severe malaria anaemia, and respiratory distress. METHODS We did a case-control study in Kilifi County, Kenya. We recruited as cases children presenting with severe malaria to the high-dependency ward of Kilifi County Hospital. We included as controls infants born in the local community between Aug 1, 2006, and Sept 30, 2010, who were part of a genetics study. We tested for associations between a range of candidate malaria-protective genes and risk for severe malaria and its specific phenotypes. We used a permutation approach to account for multiple comparisons between polymorphisms and severe malaria. We judged p values less than 0·005 significant for the primary analysis of the association between candidate genes and severe malaria. FINDINGS Between June 11, 1995, and June 12, 2008, 2244 children with severe malaria were recruited to the study, and 3949 infants were included as controls. Overall, 263 (12%) of 2244 children with severe malaria died in hospital, including 196 (16%) of 1233 with cerebral malaria. We investigated 121 polymorphisms in 70 candidate severe malaria-associated genes. We found significant associations between risk for severe malaria overall and polymorphisms in 15 genes or locations, of which most were related to red blood cells: ABO, ATP2B4, ARL14, CD40LG, FREM3, INPP4B, G6PD, HBA (both HBA1 and HBA2), HBB, IL10, LPHN2 (also known as ADGRL2), LOC727982, RPS6KL1, CAND1, and GNAS. Combined, these genetic associations accounted for 5·2% of the variance in risk for developing severe malaria among individuals in the general population. We confirmed established associations between severe malaria and sickle-cell trait (odds ratio [OR] 0·15, 95% CI 0·11-0·20; p=2·61 × 10-58), blood group O (0·74, 0·66-0·82; p=6·26 × 10-8), and -α3·7-thalassaemia (0·83, 0·76-0·90; p=2·06 × 10-6). We also found strong associations between overall risk of severe malaria and polymorphisms in both ATP2B4 (OR 0·76, 95% CI 0·63-0·92; p=0·001) and FREM3 (0·64, 0·53-0·79; p=3·18 × 10-14). The association with FREM3 could be accounted for by linkage disequilibrium with a complex structural mutation within the glycophorin gene region (comprising GYPA, GYPB, and GYPE) that encodes for the rare Dantu blood group antigen. Heterozygosity for Dantu was associated with risk for severe malaria (OR 0·57, 95% CI 0·49-0·68; p=3·22 × 10-11), as was homozygosity (0·26, 0·11-0·62; p=0·002). INTERPRETATION Both ATP2B4 and the Dantu blood group antigen are associated with the structure and function of red blood cells. ATP2B4 codes for plasma membrane calcium-transporting ATPase 4 (the major calcium pump on red blood cells) and the glycophorins are ligands for parasites to invade red blood cells. Future work should aim at uncovering the mechanisms by which these polymorphisms can result in severe malaria protection and investigate the implications of these associations for wider health. FUNDING Wellcome Trust, UK Medical Research Council, European Union, and Foundation for the National Institutes of Health as part of the Bill & Melinda Gates Grand Challenges in Global Health Initiative.
Collapse
|
22
|
Clinically relevant mutations in the ABCG2 transporter uncovered by genetic analysis linked to erythrocyte membrane protein expression. Sci Rep 2018; 8:7487. [PMID: 29749379 PMCID: PMC5945641 DOI: 10.1038/s41598-018-25695-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 04/26/2018] [Indexed: 12/13/2022] Open
Abstract
The ABCG2 membrane protein is a key xeno- and endobiotic transporter, modulating the absorption and metabolism of pharmacological agents and causing multidrug resistance in cancer. ABCG2 is also involved in uric acid elimination and its impaired function is causative in gout. Analysis of ABCG2 expression in the erythrocyte membranes of healthy volunteers and gout patients showed an enrichment of lower expression levels in the patients. By genetic screening based on protein expression, we found a relatively frequent, novel ABCG2 mutation (ABCG2-M71V), which, according to cellular expression studies, causes reduced protein expression, although with preserved transporter capability. Molecular dynamics simulations indicated a stumbled dynamics of the mutant protein, while ABCG2-M71V expression in vitro could be corrected by therapeutically relevant small molecules. These results suggest that personalized medicine should consider this newly discovered ABCG2 mutation, and genetic analysis linked to protein expression provides a new tool to uncover clinically important mutations in membrane proteins.
Collapse
|
23
|
Lessard S, Gatof ES, Beaudoin M, Schupp PG, Sher F, Ali A, Prehar S, Kurita R, Nakamura Y, Baena E, Ledoux J, Oceandy D, Bauer DE, Lettre G. An erythroid-specific ATP2B4 enhancer mediates red blood cell hydration and malaria susceptibility. J Clin Invest 2017; 127:3065-3074. [PMID: 28714864 PMCID: PMC5531409 DOI: 10.1172/jci94378] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/01/2017] [Indexed: 12/12/2022] Open
Abstract
The lack of mechanistic explanations for many genotype-phenotype associations identified by GWAS precludes thorough assessment of their impact on human health. Here, we conducted an expression quantitative trait locus (eQTL) mapping analysis in erythroblasts and found erythroid-specific eQTLs for ATP2B4, the main calcium ATPase of red blood cells (rbc). The same SNPs were previously associated with mean corpuscular hemoglobin concentration (MCHC) and susceptibility to severe malaria infection. We showed that Atp2b4-/- mice demonstrate increased MCHC, confirming ATP2B4 as the causal gene at this GWAS locus. Using CRISPR-Cas9, we fine mapped the genetic signal to an erythroid-specific enhancer of ATP2B4. Erythroid cells with a deletion of the ATP2B4 enhancer had abnormally high intracellular calcium levels. These results illustrate the power of combined transcriptomic, epigenomic, and genome-editing approaches in characterizing noncoding regulatory elements in phenotype-relevant cells. Our study supports ATP2B4 as a potential target for modulating rbc hydration in erythroid disorders and malaria infection.
Collapse
Affiliation(s)
- Samuel Lessard
- Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Emily Stern Gatof
- Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Mélissa Beaudoin
- Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Patrick G. Schupp
- Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Falak Sher
- Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Adnan Ali
- Cancer Research UK Manchester Institute, and
| | - Sukhpal Prehar
- Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ryo Kurita
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | - Jonathan Ledoux
- Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Daniel E. Bauer
- Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Guillaume Lettre
- Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|