1
|
Mingo YB, Escobar Galvis ML, Henderson MX. α-Synuclein pathology and mitochondrial dysfunction: Toxic partners in Parkinson's disease. Neurobiol Dis 2025; 209:106889. [PMID: 40157617 DOI: 10.1016/j.nbd.2025.106889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025] Open
Abstract
Two major neuropathological features of Parkinson's disease (PD) are α-synuclein Lewy pathology and mitochondrial dysfunction. Although both α-synuclein pathology and mitochondrial dysfunction may independently contribute to PD pathogenesis, the interaction between these two factors is not yet fully understood. In this review, we discuss the physiological functions of α-synuclein and mitochondrial homeostasis in neurons as well as the pathological defects that ensue when these functions are disturbed in PD. Recent studies have highlighted that dysfunctional mitochondria can become sequestered within Lewy bodies, and cell biology studies have suggested that α-synuclein can directly impair mitochondrial function. There are also PD cases caused by genetic or environmental perturbation of mitochondrial homeostasis. Together, these studies suggest that mitochondrial dysfunction may be a common pathway to neurodegeneration in PD, triggered by multiple insults. We review the literature surrounding the interaction between α-synuclein and mitochondria and highlight open questions in the field that may be explored to advance our understanding of PD and develop novel, disease-modifying therapies.
Collapse
Affiliation(s)
- Yakum B Mingo
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, United States of America
| | | | - Michael X Henderson
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, United States of America.
| |
Collapse
|
2
|
Musthafa T, Nizami SK, Mishra A, Hasan G, Gopurappilly R. Altered Mitochondrial Bioenergetics and Calcium Kinetics in Young-Onset PLA2G6 Parkinson's Disease iPSCs. J Neurochem 2025; 169:e70059. [PMID: 40189860 PMCID: PMC11973445 DOI: 10.1111/jnc.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/10/2025]
Abstract
Parkinson's disease (PD) has emerged as a multisystem disorder affecting multiple cellular and organellar systems in addition to the dopaminergic neurons. Disease-specific induced pluripotent stem cells (iPSCs) model early developmental changes and cellular perturbations that are otherwise inaccessible from clinical settings. Here, we report the early changes in patient-derived iPSCs carrying a homozygous recessive mutation, R741Q, in the PLA2G6 gene. A gene-edited R747W iPSC line mirrored these phenotypes, thus validating our initial findings. Bioenergetic dysfunction and hyperpolarization of mitochondrial membrane potentials were hallmarks of the PD iPSCs. Further, a concomitant increase in glycolytic activity indicated a possible compensation for mitochondrial respiration. Elevated basal reactive oxygen species (ROS) and decreased catalase expression were also observed in the disease iPSCs. No change in autophagy was detected. These inceptive changes could be potential targets for early intervention of prodromal PD in the absence of disease-modifying therapies. However, additional investigations are crucial to delineate the cause-effect relationships of these observations.
Collapse
Affiliation(s)
- Thasneem Musthafa
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia
| | - Syed Kavish Nizami
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia
| | - Ankita Mishra
- NKure Therapeutics Pvt LtdCentre for Cellular and Molecular PlatformsBangaloreIndia
| | - Gaiti Hasan
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia
- Centre for High Impact Neuroscience and Translational ApplicationsKolkataIndia
| | - Renjitha Gopurappilly
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia
- NKure Therapeutics Pvt LtdCentre for Cellular and Molecular PlatformsBangaloreIndia
| |
Collapse
|
3
|
Wang J, Jiang J, Hu H, Chen L. MCU complex: Exploring emerging targets and mechanisms of mitochondrial physiology and pathology. J Adv Res 2025; 68:271-298. [PMID: 38417574 PMCID: PMC11785567 DOI: 10.1016/j.jare.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND Globally, the onset and progression of multiple human diseases are associated with mitochondrial dysfunction and dysregulation of Ca2+ uptake dynamics mediated by the mitochondrial calcium uniporter (MCU) complex, which plays a key role in mitochondrial dysfunction. Despite relevant studies, the underlying pathophysiological mechanisms have not yet been fully elucidated. AIM OF REVIEW This article provides an in-depth analysis of the current research status of the MCU complex, focusing on its molecular composition, regulatory mechanisms, and association with diseases. In addition, we conducted an in-depth analysis of the regulatory effects of agonists, inhibitors, and traditional Chinese medicine (TCM) monomers on the MCU complex and their application prospects in disease treatment. From the perspective of medicinal chemistry, we conducted an in-depth analysis of the structure-activity relationship between these small molecules and MCU and deduced potential pharmacophores and binding pockets. Simultaneously, key structural domains of the MCU complex in Homo sapiens were identified. We also studied the functional expression of the MCU complex in Drosophila, Zebrafish, and Caenorhabditis elegans. These analyses provide a basis for exploring potential treatment strategies targeting the MCU complex and provide strong support for the development of future precision medicine and treatments. KEY SCIENTIFIC CONCEPTS OF REVIEW The MCU complex exhibits varying behavior across different tissues and plays various roles in metabolic functions. It consists of six MCU subunits, an essential MCU regulator (EMRE), and solute carrier 25A23 (SLC25A23). They regulate processes, such as mitochondrial Ca2+ (mCa2+) uptake, mitochondrial adenosine triphosphate (ATP) production, calcium dynamics, oxidative stress (OS), and cell death. Regulation makes it a potential target for treating diseases, especially cardiovascular diseases, neurodegenerative diseases, inflammatory diseases, metabolic diseases, and tumors.
Collapse
Affiliation(s)
- Jin Wang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Jinyong Jiang
- Department of Pharmacy, The First Affiliated Hospital of Jishou University, Jishou 416000, China
| | - Haoliang Hu
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang 421001, China; College of Medicine, Hunan University of Arts and Science, Changde 415000, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang 421001, China.
| |
Collapse
|
4
|
Chang EES, Liu H, Choi ZYK, Malki Y, Zhang SXY, Pang SYY, Kung MHW, Ramsden DB, Ho SL, Ho PWL. Loss of mitochondrial Ca 2+ response and CaMKII/ERK activation by LRRK2 R1441G mutation correlate with impaired depolarization-induced mitophagy. Cell Commun Signal 2024; 22:485. [PMID: 39390438 PMCID: PMC11465656 DOI: 10.1186/s12964-024-01844-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Stress-induced activation of ERK/Drp1 serves as a checkpoint in the segregation of damaged mitochondria for autophagic clearance (mitophagy). Elevated cytosolic calcium (Ca2+) activates ERK, which is pivotal to mitophagy initiation. This process is altered in Parkinson's disease (PD) with mutations in leucine-rich repeat kinase 2 (LRRK2), potentially contributing to mitochondrial dysfunction. Pathogenic LRRK2 mutation is linked to dysregulated cellular Ca2+ signaling but the mechanism involved remains unclear. METHODS Mitochondrial damages lead to membrane depolarization. To investigate how LRRK2 mutation impairs cellular response to mitochondrial damages, mitochondrial depolarization was induced by artificial uncoupler (FCCP) in wild-type (WT) and LRRK2R1441G mutant knockin (KI) mouse embryonic fibroblasts (MEFs). The resultant cytosolic Ca2+ flux was assessed using live-cell Ca2+ imaging. The role of mitochondria in FCCP-induced cytosolic Ca2+ surge was confirmed by co-treatment with the mitochondrial sodium-calcium exchanger (NCLX) inhibitor. Cellular mitochondrial quality and function were evaluated by Seahorse™ real-time cell metabolic analysis, flow cytometry, and confocal imaging. Mitochondrial morphology was visualized using transmission electron microscopy (TEM). Activation (phosphorylation) of stress response pathways were assessed by immunoblotting. RESULTS Acute mitochondrial depolarization induced by FCCP resulted in an immediate cytosolic Ca2+ surge in WT MEFs, mediated predominantly via mitochondrial NCLX. However, such cytosolic Ca2+ response was abolished in LRRK2 KI MEFs. This loss of response in KI was associated with impaired activation of Ca2+/calmodulin-dependent kinase II (CaMKII) and MEK, the two upstream kinases of ERK. Treatment of LRRK2 inhibitor did not rescue this phenotype indicating that it was not caused by mutant LRRK2 kinase hyperactivity. KI MEFs exhibited swollen mitochondria with distorted cristae, depolarized mitochondrial membrane potential, and reduced mitochondrial Ca2+ store and mitochondrial calcium uniporter (MCU) expression. These mutant cells also exhibited lower cellular ATP: ADP ratio albeit higher basal respiration than WT, indicating compensation for mitochondrial dysfunction. These defects may hinder cellular stress response and signals to Drp1-mediated mitophagy, as evident by impaired mitochondrial clearance in the mutant. CONCLUSIONS Pathogenic LRRK2R1441G mutation abolished mitochondrial depolarization-induced Ca2+ response and impaired the basal mitochondrial clearance. Inherent defects from LRRK2 mutation have weakened the cellular ability to scavenge damaged mitochondria, which may further aggravate mitochondrial dysfunction and neurodegeneration in PD.
Collapse
Affiliation(s)
- Eunice Eun-Seo Chang
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Huifang Liu
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Zoe Yuen-Kiu Choi
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yasine Malki
- Division of Neurology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Steffi Xi-Yue Zhang
- Division of Neurology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Shirley Yin-Yu Pang
- Division of Neurology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Michelle Hiu-Wai Kung
- Division of Neurology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - David B Ramsden
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Shu-Leong Ho
- Division of Neurology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Philip Wing-Lok Ho
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- Mental Health Research Centre, PolyU Academy for Interdisciplinary Research, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- The State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
5
|
Yang Y, Jia X, Yang X, Wang J, Fang Y, Ying X, Zhang M, Wei J, Pan Y. Targeting VDAC: A potential therapeutic approach for mitochondrial dysfunction in Alzheimer's disease. Brain Res 2024; 1835:148920. [PMID: 38599511 DOI: 10.1016/j.brainres.2024.148920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Mitochondrial dysfunction has been implicated in the pathogenesis of Alzheimer's disease, a neurodegenerative disorder characterized by progressive cognitive decline. Voltage-dependent anion channel (VDAC), a protein located in the outer mitochondrial membrane, plays a critical role in regulating mitochondrial function and cellular energy metabolism. Recent studies have identified VDAC as a potential therapeutic target for Alzheimer's disease. This article aims to provide an overview of the role of VDAC in mitochondrial dysfunction, its association with Alzheimer's disease, and the potential of targeting VDAC for developing novel therapeutic interventions. Understanding the involvement of VDAC in Alzheimer's disease may pave the way for the development of effective treatments that can restore mitochondrial function and halt disease progression.
Collapse
Affiliation(s)
- Yaqian Yang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiaotao Jia
- Department of Neurology, The Affifiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710003, China
| | - Xinmao Yang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Jie Wang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yan Fang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiaoping Ying
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Meiqian Zhang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Jing Wei
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yanfang Pan
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| |
Collapse
|
6
|
Abou-Hany HO, El-Sherbiny M, Elshaer S, Said E, Moustafa T. Neuro-modulatory impact of felodipine against experimentally-induced Parkinson's disease: Possible contribution of PINK1-Parkin mitophagy pathway. Neuropharmacology 2024; 250:109909. [PMID: 38494124 DOI: 10.1016/j.neuropharm.2024.109909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder, characterized by motor and psychological dysfunction. Palliative treatment and dopamine replenishment therapy are the only available therapeutic options. Calcium channel blockers (CCBs) have been reported to protect against several neurodegenerative disorders. The current study was designed to evaluate the neuroprotective impact of Felodipine (10 mg/kg, orally) as a CCB on motor and biochemical dysfunction associated with experimentally induced PD using rotenone (2.5 mg/kg, IP) and to investigate the underlying mechanisms. Rotenone induced deleterious neuromotor outcomes, typical of those associated with PD. The striatum revealed increased oxidative burden and NO levels with decreased antioxidant capacity. Nrf2 content significantly decreased with the accumulation of α-synuclein and tau proteins in both the substantia nigra and striatum. These observations significantly improved with felodipine treatment. Of note, felodipine increased dopamine levels in the substantia nigra and striatum as confirmed by the suppression of inflammation and the significant reduction in striatal NF-κB and TNF-α contents. Moreover, felodipine enhanced mitophagy, as confirmed by a significant increase in mitochondrial Parkin and suppression of LC3a/b and SQSTM1/p62. In conclusion, felodipine restored dopamine synthesis, attenuated oxidative stress, inflammation, and mitochondrial dysfunction, and improved the mitophagy process resulting in improved PD-associated motor impairment.
Collapse
Affiliation(s)
- Hadeer O Abou-Hany
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Sciences and Technology, Gamasa, 7730103, Egypt.
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sally Elshaer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; St. Jude Children's Research Hospital, Oncology Department, Memphis, TN, USA, 38105
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, New Mansoura University, New Manoura, Egypt
| | - Tarek Moustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Gathings A, Zaman V, Banik NL, Haque A. Insights into Calpain Activation and Rho-ROCK Signaling in Parkinson's Disease and Aging. Biomedicines 2024; 12:1074. [PMID: 38791036 PMCID: PMC11117523 DOI: 10.3390/biomedicines12051074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Parkinson's disease (PD), a progressive neurodegenerative disease, has no cure, and current therapies are not effective at halting disease progression. The disease affects mid-brain dopaminergic neurons and, subsequently, the spinal cord, contributing to many debilitating symptoms associated with PD. The GTP-binding protein, Rho, plays a significant role in the cellular pathology of PD. The downstream effector of Rho, Rho-associated kinase (ROCK), plays multiple functions, including microglial activation and induction of inflammatory responses. Activated microglia have been implicated in the pathology of many neurodegenerative diseases, including PD, that initiate inflammatory responses, leading to neuron death. Calpain expression and activity is increased following glial activation, which triggers the Rho-ROCK pathway and induces inflammatory T cell activation and migration as well as mediates toxic α-synuclein (α-syn) aggregation and neuron death, indicating a pivotal role for calpain in the inflammatory and degenerative processes in PD. Increased calpain activity and Rho-ROCK activation may represent a new mechanism for increased oxidative damage in aging. This review will summarize calpain activation and the role of the Rho-ROCK pathway in oxidative stress and α-syn aggregation, their influence on the neurodegenerative process in PD and aging, and possible strategies and research directions for therapeutic intervention.
Collapse
Affiliation(s)
- Amy Gathings
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (A.G.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
| | - Vandana Zaman
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| | - Narendra L. Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (A.G.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (A.G.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| |
Collapse
|
8
|
Egunlusi AO, Malan SF, Palchykov VA, Joubert J. Calcium Modulating Effect of Polycyclic Cages: A Suitable Therapeutic Approach Against Excitotoxic-induced Neurodegeneration. Mini Rev Med Chem 2024; 24:1277-1292. [PMID: 38275027 DOI: 10.2174/0113895575273868231128104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 01/27/2024]
Abstract
Neurodegenerative disorders pose a significant challenge to global healthcare systems due to their progressive nature and the resulting loss of neuronal cells and functions. Excitotoxicity, characterized by calcium overload, plays a critical role in the pathophysiology of these disorders. In this review article, we explore the involvement of calcium dysregulation in neurodegeneration and neurodegenerative disorders. A promising therapeutic strategy to counter calcium dysregulation involves the use of calcium modulators, particularly polycyclic cage compounds. These compounds, structurally related to amantadine and memantine, exhibit neuroprotective properties by attenuating calcium influx into neuronal cells. Notably, the pentacycloundecylamine NGP1-01, a cage-like structure, has shown efficacy in inhibiting both N-methyl-D-aspartate (NMDA) receptors and voltage- gated calcium channels (VGCCs), making it a potential candidate for neuroprotection against excitotoxic-induced neurodegenerative disorders. The structure-activity relationship of polycyclic cage compounds is discussed in detail, highlighting their calcium-inhibitory activities. Various closed, open, and rearranged cage compounds have demonstrated inhibitory effects on calcium influx through NMDA receptors and VGCCs. Additionally, these compounds have exhibited neuroprotective properties, including free radical scavenging, attenuation of neurotoxicities, and reduction of neuroinflammation. Although the calcium modulatory activities of polycyclic cage compounds have been extensively studied, apart from amantadine and memantine, none have undergone clinical trials. Further in vitro and in vivo studies and subsequent clinical trials are required to establish the efficacy and safety of these compounds. The development of polycyclic cages as potential multifunctional agents for treating complex neurodegenerative diseases holds great promise.
Collapse
Affiliation(s)
- Ayodeji O Egunlusi
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Sarel F Malan
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Vitalii A Palchykov
- Research Institute of Chemistry and Geology, Oles Honchar Dnipropetrovsk National University, 72 Gagarina Av., Dnipro 49010, Ukraine
| | - Jacques Joubert
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
9
|
Yu W, Wang L, Ren WY, Xu HX, Wu NN, Yu DH, Reiter RJ, Zha WL, Guo QD, Ren J. SGLT2 inhibitor empagliflozin alleviates cardiac remodeling and contractile anomalies in a FUNDC1-dependent manner in experimental Parkinson's disease. Acta Pharmacol Sin 2024; 45:87-97. [PMID: 37679644 PMCID: PMC10770167 DOI: 10.1038/s41401-023-01144-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/25/2023] [Indexed: 09/09/2023]
Abstract
Recent evidence shows a close link between Parkinson's disease (PD) and cardiac dysfunction with limited treatment options. Mitophagy plays a crucial role in the control of mitochondrial quantity, metabolic reprogramming and cell differentiation. Mutation of the mitophagy protein Parkin is directly associated with the onset of PD. Parkin-independent receptor-mediated mitophagy is also documented such as BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) and FUN14 domain containing 1 (FUNDC1) for receptor-mediated mitophagy. In this study we investigated cardiac function and mitophagy including FUNDC1 in PD patients and mouse models, and evaluated the therapeutic potential of a SGLT2 inhibitor empagliflozin. MPTP-induced PD model was established. PD patients and MPTP mice not only displayed pronounced motor defects, but also low plasma FUNDC1 levels, as well as cardiac ultrastructural and geometric anomalies (cardiac atrophy, interstitial fibrosis), functional anomalies (reduced E/A ratio, fractional shortening, ejection fraction, cardiomyocyte contraction) and mitochondrial injury (ultrastructural damage, UCP2, PGC1α, elevated mitochondrial Ca2+ uptake proteins MCU and VDAC1, and mitochondrial apoptotic protein calpain), dampened autophagy, FUNDC1 mitophagy and apoptosis. By Gene set enrichment analysis (GSEA), we found overtly altered glucose transmembrane transport in the midbrains of MPTP-treated mice. Intriguingly, administration of SGLT2 inhibitor empagliflozin (10 mg/kg, i.p., twice per week for 2 weeks) in MPTP-treated mice significantly ameliorated myocardial anomalies (with exception of VDAC1), but did not reconcile the motor defects or plasma FUNDC1. FUNDC1 global knockout (FUNDC1-/- mice) did not elicit any phenotype on cardiac geometry or function in the absence or presence of MPTP insult, but it nullified empagliflozin-caused cardioprotection against MPTP-induced cardiac anomalies including remodeling (atrophy and fibrosis), contractile dysfunction, Ca2+ homeostasis, mitochondrial (including MCU, mitochondrial Ca2+ overload, calpain, PARP1) and apoptotic anomalies. In neonatal and adult cardiomyocytes, treatment with PD neurotoxin preformed fibrils of α-synuclein (PFF) caused cytochrome c release and cardiomyocyte mechanical defects. These effects were mitigated by empagliflozin (10 μM) or MCU inhibitor Ru360 (10 μM). MCU activator kaempferol (10 μM) or calpain activator dibucaine (500 μM) nullified the empagliflozin-induced beneficial effects. These results suggest that empagliflozin protects against PD-induced cardiac anomalies, likely through FUNDC1-mediated regulation of mitochondrial integrity.
Collapse
Affiliation(s)
- Wei Yu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning, 437100, China
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, the Air Force Military Medical University, Xi'an, 710032, China
| | - Wei-Ying Ren
- Department of Geriatrics, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Hai-Xia Xu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ne N Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Dong-Hui Yu
- Xianning Central Hospital, Xianning, 437100, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Wen-Liang Zha
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
- Second Affiliated Hospital, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Qing-Dong Guo
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| | - Jun Ren
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| |
Collapse
|
10
|
Haneczok J, Delijewski M, Moldzio R. AI molecular property prediction for Parkinson's Disease reveals potential repurposing drug candidates based on the increase of the expression of PINK1. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 241:107731. [PMID: 37544165 DOI: 10.1016/j.cmpb.2023.107731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 05/20/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Parkinson's Disease (PD), a common neurodegenerative disorder and one of the major current challenges in neuroscience and pharmacology, may potentially be tackled by the modern AI techniques employed in drug discovery based on molecular property prediction. The aim of our study was to explore the application of a machine learning setup for the identification of the best potential drug candidates among FDA approved drugs, based on their predicted PINK1 expression-enhancing activity. METHODS Our study relies on supervised machine learning paradigm exploiting in vitro data and utilizing the scaffold splits methodology in order to assess model's capability to extract molecular patterns and generalize from them to new, unseen molecular representations. Models' predictions are combined in a meta-ensemble setup for finding new pharmacotherapies based on the predicted expression of PINK1. RESULTS The proposed machine learning setup can be used for discovering new drugs for PD based on the predicted increase of expression of PINK1. Our study identified nitazoxanide as well as representatives of imidazolidines, trifluoromethylbenzenes, anilides, nitriles, stilbenes and steroid esters as the best potential drug candidates for PD with PINK1 expression-enhancing activity on or inside the cell's mitochondria. CONCLUSIONS The applied methodology allows to reveal new potential drug candidates against PD. Next to novel indications, it allows also to confirm the utility of already known antiparkinson drugs, in the new context of PINK1 expression, and indicates the potential for simultaneous utilization of different mechanisms of action.
Collapse
Affiliation(s)
| | - Marcin Delijewski
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland.
| | - Rudolf Moldzio
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
11
|
Duan W, Liu C, Zhou J, Yu Q, Duan Y, Zhang T, Li Y, Fu G, Sun Y, Tian J, Xia Z, Yang Y, Liu Y, Xu S. Upregulation of mitochondrial calcium uniporter contributes to paraquat-induced neuropathology linked to Parkinson's disease via imbalanced OPA1 processing. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131369. [PMID: 37086674 DOI: 10.1016/j.jhazmat.2023.131369] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Paraquat (PQ) is the most widely used herbicide in agriculture worldwide and has been considered a high-risk environmental factor for Parkinson's disease (PD). Chronic PQ exposure selectively induces dopaminergic neuron loss, the hallmark pathologic feature of PD, resulting in Parkinson-like movement disorders. However, the underlying mechanisms remain unclear. Here, we demonstrated that repetitive PQ exposure caused dopaminergic neuron loss, dopamine deficiency and motor deficits dose-dependently in mice. Accordingly, mitochondrial calcium uniporter (MCU) was highly expressed in PQ-exposed mice and neuronal cells. Importantly, MCU knockout (KO) effectively rescued PQ-induced dopaminergic neuron loss and motor deficits in mice. Genetic and pharmacological inhibition of MCU alleviated PQ-induced mitochondrial dysfunction and neuronal death in vitro. Mechanistically, PQ exposure triggered mitochondrial fragmentation via imbalance of the optic atrophy 1 (OPA1) processing manifested by cleavage of L-OPA1 to S-OPA1, which was reversed by inhibition of MCU. Notably, the upregulation of MCU was mediated by miR-129-1-3p posttranscriptionally, and overexpression of miR-129-1-3p could rebalance OPA1 processing and attenuate mitochondrial dysfunction and neuronal death induced by PQ exposure. Consequently, our work uncovers an essential role of MCU and a novel molecular mechanism, miR-MCU-OPA1, in PQ-induced pathogenesis of PD, providing a potential target and strategy for environmental neurotoxins-induced PD treatment.
Collapse
Affiliation(s)
- Weixia Duan
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Cong Liu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Jie Zhou
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qin Yu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Yu Duan
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Tian Zhang
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Yuanyuan Li
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Guanyan Fu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Yapei Sun
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jiacheng Tian
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhiqin Xia
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingli Yang
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yongseng Liu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Shangcheng Xu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China.
| |
Collapse
|
12
|
Skiteva O, Yao N, Mantas I, Zhang X, Perlmann T, Svenningsson P, Chergui K. Aberrant somatic calcium channel function in cNurr1 and LRRK2-G2019S mice. NPJ Parkinsons Dis 2023; 9:56. [PMID: 37029193 PMCID: PMC10082048 DOI: 10.1038/s41531-023-00500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
In Parkinson's disease (PD), axons of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) degenerate before their cell bodies. Calcium influx during pacemaker firing might contribute to neuronal loss, but it is not known if dysfunctions of voltage-gated calcium channels (VGCCs) occur in DA neurons somata and axon terminals. We investigated T-type and L-type VGCCs in SNc-DA neurons of two mouse models of PD: mice with a deletion of the Nurr1 gene in DA neurons from an adult age (cNurr1 mice), and mice bearing the G2019S mutation in the gene coding for LRRK2 (G2019S mice). Adult cNurr1 mice displayed motor and DA deficits, while middle-aged G2019S mice did not. The number and morphology of SNc-DA neurons, most of their intrinsic membrane properties and pacemaker firing were unaltered in cNurr1 and G2019S mice compared to their control and wild-type littermates. L-type VGCCs contributed to the pacemaker firing of SNc-DA neurons in G2019S mice, but not in control, wild-type, and cNurr1 mice. In cNurr1 mice, but not G2019S mice, the contribution of T-type VGCCs to the pacemaker firing of SNc-DA neurons was reduced, and somatic dopamine-D2 autoreceptors desensitized more. Altered contribution of L-type and T-type VGCCs to the pacemaker firing was not observed in the presence of a LRRK2 kinase inhibitor in G2019S mice, and in the presence of a flavonoid with antioxidant activity in G2019S and cNurr1 mice. The role of L-type and T-type VGCCs in controlling dopamine release from axon terminals in the striatum was unaltered in cNurr1 and G2019S mice. Our findings uncover opposite changes, linked to oxidative stress, in the function of two VGCCs in DA neurons somata, but not axon terminals, in two different experimental PD models.
Collapse
Affiliation(s)
- Olga Skiteva
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ning Yao
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ioannis Mantas
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoqun Zhang
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Perlmann
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Karima Chergui
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
13
|
Gupta R, Kumari S, Tripathi R, Ambasta RK, Kumar P. Unwinding the modalities of necrosome activation and necroptosis machinery in neurological diseases. Ageing Res Rev 2023; 86:101855. [PMID: 36681250 DOI: 10.1016/j.arr.2023.101855] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/09/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Necroptosis, a regulated form of cell death, is involved in the genesis and development of various life-threatening diseases, including cancer, neurological disorders, cardiac myopathy, and diabetes. Necroptosis initiates with the formation and activation of a necrosome complex, which consists of RIPK1, RIPK2, RIPK3, and MLKL. Emerging studies has demonstrated the regulation of the necroptosis cell death pathway through the implication of numerous post-translational modifications, namely ubiquitination, acetylation, methylation, SUMOylation, hydroxylation, and others. In addition, the negative regulation of the necroptosis pathway has been shown to interfere with brain homeostasis through the regulation of axonal degeneration, mitochondrial dynamics, lysosomal defects, and inflammatory response. Necroptosis is controlled by the activity and expression of signaling molecules, namely VEGF/VEGFR, PI3K/Akt/GSK-3β, c-Jun N-terminal kinases (JNK), ERK/MAPK, and Wnt/β-catenin. Herein, we briefly discussed the implication and potential of necrosome activation in the pathogenesis and progression of neurological manifestations, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, traumatic brain injury, and others. Further, we present a detailed picture of natural compounds, micro-RNAs, and chemical compounds as therapeutic agents for treating neurological manifestations.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India.
| |
Collapse
|
14
|
Walters GC, Usachev YM. Mitochondrial calcium cycling in neuronal function and neurodegeneration. Front Cell Dev Biol 2023; 11:1094356. [PMID: 36760367 PMCID: PMC9902777 DOI: 10.3389/fcell.2023.1094356] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Mitochondria are essential for proper cellular function through their critical roles in ATP synthesis, reactive oxygen species production, calcium (Ca2+) buffering, and apoptotic signaling. In neurons, Ca2+ buffering is particularly important as it helps to shape Ca2+ signals and to regulate numerous Ca2+-dependent functions including neuronal excitability, synaptic transmission, gene expression, and neuronal toxicity. Over the past decade, identification of the mitochondrial Ca2+ uniporter (MCU) and other molecular components of mitochondrial Ca2+ transport has provided insight into the roles that mitochondrial Ca2+ regulation plays in neuronal function in health and disease. In this review, we discuss the many roles of mitochondrial Ca2+ uptake and release mechanisms in normal neuronal function and highlight new insights into the Ca2+-dependent mechanisms that drive mitochondrial dysfunction in neurologic diseases including epilepsy, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. We also consider how targeting Ca2+ uptake and release mechanisms could facilitate the development of novel therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Grant C. Walters
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| | - Yuriy M. Usachev
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
15
|
Satouh Y, Sato K. Reorganization, specialization, and degradation of oocyte maternal components for early development. Reprod Med Biol 2023; 22:e12505. [PMID: 36726596 PMCID: PMC9884333 DOI: 10.1002/rmb2.12505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/30/2023] Open
Abstract
Background Oocyte components are maternally provided, solely determine oocyte quality, and coordinately determine embryo quality with zygotic gene expression. During oocyte maturation, maternal organelles are drastically reorganized and specialized to support oocyte characteristics. A large number of maternal components are actively degraded after fertilization and gradually replaced by zygotic gene products. The molecular basis and the significance of these processes on oocyte/embryo quality are not fully understood. Methods Firstly, recent findings in organelle characteristics of other cells or oocytes from model organisms are introduced for further understanding of oocyte organelle reorganization/specialization. Secondly, recent progress in studies on maternal components degradation and their molecular mechanisms are introduced. Finally, future applications of these advancements for predicting mammalian oocyte/embryo quality are discussed. Main findings The significance of cellular surface protein degradation via endocytosis for embryonic development, and involvement of biogenesis of lipid droplets in embryonic quality, were recently reported using mammalian model organisms. Conclusion Identifying key oocyte component characteristics and understanding their dynamics may lead to new applications in oocyte/embryo quality prediction and improvement. To implement these multidimensional concepts, development of new technical approaches that allow us to address the complexity and efficient studies using model organisms are required.
Collapse
Affiliation(s)
- Yuhkoh Satouh
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular RegulationGunma UniversityMaebashiJapan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular RegulationGunma UniversityMaebashiJapan
| |
Collapse
|
16
|
Shao J, Liu X, Lian M, Mao Y. Citronellol Prevents 6-OHDA-Induced Oxidative Stress, Mitochondrial Dysfunction, and Apoptosis in Parkinson Disease Model of SH-SY5Y Cells via Modulating ROS-NO, MAPK/ERK, and PI3K/Akt Signaling Pathways. Neurotox Res 2022; 40:2221-2237. [PMID: 36097250 DOI: 10.1007/s12640-022-00558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/13/2022] [Accepted: 08/09/2022] [Indexed: 12/31/2022]
Abstract
Parkinson disease is a neurodegenerative disorder distinguished by dopaminergic shortage in the striatum and the accumulation of α-synuclein neuronal aggregates in the brains of patients. Since, there is no accurate treatment available for Parkinson disease, researches are designed to alleviate the pathognomonic symptoms such as neuroinflammation, oxidative stress, mitochondrial dysfunction, and apoptosis. Accordingly, a number of compounds have been reported to inhibit these pathognomonic symptoms. In this study, we have assessed the neuroprotective potential of citronellol against 6-OHDA-induced neurotoxicity in SH-SY5Y cells. The results found that citronellol treatment effectively hindered the cell death caused by 6-OHDA and thereby maintaining the cell viability in SH-SY5Y cells at 50 µg/mL concentration. As expected, the citronellol treatment significantly reduced the 6-OHDA-induced secretion of inflammatory factors (IL-1β, IL-6, and TNF-α), which was obtained through ELISA technique. Similarly, citronellol hindered the 6-OHDA-induced oxidative stress by lowering the intracellular ROS and NO level and MDA leakage along with increased expression of SOD level in SH-SY5Y cells. The JC-1 staining showed that 6-OHDA increased the number of green fluorescent dots with ruptured mitochondrial membrane potential, while citronellol increased the amount of red fluorescent, showing the rescue potential against the 6-OHDA-induced mitochondrial dysfunction. Furthermore, citronellol hampered the 6-OHDA-induced apoptosis via the suppression of Bcl-2/Bax pathway. The western blotting results hypothesized that citronellol rescued SH-SY5Y cells from 6-OHDA-induced neurotoxicity via modulating ROS-NO, MAPK/ERK, and PI3K/Akt signaling pathways. However, further clinical trials are required to verify the anti-Parkinson efficacy.
Collapse
Affiliation(s)
- Jiahui Shao
- Department of Neurology, The First People's Hospital of Wenling, Zhejiang Province, Wenling, 317500, China
| | - Xuan Liu
- Department of Neurology, The First People's Hospital of Wenling, Zhejiang Province, Wenling, 317500, China
| | - Mengjia Lian
- Department of Neurology, The First People's Hospital of Wenling, Zhejiang Province, Wenling, 317500, China
| | - Youbing Mao
- Department of Special Inspection Section, The First People's Hospital of Wenling, No. 333, Chuanan South Road, Chengxi StreetZhejiang Province, Wenling, 317500, China.
| |
Collapse
|
17
|
Takeuchi A, Matsuoka S. Spatial and Functional Crosstalk between the Mitochondrial Na+-Ca2+ Exchanger NCLX and the Sarcoplasmic Reticulum Ca2+ Pump SERCA in Cardiomyocytes. Int J Mol Sci 2022; 23:ijms23147948. [PMID: 35887296 PMCID: PMC9317594 DOI: 10.3390/ijms23147948] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 02/05/2023] Open
Abstract
The mitochondrial Na+-Ca2+ exchanger, NCLX, was reported to supply Ca2+ to sarcoplasmic reticulum (SR)/endoplasmic reticulum, thereby modulating various cellular functions such as the rhythmicity of cardiomyocytes, and cellular Ca2+ signaling upon antigen receptor stimulation and chemotaxis in B lymphocytes; however, there is little information on the spatial relationships of NCLX with SR Ca2+ handling proteins, and their physiological impact. Here we examined the issue, focusing on the interaction of NCLX with an SR Ca2+ pump SERCA in cardiomyocytes. A bimolecular fluorescence complementation assay using HEK293 cells revealed that the exogenously expressed NCLX was localized in close proximity to four exogenously expressed SERCA isoforms. Immunofluorescence analyses of isolated ventricular myocytes showed that the NCLX was localized to the edges of the mitochondria, forming a striped pattern. The co-localization coefficients in the super-resolution images were higher for NCLX–SERCA2, than for NCLX–ryanodine receptor and NCLX–Na+/K+ ATPase α-1 subunit, confirming the close localization of endogenous NCLX and SERCA2 in cardiomyocytes. The mathematical model implemented with the spatial and functional coupling of NCLX and SERCA well reproduced the NCLX inhibition-mediated modulations of SR Ca2+ reuptake in HL-1 cardiomyocytes. Taken together, these results indicated that NCLX and SERCA are spatially and functionally coupled in cardiomyocytes.
Collapse
Affiliation(s)
- Ayako Takeuchi
- Department of Integrative and Systems Physiology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Life Science Innovation Center, University of Fukui, Fukui 910-1193, Japan
- Correspondence: ; Tel.: +81-776-61-8311
| | - Satoshi Matsuoka
- Department of Integrative and Systems Physiology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Life Science Innovation Center, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
18
|
Amorim Neto DP, Bosque BP, Pereira de Godoy JV, Rodrigues PV, Meneses DD, Tostes K, Costa Tonoli CC, Faustino de Carvalho H, González-Billault C, de Castro Fonseca M. Akkermansia muciniphila induces mitochondrial calcium overload and α -synuclein aggregation in an enteroendocrine cell line. iScience 2022; 25:103908. [PMID: 35243260 PMCID: PMC8881719 DOI: 10.1016/j.isci.2022.103908] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/06/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota influence neurodevelopment, modulate behavior, and contribute to neurodegenerative disorders. Several studies have consistently reported a greater abundance of Akkermansia muciniphila in Parkinson disease (PD) fecal samples. Therefore, we investigated whether A.muciniphila-conditioned medium (CM) could initiate α-synuclein (αSyn) misfolding in enteroendocrine cells (EEC) — a component of the gut epithelium featuring neuron-like properties. We found that A. muciniphila CM composition is influenced by the ability of the strain to degrade mucin. Our in vitro experiments showed that the protein-enriched fraction of mucin-free CM induces RyR-mediated Ca2+ release and increased mitochondrial Ca2+ uptake leading to ROS generation and αSyn aggregation. Oral administration of A. muciniphila cultivated in the absence of mucin to mice led to αSyn aggregation in cholecystokinin (CCK)-positive EECs but no motor deficits were observed. Noteworthy, buffering mitochondrial Ca2+ reverted the damaging effects observed. These molecular insights offer evidence that bacterial proteins can induce αSyn aggregation in EECs. Gut bacterium Akkermansia muciniphila is increased in patients with Parkinson disease A. muciniphila-conditioned medium induces mitochondrial Ca2+ overload in EECs Mitochondrial Ca2+ overload leads to ROS generation and αSyn aggregation in vitro Buffering mitochondrial Ca2+ inhibits A. muciniphila-induced αSyn aggregation
Collapse
Affiliation(s)
- Dionísio Pedro Amorim Neto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Beatriz Pelegrini Bosque
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - João Vitor Pereira de Godoy
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Paulla Vieira Rodrigues
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Dario Donoso Meneses
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
| | - Katiane Tostes
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
| | - Celisa Caldana Costa Tonoli
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
| | | | - Christian González-Billault
- Department of Biology, Faculty of Sciences and Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Matheus de Castro Fonseca
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
- Corresponding author
| |
Collapse
|
19
|
Disrupted expression of mitochondrial NCLX sensitizes neuroglial networks to excitotoxic stimuli and renders synaptic activity toxic. J Biol Chem 2021; 298:101508. [PMID: 34942149 PMCID: PMC8808183 DOI: 10.1016/j.jbc.2021.101508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial sodium/calcium/lithium exchanger (NCLX) is an important mediator of calcium extrusion from mitochondria. In this study, we tested the hypothesis that physiological expression levels of NCLX are essential for maintaining neuronal resilience in the face of excitotoxic challenge. Using a short hairpin RNA (shRNA)-mediated approach, we showed that reduced NCLX expression exacerbates neuronal mitochondrial calcium dysregulation, mitochondrial membrane potential (ΔΨm) breakdown, and reactive oxygen species (ROS) generation during excitotoxic stimulation of primary hippocampal cultures. Moreover, NCLX knockdown-which affected both neurons and glia-resulted not only in enhanced neurodegeneration following an excitotoxic insult, but also in neuronal and astrocytic cell death under basal conditions. Our data also revealed that synaptic activity, which promotes neuroprotective signaling, can become lethal upon NCLX depletion; expression of NCLX-targeted shRNA impaired the clearance of mitochondrial calcium following action potential bursts and was associated both with ΔΨmbreakdown and substantial neurodegeneration in hippocampal cultures undergoing synaptic activity. Finally, we showed that NCLX knockdown within the hippocampal cornu ammonis 1 (CA1) region in vivo causes substantial neuro- and astrodegeneration. In summary, we demonstrated that dysregulated NCLX expression not only sensitizes neuroglial networks to excitotoxic stimuli but notably also renders otherwise neuroprotective synaptic activity toxic. These findings may explain the emergence of neuro- and astrodegeneration in patients with disorders characterized by disrupted NCLX expression or function, and suggest that treatments aimed at enhancing or restoring NCLX function may prevent central nervous system damage in these disease states.
Collapse
|
20
|
Zeng L, Li WC, Zhang H, Cao P, Ai CX, Hu B, Song W. Hypoxic acclimation improves mitochondrial bioenergetic function in large yellow croaker Larimichthys crocea under Cu stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112688. [PMID: 34425539 DOI: 10.1016/j.ecoenv.2021.112688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 05/14/2023]
Abstract
The purpose of this study was to investigate how pre-hypoxia exposure affected the mitochondrial structure and bioenergetic function of large yellow croaker in responding to Cu stress. Fish were acclimated to normoxia and 3.0 mg DO L-1 for 48 h, then subjected to 0 and 120 μg Cu L-1 for another 48 h. Hypoxic acclimation did not affect mitochondrial ultrastructure and reactive oxygen species (ROS), but reduced oxidative phosphorylation (OXPHOS) efficiency. Cu exposure impaired mitochondrial ultrastructure, increased ROS generation and inhibited OXPHOS efficiency. Compared with Cu exposure alone, hypoxic acclimation plus Cu exposure reduced ROS production and improved OXPHOS efficiency by enhancing mitochondrial respiratory control ratio, mitochondrial membrane potential, and activities and gene expressions of electron transport chain enzymes. In conclusion, hypoxic acclimation improved the mitochondrial energy metabolism of large yellow croaker under Cu stress, facilitating our understanding of the molecular mechanisms regarding adaptive responses of hypoxia-acclimated fish under Cu stress.
Collapse
Affiliation(s)
- Lin Zeng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Wen-Cheng Li
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Hui Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Ping Cao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Chun-Xiang Ai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China.
| | - Bing Hu
- Fujian Province Key Laboratory of Special Aquatic Formula Feed, Fuqing 350300, PR China
| | - Wei Song
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China.
| |
Collapse
|
21
|
Zhang X, Deng R, Zhang S, Deng J, Jia JJ, Sun B, Zhou X, Bai J. Thioredoxin-1 regulates calcium homeostasis in MPP + /MPTP-induced Parkinson's disease models. Eur J Neurosci 2021; 54:4827-4837. [PMID: 34132424 DOI: 10.1111/ejn.15355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/04/2021] [Accepted: 06/12/2021] [Indexed: 11/30/2022]
Abstract
Disturbance in calcium (Ca2+ ) homeostasis has been involved in a variety of neuropathological conditions including Parkinson's disease (PD). The Ca2+ channel, transient receptor potential channel 1 (TRPC1), plays a protective role in regulating entry of Ca2+ activated by store depletion of Ca2+ in endoplasmic reticulum (ER). We have showed that thioredoxin-1 (Trx-1) plays a role in suppressing ER stress in PD. However, whether Trx-1 regulates TRPC1 expression in PD is still unknown. In the present study, we demonstrated that treatment of 1-methyl-4-phenylpyridinum ion (MPP+ ) significantly reduced the expression of TRPC1 in PC12 cells, which was restored by Trx-1 overexpression, and further decreased significantly by Trx-1 siRNA. Moreover, we found that Ca2+ entered into the cells was decreased by MPP+ in PC 12 cells, which was restored by Trx-1 overexpression, and further decreased by Trx-1 siRNA. MPP+ significantly increased calcium-dependent cysteine protease calpain1 expression in PC12 cells, which was suppressed by Trx-1 overexpression. Calpain1 expression was increased by Trx-1 siRNA or SKF96365, an inhibitor of TRPC1. Moreover, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) decreased TRPC1 expression in the substantia nigra pars compacta region (SNpc), which was restored in mice overexpressing Trx-1, and further decreased in mice of knockdown Trx-1. Inversely, the expression of calpain1 was increased by MPTP, which was suppressed in mice overexpressing Trx-1, and further increased in mice of knockdown Trx-1. In conclusion, Trx-1 regulates the Ca2+ entry through regulating TRPC1 expression after treatment of MPP+ /MPTP.
Collapse
Affiliation(s)
- Xianwen Zhang
- Laboratory of molecular neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Ruhua Deng
- Laboratory of molecular neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Se Zhang
- Laboratory of molecular neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Juan Deng
- Laboratory of molecular neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Jing Jing Jia
- Laboratory of molecular neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Bo Sun
- Laboratory of molecular neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Xiaoshuang Zhou
- Laboratory of molecular neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Jie Bai
- Laboratory of molecular neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
22
|
Wang X, An P, Gu Z, Luo Y, Luo J. Mitochondrial Metal Ion Transport in Cell Metabolism and Disease. Int J Mol Sci 2021; 22:7525. [PMID: 34299144 PMCID: PMC8305404 DOI: 10.3390/ijms22147525] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are vital to life and provide biological energy for other organelles and cell physiological processes. On the mitochondrial double layer membrane, there are a variety of channels and transporters to transport different metal ions, such as Ca2+, K+, Na+, Mg2+, Zn2+ and Fe2+/Fe3+. Emerging evidence in recent years has shown that the metal ion transport is essential for mitochondrial function and cellular metabolism, including oxidative phosphorylation (OXPHOS), ATP production, mitochondrial integrity, mitochondrial volume, enzyme activity, signal transduction, proliferation and apoptosis. The homeostasis of mitochondrial metal ions plays an important role in maintaining mitochondria and cell functions and regulating multiple diseases. In particular, channels and transporters for transporting mitochondrial metal ions are very critical, which can be used as potential targets to treat neurodegeneration, cardiovascular diseases, cancer, diabetes and other metabolic diseases. This review summarizes the current research on several types of mitochondrial metal ion channels/transporters and their functions in cell metabolism and diseases, providing strong evidence and therapeutic strategies for further insights into related diseases.
Collapse
Affiliation(s)
- Xuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (X.W.); (P.A.)
| | - Peng An
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (X.W.); (P.A.)
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA;
| | - Yongting Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (X.W.); (P.A.)
| | - Junjie Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (X.W.); (P.A.)
| |
Collapse
|
23
|
Pallos J, Jeng S, McWeeney S, Martin I. Dopamine neuron-specific LRRK2 G2019S effects on gene expression revealed by translatome profiling. Neurobiol Dis 2021; 155:105390. [PMID: 33984508 DOI: 10.1016/j.nbd.2021.105390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) mutations are the most common genetic cause of late-onset Parkinson's disease. The pathogenic G2019S mutation enhances LRRK2 kinase activity and induces neurodegeneration in C. elegans, Drosophila and rodent models through unclear mechanisms. Gene expression profiling has the potential to provide detailed insight into the biological pathways modulated by LRRK2 kinase activity. Prior in vivo studies have surveyed the effects of LRRK2 G2019S on genome-wide mRNA expression in complex brain tissues with high cellular heterogeneity, limiting their power to detect more restricted gene expression changes occurring in a cell type-specific manner. Here, we used translating ribosome affinity purification (TRAP) coupled to RNA-seq to profile dopamine neuron-specific gene expression changes caused by LRRK2 G2019S in the Drosophila CNS. A number of genes were differentially expressed in the presence of mutant LRRK2 that represent a broad range of molecular functions including DNA repair (RfC3), mRNA metabolism and translation (Ddx1 and lin-28), calcium homeostasis (MCU), and other categories (Ugt37c1, disp, l(1)G0196, CG6602, CG1126 and CG11068). Further analysis on a subset of these genes revealed that LRRK2 G2019S did not alter their expression across the whole brain, consistent with dopamine neuron-specific effects uncovered by the TRAP approach that may yield insight into the neurodegenerative process. To our knowledge, this is the first study to profile the effects of LRRK2 G2019S specifically on DA neuron gene expression in vivo. Beyond providing a set of differentially expressed gene candidates relevant to LRRK2, we demonstrate the effective use of TRAP to perform high-resolution assessment of dopamine neuron gene expression for the study of PD.
Collapse
Affiliation(s)
- Judit Pallos
- Jungers Center for Neurosciences, Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Sophia Jeng
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA; Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Shannon McWeeney
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA; Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, OR 97239, USA; Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ian Martin
- Jungers Center for Neurosciences, Department of Neurology, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
24
|
Ryan KC, Ashkavand Z, Norman KR. The Role of Mitochondrial Calcium Homeostasis in Alzheimer's and Related Diseases. Int J Mol Sci 2020; 21:ijms21239153. [PMID: 33271784 PMCID: PMC7730848 DOI: 10.3390/ijms21239153] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Calcium signaling is essential for neuronal function, and its dysregulation has been implicated across neurodegenerative diseases, including Alzheimer’s disease (AD). A close reciprocal relationship exists between calcium signaling and mitochondrial function. Growing evidence in a variety of AD models indicates that calcium dyshomeostasis drastically alters mitochondrial activity which, in turn, drives neurodegeneration. This review discusses the potential pathogenic mechanisms by which calcium impairs mitochondrial function in AD, focusing on the impact of calcium in endoplasmic reticulum (ER)–mitochondrial communication, mitochondrial transport, oxidative stress, and protein homeostasis. This review also summarizes recent data that highlight the need for exploring the mechanisms underlying calcium-mediated mitochondrial dysfunction while suggesting potential targets for modulating mitochondrial calcium levels to treat neurodegenerative diseases such as AD.
Collapse
|
25
|
Air Pollution-Related Brain Metal Dyshomeostasis as a Potential Risk Factor for Neurodevelopmental Disorders and Neurodegenerative Diseases. ATMOSPHERE 2020. [DOI: 10.3390/atmos11101098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing evidence links air pollution (AP) exposure to effects on the central nervous system structure and function. Particulate matter AP, especially the ultrafine (nanoparticle) components, can carry numerous metal and trace element contaminants that can reach the brain in utero and after birth. Excess brain exposure to either essential or non-essential elements can result in brain dyshomeostasis, which has been implicated in both neurodevelopmental disorders (NDDs; autism spectrum disorder, schizophrenia, and attention deficit hyperactivity disorder) and neurodegenerative diseases (NDGDs; Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis). This review summarizes the current understanding of the extent to which the inhalational or intranasal instillation of metals reproduces in vivo the shared features of NDDs and NDGDs, including enlarged lateral ventricles, alterations in myelination, glutamatergic dysfunction, neuronal cell death, inflammation, microglial activation, oxidative stress, mitochondrial dysfunction, altered social behaviors, cognitive dysfunction, and impulsivity. Although evidence is limited to date, neuronal cell death, oxidative stress, and mitochondrial dysfunction are reproduced by numerous metals. Understanding the specific contribution of metals/trace elements to this neurotoxicity can guide the development of more realistic animal exposure models of human AP exposure and consequently lead to a more meaningful approach to mechanistic studies, potential intervention strategies, and regulatory requirements.
Collapse
|
26
|
Zampese E, Surmeier DJ. Calcium, Bioenergetics, and Parkinson's Disease. Cells 2020; 9:cells9092045. [PMID: 32911641 PMCID: PMC7564460 DOI: 10.3390/cells9092045] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Degeneration of substantia nigra (SN) dopaminergic (DAergic) neurons is responsible for the core motor deficits of Parkinson’s disease (PD). These neurons are autonomous pacemakers that have large cytosolic Ca2+ oscillations that have been linked to basal mitochondrial oxidant stress and turnover. This review explores the origin of Ca2+ oscillations and their role in the control of mitochondrial respiration, bioenergetics, and mitochondrial oxidant stress.
Collapse
|
27
|
Piccirillo S, Magi S, Preziuso A, Castaldo P, Amoroso S, Lariccia V. Gateways for Glutamate Neuroprotection in Parkinson's Disease (PD): Essential Role of EAAT3 and NCX1 Revealed in an In Vitro Model of PD. Cells 2020; 9:cells9092037. [PMID: 32899900 PMCID: PMC7563499 DOI: 10.3390/cells9092037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence suggests that metabolic alterations may be etiologically linked to neurodegenerative disorders such as Parkinson's disease (PD) and in particular empathizes the possibility of targeting mitochondrial dysfunctions to improve PD progression. Under different pathological conditions (i.e., cardiac and neuronal ischemia/reperfusion injury), we showed that supplementation of energetic substrates like glutamate exerts a protective role by preserving mitochondrial functions and enhancing ATP synthesis through a mechanism involving the Na+-dependent excitatory amino acid transporters (EAATs) and the Na+/Ca2+ exchanger (NCX). In this study, we investigated whether a similar approach aimed at promoting glutamate metabolism would be also beneficial against cell damage in an in vitro PD-like model. In retinoic acid (RA)-differentiated SH-SY5Y cells challenged with α-synuclein (α-syn) plus rotenone (Rot), glutamate significantly improved cell viability by increasing ATP levels, reducing oxidative damage and cytosolic and mitochondrial Ca2+ overload. Glutamate benefits were strikingly lost when either EAAT3 or NCX1 expression was knocked down by RNA silencing. Overall, our results open the possibility of targeting EAAT3/NCX1 functions to limit PD pathology by simultaneously favoring glutamate uptake and metabolic use in dopaminergic neurons.
Collapse
|