1
|
Reddy Palicharla V, Mukhopadhyay S. Molecular and structural perspectives on protein trafficking to the primary cilium membrane. Biochem Soc Trans 2024; 52:1473-1487. [PMID: 38864436 PMCID: PMC11346432 DOI: 10.1042/bst20231403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/13/2024]
Abstract
The primary cilium is a dynamic subcellular compartment templated from the mother centriole or basal body. Cilia are solitary and tiny, but remarkably consequential in cellular pathways regulating proliferation, differentiation, and maintenance. Multiple transmembrane proteins such as G-protein-coupled receptors, channels, enzymes, and membrane-associated lipidated proteins are enriched in the ciliary membrane. The precise regulation of ciliary membrane content is essential for effective signal transduction and maintenance of tissue homeostasis. Surprisingly, a few conserved molecular factors, intraflagellar transport complex A and the tubby family adapter protein TULP3, mediate the transport of most membrane cargoes into cilia. Recent advances in cryogenic electron microscopy provide fundamental insights into these molecular players. Here, we review the molecular players mediating cargo delivery into the ciliary membrane through the lens of structural biology. These mechanistic insights into ciliary transport provide a framework for understanding of disease variants in ciliopathies, enable precise manipulation of cilia-mediated pathways, and provide a platform for the development of targeted therapeutics.
Collapse
Affiliation(s)
- Vivek Reddy Palicharla
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S.A
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S.A
| |
Collapse
|
2
|
Scholtysek L, Poetsch A, Hofmann E, Hemschemeier A. The activation of Chlamydomonas reinhardtii alpha amylase 2 by glutamine requires its N-terminal aspartate kinase-chorismate mutase-tyrA (ACT) domain. PLANT DIRECT 2024; 8:e609. [PMID: 38911017 PMCID: PMC11190351 DOI: 10.1002/pld3.609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/25/2024]
Abstract
The coordination of assimilation pathways for all the elements that make up cellular components is a vital task for every organism. Integrating the assimilation and use of carbon (C) and nitrogen (N) is of particular importance because of the high cellular abundance of these elements. Starch is one of the most important storage polymers of photosynthetic organisms, and a complex regulatory network ensures that biosynthesis and degradation of starch are coordinated with photosynthetic activity and growth. Here, we analyzed three starch metabolism enzymes of Chlamydomonas reinhardtii that we captured by a cyclic guanosine monophosphate (cGMP) affinity chromatography approach, namely, soluble starch synthase STA3, starch-branching enzyme SBE1, and α-amylase AMA2. While none of the recombinant enzymes was directly affected by the presence of cGMP or other nucleotides, suggesting an indirect binding to cGMP, AMA2 activity was stimulated in the presence of L-glutamine (Gln). This activating effect required the enzyme's N-terminal aspartate kinase-chorismate mutase-tyrA domain. Gln is the first N assimilation product and not only a central compound for the biosynthesis of N-containing molecules but also a recognized signaling molecule for the N status. Our observation suggests that AMA2 might be a means to coordinate N and C metabolism at the enzymatic level, increasing the liberation of C skeletons from starch when high Gln levels signal an abundance of assimilated N.
Collapse
Affiliation(s)
- Lisa Scholtysek
- Faculty of Biology and Biotechnology, PhotobiotechnologyRuhr University BochumBochumGermany
| | - Ansgar Poetsch
- Faculty of Biology and Biotechnology, Department for Plant BiochemistryRuhr University BochumBochumGermany
- School of Basic Medical SciencesNanchang UniversityNanchangChina
| | - Eckhard Hofmann
- Faculty of Biology and Biotechnology, Protein CrystallographyRuhr University BochumBochumGermany
| | - Anja Hemschemeier
- Faculty of Biology and Biotechnology, PhotobiotechnologyRuhr University BochumBochumGermany
| |
Collapse
|
3
|
Vergou GA, Bajhaiya AK, Corredor L, Lema Asqui S, Timmerman E, Impens F, Funk C. In vivo proteolytic profiling of the type I and type II metacaspases in Chlamydomonas reinhardtii exposed to salt stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14401. [PMID: 38899462 DOI: 10.1111/ppl.14401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024]
Abstract
Metacaspases are cysteine proteases present in plants, fungi and protists. While the association of metacaspases with cell death is studied in a range of organisms, their native substrates are largely unknown. Here, we explored the in vivo proteolytic landscape of the two metacaspases, CrMCA-I and CrMCA-II, present in the green freshwater alga Chlamydomonas reinhardtii, using mass spectrometry-based degradomics approach, during control conditions and salt stress. Comparison between the cleavage events of CrMCA-I and CrMCA-II in metacaspase mutants revealed unique cleavage preferences and substrate specificity. Degradome analysis demonstrated the relevance of the predicted metacaspase substrates to the physiology of C. reinhardtii cells and its adaptation during salt stress. Functional enrichment analysis indicated an involvement of CrMCA-I in the catabolism of carboxylic acids, while CrMCA-II plays an important role in photosynthesis and translation. Altogether, our findings suggest distinct cellular functions of the two metacaspases in C. reinhardtii during salt stress response.
Collapse
Affiliation(s)
| | | | | | | | - Evy Timmerman
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | | |
Collapse
|
4
|
Pazour GJ. Cilia Structure and Function in Human Disease. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2024; 34:100509. [PMID: 38836197 PMCID: PMC11147146 DOI: 10.1016/j.coemr.2024.100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Ciliary dysfunction causes a large group of developmental and degenerative human diseases known as ciliopathies. These diseases reflect the critical roles that cilia play in sensing the environment and in force generation for motility. Sensory functions include our senses of vision and olfaction. In addition, primary and motile cilia throughout our body monitor the environment allowing cells to coordinate their biology with the cells around them. This coordination is critical to organ development and maintenance, and ciliary dysfunction causes diverse structural birth defects and degenerative diseases. Defects in motility cause lung disease due to the failure of mucociliary clearance, male infertility due to the failure of sperm motility and the ability of sperm to move through the efferent ducts, and disturbances of the left-right axis due to a failure of nodal cilia to establish proper left-right cues.
Collapse
Affiliation(s)
- Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Biotech II, Worcester, Massachusetts, USA
| |
Collapse
|
5
|
Nasser F, Kohl S, Kurtenbach A, Kempf M, Biskup S, Zuleger T, Haack TB, Weisschuh N, Stingl K, Zrenner E. Ophthalmic and Genetic Features of Bardet Biedl Syndrome in a German Cohort. Genes (Basel) 2022; 13:genes13071218. [PMID: 35886001 PMCID: PMC9322102 DOI: 10.3390/genes13071218] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of this study was to characterize the ophthalmic and genetic features of Bardet Biedl (BBS) syndrome in a cohort of patients from a German specialized ophthalmic care center. Sixty-one patients, aged 5−56 years, underwent a detailed ophthalmic examination including visual acuity and color vision testing, electroretinography (ERG), visually evoked potential recording (VEP), fundus examination, and spectral domain optical coherence tomography (SD-OCT). Adaptive optics flood illumination ophthalmoscopy was performed in five patients. All patients had received diagnostic genetic testing and were selected upon the presence of apparent biallelic variants in known BBS-associated genes. All patients had retinal dystrophy with morphologic changes of the retina. Visual acuity decreased from ~0.2 (decimal) at age 5 to blindness 0 at 50 years. Visual field examination could be performed in only half of the patients and showed a concentric constriction with remaining islands of function in the periphery. ERG recordings were mostly extinguished whereas VEP recordings were reduced in about half of the patients. The cohort of patients showed 51 different likely biallelic mutations—of which 11 are novel—in 12 different BBS-associated genes. The most common associated genes were BBS10 (32.8%) and BBS1 (24.6%), and by far the most commonly observed variants were BBS10 c.271dup;p.C91Lfs*5 (21 alleles) and BBS1 c.1169T>G;p.M390R (18 alleles). The phenotype associated with the different BBS-associated genes and genotypes in our cohort is heterogeneous, with diverse features without genotype−phenotype correlation. The results confirm and expand our knowledge of this rare disease.
Collapse
Affiliation(s)
- Fadi Nasser
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Department of Ophthalmology, University of Leipzig, 04103 Leipzig, Germany
- Correspondence:
| | - Susanne Kohl
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
| | - Anne Kurtenbach
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
| | - Melanie Kempf
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Center for Rare Eye Diseases, University of Tübingen, 72076 Tuebingen, Germany
| | | | - Theresia Zuleger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tuebingen, Germany; (T.Z.); (T.B.H.)
| | - Tobias B. Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tuebingen, Germany; (T.Z.); (T.B.H.)
| | - Nicole Weisschuh
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
| | - Katarina Stingl
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Center for Rare Eye Diseases, University of Tübingen, 72076 Tuebingen, Germany
| | - Eberhart Zrenner
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, 72076 Tuebingen, Germany
| |
Collapse
|
6
|
Awasthi M, Ranjan P, Kelterborn S, Hegemann P, Snell WJ. A cytoplasmic protein kinase couples engagement of Chlamydomonas ciliary receptors to cAMP-dependent cellular responses. J Cell Sci 2022; 135:275490. [PMID: 35502650 DOI: 10.1242/jcs.259814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
The primary cilium is a cellular compartment specialized for receipt of extracellular signals essential for development and homeostasis. Although intraciliary responses to engagement of ciliary receptors are well studied, fundamental questions remain about the mechanisms and molecules that transduce ciliary signals into responses in the cytoplasm. During fertilization in the bi-ciliated alga Chlamydomonas reinhardtii, ciliary adhesion between plus and minus gametes triggers an immediate ∼10-fold increase in cellular cAMP and consequent responses in the cytoplasm required for cell-cell fusion. Here, we identify a new participant in ciliary signaling, Gamete-Specific Protein Kinase (GSPK). GSPK is essential for the adhesion-induced cAMP increase and for rapid gamete fusion. The protein is in the cytoplasm and the entire cellular complement responds to a signal from the cilium by becoming phosphorylated within 1 minute after ciliary receptor engagement. Unlike all other cytoplasmic events in ciliary signaling, GSPK phosphorylation is not responsive to exogenously added cAMP. Thus, during ciliary signaling in Chlamydomonas, a cytoplasmic protein is required to rapidly interpret a still uncharacterized ciliary signal to generate a cytoplasmic response.
Collapse
Affiliation(s)
- Mayanka Awasthi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Peeyush Ranjan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Simon Kelterborn
- Experimental Biophysics, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Institute of Translational Physiology, Berlin, Germany
| | - Peter Hegemann
- Experimental Biophysics, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - William J Snell
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| |
Collapse
|
7
|
Pinello JF, Clark TG. HAP2-Mediated Gamete Fusion: Lessons From the World of Unicellular Eukaryotes. Front Cell Dev Biol 2022; 9:807313. [PMID: 35071241 PMCID: PMC8777248 DOI: 10.3389/fcell.2021.807313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 01/29/2023] Open
Abstract
Most, if not all the cellular requirements for fertilization and sexual reproduction arose early in evolution and are retained in extant lineages of single-celled organisms including a number of important model organism species. In recent years, work in two such species, the green alga, Chlamydomonas reinhardtii, and the free-living ciliate, Tetrahymena thermophila, have lent important new insights into the role of HAP2/GCS1 as a catalyst for gamete fusion in organisms ranging from protists to flowering plants and insects. Here we summarize the current state of knowledge around how mating types from these algal and ciliate systems recognize, adhere and fuse to one another, current gaps in our understanding of HAP2-mediated gamete fusion, and opportunities for applying what we know in practical terms, especially for the control of protozoan parasites.
Collapse
Affiliation(s)
- Jennifer F. Pinello
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Theodore G. Clark
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
8
|
Pinello JF, Liu Y, Snell WJ. MAR1 links membrane adhesion to membrane merger during cell-cell fusion in Chlamydomonas. Dev Cell 2021; 56:3380-3392.e9. [PMID: 34813735 DOI: 10.1016/j.devcel.2021.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 09/22/2021] [Accepted: 10/28/2021] [Indexed: 01/17/2023]
Abstract
Union of two gametes to form a zygote is a defining event in the life of sexual eukaryotes, yet the mechanisms that underlie cell-cell fusion during fertilization remain poorly characterized. Here, in studies of fertilization in the green alga, Chlamydomonas, we report identification of a membrane protein on minus gametes, Minus Adhesion Receptor 1 (MAR1), that is essential for the membrane attachment with plus gametes that immediately precedes lipid bilayer merger. We show that MAR1 forms a receptor pair with previously identified receptor FUS1 on plus gametes, whose ectodomain architecture we find is identical to a sperm adhesion protein conserved throughout plant lineages. Strikingly, before fusion, MAR1 is biochemically and functionally associated with the ancient, evolutionarily conserved eukaryotic Class II fusion protein HAP2 on minus gametes. Thus, the integral membrane protein MAR1 provides a molecular link between membrane adhesion and bilayer merger during fertilization in Chlamydomonas.
Collapse
Affiliation(s)
- Jennifer F Pinello
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Yanjie Liu
- Department of Cell Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9039, USA
| | - William J Snell
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
9
|
Distribution of adenylyl cyclase/cAMP phosphodiesterase gene, CAPE, in streptophytes reproducing via motile sperm. Sci Rep 2021; 11:10054. [PMID: 33980894 PMCID: PMC8115329 DOI: 10.1038/s41598-021-89539-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/28/2021] [Indexed: 02/03/2023] Open
Abstract
We recently isolated a novel adenylyl cyclase/cAMP phosphodiesterase gene from the liverwort, Marchantia polymorpha. The protein encoded by this gene has a class III adenylyl cyclase (AC) in the C-terminal domain and class I phosphodiesterase (PDE) in the N-terminal domain; therefore, we named it CAPE (COMBINED AC with PDE). CAPE protein is likely involved in spermatogenesis and sperm motility due to its tissue-specific expression pattern in M. polymorpha and the distribution of CAPE genes in streptophytes. However, little is known about the distribution of CAPE in gymnosperms that use motile sperm for fertilization, such as cycads and ginkgo. The present study aimed to isolate CAPE genes from the cycad, Cycas revoluta, the ginkgo, Ginkgo biloba, and the hornwort, Anthoceros agerestis. Sequences with high homology to CAPE were obtained from these species. Our analyses revealed that all plant taxonomic groups reproducing via motile sperm possessed CAPE, whereas those that do not produce motile sperm did not possess CAPE, with one exception in gymnosperm Cupressales. The phylogenic distribution of CAPE almost corresponds to the evolutionary history of motile sperm production and further suggests that CAPE may be involved in sexual reproduction process using motile sperm in streptophytes.
Collapse
|
10
|
Kopinke D, Norris AM, Mukhopadhyay S. Developmental and regenerative paradigms of cilia regulated hedgehog signaling. Semin Cell Dev Biol 2021; 110:89-103. [PMID: 32540122 PMCID: PMC7736055 DOI: 10.1016/j.semcdb.2020.05.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 01/08/2023]
Abstract
Primary cilia are immotile appendages that have evolved to receive and interpret a variety of different extracellular cues. Cilia play crucial roles in intercellular communication during development and defects in cilia affect multiple tissues accounting for a heterogeneous group of human diseases called ciliopathies. The Hedgehog (Hh) signaling pathway is one of these cues and displays a unique and symbiotic relationship with cilia. Not only does Hh signaling require cilia for its function but the majority of the Hh signaling machinery is physically located within the cilium-centrosome complex. More specifically, cilia are required for both repressing and activating Hh signaling by modifying bifunctional Gli transcription factors into repressors or activators. Defects in balancing, interpreting or establishing these repressor/activator gradients in Hh signaling either require cilia or phenocopy disruption of cilia. Here, we will summarize the current knowledge on how spatiotemporal control of the molecular machinery of the cilium allows for a tight control of basal repression and activation states of the Hh pathway. We will then discuss several paradigms on how cilia influence Hh pathway activity in tissue morphogenesis during development. Last, we will touch on how cilia and Hh signaling are being reactivated and repurposed during adult tissue regeneration. More specifically, we will focus on mesenchymal stem cells within the connective tissue and discuss the similarities and differences of how cilia and ciliary Hh signaling control the formation of fibrotic scar and adipose tissue during fatty fibrosis of several tissues.
Collapse
Affiliation(s)
- Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA.
| | - Alessandra M Norris
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
11
|
Che L, Song JY, Lou Y, Li GY. Analysis from the perspective of cilia: the protective effect of PARP inhibitors on visual function during light-induced damage. Int Ophthalmol 2019; 40:1017-1027. [PMID: 31802371 DOI: 10.1007/s10792-019-01245-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/23/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE To analyze the protective effect of PARP inhibitors on light-damaged retina and explore its possible mechanism from the perspective of ciliopathy. METHODS A systematic review of the literature was performed to investigate the protection of PARP inhibition on light-damaged cilia. PubMed database was retrieved to find the relevant studies and 119 literatures were involved in the review. RESULTS In retina, the outer segment of photoreceptor is regarded as a special type of primary cilium, so various retinal diseases actually belong to a type of ciliopathy. The retina is the only central nervous tissue exposed to light, but poly (ADP-ribose) polymerase (PARP), as a nuclear enzyme repairing DNA breaks, is overactivated during the light-induced DNA damage, and is involved in the cell death cascade. Studies show that both ATR and phosphorylated Akt colocalize with cilium and play an important role in regulating ciliary function. PARP may function at ATR or PI3K/Akt signal to exert protective effect on cilia. CONCLUSION PARP inhibitors may protect the cilia/OS of photoreceptor during light-induced damage, which the possible mechanism may be involved in the activation of ATR and PI3K/Akt signal.
Collapse
Affiliation(s)
- Lin Che
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Jing-Yao Song
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Yan Lou
- Department of Nephropathy, Second Hospital of Jilin University, Changchun, 130041, China
| | - Guang-Yu Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
12
|
Abstract
The centriole is an ancient microtubule-based organelle with a conserved nine-fold symmetry. Centrioles form the core of centrosomes, which organize the interphase microtubule cytoskeleton of most animal cells and form the poles of the mitotic spindle. Centrioles can also be modified to form basal bodies, which template the formation of cilia and play central roles in cellular signaling, fluid movement, and locomotion. In this review, we discuss developments in our understanding of the biogenesis of centrioles and cilia and the regulatory controls that govern their structure and number. We also discuss how defects in these processes contribute to a spectrum of human diseases and how new technologies have expanded our understanding of centriole and cilium biology, revealing exciting avenues for future exploration.
Collapse
Affiliation(s)
- David K Breslow
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA;
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
13
|
Roberts AJ. Emerging mechanisms of dynein transport in the cytoplasm versus the cilium. Biochem Soc Trans 2018; 46:967-982. [PMID: 30065109 PMCID: PMC6103457 DOI: 10.1042/bst20170568] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 02/08/2023]
Abstract
Two classes of dynein power long-distance cargo transport in different cellular contexts. Cytoplasmic dynein-1 is responsible for the majority of transport toward microtubule minus ends in the cell interior. Dynein-2, also known as intraflagellar transport dynein, moves cargoes along the axoneme of eukaryotic cilia and flagella. Both dyneins operate as large ATP-driven motor complexes, whose dysfunction is associated with a group of human disorders. But how similar are their mechanisms of action and regulation? To examine this question, this review focuses on recent advances in dynein-1 and -2 research, and probes to what extent the emerging principles of dynein-1 transport could apply to or differ from those of the less well-understood dynein-2 mechanoenzyme.
Collapse
Affiliation(s)
- Anthony J Roberts
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London, U.K.
| |
Collapse
|
14
|
Saternos HC, AbouAlaiwi WA. Signaling interplay between primary cilia and nitric oxide: A mini review. Nitric Oxide 2018; 80:108-112. [PMID: 30099097 DOI: 10.1016/j.niox.2018.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/01/2018] [Accepted: 08/06/2018] [Indexed: 01/12/2023]
Abstract
New discoveries into the functional role of primary cilia are on the rise. In little more than 20 years, research has shown the once vestigial organelle is a signaling powerhouse involved in a vast number of essential cellular processes. In the same decade that interest in primary cilia was burgeoning, nitric oxide won molecule of the year and a Nobel prize for its role as a near ubiquitous signaling molecule. Although primary cilia and nitric oxide are both involved in signaling, a direct relationship has not been investigated; however, after a quick review of the literature, parallels between their functions can be drawn. This review aims to suggest a possible interplay between primary cilia and nitric oxide signaling especially in the areas of vascular tissue homeostasis and cellular proliferation.
Collapse
Affiliation(s)
- Hannah C Saternos
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, USA
| | - Wissam A AbouAlaiwi
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, USA.
| |
Collapse
|
15
|
Abstract
Although tumours initiate from oncogenic changes in a cancer cell, subsequent tumour progression and therapeutic response depend on interactions between the cancer cells and the tumour microenvironment (TME). The primary monocilium, or cilium, provides a spatially localized platform for signalling by Hedgehog, Notch, WNT and some receptor tyrosine kinase pathways and mechanosensation. Changes in ciliation of cancer cells and/or cells of the TME during tumour development enforce asymmetric intercellular signalling in the TME. Growing evidence indicates that some oncogenic signalling pathways as well as some targeted anticancer therapies induce ciliation, while others repress it. The links between the genomic profile of cancer cells, drug treatment and ciliary signalling in the TME likely affect tumour growth and therapeutic response.
Collapse
Affiliation(s)
- Hanqing Liu
- School of Pharmacy, Jiangsu University, Jiangsu, China
| | - Anna A Kiseleva
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA
- Kazan Federal University, Kazan, Russia
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Sigg MA, Menchen T, Lee C, Johnson J, Jungnickel MK, Choksi SP, Garcia G, Busengdal H, Dougherty GW, Pennekamp P, Werner C, Rentzsch F, Florman HM, Krogan N, Wallingford JB, Omran H, Reiter JF. Evolutionary Proteomics Uncovers Ancient Associations of Cilia with Signaling Pathways. Dev Cell 2018; 43:744-762.e11. [PMID: 29257953 DOI: 10.1016/j.devcel.2017.11.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 09/18/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022]
Abstract
Cilia are organelles specialized for movement and signaling. To infer when during evolution signaling pathways became associated with cilia, we characterized the proteomes of cilia from sea urchins, sea anemones, and choanoflagellates. We identified 437 high-confidence ciliary candidate proteins conserved in mammals and discovered that Hedgehog and G-protein-coupled receptor pathways were linked to cilia before the origin of bilateria and transient receptor potential (TRP) channels before the origin of animals. We demonstrated that candidates not previously implicated in ciliary biology localized to cilia and further investigated ENKUR, a TRP channel-interacting protein identified in the cilia of all three organisms. ENKUR localizes to motile cilia and is required for patterning the left-right axis in vertebrates. Moreover, mutation of ENKUR causes situs inversus in humans. Thus, proteomic profiling of cilia from diverse eukaryotes defines a conserved ciliary proteome, reveals ancient connections to signaling, and uncovers a ciliary protein that underlies development and human disease.
Collapse
Affiliation(s)
- Monika Abedin Sigg
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Tabea Menchen
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Chanjae Lee
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffery Johnson
- Gladstone Institute of Cardiovascular Disease and Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA
| | - Melissa K Jungnickel
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Semil P Choksi
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Galo Garcia
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Henriette Busengdal
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen 5008, Norway
| | - Gerard W Dougherty
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Claudius Werner
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Fabian Rentzsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen 5008, Norway
| | - Harvey M Florman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Nevan Krogan
- Gladstone Institute of Cardiovascular Disease and Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - John B Wallingford
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
17
|
Abstract
Cell-cell fusion is essential for fertilization and organ development. Dedicated proteins known as fusogens are responsible for mediating membrane fusion. However, until recently, these proteins either remained unidentified or were poorly understood at the mechanistic level. Here, we review how fusogens surmount multiple energy barriers to mediate cell-cell fusion. We describe how early preparatory steps bring membranes to a distance of ∼10 nm, while fusogens act in the final approach between membranes. The mechanical force exerted by cell fusogens and the accompanying lipidic rearrangements constitute the hallmarks of cell-cell fusion. Finally, we discuss the relationship between viral and eukaryotic fusogens, highlight a classification scheme regrouping a superfamily of fusogens called Fusexins, and propose new questions and avenues of enquiry.
Collapse
Affiliation(s)
- Javier M Hernández
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, D-44227 Dortmund, Germany
| | - Benjamin Podbilewicz
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
18
|
Mukhopadhyay S, Badgandi HB, Hwang SH, Somatilaka B, Shimada IS, Pal K. Trafficking to the primary cilium membrane. Mol Biol Cell 2017; 28:233-239. [PMID: 28082521 PMCID: PMC5231892 DOI: 10.1091/mbc.e16-07-0505] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 12/13/2022] Open
Abstract
The primary cilium has been found to be associated with a number of cellular signaling pathways, such as vertebrate hedgehog signaling, and implicated in the pathogenesis of diseases affecting multiple organs, including the neural tube, kidney, and brain. The primary cilium is the site where a subset of the cell's membrane proteins is enriched. However, pathways that target and concentrate membrane proteins in cilia are not well understood. Processes determining the level of proteins in the ciliary membrane include entry into the compartment, removal, and retention by diffusion barriers such as the transition zone. Proteins that are concentrated in the ciliary membrane are also localized to other cellular sites. Thus it is critical to determine the particular role for ciliary compartmentalization in sensory reception and signaling pathways. Here we provide a brief overview of our current understanding of compartmentalization of proteins in the ciliary membrane and the dynamics of trafficking into and out of the cilium. We also discuss major unanswered questions regarding the role that defects in ciliary compartmentalization might play in disease pathogenesis. Understanding the trafficking mechanisms that underlie the role of ciliary compartmentalization in signaling might provide unique approaches for intervention in progressive ciliopathies.
Collapse
Affiliation(s)
- Saikat Mukhopadhyay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Hemant B Badgandi
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Sun-Hee Hwang
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | | | - Issei S Shimada
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Kasturi Pal
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
19
|
Hou Y, Witman GB. The N-terminus of IFT46 mediates intraflagellar transport of outer arm dynein and its cargo-adaptor ODA16. Mol Biol Cell 2017; 28:2420-2433. [PMID: 28701346 PMCID: PMC5576905 DOI: 10.1091/mbc.e17-03-0172] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/30/2017] [Accepted: 07/05/2017] [Indexed: 01/23/2023] Open
Abstract
A transposon event, resulting in partial suppression of a Chlamydomonas IFT46 null mutant, allowed the function of the N-terminus of IFT46 in flagellar assembly to be explored. The IFT46 N-terminus is not required for IFT complex assembly but is required for transport of outer arm dynein and its adaptor, ODA16, into the flagellum. Cilia are assembled via intraflagellar transport (IFT). The IFT machinery is composed of motors and multisubunit particles, termed IFT-A and IFT-B, that carry cargo into the cilium. Knowledge of how the IFT subunits interact with their cargo is of critical importance for understanding how the unique ciliary domain is established. We previously reported a Chlamydomonas mutant, ift46-1, that fails to express the IFT-B protein IFT46, has greatly reduced levels of other IFT-B proteins, and assembles only very short flagella. A spontaneous suppression of ift46-1 restored IFT-B levels and enabled growth of longer flagella, but the flagella lacked outer dynein arms. Here we show that the suppression is due to insertion of the transposon MRC1 into the ift46-1 allele, causing the expression of a fusion protein including the IFT46 C-terminal 240 amino acids. The IFT46 C-terminus can assemble into and stabilize IFT-B but does not support transport of outer arm dynein into flagella. ODA16, a cargo adaptor specific for outer arm dynein, also fails to be imported into the flagella in the absence of the IFT46 N-terminus. We conclude that the IFT46 N-terminus, ODA16, and outer arm dynein interact for IFT of the latter.
Collapse
Affiliation(s)
- Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| | - George B Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
20
|
Lechtreck KF, Van De Weghe JC, Harris JA, Liu P. Protein transport in growing and steady-state cilia. Traffic 2017; 18:277-286. [PMID: 28248449 DOI: 10.1111/tra.12474] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 12/18/2022]
Abstract
Cilia and eukaryotic flagella are threadlike cell extensions with motile and sensory functions. Their assembly requires intraflagellar transport (IFT), a bidirectional motor-driven transport of protein carriers along the axonemal microtubules. IFT moves ample amounts of structural proteins including tubulin into growing cilia likely explaining its critical role for assembly. IFT continues in non-growing cilia contributing to a variety of processes ranging from axonemal maintenance and the export of non-ciliary proteins to cell locomotion and ciliary signaling. Here, we discuss recent data on cues regulating the type, amount and timing of cargo transported by IFT. A regulation of IFT-cargo interactions is critical to establish, maintain and adjust ciliary length, protein composition and function.
Collapse
Affiliation(s)
- Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| | | | | | - Peiwei Liu
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| |
Collapse
|
21
|
Roustan V, Bakhtiari S, Roustan PJ, Weckwerth W. Quantitative in vivo phosphoproteomics reveals reversible signaling processes during nitrogen starvation and recovery in the biofuel model organism Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:280. [PMID: 29209414 PMCID: PMC5704542 DOI: 10.1186/s13068-017-0949-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/01/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND Nitrogen deprivation and replenishment induces massive changes at the physiological and molecular level in the green alga Chlamydomonas reinhardtii, including reversible starch and lipid accumulation. Stress signal perception and acclimation involves transient protein phosphorylation. This study aims to provide the first experimental phosphoprotein dataset for the adaptation of C. reinhardtii during nitrogen depletion and recovery growth phases and its impact on lipid accumulation. RESULTS To decipher the signaling pathways involved in this dynamic process, we applied a label-free in vivo shotgun phosphoproteomics analysis on nitrogen-depleted and recovered samples. 1227 phosphopeptides belonging to 732 phosphoproteins were identified and quantified. 470 phosphopeptides showed a significant change across the experimental set-up. Multivariate statistics revealed the reversible phosphorylation process and the time/condition-dependent dynamic rearrangement of the phosphoproteome. Protein-protein interaction analysis of differentially regulated phosphoproteins identified protein kinases and phosphatases, such as DYRKP and an AtGRIK1 orthologue, called CDPKK2, as central players in the coordination of translational, photosynthetic, proteomic and metabolomic activity. Phosphorylation of RPS6, ATG13, and NNK1 proteins points toward a specific regulation of the TOR pathway under nitrogen deprivation. Differential phosphorylation pattern of several eukaryotic initiation factor proteins (EIF) suggests a major control on protein translation and turnover. CONCLUSION This work provides the first phosphoproteomics dataset obtained for Chlamydomonas responses to nitrogen availability, revealing multifactorial signaling pathways and their regulatory function for biofuel production. The reproducibility of the experimental set-up allows direct comparison with proteomics and metabolomics datasets and refines therefore the current model of Chlamydomonas acclimation to various nitrogen levels. Integration of physiological, proteomics, metabolomics, and phosphoproteomics data reveals three phases of acclimation to N availability: (i) a rapid response triggering starch accumulation as well as energy metabolism while chloroplast structure is conserved followed by (ii) chloroplast degradation combined with cell autophagy and lipid accumulation and finally (iii) chloroplast regeneration and cell growth activation after nitrogen replenishment. Plastid development seems to be further interconnected with primary metabolism and energy stress signaling in order to coordinate cellular mechanism to nitrogen availability stress.
Collapse
Affiliation(s)
- Valentin Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Shiva Bakhtiari
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Pierre-Jean Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Taschner M, Lorentzen E. The Intraflagellar Transport Machinery. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a028092. [PMID: 27352625 DOI: 10.1101/cshperspect.a028092] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Eukaryotic cilia and flagella are evolutionarily conserved organelles that protrude from the cell surface. The unique location and properties of cilia allow them to function in vital processes such as motility and signaling. Ciliary assembly and maintenance rely on intraflagellar transport (IFT), the bidirectional movement of a multicomponent transport system between the ciliary base and tip. Since its initial discovery more than two decades ago, considerable effort has been invested in dissecting the molecular mechanisms of IFT in a variety of model organisms. Importantly, IFT was shown to be essential for mammalian development, and defects in this process cause a number of human pathologies known as ciliopathies. Here, we review current knowledge of IFT with a particular emphasis on the IFT machinery and specific mechanisms of ciliary cargo recognition and transport.
Collapse
Affiliation(s)
- Michael Taschner
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| |
Collapse
|
23
|
Pedersen LB, Mogensen JB, Christensen ST. Endocytic Control of Cellular Signaling at the Primary Cilium. Trends Biochem Sci 2016; 41:784-797. [DOI: 10.1016/j.tibs.2016.06.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 01/20/2023]
|
24
|
Mourão A, Christensen ST, Lorentzen E. The intraflagellar transport machinery in ciliary signaling. Curr Opin Struct Biol 2016; 41:98-108. [PMID: 27393972 DOI: 10.1016/j.sbi.2016.06.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/07/2016] [Indexed: 01/12/2023]
Abstract
Cilia and flagella on eukaryotic cells are slender microtubule-based projections surrounded by a membrane with a unique lipid and protein composition. It is now appreciated that cilia in addition to their established roles in motility also constitute hubs for cellular signaling by sensing external environmental cues necessary for organ development and maintenance of human health. Pathways reported to rely on the cilium organelle include Hedgehog, TGF-β, Wnt, PDGFRα, integrin and DNA damage repair signaling. An emerging theme in ciliary signaling is the requirement for active transport of signaling components into and out of the cilium proper. Here, we review the current state-of-the-art regarding the importance of intraflagellar transport and BBSome multi-subunit complexes in ciliary signaling.
Collapse
Affiliation(s)
- André Mourão
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Søren T Christensen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark.
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| |
Collapse
|
25
|
Endogenous B-ring oxysterols inhibit the Hedgehog component Smoothened in a manner distinct from cyclopamine or side-chain oxysterols. Proc Natl Acad Sci U S A 2016; 113:1604984113. [PMID: 27162362 DOI: 10.1073/pnas.1604984113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cellular lipids are speculated to act as key intermediates in Hedgehog signal transduction, but their precise identity and function remain enigmatic. In an effort to identify such lipids, we pursued a Hedgehog pathway inhibitory activity that is particularly abundant in flagellar lipids of Chlamydomonas reinhardtii, resulting in the purification and identification of ergosterol endoperoxide, a B-ring oxysterol. A mammalian analog of ergosterol, 7-dehydrocholesterol (7-DHC), accumulates in Smith-Lemli-Opitz syndrome, a human genetic disease that phenocopies deficient Hedgehog signaling and is caused by genetic loss of 7-DHC reductase. We found that depleting endogenous 7-DHC with methyl-β-cyclodextrin treatment enhances Hedgehog activation by a pathway agonist. Conversely, exogenous addition of 3β,5α-dihydroxycholest-7-en-6-one, a naturally occurring B-ring oxysterol derived from 7-DHC that also accumulates in Smith-Lemli-Opitz syndrome, blocked Hedgehog signaling by inhibiting activation of the essential transduction component Smoothened, through a mechanism distinct from Smoothened modulation by other lipids.
Collapse
|
26
|
Kubo T, Brown JM, Bellve K, Craige B, Craft JM, Fogarty K, Lechtreck KF, Witman GB. Together, the IFT81 and IFT74 N-termini form the main module for intraflagellar transport of tubulin. J Cell Sci 2016; 129:2106-19. [PMID: 27068536 DOI: 10.1242/jcs.187120] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/03/2016] [Indexed: 11/20/2022] Open
Abstract
The assembly and maintenance of most cilia and flagella rely on intraflagellar transport (IFT). Recent in vitro studies have suggested that, together, the calponin-homology domain within the IFT81 N-terminus and the highly basic N-terminus of IFT74 form a module for IFT of tubulin. By using Chlamydomonas mutants for IFT81 and IFT74, we tested this hypothesis in vivo. Modification of the predicted tubulin-binding residues in IFT81 did not significantly affect basic anterograde IFT and length of steady-state flagella but slowed down flagellar regeneration, a phenotype similar to that seen in a strain that lacks the IFT74 N-terminus. In both mutants, the frequency of tubulin transport by IFT was greatly reduced. A double mutant that combined the modifications to IFT81 and IFT74 was able to form only very short flagella. These results indicate that, together, the IFT81 and IFT74 N-termini are crucial for flagellar assembly, and are likely to function as the main module for IFT of tubulin.
Collapse
Affiliation(s)
- Tomohiro Kubo
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jason M Brown
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA Biology Department, Salem State University, Salem, MA 01970, USA
| | - Karl Bellve
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Branch Craige
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Julie M Craft
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Kevin Fogarty
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - George B Witman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
27
|
Antimicrobial cocktails to control bacterial and fungal contamination in Chlamydomonas reinhardtii cultures. Biotechniques 2016; 60:145-9. [DOI: 10.2144/000114392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/03/2015] [Indexed: 11/23/2022] Open
Abstract
Chlamydomonas reinhardtii is a unicellular green alga widely used for research in photosynthesis, cell cycle regulation, ciliary biogenesis, and other physiological processes. Sterile cultures are needed for these studies, but contamination from bacteria and fungi occurs frequently. Although the One-shot Solution cocktail consisting of carbendazim, ampicillin, and cefotaxime has been developed for removing these contaminants from algal cultures, it is not always effective. Here we report two new antimicrobial cocktails for treating mixed bacterial and fungal contamination of Chlamydomonas cultures. A combination of the bactericide nalidixic acid with one of two fungicides, azoxystrobin or tebuconazole, was more effective than the One-shot Solution cocktail. In some of our tests, we find that alternating use of our new cocktails with One-shot Solution is needed to remove obstinate contaminants.
Collapse
|
28
|
Lechtreck KF. IFT-Cargo Interactions and Protein Transport in Cilia. Trends Biochem Sci 2015; 40:765-778. [PMID: 26498262 PMCID: PMC4661101 DOI: 10.1016/j.tibs.2015.09.003] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/07/2015] [Accepted: 09/11/2015] [Indexed: 12/30/2022]
Abstract
The motile and sensory functions of cilia and flagella are indispensable for human health. Cilia assembly requires a dedicated protein shuttle, intraflagellar transport (IFT), a bidirectional motility of multi-megadalton protein arrays along ciliary microtubules. IFT functions as a protein carrier delivering hundreds of distinct proteins into growing cilia. IFT-based protein import and export continue in fully grown cilia and are required for ciliary maintenance and sensing. Large ciliary building blocks might depend on IFT to move through the transition zone, which functions as a ciliary gate. Smaller, freely diffusing proteins, such as tubulin, depend on IFT to be concentrated or removed from cilia. As I discuss here, recent work provides insights into how IFT interacts with its cargoes and how the transport is regulated.
Collapse
Affiliation(s)
- Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, 635C Biological Science Building, 1000 Cedar Street, Athens, GA 30602, USA.
| |
Collapse
|
29
|
Ooi CP, Rotureau B, Gribaldo S, Georgikou C, Julkowska D, Blisnick T, Perrot S, Subota I, Bastin P. The Flagellar Arginine Kinase in Trypanosoma brucei Is Important for Infection in Tsetse Flies. PLoS One 2015. [PMID: 26218532 PMCID: PMC4517888 DOI: 10.1371/journal.pone.0133676] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
African trypanosomes are flagellated parasites that cause sleeping sickness. Parasites are transmitted from one mammalian host to another by the bite of a tsetse fly. Trypanosoma brucei possesses three different genes for arginine kinase (AK) including one (AK3) that encodes a protein localised to the flagellum. AK3 is characterised by the presence of a unique amino-terminal insertion that specifies flagellar targeting. We show here a phylogenetic analysis revealing that flagellar AK arose in two independent duplication events in T. brucei and T. congolense, the two species of African trypanosomes that infect the tsetse midgut. In T. brucei, AK3 is detected in all stages of parasite development in the fly (in the midgut and in the salivary glands) as well as in bloodstream cells, but with predominance at insect stages. Genetic knockout leads to a slight reduction in motility and impairs parasite infectivity towards tsetse flies in single and competition experiments, both phenotypes being reverted upon expression of an epitope-tagged version of AK3. We speculate that this flagellar arginine kinase is important for T. brucei infection of tsetse, especially in the context of mixed infections and that its flagellar targeting relies on a system equivalent to that discovered for calflagins, a family of trypanosome flagellum calcium binding proteins.
Collapse
Affiliation(s)
- Cher-Pheng Ooi
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015, Paris, France
| | - Brice Rotureau
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015, Paris, France
| | - Simonetta Gribaldo
- Molecular Biology of Gene in Extremophiles Unit, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, 75015, Paris, France
| | - Christina Georgikou
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015, Paris, France
| | - Daria Julkowska
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015, Paris, France
| | - Thierry Blisnick
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015, Paris, France
| | - Sylvie Perrot
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015, Paris, France
| | - Ines Subota
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015, Paris, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015, Paris, France
- * E-mail:
| |
Collapse
|
30
|
Elgeti J, Winkler RG, Gompper G. Physics of microswimmers--single particle motion and collective behavior: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:056601. [PMID: 25919479 DOI: 10.1088/0034-4885/78/5/056601] [Citation(s) in RCA: 701] [Impact Index Per Article: 70.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Locomotion and transport of microorganisms in fluids is an essential aspect of life. Search for food, orientation toward light, spreading of off-spring, and the formation of colonies are only possible due to locomotion. Swimming at the microscale occurs at low Reynolds numbers, where fluid friction and viscosity dominates over inertia. Here, evolution achieved propulsion mechanisms, which overcome and even exploit drag. Prominent propulsion mechanisms are rotating helical flagella, exploited by many bacteria, and snake-like or whip-like motion of eukaryotic flagella, utilized by sperm and algae. For artificial microswimmers, alternative concepts to convert chemical energy or heat into directed motion can be employed, which are potentially more efficient. The dynamics of microswimmers comprises many facets, which are all required to achieve locomotion. In this article, we review the physics of locomotion of biological and synthetic microswimmers, and the collective behavior of their assemblies. Starting from individual microswimmers, we describe the various propulsion mechanism of biological and synthetic systems and address the hydrodynamic aspects of swimming. This comprises synchronization and the concerted beating of flagella and cilia. In addition, the swimming behavior next to surfaces is examined. Finally, collective and cooperate phenomena of various types of isotropic and anisotropic swimmers with and without hydrodynamic interactions are discussed.
Collapse
Affiliation(s)
- J Elgeti
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | | | | |
Collapse
|
31
|
Abstract
Cilia and flagella are closely related centriole-nucleated protrusions of the cell with roles in motility and signal transduction. Two of the best-studied signalling pathways organized by cilia are the transduction cascade for the morphogen Hedgehog in vertebrates and the mating pathway that initiates gamete fusion in the unicellular green alga Chlamydomonas reinhardtii. What is the role of cilia in these signalling transduction cascades? In both Hedgehog and mating pathways, all signalling intermediates have been found to localize to cilia, and, for some signalling factors, ciliary localization is regulated by pathway activation. Given a concentration factor of three orders of magnitude provided by translocating a protein into the cilium, the compartment model proposes that cilia act as miniaturized reaction tubes bringing signalling factors and processing enzymes in close proximity. On the other hand, the scaffolding model views the intraflagellar transport machinery, whose primary function is to build cilia and flagella, as a molecular scaffold for the mating transduction cascade at the flagellar membrane. While these models may coexist, it is hoped that a precise understanding of the mechanisms that govern signalling inside cilia will provide a satisfying answer to the question 'how do cilia organize signalling?'. This review covers the evidence supporting each model of signalling and outlines future directions that may address which model applies in given biological settings.
Collapse
Affiliation(s)
- Maxence V Nachury
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, CA 94305, USA
| |
Collapse
|
32
|
Cao M, Ning J, Hernandez-Lara CI, Belzile O, Wang Q, Dutcher SK, Liu Y, Snell WJ. Uni-directional ciliary membrane protein trafficking by a cytoplasmic retrograde IFT motor and ciliary ectosome shedding. eLife 2015; 4. [PMID: 25688564 PMCID: PMC4362204 DOI: 10.7554/elife.05242] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 02/14/2015] [Indexed: 12/22/2022] Open
Abstract
The role of the primary cilium in key signaling pathways depends on dynamic regulation of ciliary membrane protein composition, yet we know little about the motors or membrane events that regulate ciliary membrane protein trafficking in existing organelles. Recently, we showed that cilium-generated signaling in Chlamydomonas induced rapid, anterograde IFT-independent, cytoplasmic microtubule-dependent redistribution of the membrane polypeptide, SAG1-C65, from the plasma membrane to the periciliary region and the ciliary membrane. Here, we report that the retrograde IFT motor, cytoplasmic dynein 1b, is required in the cytoplasm for this rapid redistribution. Furthermore, signaling-induced trafficking of SAG1-C65 into cilia is unidirectional and the entire complement of cellular SAG1-C65 is shed during signaling and can be recovered in the form of ciliary ectosomes that retain signal-inducing activity. Thus, during signaling, cells regulate ciliary membrane protein composition through cytoplasmic action of the retrograde IFT motor and shedding of ciliary ectosomes. DOI:http://dx.doi.org/10.7554/eLife.05242.001 Nearly every cell in the human body has slender, hair-like structures known as cilia that project outwards from its surface. These structures can sense and respond to light, chemicals and touch, and they are required for normal development. Failure of cilia to form or function in the correct manner can lead to severe diseases—such as kidney disorders, deafness and loss of vision. A major puzzle for researchers who study cilia has been to understand how cells change the composition of these structures as part of their response to a sensory input. Cilia are ancient structures that were present in early single-celled organisms and researchers interested in cilia have often used a single-celled green alga called Chlamydomonas reinhardtii as a model system for their studies. When these algae reproduce sexually, the two types of sex cells sense the presence of each other when their cilia touch and then stick together. This ciliary touching activates signals that are sent into the cells to get them ready to fuse together, much like sperm and egg cells do in animals. Both ciliary touching and signaling depend on a protein called SAG1, a part of which (known as SAG1-C65) is normally found mostly over the surface membrane of C. reinhardtii. Only very small amounts of SAG1-C65 are normally found on cilia; but, when the sex cells' cilia touch, this protein rapidly moves to the end of the cell nearest the cilia via a previously unknown mechanism. SAG1-C65 then becomes much more enriched in the cilia. Cao, Ning, Hernandez-Lara et al. investigated this process and found that SAG1-C65 movement requires a molecular motor called ‘cytoplasmic dynein’. This motor protein typically walks along the inside of cilia to transport other molecules away from the tip and towards the cell membrane. However, Cao, Ning, Hernandez-Lara et al. found that this dynein also carries SAG1-C65 from the membrane of the cells towards the base of the cilia in preparation for it to enter into these structures. As part of an effort to understand the fate of the protein after it entered cilia, Cao, Ning, Hernandez-Lara et al. discovered that the SAG1-C65 disappeared from the structures without returning to the cell membrane. Instead, SAG1-C65 was packaged within tiny bubble-like structures near the tips of cilia and these packages were then shed from cilia into the external environment. This discovery challenges a widely held view that proteins are only removed from cilia by returning to the cell. Future work will be required to understand more of the molecular details of these processes, which are likely to be present in most cells with cilia. DOI:http://dx.doi.org/10.7554/eLife.05242.002
Collapse
Affiliation(s)
- Muqing Cao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jue Ning
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Carmen I Hernandez-Lara
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Olivier Belzile
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Qian Wang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Susan K Dutcher
- Department of Genetics, Washington University, St. Louis, United States
| | - Yanjie Liu
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - William J Snell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
33
|
Theers M, Winkler RG. Effects of thermal fluctuations and fluid compressibility on hydrodynamic synchronization of microrotors at finite oscillatory Reynolds number: a multiparticle collision dynamics simulation study. SOFT MATTER 2014; 10:5894-5904. [PMID: 25011003 DOI: 10.1039/c4sm00770k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We investigate the emergent dynamical behavior of hydrodynamically coupled microrotors by means of multiparticle collision dynamics (MPC) simulations. The two rotors are confined in a plane and move along circles driven by active forces. Comparing simulations to theoretical results based on linearized hydrodynamics, we demonstrate that time-dependent hydrodynamic interactions lead to synchronization of the rotational motion. Thermal noise implies large fluctuations of the phase-angle difference between the rotors, but synchronization prevails and the ensemble-averaged time dependence of the phase-angle difference agrees well with analytical predictions. Moreover, we demonstrate that compressibility effects lead to longer synchronization times. In addition, the relevance of the inertia terms of the Navier-Stokes equation are discussed, specifically the linear unsteady acceleration term characterized by the oscillatory Reynolds number ReT. We illustrate the continuous breakdown of synchronization with the Reynolds number ReT, in analogy to the continuous breakdown of the scallop theorem with decreasing Reynolds number.
Collapse
Affiliation(s)
- Mario Theers
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | | |
Collapse
|
34
|
Abstract
Trypanosoma brucei is a pathogenic unicellular eukaryote that infects humans and other mammals in sub-Saharan Africa. A central feature of trypanosome biology is the single flagellum of the parasite, which is an essential and multifunctional organelle that facilitates cell propulsion, controls cell morphogenesis and directs cytokinesis. Moreover, the flagellar membrane is a specialized subdomain of the cell surface that mediates attachment to host tissues and harbours multiple virulence factors. In this Review, we discuss the structure, assembly and function of the trypanosome flagellum, including canonical roles in cell motility as well as novel and emerging roles in cell morphogenesis and host-parasite interactions.
Collapse
Affiliation(s)
- Gerasimos Langousis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| |
Collapse
|
35
|
Tran PV, Talbott GC, Turbe-Doan A, Jacobs DT, Schonfeld MP, Silva LM, Chatterjee A, Prysak M, Allard BA, Beier DR. Downregulating hedgehog signaling reduces renal cystogenic potential of mouse models. J Am Soc Nephrol 2014; 25:2201-12. [PMID: 24700869 DOI: 10.1681/asn.2013070735] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Renal cystic diseases are a leading cause of renal failure. Mutations associated with renal cystic diseases reside in genes encoding proteins that localize to primary cilia. These cystoproteins can disrupt ciliary structure or cilia-mediated signaling, although molecular mechanisms connecting cilia function to renal cystogenesis remain unclear. The ciliary gene, Thm1(Ttc21b), negatively regulates Hedgehog signaling and is most commonly mutated in ciliopathies. We report that loss of murine Thm1 causes cystic kidney disease, with persistent proliferation of renal cells, elevated cAMP levels, and enhanced expression of Hedgehog signaling genes. Notably, the cAMP-mediated cystogenic potential of Thm1-null kidney explants was reduced by genetically deleting Gli2, a major transcriptional activator of the Hedgehog pathway, or by culturing with small molecule Hedgehog inhibitors. These Hedgehog inhibitors acted independently of protein kinase A and Wnt inhibitors. Furthermore, simultaneous deletion of Gli2 attenuated the renal cystic disease associated with deletion of Thm1. Finally, transcripts of Hedgehog target genes increased in cystic kidneys of two other orthologous mouse mutants, jck and Pkd1, and Hedgehog inhibitors reduced cystogenesis in jck and Pkd1 cultured kidneys. Thus, enhanced Hedgehog activity may have a general role in renal cystogenesis and thereby present a novel therapeutic target.
Collapse
Affiliation(s)
- Pamela V Tran
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Anatomy and Cell Biology and the Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas; and
| | - George C Talbott
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Annick Turbe-Doan
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Damon T Jacobs
- Department of Anatomy and Cell Biology and the Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas; and
| | - Michael P Schonfeld
- Department of Anatomy and Cell Biology and the Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas; and
| | - Luciane M Silva
- Department of Anatomy and Cell Biology and the Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas; and
| | - Anindita Chatterjee
- Department of Anatomy and Cell Biology and the Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas; and
| | - Mary Prysak
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bailey A Allard
- Department of Anatomy and Cell Biology and the Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas; and
| | - David R Beier
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington
| |
Collapse
|
36
|
Sung CH, Leroux MR. The roles of evolutionarily conserved functional modules in cilia-related trafficking. Nat Cell Biol 2014; 15:1387-97. [PMID: 24296415 DOI: 10.1038/ncb2888] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cilia are present across most eukaryotic phyla and have diverse sensory and motility roles in animal physiology, cell signalling and development. Their biogenesis and maintenance depend on vesicular and intraciliary (intraflagellar) trafficking pathways that share conserved structural and functional modules. The functional units of the interconnected pathways, which include proteins involved in membrane coating as well as small GTPases and their accessory factors, were first experimentally associated with canonical vesicular trafficking. These components are, however, ancient, having been co-opted by the ancestral eukaryote to establish the ciliary organelle, and their study can inform us about ciliary biology in higher organisms.
Collapse
Affiliation(s)
- Ching-Hwa Sung
- Margaret M. Dyson Vision Research Institute, Department of Ophthalmology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA
| | | |
Collapse
|
37
|
Lipinska AP, D’hondt S, Van Damme EJM, De Clerck O. Uncovering the genetic basis for early isogamete differentiation: a case study of Ectocarpus siliculosus. BMC Genomics 2013; 14:909. [PMID: 24359479 PMCID: PMC3879662 DOI: 10.1186/1471-2164-14-909] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 12/17/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The phenomenon of sexual reproduction characterizes nearly all eukaryotes, with anisogamy being the most prevalent form of gamete discrimination. Since dimorphic gametes most likely descend from equal-sized specialized germ cells, identifying the genetic bases of the early functional diversification in isogametes can provide better understanding of the evolution of sexual dimorphism. However, despite the potential importance to the evolutionary biology field, no comprehensive survey of the transcriptome profiling in isomorphic gametes has been reported hitherto. RESULTS Gamete differentiation on the genomic level was investigated using Ectocarpus siliculosus, a model organism for brown algal lineage which displays an isogamous sexual reproduction cycle. Transcriptome libraries of male and female gametes were generated using Next Generation Sequencing technology (SOLiD) and analyzed to identify differentially regulated genes and pathways with potential roles in fertilization and gamete specialization. Gamete transcriptomes showed a high level of complexity with a large portion of gender specific gene expression. Our results indicate that over 4,000 of expressed genes are differentially regulated between male and female, including sequences related to cell movement, carbohydrate and lipid metabolism, signaling, transport and RNA processing. CONCLUSIONS This first comprehensive transcriptomic study of protist isogametes describes considerable adaptation to distinct sexual roles, suggesting that functional anisogamy precedes morphological differentiation. Several sex-biased genes and pathways with a putative role in reproduction were identified, providing the basis for more detailed investigations of the mechanisms underlying evolution of mating types and sexual dimorphism.
Collapse
Affiliation(s)
- Agnieszka P Lipinska
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium
| | - Sofie D’hondt
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium
| | - Els JM Van Damme
- Department of Molecular Biotechnology, Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Olivier De Clerck
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium
| |
Collapse
|
38
|
Collingridge P, Brownlee C, Wheeler GL. Compartmentalized calcium signaling in cilia regulates intraflagellar transport. Curr Biol 2013; 23:2311-2318. [PMID: 24210618 DOI: 10.1016/j.cub.2013.09.059] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/19/2013] [Accepted: 09/30/2013] [Indexed: 01/28/2023]
Abstract
Intraflagellar transport (IFT) underpins many of the important cellular roles of cilia and flagella in signaling and motility. The microtubule motors kinesin-2 and cytoplasmic dynein 1b drive IFT particles (protein complexes carrying ciliary component proteins) along the axoneme to facilitate the assembly and maintenance of cilia. IFT is regulated primarily by cargo loading onto the IFT particles, although evidence suggests that IFT particles also exhibit differential rates of movement. Here we demonstrate that intraflagellar Ca(2+) elevations act to directly regulate the movement of IFT particles. IFT-driven movement of adherent flagella membrane glycoproteins in the model alga Chlamydomonas enables flagella-mediated gliding motility. We find that surface contact promotes the localized accumulation of IFT particles in Chlamydomonas flagella. Highly compartmentalized intraflagellar Ca(2+) elevations initiate retrograde transport of paused IFT particles to modulate their accumulation. Gliding motility induces mechanosensitive intraflagellar Ca(2+) elevations in trailing (dragging) flagella only, acting to specifically clear the accumulated microtubule motors from individual flagella and prevent a futile tug-of-war. Our results demonstrate that compartmentalized intraciliary Ca(2+) signaling can regulate the movement of IFT particles and is therefore likely to play a central role in directing the movement and distribution of many ciliary proteins.
Collapse
Affiliation(s)
| | - Colin Brownlee
- Marine Biological Association, Citadel Hill, Plymouth PL1 2PB, UK; Ocean and Earth Sciences, University of Southampton, Southampton SO14 3ZH, UK.
| | - Glen L Wheeler
- Marine Biological Association, Citadel Hill, Plymouth PL1 2PB, UK; Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK.
| |
Collapse
|
39
|
Abstract
Cilia and flagella are surface-exposed, finger-like organelles whose core consists of a microtubule (MT)-based axoneme that grows from a modified centriole, the basal body. Cilia are found on the surface of many eukaryotic cells and play important roles in cell motility and in coordinating a variety of signaling pathways during growth, development, and tissue homeostasis. Defective cilia have been linked to a number of developmental disorders and diseases, collectively called ciliopathies. Cilia are dynamic organelles that assemble and disassemble in tight coordination with the cell cycle. In most cells, cilia are assembled during growth arrest in a multistep process involving interaction of vesicles with appendages present on the distal end of mature centrioles, and addition of tubulin and other building blocks to the distal tip of the basal body and growing axoneme; these building blocks are sorted through a region at the cilium base known as the ciliary necklace, and then transported via intraflagellar transport (IFT) along the axoneme toward the tip for assembly. After assembly, the cilium frequently continues to turn over and incorporate tubulin at its distal end in an IFT-dependent manner. Prior to cell division, the cilia are usually resorbed to liberate centrosomes for mitotic spindle pole formation. Here, we present an overview of the main cytoskeletal structures associated with cilia and centrioles with emphasis on the MT-associated appendages, fibers, and filaments at the cilium base and tip. The composition and possible functions of these structures are discussed in relation to cilia assembly, disassembly, and length regulation.
Collapse
Affiliation(s)
- Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
40
|
Breslow DK, Koslover EF, Seydel F, Spakowitz AJ, Nachury MV. An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier. ACTA ACUST UNITED AC 2013; 203:129-47. [PMID: 24100294 PMCID: PMC3798247 DOI: 10.1083/jcb.201212024] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ciliary permeability barrier is mechanistically distinct from other cellular diffusion barriers and allows soluble proteins under ∼100 kD in size to enter cilia in the absence of active transport. Specific proteins are concentrated within primary cilia, whereas others remain excluded. To understand the mechanistic basis of entry into cilia, we developed an in vitro assay using cells in which the plasma membrane was permeabilized, but the ciliary membrane was left intact. Using a diffusion-to-capture system and quantitative analysis, we find that proteins >9 nm in diameter (∼100 kD) are restricted from entering cilia, and we confirm these findings in vivo. Interference with the nuclear pore complex (NPC) or the actin cytoskeleton in permeabilized cells demonstrated that the ciliary diffusion barrier is mechanistically distinct from those of the NPC or the axon initial segment. Moreover, applying a mass transport model to this system revealed diffusion coefficients for soluble and membrane proteins within cilia that are compatible with rapid exploration of the ciliary space in the absence of active transport. Our results indicate that large proteins require active transport for entry into cilia but not necessarily for movement inside cilia.
Collapse
Affiliation(s)
- David K Breslow
- Department of Molecular and Cellular Physiology and 2 Department of Chemical Engineering, Stanford University School of Medicine, Stanford, CA 94305
| | | | | | | | | |
Collapse
|
41
|
Diniz MC, Pacheco ACL, Farias KM, de Oliveira DM. The eukaryotic flagellum makes the day: novel and unforeseen roles uncovered after post-genomics and proteomics data. Curr Protein Pept Sci 2013; 13:524-46. [PMID: 22708495 PMCID: PMC3499766 DOI: 10.2174/138920312803582951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/21/2022]
Abstract
This review will summarize and discuss the current biological understanding of the motile eukaryotic flagellum,
as posed out by recent advances enabled by post-genomics and proteomics approaches. The organelle, which is crucial
for motility, survival, differentiation, reproduction, division and feeding, among other activities, of many eukaryotes,
is a great example of a natural nanomachine assembled mostly by proteins (around 350-650 of them) that have been conserved
throughout eukaryotic evolution. Flagellar proteins are discussed in terms of their arrangement on to the axoneme,
the canonical “9+2” microtubule pattern, and also motor and sensorial elements that have been detected by recent proteomic
analyses in organisms such as Chlamydomonas reinhardtii, sea urchin, and trypanosomatids. Such findings can be
remarkably matched up to important discoveries in vertebrate and mammalian types as diverse as sperm cells, ciliated
kidney epithelia, respiratory and oviductal cilia, and neuro-epithelia, among others. Here we will focus on some exciting
work regarding eukaryotic flagellar proteins, particularly using the flagellar proteome of C. reinhardtii as a reference map
for exploring motility in function, dysfunction and pathogenic flagellates. The reference map for the eukaryotic flagellar
proteome consists of 652 proteins that include known structural and intraflagellar transport (IFT) proteins, less well-characterized
signal transduction proteins and flagellar associated proteins (FAPs), besides almost two hundred unannotated
conserved proteins, which lately have been the subject of intense investigation and of our present examination.
Collapse
Affiliation(s)
- Michely C Diniz
- Programa de Pós-Graduação em Biotecnologia-RENORBIO-Rede Nordeste de Biotecnologia, Universidade Estadual do Ceará-UECE, Av. Paranjana, 1700, Campus do Itaperi, Fortaleza, CE 60740-000 Brasil
| | | | | | | |
Collapse
|
42
|
Lin H, Miller ML, Granas DM, Dutcher SK. Whole genome sequencing identifies a deletion in protein phosphatase 2A that affects its stability and localization in Chlamydomonas reinhardtii. PLoS Genet 2013; 9:e1003841. [PMID: 24086163 PMCID: PMC3784568 DOI: 10.1371/journal.pgen.1003841] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/13/2013] [Indexed: 11/19/2022] Open
Abstract
Whole genome sequencing is a powerful tool in the discovery of single nucleotide polymorphisms (SNPs) and small insertions/deletions (indels) among mutant strains, which simplifies forward genetics approaches. However, identification of the causative mutation among a large number of non-causative SNPs in a mutant strain remains a big challenge. In the unicellular biflagellate green alga Chlamydomonas reinhardtii, we generated a SNP/indel library that contains over 2 million polymorphisms from four wild-type strains, one highly polymorphic strain that is frequently used in meiotic mapping, ten mutant strains that have flagellar assembly or motility defects, and one mutant strain, imp3, which has a mating defect. A comparison of polymorphisms in the imp3 strain and the other 15 strains allowed us to identify a deletion of the last three amino acids, Y313F314L315, in a protein phosphatase 2A catalytic subunit (PP2A3) in the imp3 strain. Introduction of a wild-type HA-tagged PP2A3 rescues the mutant phenotype, but mutant HA-PP2A3 at Y313 or L315 fail to rescue. Our immunoprecipitation results indicate that the Y313, L315, or YFLΔ mutations do not affect the binding of PP2A3 to the scaffold subunit, PP2A-2r. In contrast, the Y313, L315, or YFLΔ mutations affect both the stability and the localization of PP2A3. The PP2A3 protein is less abundant in these mutants and fails to accumulate in the basal body area as observed in transformants with either wild-type HA-PP2A3 or a HA-PP2A3 with a V310T change. The accumulation of HA-PP2A3 in the basal body region disappears in mated dikaryons, which suggests that the localization of PP2A3 may be essential to the mating process. Overall, our results demonstrate that the terminal YFL tail of PP2A3 is important in the regulation on Chlamydomonas mating.
Collapse
Affiliation(s)
- Huawen Lin
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michelle L. Miller
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David M. Granas
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Genomic Sciences and System Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Susan K. Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
43
|
Reigh SY, Winkler RG, Gompper G. Synchronization, slippage, and unbundling of driven helical flagella. PLoS One 2013; 8:e70868. [PMID: 23976961 PMCID: PMC3747275 DOI: 10.1371/journal.pone.0070868] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/23/2013] [Indexed: 11/20/2022] Open
Abstract
Peritrichous bacteria exploit bundles of helical flagella for propulsion and chemotaxis. Here, changes in the swimming direction (tumbling) are induced by a change of the rotational frequency of some flagella. Employing coarse-grained modeling and simulations, we investigate the dynamical properties of helical flagella bundles driven by mismatched motor torques. Over a broad range of distances between the flagella anchors and applied torque differences, we find a stable bundled state, which is important for a robust directional motion of a bacterium. With increasing torque difference, a phase lag in the flagellar rotations develops, followed by slippage and ultimately unbundling, which sensitively depends on the anchoring distance of neighboring flagella. In the slippage and drift states, the different rotation frequencies of the flagella generate a tilting torque on the bacterial body, which implies a change of the swimming direction as observed experimentally.
Collapse
Affiliation(s)
- Shang Yik Reigh
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | | | | |
Collapse
|
44
|
Ye F, Breslow DK, Koslover EF, Spakowitz AJ, Nelson WJ, Nachury MV. Single molecule imaging reveals a major role for diffusion in the exploration of ciliary space by signaling receptors. eLife 2013; 2:e00654. [PMID: 23930224 PMCID: PMC3736543 DOI: 10.7554/elife.00654] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/28/2013] [Indexed: 01/25/2023] Open
Abstract
The dynamic organization of signaling cascades inside primary cilia is key to signal propagation. Yet little is known about the dynamics of ciliary membrane proteins besides a possible role for motor-driven Intraflagellar Transport (IFT). To characterize these dynamics, we imaged single molecules of Somatostatin Receptor 3 (SSTR3, a GPCR) and Smoothened (Smo, a Hedgehog signal transducer) in the ciliary membrane. While IFT trains moved processively from one end of the cilium to the other, single SSTR3 and Smo underwent mostly diffusive behavior interspersed with short periods of directional movements. Statistical subtraction of instant velocities revealed that SSTR3 and Smo spent less than a third of their time undergoing active transport. Finally, SSTR3 and IFT movements could be uncoupled by perturbing either membrane protein diffusion or active transport. Thus ciliary membrane proteins move predominantly by diffusion, and attachment to IFT trains is transient and stochastic rather than processive or spatially determined. DOI:http://dx.doi.org/10.7554/eLife.00654.001 Primary cilia are tiny protrusions from the cell surface, which have a central role in processing sensory stimuli, such as light or odorants. Cilia are also involved in mediating the response to developmental signaling molecules, including Sonic Hedgehog, and may help to convert mechanical signals into electrical or chemical ones. Primary cilia are made up of an axoneme—a core structure that consists of microtubules extending along the length of the cilium—ensheathed by a membrane that contains a number of receptor proteins. These receptor proteins travel up and down the cilium, and it is generally assumed that an active process known as intraflagellar transport is responsible for their movement. This process is mediated by motor proteins called kinesins and dyneins, which carry cargo proteins along axonemal microtubules. However, it has been difficult to study the transport of individual receptor proteins directly because they are uniformly distributed over the membranes of the cilia. Now, Ye et al. have shown that intraflagellar transport is not the most important mode of transport for membrane proteins within primary cilia. By labelling individual receptors with a fluorescent dye and then filming their movements under a microscope, Ye et al. found that the receptors generally did not show the directed, linear motion that would be expected from intraflagellar transport. Instead, much of their movement occurred through passive diffusion, with occasional short bursts of directed motion. To investigate how rapidly receptor molecules could move through the cilium in this way, Ye et al. used a technique called fluorescence recovery after photobleaching (FRAP). This involves using light to bleach the fluorescent dye attached to receptor molecules in part of the cilium, and then measuring how long it takes for the fluorescence to return as a result of other labelled molecules moving into the bleached area: the shorter this time, the faster the movement of the molecules. It took less than a minute for fluorescence to be restored within a primary cilium, indicating that passive diffusion with occasional active transport can move proteins rapidly through the structure. By using drugs to inhibit intraflagellar transport, Ye et al. confirmed that the majority of membrane protein transport within primary cilia occurs via diffusion. Further studies are now required to determine whether this is also the case for other molecules that travel along cilia, and whether intraflagellar transport may have a more important role in the assembly of these structures. DOI:http://dx.doi.org/10.7554/eLife.00654.002
Collapse
Affiliation(s)
- Fan Ye
- Department of Molecular and Cellular Physiology , Stanford University School of Medicine , Stanford , United States ; Department of Biology , Stanford University , Stanford , United States
| | | | | | | | | | | |
Collapse
|
45
|
Liang Y, Pan J. Regulation of flagellar biogenesis by a calcium dependent protein kinase in Chlamydomonas reinhardtii. PLoS One 2013; 8:e69902. [PMID: 23936117 PMCID: PMC3723818 DOI: 10.1371/journal.pone.0069902] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/17/2013] [Indexed: 11/23/2022] Open
Abstract
Chlamydomonas reinhardtii, a bi-flagellated green alga, is a model organism for studies of flagella or cilia related activities including cilia-based signaling, flagellar motility and flagellar biogenesis. Calcium has been shown to be a key regulator of these cellular processes whereas the signaling pathways linking calcium to these cellular functions are less understood. Calcium-dependent protein kinases (CDPKs), which are present in plants but not in animals, are also present in ciliated microorganisms which led us to examine their possible functions and mechanisms in flagellar related activities. By in silico analysis of Chlamydomonas genome we have identified 14 CDPKs and studied one of the flagellar localized CDPKs – CrCDPK3. CrCDPK3 was a protein of 485 amino acids and predicted to have a protein kinase domain at the N-terminus and four EF-hand motifs at the C-terminus. In flagella, CrCDPK3 was exclusively localized in the membrane matrix fraction and formed an unknown 20 S protein complex. Knockdown of CrCDPK3 expression by using artificial microRNA did not affect flagellar motility as well as flagellar adhesion and mating. Though flagellar shortening induced by treatment with sucrose or sodium pyrophosphate was not affected in RNAi strains, CrCDPK3 increased in the flagella, and pre-formed protein complex was disrupted. During flagellar regeneration, CrCDPK3 also increased in the flagella. When extracellular calcium was lowered to certain range by the addition of EGTA after deflagellation, flagellar regeneration was severely affected in RNAi cells compared with wild type cells. In addition, during flagellar elongation induced by LiCl, RNAi cells exhibited early onset of bulbed flagella. This work expands new functions of CDPKs in flagellar activities by showing involvement of CrCDPK3 in flagellar biogenesis in Chlamydomonas.
Collapse
Affiliation(s)
- Yinwen Liang
- Ministry of Environment Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Junmin Pan
- Ministry of Environment Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail: (JP)
| |
Collapse
|
46
|
Belzile O, Hernandez-Lara CI, Wang Q, Snell WJ. Regulated membrane protein entry into flagella is facilitated by cytoplasmic microtubules and does not require IFT. Curr Biol 2013; 23:1460-5. [PMID: 23891117 DOI: 10.1016/j.cub.2013.06.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/09/2013] [Accepted: 06/11/2013] [Indexed: 01/24/2023]
Abstract
The membrane protein composition of the primary cilium, a key sensory organelle, is dynamically regulated during cilium-generated signaling [1, 2]. During ciliogenesis, ciliary membrane proteins, along with structural and signaling proteins, are carried through the multicomponent, intensely studied ciliary diffusion barrier at the base of the organelle [3-8] by intraflagellar transport (IFT) [9-18]. A favored model is that signaling-triggered accumulation of previously excluded membrane proteins in fully formed cilia [19-21] also requires IFT, but direct evidence is lacking. Here, in studies of regulated entry of a membrane protein into the flagellum of Chlamydomonas, we show that cells use an IFT-independent mechanism to breach the diffusion barrier at the flagellar base. In resting cells, a flagellar signaling component [22], the integral membrane polypeptide SAG1-C65, is uniformly distributed over the plasma membrane and excluded from the flagellar membrane. Flagellar adhesion-induced signaling triggers rapid, striking redistribution of the protein to the apical ends of the cells concomitantly with entry into the flagella. Protein polarization and flagellar enrichment are facilitated by cytoplasmic microtubules. Using a conditional anterograde IFT mutant, we demonstrate that the IFT machinery is not required for regulated SAG1-C65 entry into flagella. Thus, integral membrane proteins can negotiate passage through the ciliary diffusion barrier without the need for a motor.
Collapse
Affiliation(s)
- Olivier Belzile
- Department of Cell Biology, University of Texas Southwestern Medical School, 6000 Harry Hines Boulevard, Dallas, TX 75390-9039, USA
| | | | | | | |
Collapse
|
47
|
Shih SM, Engel BD, Kocabas F, Bilyard T, Gennerich A, Marshall WF, Yildiz A. Intraflagellar transport drives flagellar surface motility. eLife 2013; 2:e00744. [PMID: 23795295 PMCID: PMC3679542 DOI: 10.7554/elife.00744] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/30/2013] [Indexed: 11/23/2022] Open
Abstract
The assembly and maintenance of all cilia and flagella require intraflagellar transport (IFT) along the axoneme. IFT has been implicated in sensory and motile ciliary functions, but the mechanisms of this relationship remain unclear. Here, we used Chlamydomonas flagellar surface motility (FSM) as a model to test whether IFT provides force for gliding of cells across solid surfaces. We show that IFT trains are coupled to flagellar membrane glycoproteins (FMGs) in a Ca2+-dependent manner. IFT trains transiently pause through surface adhesion of their FMG cargos, and dynein-1b motors pull the cell towards the distal tip of the axoneme. Each train is transported by at least four motors, with only one type of motor active at a time. Our results demonstrate the mechanism of Chlamydomonas gliding motility and suggest that IFT plays a major role in adhesion-induced ciliary signaling pathways. DOI:http://dx.doi.org/10.7554/eLife.00744.001 Cilia and flagella protrude like bristles from the cell surface. They share the same basic ‘9+2’ axoneme structure, being made up of nine microtubule doublets that surround a central pair of singlet microtubules. Flagella are generally involved in cell propulsion, whereas motile cilia help to move fluids over cell surfaces. Maintaining cilia and flagella is a challenge for cells, which must find a way to send new proteins all the way along the axoneme to the site of assembly at the flagellar tip. Cells achieve this via a process called intraflagellar transport, in which proteins are carried back and forth by kinesin and dynein motors along the axonemal doublet microtubules. Intraflagellar transport has been proposed to influence other functions of cilia and flagella, including the propulsion of cells over surfaces. However, the details of these interactions are unclear. Through a combination of biophysical and microscopy approaches, Shih et al. describe the mechanism that the green alga Chalmydomonas uses to power flagellar gliding over surfaces. By tracking single fluorescently tagged molecules, Shih et al. observed that flagellar membrane glycoproteins are carried along the axoneme by the intraflagellar transport machinery. During transport, flagellar membrane glycoproteins transiently adhere to the surface, and dynein motors that were previously engaged in carrying these glycoproteins now transmit force that moves the axonemal microtubules. This process, which is dependent on the concentration of calcium ions in the extracellular environment, generates the force that propels the alga's flagella along the surface. Gliding motility is thought to have been one of the initial driving forces for the evolution of cilia and flagella. How the intricate mechanism of flagellar beat motility could have evolved has been the subject of much discussion, as it would require the flagellum to have evolved first. In demonstrating that gliding motility is powered by the same intraflagellar transport mechanism that is required for flagellar assembly, Shih et al. provide strong evidence for the evolution of primitive flagella before the evolution of flagellar beating. Furthermore, since algal flagella have essentially the same structure as the cilia of human cells, these findings could ultimately aid in the development of treatments for diseases that result from defects in intraflagellar transport, including polycystic kidney disease and retinal degeneration. DOI:http://dx.doi.org/10.7554/eLife.00744.002
Collapse
Affiliation(s)
- Sheng Min Shih
- Department of Physics , University of California, Berkeley , Berkeley , United States
| | | | | | | | | | | | | |
Collapse
|
48
|
Scholey JM. Kinesin-2: a family of heterotrimeric and homodimeric motors with diverse intracellular transport functions. Annu Rev Cell Dev Biol 2013; 29:443-69. [PMID: 23750925 DOI: 10.1146/annurev-cellbio-101512-122335] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Kinesin-2 was first purified as a heterotrimeric, anterograde, microtubule-based motor consisting of two distinct kinesin-related subunits and a novel associated protein (KAP) that is currently best known for its role in intraflagellar transport and ciliogenesis. Subsequent work, however, has revealed diversity in the oligomeric state of different kinesin-2 motors owing to the combinatorial heterodimerization of its subunits and the coexistence of both heterotrimeric and homodimeric kinesin-2 motors in some cells. Although the functional significance of the homo- versus heteromeric organization of kinesin-2 motor subunits and the role of KAP remain uncertain, functional studies suggest that cooperation between different types of kinesin-2 motors or between kinesin-2 and a member of a different motor family can generate diverse patterns of anterograde intracellular transport. Moreover, despite being restricted to ciliated eukaryotes, kinesin-2 motors are now known to drive diverse transport events outside cilia. Here, I review the organization, assembly, phylogeny, biological functions, and motility mechanism of this diverse family of intracellular transport motors.
Collapse
Affiliation(s)
- Jonathan M Scholey
- Department of Molecular and Cell Biology, University of California, Davis, California 95616;
| |
Collapse
|
49
|
Broekhuis JR, Rademakers S, Burghoorn J, Jansen G. SQL-1, homologue of the Golgi protein GMAP210, modulates intraflagellar transport in C. elegans. J Cell Sci 2013; 126:1785-95. [PMID: 23444385 DOI: 10.1242/jcs.116640] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primary cilia are microtubule-based organelles that have important sensory functions. For their function, cilia rely on the delivery of specific proteins, both by intracellular trafficking and intraflagellar transport (IFT). In the cilia of Caenorhabditis elegans, anterograde IFT is mediated by kinesin-II and OSM-3. Previously, we have shown that expression of a dominant active G protein α subunit (GPA-3QL) in amphid channel neurons affects the coordination of kinesin-II and OSM-3 and also affects cilia length, suggesting that environmental signals can modulate these processes. Here, we show that loss-of-function of sql-1 (suppressor of gpa-3QL 1), which encodes the homologue of the mammalian Golgi protein GMAP210, suppresses the gpa-3QL cilia length phenotype. SQL-1 localizes to the Golgi apparatus, where it contributes to maintaining Golgi organization. Loss of sql-1 by itself does not affect cilia length, whereas overexpression of sql-1 results in longer cilia. Using live imaging of fluorescently tagged IFT proteins, we show that in sql-1 mutants OSM-3 moves faster, kinesin-II moves slower and that some complex A and B proteins move at an intermediate velocity, while others move at the same velocity as OSM-3. This indicates that mutation of sql-1 destabilizes the IFT complex. Finally, we show that simultaneous inactivation of sql-1 and activation of gpa-3QL affects the velocity of OSM-3. In summary, we show that in C. elegans the Golgin protein SQL-1 plays an important role in maintaining the stability of the IFT complex.
Collapse
Affiliation(s)
- Joost R Broekhuis
- Department of Cell Biology, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
50
|
Broekhuis JR, Leong WY, Jansen G. Regulation of cilium length and intraflagellar transport. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:101-38. [PMID: 23445809 DOI: 10.1016/b978-0-12-407697-6.00003-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Primary cilia are highly conserved sensory organelles that extend from the surface of almost all vertebrate cells. The importance of cilia is evident from their involvement in many diseases, called ciliopathies. Primary cilia contain a microtubular axoneme that is used as a railway for transport of both structural components and signaling proteins. This transport machinery is called intraflagellar transport (IFT). Cilia are dynamic organelles whose presence on the cell surface, morphology, length and function are highly regulated. It is clear that the IFT machinery plays an important role in this regulation. However, it is not clear how, for example environmental cues or cell fate decisions are relayed to modulate IFT and cilium morphology or function. This chapter presents an overview of molecules that have been shown to regulate cilium length and IFT. Several examples where signaling modulates IFT and cilium function are used to discuss the importance of these systems for the cell and for understanding of the etiology of ciliopathies.
Collapse
|